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Abstract 
 

Lightcuts is an efficient illumination method for scenes with many 
complex lights, by hierarchical clustering of lights in a light tree. 
However, when the light tree is large, it is very time-consuming to 
traverse in the tree to get the suitable clusters of lights for 
illumination computation. For this, some methods proposed to use 
image coherence for neighboring pixels to share clusters of lights, 
and so save traversal cost in the light tree. However, with the 
image resolutions reduced, fewer and fewer coherences could be 
used and so their acceleration efficiency will be reduced 
dramatically, and they may even decrease the rendering efficiency.  
 
This sketch proposes to exploit spatial coherences to enhance 
rendering by lightcuts. For the intersection points between rays 
and the scene, they are clustered on the fly and the points of a 
cluster search their respective suitable clusters of lights from a 
common set of clusters, called a common cut. In this way, the 
traversal cost from the tree root to the common cuts can be 
considerably saved for acceleration. Results show that our method 
can be faster than the methods using image coherence, and works 
stably with various image resolutions. And with the lights being 
more complex, our method can obtain more acceleration.  
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1 Introduction 

 
Realistic rendering under complex light sources is an important 
topic of computer graphics.  To reduce the number of lights for 
speeding up illumination computation, the popular method by 
lightcuts [Walter et al 2005] proposed to perform approximation 
computation with adaptive clustering of lights, where a binary tree 
is used to manage hierarchical clusters of lights, called a light tree.  
To compute the radiance L at a surface point x viewed from 
direction ω, it performs a top-down traversal of the global light 
tree to find the interior nodes whose representative lights of their 
corresponding clusters of lights can accurately approximate 
illumination from all source lights at this point. The direct  
illumination from a cluster, say C with a representative light j∈C, 
is computed by using its representative light’s material, geometric, 
and visibility terms Mj(x, ω), Gj(x) and Vj(x) for all of its lights (∑i

∈CIi) in the following formula. 
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All the found interior nodes form a cut through the tree that every 
path from the root of the tree to a leaf contains exactly one such 
interior node. To get the cut, the root is taken as the initial cut, and 
progressively refined until the error criterion for illumination 
approximation is met. For each node in the cut, its cluster estimate 
(Equation 1) and upper bound on its error are computed. If its 
error bound is greater than required for approximation, it is 
removed and replaced by its children in the cut. Otherwise, it is 

sure in the cut and its subtree will not be investigated.  The upper 
bound of a node is computed by Equation 1 with the supposition 
that the largest errors for its material, geometric, and visibility 
terms at the point x are Mupper(x), Gupper(x) and Vupper(x). As the 
visibility of a point light to a surface point is typically zero and 
one, Vupper(x) is always set to be 1.0 conservatively.  
 
Clearly, the cost for searching the cuts is not cheap, and may 
seriously influence the rendering efficiency when the light tree is 
large. For this, some methods [Walter et al 2005] [Bodt 2008] 
proposed to use image coherence to reduce the cost on cut 
searching.  Their strategy is to subdivide the image iteratively until 
the pixels of an image block can have very similar radiances. Then, 
the pixels of an image block get their radiances with a shared cut, 
or by interpolating the radiances of the corner pixels of the image 
block. However, when the image resolution is lower, the 
possibility for neighbouring pixels to have similar radiances will 
be smaller, and so the acceleration will be reduced. 
 
This sketch proposes a method to enhance lightcuts by exploiting 
spatial coherence. It produces clusters of surface points by their 
materials and normals. For each cluster, a cut is first computed for 
its representative surface point, called a common cut, and then 
used to search the cuts for other surface points of the cluster. In 
this way, the traversal cost from the root of the light tree to the 
common cut can be shared by many surface points for acceleration, 
as illustrated in Figure1. Since our method is independent of the 
image resolution, it works stably. Moreover, benefited from our 
clustering scheme, we can get more acceleration when the lights 
are more complex, because we can better treat the occlusion 
relations between surface points and lights, which have more 
influence on the illumination computation efficiency.  Results 
have shown the advantages of our method, and it can be faster 
than the methods using image coherences. 

 

 
 

Figure1: Cuts and a common cut. The blue and purple lines are 

cuts for some surface points, and their common cut is in green. 

 

2 Our Approach 
 

As discussed in Section 1 for our method, it consists of two parts, 
with the one on clustering of surface points and the other on using 
the common cuts. They are discussed respectively in the following. 
 
Clustering. To simplify clustering computation, we divide the 
bounding box of the scene in a grid, and perform clustering 
computation for the surface points in grid cells respectively. Our 
clustering is on the fly. When a surface point is obtained by a ray, 
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we get the grid cell that contains the point, and check whether it 
can join a cluster of surface points in the grid cell. If it is, the 
common cut of the cluster is used to find the cut for the point for 
its illumination computation. Otherwise, the point is taken as a 
representative to produce a new cluster in the grid cell, and its cut 
is found by searching the global light tree and taken as the initial 
common cut of this cluster. 
 
Using common cuts. Common cuts are used for reducing the 
traversal cost in the light tree, aiming at speeding up rendering. 
When a node of the actual cut for a surface point is above some 
nodes of its common cut, called over cut, the lights of these nodes 
of its common cut will be used to compute the radiance at this 
point. This will cause no problem on the rendering quality, but 
may take more time than actually needed for illumination 
computation. To reduce the “over cut” events for fast rendering, 
we try to adjust the common cut to have its nodes always above 
the nodes of the actual cuts of the surface points in a cluster. The 
adjustment is executed when it is found “over cut” events. The 
corresponding techniques are in the following. 
 Visibility-based. When a light is found visible to a surface 

point but not to the representative of its cluster, we suppose 
the light is visible to the representative to reduce its error 
bounds at related nodes, and so have the common cut move 
upwards in the light tree.  

 Geometry-based. The Gupper(x) is mainly dependent on the 
distance from the surface point to the lights. When it becomes 
smaller, the common cut can move upwards in the light tree. 
Thus, we compute the Gupper values at the 8 corner points of a 
grid cell, and take the smallest one to adjust the common cut 
of the surface point clusters in this cell. 

 
3 Results 

 
We made tests on a PC installed with a 2.33GHz Intel Core E5650 
CPU and 2GB RAM, to compare our method with the original 
lightcuts method [Walter et al 2005] and the improved methods 
using image coherences by cut reconstruction [Walter et al 2005] 
and cut sharing [Bodt 2008]. Two rendered images for the tested 
scenes are displayed in Figure 2, and the statistics data for the tests 
are listed in Table 1. In our tests, the bounding box of a scene is 
divided into k*bk*kc grid cells with k=      √  empirically, 
where 1:b:c represents the rates between the length, width and 
height of the bounding box, and n is the number of the pixels 
covered by the scene. 

 

             
(a) Room.                             (b) Hall. 

 

Figure2: The rendered images for the test scenes.  
 

Scene Polygons 

Number of point lights 

Direct Environment 
Map 

Indirect Total 

Room 514K 3K 0 4 K 35 K 
Hall 3.01M 16K 4 K 495 K 515 K 

 

Table1: Statistics for the tested scenes. 

 
To test the rendering efficiency of the compared methods under 
various image resolutions, we first set the image resolution be 
1024*768 pixels and have it reduced gradually, where one viewing 

ray was shot per pixel. In Figure 3, it is given the acceleration 
ratios of our method and the methods using image coherences 
against the original lightcuts method. From the statistics in Figure 
3, it is clear that our method can obtain acceleration stably, and 
faster than the methods using image coherences. 

 

 
 

Figure3: The speedups of our method and the methods using 

image coherences under different image resolutions. 

 
To test the efficiency of our method under various complex lights, 
we used three kinds of area lights, planar circles, cylinders and 
spheres, and divided them respectively into point lights. In these 
cases, it is listed in Figure 4 the acceleration ratios of our method 
against the original method by lightcuts. Clearly, our method tends 
to obtain more acceleration when the lights are more complex.  

 

 
 

Figure4: The speedups of our method under the lights with 

different complexities. Each area light is discretized into 256 

point lights. 

 
4 Conclusions 

 
To enhance the method by lightcuts in treating the scenes with 
very complex lights, we exploit spatial coherence to considerably 
reduce the cost on finding suitable cuts. Without preprocessing, 
our method sorts surface points on the fly, and have the points of a 
cluster search their respective cuts from a common cut, not from 
the tree root. As a result, our method can speed up stably, and 
always faster than the methods using image coherence for speedup. 
Especially, when the lights are more complex, we can obtain more 
acceleration. Therefore, our method is very helpful for massive 
complex illumination computation. 
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