
Design and Implementation of the Formal Specification Acquisition

System SAQ∗

Dong Yunmei, Li Kaide, Chen Haiming, Hu Yongqian,
Zhang Ruiling, Tang Ruqing, Wan Zhanyong and Chen Ziming

Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
Beijing 100080, China

Email: {dym,lkd,chm,hyq,zrl,trq,wzy,czm}@ox.ios.ac.cn

Abstract

The formal specification acquisition system SAQ is
designed to assist users to acquire and validate spec-
ifications with support of specification bases. In
SAQ, specifications are represented by context-free
languages and recursive functions defined on context-
free languages, which are called concepts and opera-
tions defined on concepts respectively. Acquisition of
specifications is completed by human-machine coop-
eration, based on specification reuse. Concepts are
validated by sample recognition and generation, and
operations are validated by applying operations on
samples of concepts. The design and key implemen-
tation techniques of SAQ are introduced, experiments
are presented.

Key words: formal specification, acquisition, val-
idation, grammar learning algorithm, recursive func-
tion evaluation.

1 Introduction

Software automation is the radical way to improve
software productivity. Most of previous researches in
this area focus on how to derive executable programs
from formal specifications. However, one more funda-
mental issue of software automation, which is also one
of the basic issues of software engineering, is how to
obtain formal specifications and make sure that spec-
ifications meet actual requirements. This is a rather
difficult problem, and researchers began to pay much
attention to it in recent years.

Requirements of systems often are hard to be com-
pletely and clearly stated at a time. Yet user’s re-
quirements about system’s functionalities are under
continuous changing. We have been developing a

∗This research was supported by the National “863” Hi-
Tech Programme, the National Natural Science Foundation,
and the National “Ninth-Five” Sci-Tech Programme of China.

methodology for specification acquisition, i.e. the
MLIRF method [3], the ultimate goal of which is
to study how to assist human users by computer,
through human-machine cooperation, to develop pre-
cise, complete and consistent formal specifications,
which are approved by human users through verifi-
cation and then used as the starting point of soft-
ware design and implementation, from human users’
vague, incomplete and inconsistent informal state-
ment of needs about target problems, together with,
and making full use of, known specification knowl-
edge. A complete solution to it is still years away.
This paper presents what we have achieved at this
direction.

We realized that to ease the acquisition of complex
specifications, it is important to be able to construct
specifications based on reuse of known specifications.
In this method, we use formal languages and a new
kind of recursive functions to represent specifications.
Acquisition of specifications is completed by human-
machine cooperation, based on specification reuse.

We have designed and implemented an environ-
ment SAQ (Specification AcQuisition system) that
implements MLIRF method. It assists users to ac-
quire and validate specifications with support of spec-
ification bases [1, 2]. The present focus is on verify-
ing the method and its related implementation tech-
niques. Other relevant work like automatic verifica-
tion tool have not been set about.

Many trivial and nontrivial experiments have been
done successfully. These experiments indicate that
SAQ is particularly suited for the problem class which
has complex syntax structure, such as the automatic
conversion problem of programming languages.

There have been some other work on specification
acquisition. Most of them are domain dependent,
and domain knowledge plays a key role there. For
example, WATSON [9] applies to reactive systems,
SPACE [8] operates in business data processing sys-

tems, and [10] describes method for obtaining speci-
fications of communication services. The techniques
adopted by existing work include logical inference,
object-oriented model, psychological and human per-
formance model, and so on. SAQ is not domain de-
pendent, and provides new representation for specifi-
cations and reuse-based learning method for specifi-
cation acquisition.

Related with SAQ’s specification is the algebraic
specification, which is composed of signatures and
equations. However, recursive functions can be de-
fined by structural induction method in the assistance
of machine, and evaluation of recursive functions can
be implemented more efficiently then term rewriting
for algebraic specifications.

In this paper the design, implementation and appli-
cation of SAQ will be introduced. Section 2 describes
the function and structure of SAQ. In section 3 the
key implementation techniques are presented. A non-
trivial example is described in section 4 for the illus-
tration of using SAQ. Experiments and future work
are sketched in section 5.

2 Design of SAQ

2.1 Specification Representation and
Acquisition

We split a specification into two parts: problem space
and operations defined on it, which respectively cor-
respond to syntax and semantics of the specification.
In SAQ, problem space consists of concepts. A con-
cept is a set, i.e. the set of all samples of the concept.
We are especially interested in the following case: the
elements of a set are expressions to describe samples
of a concept, in other word, an element is a sentence.
Therefore, concept is a language. Moreover, we just
consider context-free languages (CFLs). Tightly con-
nected with concepts are operations, which are de-
fined on these concepts. Operations are represented
by recursive functions defined on context-free lan-
guages (CFRFs) [5]. Therefore the semantics is a de-
scription of “how to do” instead of “what to do”. But,
within a framework of functional language (CFRF),
it avoids many implementation details.

Specification is a formal representation of concepts
and operations.

Specification acquisition is to acquire grammar def-
initions of concepts and the effective (executable) def-
initions of operations. Acquisition of the description
of problem space, i.e. the concepts, is realized by in-
ference from a few typical instances of the problem by
human-machine interaction and reuse of specification
knowledge. In particular, concepts will be obtained

by grammar acquisition methods. For this purpose
a reuse-based new method for context-free grammar
acquisition is presented. Because of the inherent dif-
ficulties in the inference of semantics, the semantics
of specification is instead offered by user in the assis-
tance of machine. The key point is, complete defini-
tion of the semantics is assured by the assistance of
machine.

Specifications are validated by testing. Concepts
are validated by sample recognition and generation,
and operations are validated by applying operations
on samples of concepts.

2.2 Function of SAQ

SAQ assists users to acquire and validate specifica-
tions by human-machine cooperation, with support
of specification bases. SAQ provides the following fa-
cilities:

• Hypertext online help. Users can learn general or
specific information of the system, or operating
instructions at any time.

• Menu driven. Users can work with the system by
selecting one of the operations available at that
time.

• Specification base management. Creation:
There should be core material in a base. So
a base creation tool is necessary to import the
minimal contents into bases. Management: Base
management. The key problem is rapid access
to large-scale specification base. Use: Users can
browse or retrieve data in specification bases at
any time. The operations on specification bases
can be invoked either by users, or by other sub-
systems.

• Concept acquisition. Essentially it is the induc-
tive learning of CFL.

• Operation acquisition. Essentially it is the defi-
nition and evaluation of CFRF.

• Specification validation. Generate samples from
concepts, and check if a sample belongs to a con-
cept; apply operation on samples.

2.3 Structure of SAQ

The structure of SAQ is illustrated in Figure 1.
SAQ consists of the following components.

1. Human-machine interface. All human-machine
interactive operations and management of the
system are realized through this interface.

Human-machine Interface

Concept Acquisition Operation Acquisition Online Help

Verification Verification

 Specification Base

 Management

 Base Base Base

Figure 1: Structure of SAQ

2. Concept acquisition and verification system. It
implements grammatical inference of concepts
and sample generation and recognition.

3. Operation acquisition and verification system. It
implements definition and application of opera-
tions.

4. Specification base management system. It car-
ries out management, reuse, browse and retrieval
of data in specification bases, and includes base
creation tools.

5. Hypertext online help system. It provides an on-
line help manual that can be browsed in hyper-
text manner.

3 Implementation

In this section the key implementation techniques of
SAQ are introduced.

3.1 Notation Convention

Vocabulary V = VN∪VT , where VN is a set of nonter-
minals, its elements will be denoted by capital letters

(may have subscripts) as X, Y, Z, X0, Y0, Z0, . . .; VT

is a set of terminals; VN ∩ VT = Λ. V ∗
T denotes the

set of all strings of terminals (including empty string
λ), its elements will be denoted by lower case letters
a, b, c, . . .; V ∗ denotes the set of all strings of char-
acters of V , its elements will be denoted by capital
letters P, Q,R. The grammar of X is denoted by
G(X).

3.2 Reuse-Based Interactive Learning
of Concepts represented as CFL

Concept learning or acquisition is a human-machine
interaction process, which needs to utilize the avail-
able knowledge (specification base reuse), learning by
induction, i.e. from particular to general, to gener-
alize the samples of concept. The results must be
confirmed.

Gold indicated in his paper [7]: If both positive and
negative samples are offered, then the CFL is identi-
fiable in limit; if just the positive samples are offered,
then any language class contains infinite many sen-
tences and cannot be identifiable in limit. After then,
many authors study the problem of identification of
CFL and their subclass from different viewpoint [11].
This topic is the so-called inductive learning of lan-

guage or grammatical inference.
SAQ cannot take the known learning algorithms,

since SAQ requires the algorithm with features:

• There exist many grammars for a given lan-
guages, and the intended one has to represent
structure within the concept and subconcept, so
the meaning of concept (semantics) can be de-
scribed in a natural way. We do not want a
general algorithm, to acquire a grammar what-
ever to define the language, without meaningful
structure; neither a special algorithm just suit-
able for particular subclass of context-free gram-
mar, such as precedence grammar or regular set.

• It should work efficiently, acquire in finite time,
know when to finish acquisition process, and be
effective on computer.

For SAQ, user’s taking part in learning process does
not mean a bother but necessity. User aided decision
making will reduce searching space, and raise learning
efficiency and quality.

3.2.1 The Overall Process

We proposed a reuse-based interactive learning pro-
cess for concepts represented as CFL, based on the
algorithm described in [4]. It does concept acquisi-
tion by interaction with user (called seeker) to aid
decision-making, with support of specification bases.
In the learning process, final grammar of a concept is
acquired by given a finite set of samples of the con-
cept, and some known concepts (i.e. their grammars
are known) may be used in the acquisition, which is
the reuse of concepts. A group of interrelated con-
cepts will be acquired in one learning process, gener-
ally one of which is the main concept, and the oth-
ers are auxiliary concepts subordinated to the main
one. The learning process encompasses five succeed-
ing steps: conjecture, conjecture confirmation, con-
jecture refinement, empty word process, and redun-
dancy elimination.

(1) Conjecture. The process starts by making con-
jecture according to the samples of unknown concepts
and grammars of known concepts given by the seeker.
The central point is to generalize samples into conjec-
tures. All conjectures for each sample will be found
out. Details of this step will be described later.

(2) Conjecture confirmation. After all conjectures
have been made, next step is to decide whether to
accept or reject each conjecture, which needs the
seeker’s aid. The seeker will reply questions that can-
not be decided by the system.

(3) Conjecture refinement. The accepted con-
jecture set will be refined. Actually it is a re-

generalization of conjectures that will construct more
refined productions.

(4) Empty word process. Empty word (i.e. empty
string) can both be given as a sample of an unknown
concept and occur in the production of a known con-
cept, which is not considered in conjecture and refine-
ment steps. Empty word will be processed with the
refined production set.

(5) Redundant elimination. Before reach the final
results, redundancy elimination is done. For each pro-
duction in current conjecture set, if it can be derived
from other productions in the set, then the seeker will
be asked whether this production will be eliminated
or not.

In the following we will describe the way of conjec-
ture in detail.

3.2.2 Conjecture Process

The finite set of given samples of an unknown concept
X is denoted by Sample(X). A term conjecture of a
sample s with respect to unknown concept X is a
production in the form X → P (P ∈ V ∗). For each
nonterminal (i.e. concept name) Y in P , there exists
a string in Sample(Y) (if Y is unknown) or a valid
sentence of G(Y) (if Y is known), such that when all
concept names in P are replaced by the corresponding
strings or sentences, then P becomes the sample s. If
there is no nonterminal in P , then X → P is called a
trivial term conjecture. The set of the right-hand side
of all term conjectures of a sample s with respect to
concept X is denoted by Term(X, s).

Term(X, s) = {P | X → P is a term conjecture of s}
An allowable decomposition s = abc of terminal

string s is a decomposition of s into three subwords
a, b, c, such that b is not an empty word; a and c are
not empty words at the same time; and there is an un-
known concept X such that b ∈ Sample(X), or there
is a known concept Y such that b is a valid sentence
of G(Y). Denote ADecomp(s) the set of all allowable
decompositions of s. An allowable decomposition abc
of s is in ADecomp(s) if (1) there is an element a1b1c1

in ADecomp(s), such that a = a1, b = b1, c = c1, or
(2) there is an element a1b1c1 in ADecomp(s), such
that a1 is the head of a, c1 is the tail of c 1 (b must
be a proper subword of b1, i.e. b occurs in b1 and
b 6= b1).

The Cartesian product of T1 = {Q | Q ∈ V ∗} and
T2 = {R | R ∈ V ∗} is

T1 × T2 = {QR | Q ∈ T1, R ∈ T2}.
1For three words a, b, c, if a = bc, then b is called a head of

a, b is called a proper head of a while c is not an empty word;
c is called a tail of a, c is called a proper tail of a while b is not
an empty word.

The objective of conjecture process is to construct
Term(X, s) for all s ∈ Sample(X). This process is
divided into three steps and each s is dealt with by
an order of size from short to long.

(1) If a trivial term conjecture is wanted (this case
should be confirmed by seeker), then

Term(X, s) = {s}.

(2) If a nontrivial term conjecture is wanted, then
find an allowable decomposition a, b, c of s. Accord-
ing to this decomposition, a nontrivial term conjec-
ture aXbc is constructed, and becomes an element of
Term(X, s). If Xb is unknown, then b ∈ Sample(Xb);
otherwise b is a valid sentence of G(Xb).

There might be several allowable decompositions
of s. It is unlikely all the term conjectures formed
from them are desirable. In particular, if there are
two different allowable decompositions s = abc and
s = a1b1c1, where a is the head of a1, c is the tail
of c1, then the decomposition s = a1b1c1 is denied.
Furthermore, the seeker can deny a term conjecture
directly, or request to generate a set of samples from
the term conjecture for confirmation.

Maybe there dose not exist any allowable decompo-
sition, it means that the sample set is not rich enough,
or the current concept system is not complete yet, not
a self-contained one. At this time, what need to do is
to supply new samples or introduce auxiliary concept.

It is possible that the seeker would rather give
his(her) own decomposition and introduce auxiliary
concept, even though there exist allowable decompo-
sitions already.

(3) For a in allowable decomposition, assume a
temporary nonterminal Xa, deny it after this step
completed. If a is not an empty word, then let
Sample(Xa) = {a}, and use the algorithm stated
here to find out Term(Xa, a). If a is the empty word,
then let Term(Xa, a) = {λ}. Similarly, to find out
Term(Xc, c) for c. Finally put elements of set

{TaXbTc | Ta ∈ Term(Xa, a), Tc ∈ Term(Xc, c)}

into Term(X, s), to replace the original term conjec-
ture aXbc.

3.3 Definition and Application of Op-
erations

Operations are so-called CFRFs, whose operands
have CFL structures. Unlike other recursive func-
tions, both definition and evaluation of CFRF should
be carried out according to the structure of CFL.
In concrete, definition is accomplished by structural
induction, and evaluation needs structural analysis.

The inductive definition of operation can be assisted
by machine, which makes definition easier and guar-
antees the definition of operation is complete.

3.3.1 Definition Process

The basic definition method of operation is structural
induction on CFLs. The user is allowed to define
operations either directly or interactively. For sim-
ple operation, the user can compose its definition di-
rectly. Otherwise, the user can construct the defini-
tion interactively in the assistance of the system. It is
not difficult to implement the interactive construction
of operations.

The basic way to define operations is mutually re-
cursive definition, i.e. to define several interrelated
operations simultaneously.

The process to define a set of operations is as fol-
lows.

At first there are a set of known concept names
denoted by S and a set of being defined operation
names denoted by F . The operations in F are defined
one by one.

When defining an operation, if the operation is
complex, then the user interactively constructs its
definition. If the user thinks that he can write the
definition directly, then he inputs the definition in an
editor window. The definition given directly by user
should be in FDL, the operation definition language
of the system. The answers offered by user in in-
teractive construction are expressions in FDL. Com-
plete definition will be formed after the interaction
succeeds.

Validity checking is made each time the user gives a
definition directly or gives an expression interactively.
Invalid definition or expression is denied.

For new operations (those do not defined yet and
are not in F) that occur in a definition or an ex-
pression, the user is asked to give their domains and
ranges, and their names are added into F . If there
are new concept names in the domains or ranges just
given, then these concept names are added into S.

At last, when all operations in F are defined, the
definition process completes.

3.3.2 Operation Application

To apply operations on samples of concepts is to eval-
uate CFRFs.

Parsing CFRF does not limit CFLs to any sub-
class, and empty word is permitted. So a general CFL
parser capable of dealing with empty word is required.
One competent algorithm is the Earley’s algorithm
[6]. Earley’s algorithm generates the right parse of

a sentence, represented as a sequence of numbers of
productions. For a sentence with length of n, the
worst case of parse time is O(n3).

Evaluation of CFRF As stated above, evaluation
of CFRF is closely related with structural analysis or
parsing. Based on the selected parsing method, an
evaluation algorithm for CFRF is introduced below.

Assume a n-ary function g : L1 × . . . × Ln → L
is defined by structural induction on L1, and L1 is
defined by G1 = (VN , VT , X1, P1).

For sentences u1, . . . , un of L1, . . . , Ln, when eval-
uate g(u1, . . . , un), first parse u1 according to the
grammar of L1, to generate a right parse i1i2 . . . im,
represented by the numbers of productions in P1. The
right parse of u1 would be one of the following two
cases:

• Only one production i1. At this time production
i1 must be X1 → u1. From the definition of g
find out the equation whose first parameter is u1

(this equation exists according to the structural
induction method), and replace the variables in
the right-hand side expression e of that equation
by the binding values. If in expression e there
is no other function except concatenation, then
evaluation is completed, otherwise continue to
evaluate such functions.

• More than one productions exist. At this time
production i is X1 → P . Suppose P contains
nonterminals Z1, . . . , Zr, it is easy to calculate
from i2 . . . im the corresponding right parses and
values of the nonterminals. From the definition
of g find out the equation whose first parameter
matches the structure of P , and replace the vari-
ables in the right-hand side expression e of that
equation by the binding values, moreover, the
right parses of Z1, . . . , Zr are kept in the corre-
sponding variables. If in expression e there is no
other function except concatenation, then evalu-
ation is completed, otherwise continue to evalu-
ate such functions.

3.4 Structure and Management of
Specification Base

3.4.1 Data in Specification Bases

Three kinds of data are stored in a specification base:
fixed-length data, such as name (concept name or op-
eration name), type, author, date, author’s address,
version, abstract, and so on, which we refer as record;
association, which is variable-length data that indi-
cate the reference information of concepts and opera-

tions; concept or operation definitions, which are also
variable in length.

A group of definitions called definition group is
stored as the basic unit in specification base. A def-
inition group of concepts consists of a group of in-
terrelated concepts. A definition group of operations
consists of a group of mutually defined operations.

3.4.2 Structure of Specification base

Databases can be classified into relational, hierarchi-
cal, and network databases, according to data rela-
tions. Data relation in the specification bases is so
intricate that it is rather difficult, and certainly in-
efficient, to organize data by relational model. Ac-
cording to the characteristics of specification bases, a
restricted network structure is used. We treat the re-
lations among definition groups as a directed acyclic
graph, relations among concepts or operations within
a definition group is not restricted.

3.4.3 Management of Specification Base

The management of specification base entails differ-
ent scenarios for different kind of data. In brief,
extensible hashing combined with partial-match re-
trieval and indexed descriptor file is imposed on the
management of record and linked table is used to or-
ganize both definitions and associations.

Extensible hashing is a fast access method based on
hash function, it has a dynamic structure that grows
and shrinks gracefully as the records are inserted or
deleted, and can handle the direct access to records
efficiently.

Moreover, partial-match retrieval is adopted to
construct a hash mapping (called pseudokey) out
of multiple hash mappings stemmed from multiple
keys in one record as the case is in our specification
base. For this aim, first, for a record with n keys
R = (k1, k2, . . . , kn), let hi be a hashing function
from the key space Ki of the field ki to the hash-
ing mapping space Hi, thus hi : Ki → Hi (i =
1, . . . n). The next step is to form a choice vector
CV = (C1, C2, . . . , Cm) (m is maximal length of pseu-
dokey). A simple, reasonable rule to form CV is given
as following: Ci (1 ≤ i ≤ m) is decided by the re-
trieval rate of key ki, Ci is relatively big for high
retrieval frequency of ki, but Ci is set to 1, no matter
how often the key ki are queried, if ki is a boolean
value. Then we assemble pseudokey using choice vec-
tor: the ith position of pseudokey will be filled by the
first so far unused bit in hci(kci).

To minimize the retrieval range further, indexed
descriptor file is used. We abstract data in a record
into a bit string that is called descriptor of the bucket.

The collections of all bucket descriptors comprise the
indexed descriptor file.

While querying records from our specification
bases, we located the candidate buckets first by exten-
sible hashing, then compare the query’s descriptor Dq

with those buckets descriptors Db. If the bits equal
to 1 in Dq has the same bit values in Db, we look up
this buckets for the records we want, otherwise, just
discard the bucket without scanning each record in
it.

3.5 The Browser

The browser provides a tool for user to browse spec-
ification bases that have been created. With the
browser the user can either browse the definitions of
concepts or operations in current base, or view con-
cept dependency graphs. By using two stacks to keep
browsing trace, objects can be viewed flexibly in hy-
pertext style. Definitions can also be viewed in se-
quential order, or by attribute retrieval.

Concept dependency graph is a directed graph, in
which a node is concept, and there is an edge from
node X to node Y if and only if there is a production
X → . . . Y . . ., in this case we say X depends on Y .
To display the dependency relations among concepts
clearly, each cycle in a concept dependency graph is
merged into a special node, then the graph becomes a
simpler directed acyclic graph and is pretty-printed.

4 A Nontrivial Example

The example is the formal differentiation of elemen-
tary functions. Elementary functions are commonly
used mathematic functions, such as polynomial
functions, trigonometric functions, anti-trigonometric
functions, exponential functions, logarithmic func-
tions, and so on. In the example, the concept of ele-
mentary function will be acquired, and the operation
on the function for differentiation evaluation will be
defined.

We will first define the concept of elementary func-
tion. The concept names and samples we are given
are listed in Table 1. Samples of a concept are sepa-
rated by white space in the table. Some known con-
cepts are used in the acquisition: FuncName, Num,
addOp, mulOp, id, in which Num is the concept for
number, id is the concept for identifier, grammars
of FuncName, addOp, mulOp are given directly as
shown below.

<FuncName>->exp|ln|sin|cos|tg|ctg|sec

|csc|aSin|aCos|aTg|aCtg|aSec|aCsc

<addOp>->+|-

<mulOp>->*|/

The conversation with SAQ is shown in the ap-
pendix. The learned grammar for elementary func-
tion is as follows.

<elemFunc>-><term>

<elemFunc>-><elemFunc><addOp><term>

<term>-><factor>

<term>-><term><mulOp><factor>

<factor>-><primExpr>

<factor>->-<primExpr>

<factor>-><factor>^<primExpr>

<primExpr>-><Num>

<primExpr>-><Var>

<primExpr>->(<elemFunc>)

<primExpr>-><FuncName>(<elemFunc>)

<Var>-><id>

We will next define operation for differentiation.
This can be started by giving a function name and its
domain and range: Diff: elemFunc -> elemFunc,
then we begin to define Diff by the support of SAQ.
The dialog is as follows.

Now the conversation begins.

I will ask you questions, and you should

answer the questions. When you have answered

one question, press the ’Ok’ button at the

bottom of this window, then I will know your

answer. Any question starts with prompt ’>’

and perhaps has hint or instruction starting

with ’-->’ to instruct you to answer correctly.

For detailed information, see Help.

Good luck!

>if x0 is variable of <term>

then Diff(x0)=?

tmDiff(x0)

>if x1 is variable of <elemFunc>

x2 is variable of <addOp>

x3 is variable of <term>

then Diff(x1[]x2[]x3)=?

scat(Diff(x1),x2,tmDiff(x3))

>Definition of function Diff succeed.

The definition is:

dec Diff: elemFunc -> elemFunc;

var x0,x3 :term;

x1 :elemFunc;

x2 :addOp;

def Diff(x0)=tmDiff(x0);

Diff(x1[]x2[]x3)=scat(Diff(x1),x2,tmDiff(x3));

In the definition, scat is the primitive function of
concatenation, [] is the infix operator for concatena-
tion. When unknown function name tmDiff appears,
SAQ will ask user to give its domain and range and
then add it to the new function set. Therefore we can
continue to define it after defining present function.
By this manner, all related functions will be defined.

Table 1 Samples of concepts

ConceptName Samples
elemFunc 1 1+1

term 1 1*1
factor 1 1ˆ1 -1

primExpr 1 x (1+1) exp(1+1) ln(1+1) sin(1+1) aSin(1+1)
Var x

And the definitions of all functions are listed in the
appendix. In the functions, two of them, i.e. efNeg
and tmNeg, are defined directly.

5 Experiments and Conclusion

SAQ has been implemented on Sun SPARCstation.
The development platform of SAQ is Solaris2.3 and
XView toolkit. User interface is developed by the user
interface development tool Devguide. Source code of
SAQ consists of about 78,000 lines of C statements.

Many trivial and nontrivial experiments have been
done successfully. Nontrivial experiments of SAQ in-
clude, besides the one of elementary function, acqui-
sition of concepts for binary and decimal numbers
and definition of relevant operations; acquisition of
the grammar for a Lisp like small functional language
and definition of an interpreter for the language. It
shows that specifications can be acquired easily, and
the constructed specifications are concise.

There are also some deficiencies in SAQ. For ex-
amples, when learning concept with larger definition
body, searching speed is slow; and the evaluation effi-
ciency of complex operation is also low. Future work
include raising the efficiency of concept learning algo-
rithm and the efficiency of operation application, so
that SAQ could be more practical.

Acknowledgment
The authors would like to thank Wang Honghao,

who prepared part of the example presented in this
paper.

References

[1] Yunmei Dong. Collection of SAQ reports no.1-7.
Technical Report ISCAS-LCS-95-09, Computer
Science Laboratory, Institute of Software, Chi-
nese Academy of Sciences, August 1995.

[2] Yunmei Dong et. al. Collection of SAQ re-
ports no.8-16. Technical Report ISCAS-LCS-96-
1, Computer Science Laboratory, Institute of

Software, Chinese Academy of Sciences, Mar.
1996.

[3] Yunmei Dong. MLIRF method for specification
acquisition and reuse. (in Chinese) Proc. of the
9th National Conf. of China Computer Federa-
tion, 21–27, May 1996.

[4] Yunmei Dong. An interactive learning algorithm
for acquisition of concepts represented as CFL.
J. Comput. Sci. & Technol., vol. 13, no. 1, 1–8,
1998.

[5] Yunmei Dong. Recursive functions defined on
context-free languages (I). (in Chinese), Tech-
nical Report ISCAS-LCS-98-14, Computer Sci-
ence Laboratory, Institute of Software, Chinese
Academy of Sciences, 1998.

[6] J. Earley. An efficient context-free parsing algo-
rithm. Comm. ACM. 13, 94–102, 1970.

[7] E. M. Gold. Language identification in the limit.
Information and Control, 10, 447–74, 1967.

[8] M. Harada. An automatic programming system
SPACE with highly visualized and abstract pro-
gram specification. IEICE Transactions on Infor-
mation and Systems, vol. E78-D, no. 4, 403–19,
April 1995.

[9] V. E. Kelly and U. Nonnenmann. Reducing the
complexity of formal specification acquisition.
M. R. Lowry and R. D. McCartney ed. Automat-
ing software design, 41–64, AAAI Press, 1991.

[10] A. Takura, Y. Ueda, T. Haizuka, and T. Ohta.
Requirement specification acquisition of commu-
nications services. IEICE Transactions on Infor-
mation and Systems, vol. E79-D, no. 12, 1716–
25, Dec. 1996.

[11] Takashi Yokomori. Learning context-free lan-
guage efficiently — a report on recent results in
Japan. LNAI 397, 104–23, 1989.

Appendix. Complementary Materials For
Formal Differentiation of Elementary Func-
tions

The Conversation of Concept Acquisition
The ## is used to separate samples, and “...” are

added by the authors to omit samples for saving
space.

Do you want to accept the GUESS(from "1"):

<elemFunc>-><term>

and it generates new samples below:

1 ## 1*1

Yes.

Do you want to accept the GUESS(from "1+1"):

<elemFunc>-><elemFunc><addOp><elemFunc>

and it generates new samples below:

1 + 1+1 ## 1+1 - 1+1 ## 1+1 + 1 ## 1+1 + 1+1

No.

Do you want to accept the GUESS(from "1+1"):

<elemFunc>-><elemFunc><addOp><term>

and it generates new samples below:

1 + 1*1 ## 1+1 - 1*1 ## 1+1 + 1 ## 1+1 + 1*1

Yes.

Do you want to accept the GUESS(from "1"):

<term>-><elemFunc>

and it generates new samples below:

1 ## 1+1

No.

Do you want to accept the GUESS(from "1"):

<term>-><factor>

and it generates new samples below:

1 ## -1 ## 1^1

Yes.

Do you want to accept the GUESS(from "1*1"):

<term>-><term><mulOp><term>

and it generates new samples below:

1 * 1*1 ## 1*1 / 1*1 ## 1*1 * 1 ## 1*1 * 1*1

No.

Do you want to accept the GUESS(from "1*1"):

<term>-><term><mulOp><elemFunc>

and it generates new samples below:

1 * 1+1 ## 1*1 / 1+1 ## 1*1 * 1 ## 1*1 * 1+1

No.

Do you want to accept the GUESS(from "1*1"):

<term>-><term><mulOp><factor>

and it generates new samples below:

1 * 1^1 ## 1*1 / 1^1 ## 1*1 * 1 ## 1*1 * -1

1*1 * 1^1

Yes.

Do you want to accept the GUESS(from "1"):

<factor>-><term>

and it generates new samples below:

1 ## 1*1

No.

Do you want to accept the GUESS(from "1"):

<factor>-><primExpr>

and it generates new samples below:

1 ## x ## (1+1) ## exp(1+1) ## ln(1+1)

sin(1+1) ## aSin(1+1)

Yes.

Do you want to accept the GUESS(from "-1"):

<factor>-><addOp><elemFunc>

and it generates new samples below:

- 1+1 ## + 1 ## + 1+1

No.

Do you want to accept the GUESS(from "-1"):

<factor>-><addOp><term>

and it generates new samples below:

- 1*1 ## + 1 ## + 1*1

No.

Do you want to accept the GUESS(from "-1"):

<factor>-><addOp><factor>

and it generates new samples below:

- 1^1 ## + 1 ## + -1 ## + 1^1

No.

Do you want to accept the GUESS(from "-1"):

<factor>-><addOp><primExpr>

and it generates new samples below:

- aSin(1+1)##+ 1##+ x##+ (1+1)##+ exp(1+1)

+ ln(1+1) ## + sin(1+1) ## + aSin(1+1)

No.

Do you want to accept the GUESS(from "-1"):

<factor>-><addOp><Num>

and it generates new samples below:

- 0 ## + 9 ## + 8 ## + 7 ## + 6 ## + 5 ## + 4

+ 3 ## + 2 ## + 1 ## + 0

No.

Do you want to accept the GUESS(from "-1"):

<factor>-><addOp>1

and it generates new samples below:

- 1 ## + 1

No.

Do you want to accept the GUESS(from "-1"):

<factor>->-<factor>

and it generates new samples below:

- 1 ## - -1 ## - 1^1

No.

Do you want to accept the GUESS(from "-1"):

<factor>->-<primExpr>

and it generates new samples below:

- 1 ## - x ## - (1+1) ## - exp(1+1)

- ln(1+1) ## - sin(1+1) ## - aSin(1+1)

Yes.

Do you want to accept the GUESS(from "1^1"):

<factor>-><factor>^<factor>

and it generates new samples below:

1 ^ 1^1 ## -1 ^ 1 ## -1 ^ -1 ## -1 ^ 1^1

1^1 ^ 1 ## 1^1 ^ -1 ## 1^1 ^ 1^1

No.

Do you want to accept the GUESS(from "1^1"):

<factor>-><factor>^<term>

and it generates new samples below:

1 ^ 1*1 ## -1 ^ 1 ## -1 ^ 1*1 ## 1^1 ^ 1

1^1 ^ 1*1

No.

Do you want to accept the GUESS(from "1^1"):

<factor>-><factor>^<primExpr>

and it generates new samples below:

1 ^ aSin(1+1) ## -1 ^ 1 ## -1 ^ x ## -1 ^ (1+1)

-1 ^ exp(1+1) ## -1 ^ ln(1+1)

-1 ^ sin(1+1) ## -1 ^ aSin(1+1)

1^1 ^ 1 ## 1^1 ^ x ## 1^1 ^ (1+1)

##1^1^exp(1+1)##1^1^ln(1+1)##1^1^sin(1+1)

Yes.

Do you want to accept the GUESS(from "1"):

<primExpr>-><factor>

and it generates new samples below:

1 ## -1 ## 1^1

No.

Do you want to accept the GUESS(from "1"):

<primExpr>-><Num>

and it generates new samples below:

9 ## 8 ## 7 ## 6 ## 5 ## 4 ## 3 ## 2 ## 1 ## 0

Yes.

Do you want to accept the GUESS(from "x"):

<primExpr>-><Var>

and it generates new samples below:

x

Yes.

Do you want to accept the GUESS(from "(1+1)"):

<primExpr>->(<elemFunc>)

and it generates new samples below:

(1) ## (1+1)

Yes.

Do you want to accept the GUESS(from "exp(1+1)"):

<primExpr>-><FuncName><primExpr>

and it generates new samples below:

aCsc aSin(1+1) ## aSec 1 ## aSec x ## aSec (1+1)

...

No.

Do you want to accept the GUESS(from "exp(1+1)"):

<primExpr>-><id><primExpr>

and it generates new samples below:

_ aSin(1+1)

No.

Do you want to accept the GUESS(from "exp(1+1)"):

<primExpr>->exp<primExpr>

and it generates new samples below:

exp 1 ## exp x ## exp (1+1) ## exp exp(1+1)

exp ln(1+1) ## exp sin(1+1) ## exp aSin(1+1)

No.

Do you want to accept the GUESS(from "exp(1+1)"):

<primExpr>-><FuncName>(<elemFunc>)

and it generates new samples below:

aCsc (1+1) ## aSec (1) ## aSec (1+1)

...

Yes.

Do you want to accept the GUESS(from "x"):

<Var>-><id>

and it generates new samples below:

_A

Yes.

Then, we optimize the terms, and get result below:

(1) <elemFunc>-><term>

(2) <elemFunc>-><elemFunc><addOp><term>

(3) <term>-><factor>

(4) <term>-><term><mulOp><factor>

(5) <factor>-><primExpr>

(6) <factor>->-<primExpr>

(7) <factor>-><factor>^<primExpr>

(8) <primExpr>-><Num>

(9) <primExpr>-><Var>

(10) <primExpr>->(<elemFunc>)

(11) <primExpr>-><FuncName>(<elemFunc>)

(12) <Var>-><id>

Definition of Functions

dec Diff: elemFunc -> elemFunc;

var x0,x3 :term;

x1 :elemFunc;

x2 :addOp;

def Diff(x0)=tmDiff(x0);

Diff(x1[]x2[]x3)=scat(Diff(x1),x2,tmDiff(x3));

dec efNeg : elemFunc -> elemFunc;

var t : term; e : elemFunc; a : addOp;

def efNeg(t) = tmNeg(t);

efNeg(e[]a[]t) =

if eq(a,"+") then scat(efNeg(e),"-",t)

else scat(efNeg(e),"+",t);

dec ftDiff: factor -> elemFunc;

var x0,x1,x3 :primExpr;

x2 :factor;

def ftDiff(x0)=peDiff(x0);

ftDiff("-"[]x1)=efNeg(peDiff(x1));

ftDiff(x2[]"^"[]x3)=scat(x2,"^",x3,"*(",

tmDiff(scat(x3,"*","ln(",x2,")")),")");

dec peDiff: primExpr -> elemFunc;

var x0 :Num; x1 :Var;

x2,x4 :elemFunc;

x3 :FuncName;

def peDiff(x0)="0";

peDiff(x1)=if eq(x1,"x") then "1" else "0";

peDiff("("[]x2[]")")=Diff(x2);

peDiff(x3[]"("[]x4[]")")=

if eq(x3,"exp") then

scat(x3[]x4,"*",Diff(x4)) else

if eq(x3,"ln") then

scat("(",Diff(x4),")","/","(",x4,")") else

if eq(x3,"sin") then

scat("cos(",x4,")*",Diff(x4)) else

if eq(x3,"cos") then

scat("-(","sin(",x4,")*",Diff(x4),")") else

if eq(x3,"tg") then

scat("sec(",x4,")^2*",Diff(x4)) else

if eq(x3,"ctg") then

scat("-(","csc(",x4,")^2*",Diff(x4),")")

else if eq(x3,"sec") then

scat("tg(",x4,")*sec(",x4,")*",Diff(x4))

else if eq(x3,"csc") then

scat("-(","ctg(",x4,")*csc(",x4,")*",

Diff(x4),")")

else if eq(x3,"aSin") then

scat("(",Diff(x4),")/","(1-",x4,"^2)^(1/2)")

else if eq(x3,"aCos") then

scat("-((",Diff(x4),")/",

"(1-",x4,"^2)^(1/2))")

else if eq(x3,"aTg") then

scat("(",Diff(x4),")/(1+",x4,"^2)")

else if eq(x3,"aCtg") then

scat("-((",x4,"^2*",Diff(x4),

")/(1+",x4,"^2))")

else if eq(x3,"aSec") then

scat("(",Diff(x4),")/(",

x4,"^2*((1-","1/",x4,"^2)^(1/2)))")

else scat("-",peDiff(scat("aSec(",x4,")")));

dec tmDiff: term -> elemFunc;

var x0,x3 :factor;

x1 :term;

x2 :mulOp;

def tmDiff(x0)=ftDiff(x0);

tmDiff(x1[]x2[]x3)=if seq(x2,"*") then

scat(tmDiff(x1),"*",x3,"+",x1,"*",ftDiff(x3))

else

scat("((",tmDiff(x1),")*",x3,"-",

x1,"*",ftDiff(x3),")/(",x3,"^2)");

dec tmNeg : term -> elemFunc;

var t : term;

def tmNeg(t) = "-"[]t;

