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Abstract

Quasi-star-free languages were first introduced and studied by Bar-
rington, Compton, Straubing and Thérien within the context of circuit
complexity in 1992, and their connections with propositional linear tem-
poral logic were established by Ésik and Ito recently. While these results
are all for finite words, in this paper we consider the languages on infinite
words.

1 Introduction

Characterizations of different subclasses of regular languages have been a con-
stantly active research area since B

..
uchi characterized regular languages by

monadic second order logic in [3]. One of the most important characteriza-
tions among them is the characterization of star free languages: in [11, 17, 9, 7,
13, 19, 18, 4], star free languages on finite and infinite words were characterized
by aperiodic monoids, monadic first order logic and linear temporal logic.

Quasi-star-free languages were first studied by Barrington, Compton, Straub-
ing and Thérien in [2]. Their motivation was to characterize the regular lan-
guages that can be recognized by constant-depth Boolean circuits using OR,AND
and NOT gates(AC0). They found that these languages are precisely the quasi-
star-free languages. And they give a characterization in terms of quasi-aperiodic
semigroups and in terms of first order logic FO[C] which uses only the numer-
ical predicates x < y and x ≡ r(mod d). Recently, Ésik and Ito proved in [5]
that FO[C] and propositional linear temporal logic with cyclic counting(LTL[C])
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have the same expressive power. While these results are all for finite words, we
extend them to the case of infinite words in this paper.

This paper is organized as follows. In section 2 we give some preliminaries
about regular languages on finite and infinite words. Then in section 3, we
give some definitions of quasi-star-free languages on finite words(QSFF), and
summarize the results of QSFF in [2, 5]. In section 4, we define quasi-star-free
languages on infinite words (QSFI), and extend the results of QSFF to QSFI.
Finally in section 5, we give some conclusions and remarks on this paper.

2 Preliminaries

2.1 Regular languages on finite words

In this subsection, at first we present some basic facts of semigroups and formal
languages on finite words (cf. [12, 6, 14, 10] for more information), then after
recalling the definitions of monadic first order logic (FO[<]) and linear temporal
logic(LTL) interpreted on finite words, we introduce the classical results of star
free languages on finite words.

Let A be a finite alphabet, and L ⊆ A∗ be regular.

2.1.1 Monoids and formal languages on finite words

Let M be a finite monoid. We say that morphism φ : A∗ → M recognizes L if
there is X ⊆ M such that L = Xφ−1. And we say that monoid M recognizes
L if there is a morphism φ : A∗ → M recognizing L. Moreover we say that
congruence ≈ on A∗ recognizes L if the natural morphism φ : A∗ → A∗/ ≈
recognizes L.

The syntactic congruence of L, ≈L, is defined by: u ≈L v iff (xuy ∈ L iff
xvy ∈ L for all x, y ∈ A∗); the syntactic monoid of L, M(L), is defined by the
quotient monoid A∗/ ≈L; and the syntactic morphism of L, ηL : A∗ →M(L), is
defined by uηL = [u], where [u] denotes the equivalence class of ≈L containing
u. Syntactic congruence is the coarsest congruence of A∗ recognizing L, i.e. for
any congruence ≈ recognizing L, u ≈ v implies u ≈L v for all u, v ∈ A∗.

A morphism φ : A∗ → M recognizes L iff there is a morphism θ : Im(φ) →
M(L) (where Im(φ) is the image of φ) such that for all u ∈ A∗, u(φθ) = uηL.
Furthermore, a morphism φ : A∗ → M recognizes L iff there are morphisms
φ′ : A∗ →M ′ and θ : Im(φ) →M ′ such that φ′ recognizes L and for all u ∈ A∗,
u(φθ) = uφ′.

L is star free if L can be constructed from singleton languages {a}(a ∈ A) and
the language A∗ by finite applications of operations of union, complementation,
and concatenation.

L is noncounting if there is some n0 ∈ N satisfying that for all n ≥ n0,
xynz ∈ L iff xyn+1z ∈ L for all x, y, z ∈ A∗.

A monoid M is aperiodic if there is some n0 ∈ N satisfying that for all
n ≥ n0, mn = mn+1 for all m ∈M .
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L is aperiodic if M(L) is aperiodic. It is easy to show that L is aperiodic iff
there is an aperiodic monoid M recognizing L.

It is not hard to show that L is noncounting iff L is aperiodic. In the
remainder of this paper, we don’t distinguish between the “noncounting” and
“aperiodic” properties of regular languages on finite words.

2.1.2 First order logic and linear temporal logic on finite words

Let FO[<] denote first order logic on words with binary predicate < and unary
predicates Pa(a ∈ A). The formulas of FO[<] are defined by the following rules:

ϕ := Pa(x) | x < y | ϕ1 ∨ ϕ2 | ¬ψ | (∃x)ψ

The semantics of FO[<] are defined as follows: let X be a variable set and
ϕ be a formula with free variables in X; u ∈ A∗ and η : X → {0, ..., |u|}, i.e., η
maps variables in X to “positions” in u.

• (u, η) |= Pa(x), if u[|x|] = a, where u[|x|] is the letter of u at position
xη(the first position is 0, the last position is |u|, and by convention the
letter at position |u| is ε);

• (u, η) |= x < y, if xη < yη;

• (u, η) |= ϕ1 ∨ ϕ2, if (u, η) |= ϕ1 or (u, η) |= ϕ2;

• (u, η) |= ¬ψ, if not (u, η) |= ψ;

• (u, η) |= (∃x)ψ,if there exists a function η′ : X → {0, ..., |u|}, which agrees
with η on X−{x} and possibly differs from η on x, such that (u, η′) |= ψ.

Let ϕ be an FO[<] sentence and u ∈ A∗. We write u |= ϕ if there is an
η : X → {0, ..., |u|} such that (u, η) |= ϕ.

Remark 2.1 The semantics of FO[<] defined in [5] had a subtle inaccuracy:
the assignments of variables were defined by function λ : X → [|u|], where
[|u|] = {0, ..., |u| − 1}. But then for the empty string ε, the assignments would
become into λ : X → ∅, since [|ε|] = [0] = ∅.

We avoid the accuracy by defining the assignments as η : X → {0, ..., |u|},
and thus formulas of FO[<] can be interpreted on the empty string ε. 2

It is natural to define the boolean operations “∧”, “→”,etc. in a standard
way. Here we introduce several other abbreviations for FO[<]: Last(x) for
∀y(¬(x < y)); True for ϕ ∨ ¬ϕ, where ϕ is a fixed sentence; and False for
¬True.

A language L ⊆ A∗ is definable in FO[<] if there is an FO[<] sentence ϕ
such that for all u ∈ A∗, u |= ϕ iff u ∈ L.

Associate each letter a in A with a propositional constant pa. Then formulas
of linear temporal logic (LTL,[15]) over alphabet A are defined by the following
rules:

ϕ := pa | ϕ1 ∨ ϕ2 | ¬ψ | Xψ | ϕ1Uϕ2
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The semantics of LTL formulas on finite words are defined as follows: Let ϕ be
an LTL formula, u ∈ A∗. Denote the suffix of u starting from the i-th position
(the first position is 0) as ui, where 0 ≤ i ≤ |u|, and the suffix starting from the
|u|-th position is empty string ε.

• u |= pa, if u = av, for some v ∈ A∗;

• u |= ϕ1 ∨ ϕ2, if u |= ϕ1 or u |= ϕ2;

• u |= ¬ϕ1, if not u |= ϕ1;

• u |= Xϕ1, if |u| > 0 and u1 |= ϕ1;

• u |= ϕ1Uϕ2, if there is 0 ≤ i ≤ |u| such that ui |= ϕ2 and for all 0 ≤ j < i,
uj |= ϕ1.

We introduce several abbreviations for LTL, let True ≡ pa ∨¬pa, where a is
any letter in A, and let False ≡ ¬True. Moreover, let End denote the formula
∧a∈A¬pa, so that for all u ∈ A∗, u |= End iff u = ε.

Remark 2.2 When interpreted on finite words, the LTL formulas ¬Xϕ and
X¬ϕ are not equivalent while on infinite words they are (See Section 2.2.2 for
LTL interpreted on infinite words). For instance, ε |= ¬Xpa while not ε |=
X¬pa, where ε is the empty string. 2

A language L ⊆ A∗ is LTL definable iff there is an LTL formula ϕ such that
for all u ∈ A∗, u |= ϕ iff u ∈ L.

2.1.3 Classical results of star free languages on finite words

The classical results of star free languages on finite words are summarized in
the following proposition:

Proposition 2.3 Let L ⊆ A∗ be regular. The following conditions are equiva-
lent [11, 17, 9, 7, 4]:

• L is star free;

• L is aperiodic;

• M(L) contains no nontrivial group (i.e. contains no subsets which form
a nontrivial group under the product of M(L));

• L is FO[<] definable;

• L is LTL definable. 2
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2.2 Regular languages on infinite words

Similar to the case of finite words, in this subsection at first we present some
basic facts of semigroup and formal languages on infinite words (cf. [1, 20, 21,
4, 16]), then we interpret monadic first order logic (FO [<]) and linear temporal
logic (LTL) on infinite words, at last we introduce the classical results of star
free languages on infinite words.

Let A be a finite alphabet and L ⊆ Aω be regular, i.e., L =
m⋃

i=1

XiY
ω
i , where

Xi ⊆ A∗, Yi ⊆ A+ are regular languages on finite words.

2.2.1 Monoids and formal languages on infinite words

Let M be a finite monoid. L is recognized by morphism φ : A∗ → M if for all
m,n ∈M ,

(
mφ−1

) (
nφ−1

)ω∩L 6= ∅ implies
(
mφ−1

) (
nφ−1

)ω ⊆ L. A monoidM
recognizes L iff there is a morphism φ : A∗ →M recognizing L. Moreover we say
that a congruence≈ on A∗ recognizes L if the natural morphism φ : A∗ → A∗/ ≈
recognizes L.

The syntactic congruence of L, ≈L, is defined by: for all u, v ∈ A∗, u ≈L

v iff for all x, y, z ∈ A∗, (xuyzω ∈ L iff xvyzω ∈ L) and (x (yuz)ω ∈ L iff
x (yvz)ω ∈ L). The syntactic monoid of L, M(L), is defined by the quotient
monoid A∗/ ≈L. The syntactic morphism of L, ηL : A∗ → M(L), is defined
by uηL = [u], where [u] is the equivalence class of ≈L containing u. Syntactic
congruence is the coarsest congruence recognizing L.

Proposition 2.4 Let L ⊆ Aω be regular. A morphism φ : A∗ → M recognizes
L iff there is a morphism θ : Im(φ) → M(L) such that for all u ∈ A∗, uφθ =
uηL.

Proof.
“⇒” part:
Define θ : Im(φ) →M(L) as follows:

mθ = uηL,where u ∈ A∗, uφ = m

θ is well defined since uφ = vφ implies that uηL = vηL (syntactic congruence
is the coarsest one).

It is easy to verify that φθ = ηL

“⇐” part:
It is sufficient to prove that for all m,n ∈ Im(φ)

φ−1(m)[φ−1(n)]ω
⋂
L 6= ∅ implies φ−1(m)[φ−1(n)]ω ⊆ L

Since φ−1(m)[φ−1(n)]ω
⋂
L is a nonempty regular language, there is an ul-

timately periodic ω-word xyω ∈ φ−1(m)[φ−1(n)]ω
⋂
L. So xyω has a decompo-

sition: w0w
ω
1 such that

w0 ∈ φ−1(m)[φ−1(n)]p, w1 ∈ [φ−1(n)]q for some p, q ≥ 0
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It is easy to see that φ−1(m)[φ−1(n)]ω ⊆ [w0φφ
−1][w1φφ

−1]ω, thus it is
sufficient to prove that [w0φφ

−1][w1φφ
−1]ω ⊆ L, i.e.,[w0φφ

−1][w1φφ
−1]ω

⋂
L̄ =

∅.
To the contrary, suppose that [w0φφ

−1][w1φφ
−1]ω

⋂
L̄ 6= ∅.

Since [w0φφ
−1][w1φφ

−1]ω
⋂
L̄ is regular, then there is an ultimately periodic

word α = α0α
ω
1 ∈ [w0φφ

−1][w1φφ
−1]ω ∩ L̄.

α0α
ω
1 has a decomposition α′0α

′
1
ω such that α′0 ∈ w0φφ

−1[w1φφ
−1]r and

α′1 ∈ [w1φφ
−1]s for some r, s ≥ 0.

From the assumption φθ = ηL we know that α′0ηL = α′0φθ = (w0w1
r)φθ =

(w0w1
r)ηL, and α′1ηL = α′1φθ = (w1

s)φθ = (w1
s)ηL. Thus w0w1

r(w1
s)ω ∈ L iff

α ∈ L, i.e., w0w1
ω ∈ L iff α ∈ L, i.e., xyω ∈ L iff α ∈ L, a contradiction. 2

Corollary 2.5 A morphism φ : A∗ → M recognizes L iff there are morphisms
φ′ : A∗ →M ′ and θ : Im(φ) →M ′ such that φ′ recognizes L and for all u ∈ A∗,
u(φθ) = uφ′. 2

L is star free if L can be constructed from the language Aω by finite appli-
cations of operations of union, complementation and concatenation on the left
by star free languages of A∗.

L is noncounting if there is n0 ∈ N such that for all n ≥ n0 and x, u, y, z ∈
A∗, (xunyzω ∈ L iff xun+1yzω ∈ L) and (x(yunz)ω ∈ L iff x(yun+1z)ω ∈ L).

L is aperiodic if its syntactic monoid M(L) is aperiodic. And it is easy to
show that L is aperiodic iff it is recognized by an aperiodic monoid.

It is not hard to prove that L is noncounting iff L is aperiodic. In the remain-
der of this paper, for regular languages on infinite words, we don’t distinguish
between the “noncounting” and “aperiodic” properties.

2.2.2 First order logic and linear temporal logic on infinite words

FO[<] and LTL formulas can also be interpreted on infinite words.
For FO[<]: Let X be the variable set and ϕ be a formula with free variables

in X; u ∈ Aω and η : X → N , i.e., η maps variables in X to “positions” in u.

• (u, η) |= Pa(x), if u[|x|] = a,where u[|x|] is the xηth letter of u;

• (u, η) |= x < y, if xη < yη;

• (u, η) |= ϕ1 ∨ ϕ2, if (u, η) |= ϕ1 or (u, η) |= ϕ2;

• (u, η) |= ¬ψ, if not (u, η) |= ψ;

• (u, η) |= (∃x)ψ, if there exists a function η′ : X → N , which agrees with
η on X − {x} and possibly differs from η on x, such that (u, η′) |= ψ.

Let ϕ be an FO[<] sentence and u ∈ Aω. We write u |= ϕ if there is an
η : X → N such that (u, η) |= ϕ.

For LTL: Let ϕ be an LTL formula, u ∈ Aω. Denote the suffix of u starting
from i-th position (the first position is 0) as ui, then
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• u |= pa, if u = av, for some v ∈ Aω;

• u |= ϕ1 ∨ ϕ2, if u |= ϕ1 or u |= ϕ2;

• u |= ¬ϕ1, if not u |= ϕ1;

• u |= Xϕ1, if u1 |= ϕ1;

• u |= ϕ1Uϕ2, if there is i ≥ 0 such that ui |= ϕ2 and for all 0 ≤ j < i,
uj |= ϕ1.

L is definable in FO[<] if there is an FO[<] sentence ϕ such that for all
u ∈ Aω, u |= ϕ iff u ∈ L.

L is definable in LTL if there is an LTL formula ϕ such that for all u ∈ Aω,
u |= ϕ iff u ∈ L.

2.2.3 Classical results of star free languages on infinite words

Similar to the finite words, there are the following classical results of star free
languages on infinite words.

Proposition 2.6 Let L ⊆ Aω be regular. The following conditions are equiva-
lent [13, 19, 18, 9, 7]:

• L is star free;

• L is aperiodic;

• M(L) contains no nontrivial group;

• L =
m⋃

i=1

XiY
ω
i ,where Xi ⊆ A∗, Yi ⊆ A+ are star free and YiYi ⊆ Yi;

• L is FO[<] definable;

• L is LTL definable. 2

3 Quasi-star-free languages on finite words

3.1 Quasi-star-free languages on finite words

Definition 3.1 Let L ⊆ A∗ be regular. L is quasi-star-free if there is some d ≥
1 such that L can be constructed from singleton languages {a}(a ∈ A) and the
language (Ad)∗ by finite applications of operations of union, complementation,
and concatenation. 2

If L ⊆ A∗ is star free, it is quasi-star free as well.
The family of quasi-star-free languages on finite words is denoted by QSFF.
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Definition 3.2 Let L ⊆ A∗ be regular. L is quasi-noncounting if there is some
d ≥ 1 such that there is some n0 ∈ N satisfying that for all n ≥ n0, and for all
x, y, z ∈ A∗ with |y| = 0 mod d; xynz ∈ L iff xyn+1z ∈ L. 2

Let L ⊆ A∗ be regular and ηL : A∗ → M(L) be its syntactic morphism. we
denote (Ad)∗ηL by M(L)(d). Then we have the following definition:

Definition 3.3 Let L ⊆ A∗ be regular and ηL : A∗ → M(L) be its syntactic
morphism. L is quasi-aperiodic if there is d ≥ 1 such that M(L)(d) is aperiodic.

2

A language of A∗ is quasi-noncounting iff it is quasi-aperiodic. Thus in the
remainder of this paper, we don’t distinguish between the “quasi-noncounting”
and “quasi-aperiodic” properties of regular languages on finite words.

3.2 Logic with cyclic counting interpreted on finite words

FO[<] can be extended with unary predicates Cr
d(d ≥ 1, 0 ≤ r < d) adjoined.

Cr
d are interpreted on finite words as follows:

Let u ∈ A∗, η : X → {0, ..., |u|}, then (u, η) |= Cr
d(x) if xη ≡ r mod d.

Denote this extended logic of FO[<] as FO[C].
LTL can be extended with “U”(Until) operator of LTL replaced by new

“Until” operators with cyclic counting, namely U (d,r) for all d ≥ 1 and 0 ≤ r < d.
The semantics of ϕ1U

(d,r)ϕ2 is defined as follows:
Let u ∈ A∗, then u |= ϕ1U

(d,r)ϕ2 if there is i such that 0 ≤ i ≤ |u|, i ≡
r mod d and ui |= ϕ2; moreover, for all j such that (0 ≤ j < i and j ≡ r mod d),
uj |= ϕ1.

Denote this extended LTL by LTL[C].
Similar to FO[<] and LTL, we can define the languages defined by FO[C]

sentences and LTL[C] formulas.
The expressive power of FO[C] is strictly stronger than that of FO[<]. For

instance, language ({a}A)∗(a ∈ A and |A| > 1) isn’t aperiodic, then according
to Proposition 2.3, it can’t be defined in FO[<], while it can be defined by FO[C]
sentence ∀x

(
Last(x) → C0

2 (x)
)
∧ ∀x

(
C0

2 (x) ∧ ¬Last(x) → Pa(x)
)
.

It is obvious that for u ∈ A∗, u |= ϕ1Uϕ2 iff u |= ϕ1U
(1,0)ϕ2. Then the

expressive power of LTL[C] is at least as strong as that of LTL. In fact, LTL[C]
is more expressive than LTL. For instance, language ({a}A)∗({a} ∈ A and
|A| > 1) can’t be defined in LTL, while it can be defined by LTL[C] formula
paU

(2,0)End.

Remark 3.4 In [5], LTL[C] is defined by adjoining additional constants Igd,r(d ≥
1, 0 ≤ r < d) into LTL, and U (d,r) are just derived temporal operators of Igd,r

and “U”. Nevertheless, since u |= Igd,r iff |u| ≡ r mod d, LTL[C] defined in
[5] can’t be interpreted on infinite words. Consequently we directly adjoin U (d,r)

into LTL since U (d,r) can be interpreted on infinite words naturally. When
interpreted on finite words, Igd,r can be derived from U (d,r) as follows:

Igd,r ≡ TrueU (d,r)End
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2

3.3 Theorem on quasi-star-free languages on finite words

We summarize the results of quasi-star-free languages on finite words in [2, 5]
into the following proposition:

Proposition 3.5 Let L ⊆ A∗ be regular. The following conditions are equiva-
lent:

(i) L is quasi-star-free;

(ii) L is quasi-aperiodic;

(iii) For all t ≥ 0, AtηL contains no nontrivial group;

(iv) L is definable in FO[C];

(v) L is definable in LTL[C]. 2

Remark 3.6 (i), (ii),(iii) and (iv) of Proposition 3.5 were proved equivalent
in [2], and (iv) and (v) were proved equivalent in [5]. As a matter of fact,
(i),(iii),(iv) of Proposition 3.5 and the following condition (ii′)(Theorem 3(d)
in [2]), instead of (ii), were proved equivalent in [2],

(ii′) L is recognized by a morphism ψ : {0, 1}∗ → MwrZr, where M is a
finite aperiodic monoid and where the composition ψπ : {0, 1}∗ → Zr takes both
0 and 1 to the generator 1 of Zr (see [2] for the exact meaning of (ii′))

And it is not hard to prove that (ii) and (ii′) are equivalent. 2

4 Quasi-star-free languages on infinite words

4.1 Quasi-star-free languages on infinite words

Similar to the case of finite words, we define that an ω-language is quasi-star-
free, quasi-noncounting and quasi-aperiodic in this subsection.

Definition 4.1 Let L ⊆ Aω be regular. L is quasi-star-free if L can be con-
structed from the language Aω by finite applications of operations of union,
complementation, and concatenation on the left by quasi-star-free languages of
A∗. 2

If an ω-language L ⊆ Aω is star free, it is quasi-star-free as well. The family
of quasi-star-free languages on infinite words is denoted by QSFI.

Proposition 4.2 Let L ⊆ Aω be quasi-star-free, then there is some d ≥ 1
such that all those quasi-star-free languages of A∗, used in the construction of
L (namely, used in the operations of left concatenation during the construction
of L), can be constructed from singleton languages {a}(a ∈ A) and the lan-
guage (Ad)∗ by finite applications of operations of union, complementation and
concatenation.
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Proof. Let L1, ..., Lk be the quasi-star-free languages of A∗ used in the
construction of L.

Then there are di(1 ≤ i ≤ k) such that Li(1 ≤ i ≤ k) can be constructed
from singleton languages {a}(a ∈ A) and the language (Adi)∗.

Let d be the least common multiple of d1, ..., dk. Then

(Adi)∗ =
d′

i−1⋃
r=0

(Ad)∗Ardi =
d′

i−1⋃
r=0

(Ad)∗
(⋃

a∈A

{a}

)rdi

, where d′i =
d

di
.

Consequently Li(1 ≤ i ≤ k) can be constructed from singleton languages
{a}(a ∈ A) and the language (Ad)∗ by finite applications of operations of union,
complementation and concatenation. 2

Definition 4.3 Let L ⊆ Aω be regular. L is quasi-noncounting if there is some
d ≥ 1 such that there is n0 ∈ N satisfying that for all n ≥ n0 and u, x, y, z ∈ A∗

with |u| = 0 mod d, (xunyzω ∈ L iff xun+1yzω ∈ L) and (x(yunz)ω ∈ L iff
x(yun+1z)ω ∈ L). 2

Definition 4.4 Let L ⊆ Aω be regular and ηL : A∗ → M(L) be its syntactic
morphism. Then L is quasi-aperiodic if there is some d ≥ 1 such that M(L)(d)

is aperiodic. 2

Proposition 4.5 Let L ⊆ Aω be regular. L is quasi-noncounting iff it is quasi-
aperiodic.

Proof.
“⇒” part:
Suppose that there is some d ≥ 1 such that there is some n0 ∈ N satisfying

that for all n ≥ n0, and for all x, u, y, z ∈ A∗ with |u| ≡ 0 mod d;(
xunyzω ∈ L iff xun+1yzω ∈ L

)
and

(
x (yunz)ω ∈ L iff x

(
yun+1z

)ω ∈ L
)
.

Now we prove that M(L)(d) is aperiodic.
Let m ∈ M(L)(d). Then there is some u ∈ (Ad)∗ such that uηL = m. Thus

for any n ≥ n0, and for all x, y, z ∈ A∗;(
xunyzω ∈ L iff xun+1yzω ∈ L

)
and

(
x (yunz)ω ∈ L iff x

(
yun+1z

)ω ∈ L
)
.

Consequently for any n ≥ n0, (un)ηL = (un+1)ηL, i.e., mn = mn+1.
“⇐” part:
Suppose that there is some d ≥ 1 such that M(L)(d) is aperiodic, i.e., there

is some n0 ∈ N satisfying that for all n ≥ n0 and m ∈M(L)(d); mn = mn+1.
Now we prove that L is quasi-noncounting.
Let n ≥ n0 and x, u, y, z ∈ A∗ with |u| ≡ 0 mod d. Then uηL ∈M(L)(d), so

(un)ηL = (un+1)ηL. From the definition of ηL, we have that(
xunyzω ∈ L iff xun+1yzω ∈ L

)
and

(
x (yunz)ω ∈ L iff x

(
yun+1z

)ω ∈ L
)
.
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2

As a result of Proposition 4.5, in the remainder of this paper, we don’t
distinguish between “quasi-noncounting” and “quasi-aperiodic” properties of
regular languages on infinite words.

4.2 Logic with cyclic counting interpreted on infinite words

FO[C] and LTL[C] defined in Section 3.2 can be interpreted on infinite words
as follows:

For FO[C]: Let u ∈ Aω and η : X → N , then

(u, η) |= Cr
d(x) if xη ≡ r mod d.

For LTL[C]: Let u ∈ Aω, then
u |= ϕ1U

(d,r)ϕ2 if there is i ≥ 0 such that (i ≡ r mod d) and (ui |= ϕ2), and
(for all 0 ≤ j < i and j ≡ r mod d; uj |= ϕ1).

Similar to the case of finite words, we can define the languages defined by
FO[C] sentences and LTL[C] formulas.

When interpreted on infinite words, the expressive power of FO[C](LTL[C]
resp.) is strictly stronger than FO[<](LTL resp.). E.g., language ({a}A)ω(a ∈
A and |A| > 1) isn’t aperiodic, then according to Proposition 2.6, it can’t
be defined in FO[<](LTL resp.), while it can be defined by FO[C] sentence
∀x
(
C0

2 (x) → Pa(x)
)

(LTL[C] formula ¬
(
TrueU (2,0)¬pa

)
resp.)

4.3 Theorem on quasi-star-free languages on infinite words

We extend Proposition 3.5 for QSFF to the following theorem for QSFI.

Theorem 4.6 Let L ⊆ Aω be regular. The following conditions are equivalent:

(i) L is quasi-star-free;

(ii) L is quasi-aperiodic;

(iii) For all t ≥ 0, AtηL ⊆M(L) contains no nontrivial group;

(iv) L =
m⋃

i=1

Xi (Yi)
ω, where Xi, Yi ∈ QSFF , Yi ⊆ A+ and YiYi ⊆ Yi;

(v) L is definable in FO[C];

(vi) L is definable in LTL[C].

Before the proof of Theorem 4.6, we give some definitions and lemmas.
Let A(d) denote the alphabet consisting of all letters 〈u〉, where u ∈ Ad. For

any x ∈
(
Ad
)∗, we denote the corresponding element of

(
A(d)

)∗
as 〈x〉.

Let L ⊆ A∗ and u ∈ A∗, define Lu−1 = {x |x ∈ A∗, xu ∈ L}.

11



Let L ⊆ A∗and d ≥ 1, define

L(d) =
{ {

〈u0〉 ... 〈uk−1〉
∣∣u0...uk−1 ∈ L, k ≥ 1,∀ 0 ≤ i < k

(
ui ∈ Ad

)}
if ε /∈ L

{ε}
⋃{

〈u0〉 ... 〈uk−1〉
∣∣u0...uk−1 ∈ L, k ≥ 1,∀ 0 ≤ i < k

(
ui ∈ Ad

)}
othewise .

Let L ⊆ A∗ and u ∈ A∗, define L(d,u) =
(
Lu−1

)(d).
Let L ⊆ Aω and d ≥ 1, define

L(d) =
{
〈u0〉 ... 〈uk〉 ...

∣∣u0...uk... ∈ L, ∀ i ≥ 0
(
ui ∈ Ad

)}
.

Lemma 4.7 Let L ⊆ Aω be regular. Define φ :
(
A(d)

)∗ → M(L)(d) by 〈x〉φ =
xηL for 〈x〉 ∈

(
A(d)

)∗
. Then φ recognizes L(d).

Proof.
We define morphism θ : Im(φ) → M

(
L(d)

)
such that φθ = ηL(d) , and thus

according to Proposition 2.4, φ recognizes L(d).
Define θ by: for m ∈ Im(φ), mθ = 〈w〉 ηL(d) , where 〈w〉 ∈

(
A(d)

)∗
and

〈w〉φ = m.
At first, we prove that θ is well defined. Let 〈w1〉φ = 〈w2〉φ = m, i.e.

w1ηL = w2ηL = m. Then for all x, y, z ∈ A∗, (xw1yz
ω ∈ L iff xw2yz

ω ∈ L)
and (x(yw1z)ω ∈ L iff x (yw2z)

ω ∈ L), thus for all 〈x〉 , 〈y〉 , 〈z〉 ∈
(
A(d)

)∗
,

(〈x〉 〈w1〉 〈y〉 〈z〉ω ∈ L(d) iff 〈x〉 〈w2〉 〈y〉 〈z〉ω ∈ L(d)) and (〈x〉 (〈y〉 〈w1〉 〈z〉)ω ∈
L(d) iff 〈x〉 (〈y〉 〈w2〉 〈z〉)ω ∈ L(d)), i.e. 〈w1〉 ≈L(d) 〈w2〉, 〈w1〉 ηL(d) = 〈w2〉 ηL(d) ,
so θ is well defined.

Evidently for all 〈w〉 ∈
(
A(d)

)∗
, 〈w〉φθ = 〈w〉 ηL(d) . 2

Lemma 4.8 Suppose that L =
m⋃

i=1

Xi (Yi)
ω, where Xi, Yi ∈ QSFF, Yi ⊆ A+

and YiYi ⊆ Yi. Then there is d ≥ 1 such that all those Xi and Yi can be
constructed from the singleton languages {a}(a ∈ A) and the language

(
Ad
)∗.

Proof. Since Xi, Yi ∈ QSFF, then there are dXi
and dYi

such that Xi and Yi

are constructed from the singleton languages {a} and the language
(
AdXi

)∗.
Let d = lcm{dXi , dYi |1 ≤ i ≤ m}. Then similar to the proof of Proposi-

tion 4.2, we can prove that Xi and Yi can be constructed from singleton lan-
guages {a} and the language

(
Ad
)∗. 2

Lemma 4.9 Suppose that L ⊆
(
A(d)

)∗
is star free for some d ≥ 1, then L′ =

{x
∣∣x ∈ (Ad)∗, 〈x〉 ∈ L} is quasi-star-free.

Proof.
Since L ⊆

(
A(d)

)∗
is star free, it can be constructed from singleton lan-

guages {〈u〉} (u ∈ Ad) and the language
(
A(d)

)∗
by union, complementation

and concatenation.
By replacing {〈u〉}(u = a0...ad−1) by {a0}...{ad−1};

(
A(d)

)∗
by
(
Ad
)∗; L1

⋃
L2

by L′1
⋃
L′2;

(
A(d)

)∗ − L1 by
(
Ad
)∗ − L′1(namely A∗ −

((
A∗ −

(
Ad
)∗)⋃

L′1

)
);
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and L1L2 by L′1L
′
2 during the construction procedure of L, we can get the con-

struction procedure of L′(where L1, L2 ⊆
(
A(d)

)∗
and L′1, L

′
2 are the languages

of
(
Ad
)∗ corresponding to L1 and L2 respectively). Thus L′ can be constructed

from singleton languages {a} and the language
(
Ad
)∗ by union, complementa-

tion and concatenation. Consequently it is quasi-star-free by definition. 2

Lemma 4.10 Let L ⊆ Aω. Then L is definable in FO[C] iff there is some
d ≥ 1 such that L(d) is definable in FO[<]. 2

Lemma 4.11 Let L ⊆ Aω. Then L is definable in LTL[C] iff L is definable in
FO[C]. 2

Remark 4.12 The proofs of Lemma 4.10 and Lemma 4.11 are totally similar
to the proofs of the same results for finite words(Proposition 6.5, Proposition
6.7 and Theorem 7.5 in [5]). Consequently we omit the proofs of them here. 2

Now we prove Theorem 4.6.
Proof of Theorem 4.6.
At first we prove the equivalence of (ii) and (iii). According to Lemma 4.11,

(v) and (vi) are equivalent. Then if we have proved the equivalence of (i),(ii),(iv)
and (v), the proof would be completed. We prove the equivalence of (i),(ii),
(iv) and (v) by proving the equivalence of (i),(ii),(v) and equivalence of (ii),(v)
respectively.

(ii)⇒(iii):
Suppose that L ⊆ Aω is quasi-aperiodic, i.e. M(L)(d) is aperiodic for some

d ≥ 1. Now we show that for all t ≥ 0, AtηL contains no nontrivial group.
To the contrary suppose that there is some t ≥ 0 such that AtηL contains a

nontrivial group. Obviously t ≥ 1. Select an element m of order k > 1 from the
group, then G =

{
m, ...mk

}
is also a nontrivial group in AtηL. Hence there are

u, v ∈ At such that uηL = m, vηL = mk.
ConsiderAtkdηL ⊆M(L)(d). It is easy to see thatmi =

(
vk(d−1)

(
uivk−i

))
ηL ∈

AtkdηL, thus G ⊆ AtkdηL ⊆M(L)(d), M(L)(d) contains a nontrivial group. Be-
cause a monoid is aperiodic iff it contains no nontrivial group, we have that
M(L)(d) isn’t aperiodic, a contradiction.

(iii)⇒(ii):
The main idea is from the proof of Theorem 3 in [2].
Suppose that M(L) is finite and for all t ≥ 0, AtηL contains no nontrivial

group.
For each nontrivial group G contained in M(L) pick a nonempty word vG

such that vGηL is the identity of G. Let d be a common multiple of the lengths
of all these vG. Now we show that M(L)(d) is aperiodic.

To the contrary suppose that M(L)(d) isn’t aperiodic. Because a monoid
is aperiodic iff it contains no nontrivial group, then there is a nontrivial group
in M(L)(d). Select an element m of order k > 1 from the group, then G ={
m, ...,mk

}
is also a nontrivial group in M(L)(d). Select some v ∈

(
Ad
)∗ such

that vηL = m. From the selection of d, we know |v|(the length of v) is a multiple
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of |vG|, thus there is some power w of vG such that |v| = |w|. Let t = k|v|, then
mj =

(
vjwk−j

)
ηL ∈ AtηL, so G ⊆ AtηL, a contradiction.

Therefore we have proved the equivalence of (ii) and (iii).
Now we prove the equivalence of (i), (ii), (v).
(i)⇒(ii):
Suppose that L can be constructed from language Aω by finite applications of

operations of union, complementation, and concatenation on the left by quasi-
star-free languages of A∗. Then according to Proposition 4.2, there is d ≥ 1
such that quasi-star-free languages of A∗ used in the construction of L can be
constructed from singleton languages {a} and the language

(
Ad
)∗.

Now we prove that M(L)(d) is aperiodic by induction on the constructing
procedure of L.

Induction base: L = Aω, then M(L) = {e}, where e is the identity of M(L).
Obviously M(L)(d) = {e}, then it is aperiodic.

Induction step:
Case L = Aω−L1: From induction hypothesis, M(L1)(d) is aperiodic. Since

it is not hard to see that M(L) = M(L1) and ηL = ηL1 from the definition of
syntactic monoid and syntactic morphism of ω-languages, M(L)(d) is aperiodic
as well.

Case L = L1

⋃
L2: From induction hypothesis, M(Li)(d) (i = 1, 2) are

aperiodic, then according to Proposition 4.5, there are ni (i = 1, 2) such that for
all n ≥ ni and u, x, y, z ∈ A∗ with |u| ≡ 0 mod d, (xunyzω ∈ Li iff xun+1yzω ∈
Li) and (x(yunz)ω ∈ Li iff x(yun+1z)ω ∈ Li).

Let n0 = max{n1, n2}. Now we show that for all n ≥ n0 and u, x, y, z ∈ A∗

with |u| ≡ 0 mod d, (xunyzω ∈ L iff xun+1yzω ∈ L) and (x(yunz)ω ∈ L iff
x(yun+1z)ω ∈ L). Then according to Proposition 4.5 we conclude that M(L)(d)

is aperiodic.
Suppose that xunyzω ∈ L, then xunyzω ∈ Li for some i = 1, 2. Thus

xun+1yzω ∈ Li since n ≥ n0 ≥ ni, so xun+1yzω ∈ L. The proof of xun+1yzω ∈
L implies xunyzω ∈ L is similar.

Suppose that x(yunz)ω ∈ L, then x(yunz)ω ∈ Li for some i = 1, 2. Thus
x(yun+1z)ω ∈ Li since n ≥ n0 ≥ ni, so x(yun+1z)ω ∈ L. The proof of
x(yun+1z)ω ∈ L implies x(yunz)ω ∈ L is similar.

Case L = L1L2: where L1 ⊆ A∗ and L2 ⊆ Aω. According to Proposition 3.5,
L1 is quasi-aperiodic, then there is n1 such that for all n ≥ n1, xynz ∈ L1 iff
xyn+1z ∈ L1 for all x, y, z ∈ A∗ with |y| = 0 mod d. From induction hypothesis,
M(L2)(d) is aperiodic, thus there is n2 such that for all n ≥ n2, u, x, y, z ∈ A∗

with |u| = 0 mod d, (xunyzω ∈ L2 iff xun+1yzω ∈ L2) and (x(yunz)ω ∈ L2 iff
x(yun+1z)ω ∈ L2).

Let n0 = n1+n2+1. It is sufficient to show that for all n ≥ n0 and u, x, y, z ∈
A∗ with |u| = 0 mod d, (xunyzω ∈ L iff xun+1yzω ∈ L) and (x(yunz)ω ∈ L
iff x(yun+1z)ω ∈ L) in order to prove that M(L)(d) is aperiodic according to
Proposition 4.5.

(a) Suppose that n ≥ n0,u, x, y, z ∈ A∗ with |u| = 0 mod d, and xunyzω ∈ L.
We show that xun+1yzω ∈ L.
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Since xunyzω ∈ L = L1L2, xunyzω has a decomposition vw such that v ∈ L1

and w ∈ L2. There are the following cases:

• v = x1, w = x2u
nyzω with x = x1x2;

• there are h, k ≥ 0, u1, u2 ∈ A∗ such that v = xuhu1, w = u2u
kyzω with

n = h+ k + 1, u = u1u2;

• v = xuny1, w = y2z
ω with y = y1y2;

• there are p ≥ 0, z1, z2 ∈ A∗ such that v = xunyzpz1, w = z2z
ω with

z = z1z2.

Here we take the second case as an example, the discussions of the other cases
are similar. In the second case, because h + k + 1 ≥ n1 + n2 + 1, then h ≥ n1

or k ≥ n2, thus xuh+1u1 ∈ L1 or u2u
k+1yzω ∈ L2, then xun+1yzω ∈ L1L2 = L.

The proof of xun+1yzω ∈ L implies xunyzω ∈ L is similar to (a).
(b) Suppose that n ≥ n0,u, x, y, z ∈ A∗ with |u| = 0 mod d, and x(yunz)ω ∈

L. We show that x(yun+1z)ω ∈ L.
Since x(yunz)ω ∈ L = L1L2, x(yunz)ω has a decomposition vw such that

v ∈ L1 and w ∈ L2. There are the following cases:

• v = x1, w = x2(yunz)ω with x = x1x2;

• there are p ≥ 0, y1, y2 ∈ A∗ such that v = x(yunz)py1, w = (y2unz)(yunz)ω

and y = y1y2;

• there are p, h, k ≥ 0, u1, u2 ∈ A∗ such that v = x(yunz)p(yuhu1), w =
(u2u

kz)(yunz)ω with n = h+ k + 1, u = u1u2;

• there are p ≥ 0, z1, z2 ∈ A∗ such that v = x(yunz)p(yunz1), w =
z2(yunz)ω, z = z1z2;

Here we take the third case as an example, the discussions of the other cases
are similar.

Since n ≥ n0 = n1 + n2 + 1 ≥ ni(i = 1, 2), then x(yun+1z)p(yuhu1) ∈ L1

and (u2u
kz)(yun+1z)ω ∈ L2. Because h+ k + 1 ≥ n1 + n2 + 1, we have h ≥ n1

or k ≥ n2. Thus x(yun+1z)p(yuh+1u1) ∈ L1 or (u2u
k+1z)(yun+1z)ω ∈ L2.

Consequently

x(yun+1z)p(yuh+1u1)(u2u
kz)(yun+1z)ω ∈ L1L2

or
x(yun+1z)p(yuhu1)(u2u

k+1z)(yun+1z)ω ∈ L1L2.

Namely, x(yun+1z)ω ∈ L1L2 = L.
The proof of x(yun+1z)ω ∈ L implies x(yunz)ω ∈ L is similar to (b).
(ii)⇒(v):
Suppose that L is quasi-aperiodic, then there is d ≥ 1 such that M(L)(d) is

aperiodic, then according to Lemma 4.7, L(d) is aperiodic, thus L is definable
in FO[C] according to Lemma 4.10.

15



(v)⇒(i):
Suppose that L ⊆ Aω is definable in FO[C], then according to Lemma 4.10,

there is d ≥ 1 such that L(d) ⊆
(
A(d)

)ω
can be expressed in FO[<]. According

to Proposition 2.6, L(d) is star-free, i.e. it can be constructed from
(
A(d)

)ω
by

union, complementation and concatenation on the left by star free languages of(
A(d)

)∗
.

By replacing L1

⋃
L2,

(
A(d)

)ω −L1, and L1L2 by L′1
⋃
L′2,

(
Ad
)ω −L′1 and

L′1L
′
2 respectively during the construction of L(d) (where L′1, L

′
2 are languages

of
(
Ad
)∗ or

(
Ad
)ω corresponding to L1 and L2 respectively), we can get the

construction procedure for L. Moreover, according to Lemma 4.9, languages of(
Ad
)∗ used in the left concatenation during the construction of L must be quasi-

star-free. Then we can conclude that L can be constructed from Aω(namely(
Ad
)ω) by union, complementation and concatenation on the left by quasi-star-

free languages of A∗, i.e., L is quasi-star-free.
Therefore we have proved the equivalence of (i),(ii),(v).
Now we prove the equivalence of (ii),(iv) and complete the proof of the

theorem.
(ii)⇒(iv):
Suppose that L is quasi-aperiodic, i.e. there is d ≥ 1 such that M(L)(d) is

aperiodic.
According to Lemma 4.7, L(d) is aperiodic. Thus by Proposition 2.6, L(d) =

m⋃
i=1

XiY
ω
i , where Xi ⊆

(
A(d)

)∗
, Yi ⊆

(
A(d)

)+
are star free, and YiYi ⊆ Yi.

Let X ′
i =

{
x
∣∣∣x ∈ (Ad

)∗
, 〈x〉 ∈ Xi

}
, Y ′

i =
{
y
∣∣∣y ∈ (Ad

)∗
, 〈y〉 ∈ Yi

}
, then

L =
m⋃

i=1

X ′
i (Y ′

i )ω. Evidently Y ′
i Y

′
i ⊆ Y ′

i . Since Xi, Yi ⊆
(
A(d)

)∗
are star free,

then according to Lemma 4.9, X ′
i and Y ′

i are quasi-star-free.
(iv)⇒(ii):

Suppose that L =
m⋃

i=1

Xi (Yi)
ω, where Xi ⊆ A∗, Yi ⊆ A+ are quasi-star-free

languages, and YiYi ⊆ Yi. Then according to Lemma 4.8, there is d ≥ 1 such
that Xi, Yi can be constructed from singleton languages {a}(a ∈ A) and the
language

(
Ad
)∗.

Because Xi is quasi-star-free, according to Proposition 3.5, Xi is quasi-
aperiodic, i.e. there is n0 ∈ N such that for all n ≥ n0 and x, y, z ∈ A∗

with |y| ≡ 0 mod d, xynz ∈ Xi iff xyn+1z ∈ Xi. Denote this n0 as n0(Xi).
Similarly we have n0(Yi) for Yi. Moreover, since Xi, Yi are quasi-star-free, XiYi

is quasi-star-free as well, and we let n0(XiYi) ≥ n0(Xi) + n0(Yi) + 1 for XiYi

such that for all n ≥ n0(XiYi) and x, y, z ∈ A∗ with |y| ≡ 0 mod d, xynz ∈ XiYi

iff xyn+1z ∈ XiYi.
Let N0 = 1+2max{n0(XiYi)|1 ≤ i ≤ m}. It is sufficient to show that for all

n ≥ N0 and u, x, y, z ∈ A∗ with |u| = 0 mod d, (xunyzω ∈ L iff xun+1yzω ∈ L)
and (x(yunz)ω ∈ L iff x(yun+1z)ω ∈ L) in order to prove that L is quasi-
aperiodic (according to Proposition 4.5).
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(a) Suppose that n ≥ N0, u, x, y, z ∈ A∗, |u| = 0 mod d, and xunyzω ∈ L,
we show that xun+1yzω ∈ L.

Because L =
m⋃

i=1

Xi (Yi)
ω, xunyzω ∈ Xi (Yi)

ω for some i. Then there

is p, p′, q, q′ ≥ 0, z1, z2 ∈ A∗ such that z = z1z2, xunyzp′
z1 ∈ XiY

p
i and

z2z
q′
z1 ∈ Y q

i . If p = 0, then xun+1yzp′
z1 ∈ Xi since n ≥ N0 ≥ n0(XiYi) ≥

n0(Xi), xun+1yzω =
(
xun+1yzp′

z1

)(
z2z

q′
z1

)ω

∈ Xi ((Yi)q)ω = XiY
ω
i ⊆ L.

In the case of p > 0, XiY
p
i ⊆ XiYi follows from that assumption YiYi ⊆

Yi, so xun+1yzp′
z1 ∈ XiYi since n ≥ N0 ≥ n0(XiYi); then xun+1yzω =(

xun+1yzp′
z1

)(
z2z

q′
z1

)ω

∈ XiYi ((Yi)q)ω = Xi(Yi)ω ⊆ L.

The proof of xun+1yzω ∈ L implies xunyzω ∈ L is similar to (a).
(b) Suppose that n ≥ N0, u, x, y, z ∈ A∗, |u| = 0 mod d, and x(yunz)ω ∈ L,

we show that x(yun+1z)ω ∈ L.

Because L =
m⋃

i=1

Xi (Yi)
ω, x (yunz)ω ∈ XiY

ω
i for some i. Then there are

p, p′, q, q′ ≥ 0, v1, v2 ∈ A∗ such that x(yunz)p′
v1 ∈ XiY

p
i , v2(yunz)q′

v1 ∈ Y q
i ,

v1v2 = yunz.
Here we prove for the case of p > 0, the case of p = 0 can be proved similarly.
Suppose that p > 0.
Since YiYi ⊆ Yi, we have XiY

p
i ⊆ XiYi, Y

q
i ⊆ Yi.

Because n ≥ N0 ≥ n0(Xi, Yi) ≥ n0(Yi), we have that x(yun+1z)p′
v1 ∈ XiYi

and v2(yun+1z)q′
v1 ∈ Yi.

Now we discuss the following three cases of v1 and v2.

• v1 = y1, v2 = y2u
nz, y = y1y2;

• v1 = yunz1, v2 = z2, z = z1z2;

• v1 = yuhu1, v2 = u2u
kz, with h+ k + 1 = n and u = u1u2.

Here we take the third case as the example, the discussions of other cases
are similar.

Case v1 = yuhu1, v2 = u2u
kz, with h+ k + 1 = n and u = u1u2:

Since n ≥ N0 ≥ 1 + 2n0(XiYi), we have h ≥ n0(XiYi) or k ≥ n0(XiYi).
If h ≥ n0(XiYi), then

x(yun+1z)p′
(yuh+1u1) ∈ XiYi, (u2u

kz)(yun+1z)q′
(yuh+1u1) ∈ Yi.

Thus

x(yun+1z)ω =
(
x(yun+1z)p′

(yuh+1u1)
)(

(u2u
kz)(yun+1z)q′

(yuh+1u1)
)ω

∈ XiY
ω
i .

If k ≥ n0(XiYi), then (u2u
k+1z)(yun+1z)q′

(yuhu1) ∈ Yi. Thus

x(yun+1z)ω =
(
x(yun+1z)p′

(yuhu1)
)(

(u2u
k+1z)(yun+1z)q′

(yuhu1)
)ω

∈ XiY
ω
i .

The proof of x(yun+1z)ω ∈ L implies x(yunz)ω ∈ L is similar to (b). 2
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5 Conclusions and Remarks

In this paper quasi-star-free languages on infinite words (QSFI) are defined and
studied. Quasi-star-free languages on finite words(QSFF) have been studied in
[2, 5], and our work in this paper is an extension of those results for QSFF in
[2, 5].

The extension of results of QSFF to QSFI should be more useful for the char-
acterizations of the expressive power of temporal logics since temporal logics are
usually interpreted on infinite words in order to describe temporal properties
of concurrent systems. One of the examples is the characterizations of expres-
sive power of fragments of linear µ-calculus [8](known as νTL). The “next”
operators within the scope of the fixed points of νTL formulas act like the
FO[C] predicates “Cr

d(x)” and LTL[C] operators “U (d,r)”, e.g. νTL formula
νQ.pa ∧ XXQ defines language ({a}A)ω, which can be defined by FO[C] sen-
tence ∀x(C0

2 (x) → pa(x)) and LTL[C] formula ¬(TrueU (2,0)¬pa) respectively,
as we have noticed in Section 4.2.
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