
Copyright is held by the author / owner(s).
SIGGRAPH Asia 2011, Hong Kong, China, December 12 – 15, 2011.
ISBN 978-1-4503-0807-6/11/0012

Efficient Search of Lightcuts by Spatial Clustering

Guangwei Wang1,2 Guofu Xie1,2 Wencheng Wang1,2
1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China

2Graduate University of Chinese Academy of Sciences, China

Abstract

Lightcuts is an efficient illumination method for scenes with many
complex lights, by hierarchical clustering of lights in a light tree.
However, when the light tree is large, it is very time-consuming to
traverse in the tree to get the suitable clusters of lights for
illumination computation. For this, some methods proposed to use
image coherence for neighboring pixels to share clusters of lights,
and so save traversal cost in the light tree. However, with the
image resolutions reduced, fewer and fewer coherences could be
used and so their acceleration efficiency will be reduced
dramatically, and they may even decrease the rendering efficiency.

This sketch proposes to exploit spatial coherences to enhance
rendering by lightcuts. For the intersection points between rays
and the scene, they are clustered on the fly and the points of a
cluster search their respective suitable clusters of lights from a
common set of clusters, called a common cut. In this way, the
traversal cost from the tree root to the common cuts can be
considerably saved for acceleration. Results show that our method
can be faster than the methods using image coherence, and works
stably with various image resolutions. And with the lights being
more complex, our method can obtain more acceleration.

CR Categories: Computer Graphics [I.3.7]: Three-
DimensionalGraphics and Realism—Color, shading, shadowing,
and texture;

Keywords: illumination computation; lightcuts; spatial coherence

1 Introduction

Realistic rendering under complex light sources is an important
topic of computer graphics. To reduce the number of lights for
speeding up illumination computation, the popular method by
lightcuts [Walter et al 2005] proposed to perform approximation
computation with adaptive clustering of lights, where a binary tree
is used to manage hierarchical clusters of lights, called a light tree.
To compute the radiance L at a surface point x viewed from
direction ω, it performs a top-down traversal of the global light
tree to find the interior nodes whose representative lights of their
corresponding clusters of lights can accurately approximate
illumination from all source lights at this point. The direct
illumination from a cluster, say C with a representative light j∈C,
is computed by using its representative light’s material, geometric,
and visibility terms Mj(x, ω), Gj(x) and Vj(x) for all of its lights (∑i

∈CIi) in the following formula.

 () ∑ () () ()

 () () ()∑ ()

All the found interior nodes form a cut through the tree that every
path from the root of the tree to a leaf contains exactly one such
interior node. To get the cut, the root is taken as the initial cut, and
progressively refined until the error criterion for illumination
approximation is met. For each node in the cut, its cluster estimate
(Equation 1) and upper bound on its error are computed. If its
error bound is greater than required for approximation, it is
removed and replaced by its children in the cut. Otherwise, it is

sure in the cut and its subtree will not be investigated. The upper
bound of a node is computed by Equation 1 with the supposition
that the largest errors for its material, geometric, and visibility
terms at the point x are Mupper(x), Gupper(x) and Vupper(x). As the
visibility of a point light to a surface point is typically zero and
one, Vupper(x) is always set to be 1.0 conservatively.

Clearly, the cost for searching the cuts is not cheap, and may
seriously influence the rendering efficiency when the light tree is
large. For this, some methods [Walter et al 2005] [Bodt 2008]
proposed to use image coherence to reduce the cost on cut
searching. Their strategy is to subdivide the image iteratively until
the pixels of an image block can have very similar radiances. Then,
the pixels of an image block get their radiances with a shared cut,
or by interpolating the radiances of the corner pixels of the image
block. However, when the image resolution is lower, the
possibility for neighbouring pixels to have similar radiances will
be smaller, and so the acceleration will be reduced.

This sketch proposes a method to enhance lightcuts by exploiting
spatial coherence. It produces clusters of surface points by their
materials and normals. For each cluster, a cut is first computed for
its representative surface point, called a common cut, and then
used to search the cuts for other surface points of the cluster. In
this way, the traversal cost from the root of the light tree to the
common cut can be shared by many surface points for acceleration,
as illustrated in Figure1. Since our method is independent of the
image resolution, it works stably. Moreover, benefited from our
clustering scheme, we can get more acceleration when the lights
are more complex, because we can better treat the occlusion
relations between surface points and lights, which have more
influence on the illumination computation efficiency. Results
have shown the advantages of our method, and it can be faster
than the methods using image coherences.

Figure1: Cuts and a common cut. The blue and purple lines are

cuts for some surface points, and their common cut is in green.

2 Our Approach

As discussed in Section 1 for our method, it consists of two parts,
with the one on clustering of surface points and the other on using
the common cuts. They are discussed respectively in the following.

Clustering. To simplify clustering computation, we divide the
bounding box of the scene in a grid, and perform clustering
computation for the surface points in grid cells respectively. Our
clustering is on the fly. When a surface point is obtained by a ray,

Common cut

Cuts for different surface points

Light tree

we get the grid cell that contains the point, and check whether it
can join a cluster of surface points in the grid cell. If it is, the
common cut of the cluster is used to find the cut for the point for
its illumination computation. Otherwise, the point is taken as a
representative to produce a new cluster in the grid cell, and its cut
is found by searching the global light tree and taken as the initial
common cut of this cluster.

Using common cuts. Common cuts are used for reducing the
traversal cost in the light tree, aiming at speeding up rendering.
When a node of the actual cut for a surface point is above some
nodes of its common cut, called over cut, the lights of these nodes
of its common cut will be used to compute the radiance at this
point. This will cause no problem on the rendering quality, but
may take more time than actually needed for illumination
computation. To reduce the “over cut” events for fast rendering,
we try to adjust the common cut to have its nodes always above
the nodes of the actual cuts of the surface points in a cluster. The
adjustment is executed when it is found “over cut” events. The
corresponding techniques are in the following.
 Visibility-based. When a light is found visible to a surface

point but not to the representative of its cluster, we suppose
the light is visible to the representative to reduce its error
bounds at related nodes, and so have the common cut move
upwards in the light tree.

 Geometry-based. The Gupper(x) is mainly dependent on the
distance from the surface point to the lights. When it becomes
smaller, the common cut can move upwards in the light tree.
Thus, we compute the Gupper values at the 8 corner points of a
grid cell, and take the smallest one to adjust the common cut
of the surface point clusters in this cell.

3 Results

We made tests on a PC installed with a 2.33GHz Intel Core E5650
CPU and 2GB RAM, to compare our method with the original
lightcuts method [Walter et al 2005] and the improved methods
using image coherences by cut reconstruction [Walter et al 2005]
and cut sharing [Bodt 2008]. Two rendered images for the tested
scenes are displayed in Figure 2, and the statistics data for the tests
are listed in Table 1. In our tests, the bounding box of a scene is
divided into k*bk*kc grid cells with k= √ empirically,
where 1:b:c represents the rates between the length, width and
height of the bounding box, and n is the number of the pixels
covered by the scene.

(a) Room. (b) Hall.

Figure2: The rendered images for the test scenes.

Scene Polygons

Number of point lights

Direct Environment
Map

Indirect Total

Room 514K 3K 0 4 K 35 K
Hall 3.01M 16K 4 K 495 K 515 K

Table1: Statistics for the tested scenes.

To test the rendering efficiency of the compared methods under
various image resolutions, we first set the image resolution be
1024*768 pixels and have it reduced gradually, where one viewing

ray was shot per pixel. In Figure 3, it is given the acceleration
ratios of our method and the methods using image coherences
against the original lightcuts method. From the statistics in Figure
3, it is clear that our method can obtain acceleration stably, and
faster than the methods using image coherences.

Figure3: The speedups of our method and the methods using

image coherences under different image resolutions.

To test the efficiency of our method under various complex lights,
we used three kinds of area lights, planar circles, cylinders and
spheres, and divided them respectively into point lights. In these
cases, it is listed in Figure 4 the acceleration ratios of our method
against the original method by lightcuts. Clearly, our method tends
to obtain more acceleration when the lights are more complex.

Figure4: The speedups of our method under the lights with

different complexities. Each area light is discretized into 256

point lights.

4 Conclusions

To enhance the method by lightcuts in treating the scenes with
very complex lights, we exploit spatial coherence to considerably
reduce the cost on finding suitable cuts. Without preprocessing,
our method sorts surface points on the fly, and have the points of a
cluster search their respective cuts from a common cut, not from
the tree root. As a result, our method can speed up stably, and
always faster than the methods using image coherence for speedup.
Especially, when the lights are more complex, we can obtain more
acceleration. Therefore, our method is very helpful for massive
complex illumination computation.

Acknowledgements: This work is partially supported by

NSFC(Proj. No. 60773026, 60873182, 60833007).

References

WAL T E R,B.,FE R N A N D E Z ,S.,A R B R E E,A .,B A L A,K .,D O N I

K I A N,M ., AND GR E E N B E R G,D . 2 0 0 5 . Lightcuts: a
scalable approach to illumination. ACM Transactions on
Graphics 24, 3, 1098-1107.

BO D T ,T . 2008. Advanced global illumination using lightcuts.
PhD thesis, Katholieke Universiteit Leuven.

