

Effective and Precise Dynamic
Detection of Hidden Races for Java Programs

Yan Cai†
State Key Laboratory of Computer Science

Institute of Software
Chinese Academy of Sciences, Beijing, China

ycai.mail@gmail.com

Lingwei Cao
State Key Laboratory of Computer Science

Institute of Software
Chinese Academy of Sciences, Beijing, China

lingweicao@gmail.com

ABSTRACT

Happens-before relation is widely used to detect data races dynam-

ically. However, it could easily hide many data races as it is inter-

leaving sensitive. Existing techniques based on randomized sched-

uling are ineffective on detecting these hidden races. In this paper,

we propose DrFinder, an effective and precise dynamic technique

to detect hidden races. Given an execution, DrFinder firstly ana-

lyzes the lock acquisitions in it and collects a set of "may-trigger"

relations. Each may-trigger relation consists of a method and a type

of a Java object. It indicates that, during execution, the method may

directly or indirectly acquire a lock of the type. In the subsequent

executions of the same program, DrFinder actively schedules the

execution according to the set of collected may-trigger relations. It

aims to reverse the set of happens-before relation that may exist in

the previous executions so as to expose those hidden races. To ef-

fectively detect hidden races in each execution, DrFinder also col-

lects a new set of may-trigger relation during its scheduling, which

is used in its next scheduling. Our experiment on a suite of real-

world Java multithreaded programs shows that DrFinder is effec-

tive to detect 89 new data races in 10 runs. Many of these races

could not be detected by existing techniques (i.e., FastTrack, Con-

Test, and PCT) even in 100 runs.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Program Verification; D.2.5

[Software Engineering]: Testing and Debugging, testing tools;

D.4.1 [Operating Systems]: Processing Management –

synchronizations, threads.

General Terms
Reliability, verification.

Keywords

Data race, thread scheduling, hidden race, synchronization order

1. INTRODUCTION
A data race (or race for short) [17] occurs when two or more

threads access a same memory location concurrently, and at least

one of these accesses is a write [17]. Data race occurrences often

indicate other concurrency bugs in the same program [34]. Many

dynamic data race detectors are based on the locking discipline [40]

or the happens-before relations (HBR for short) [25]. The locking

discipline requires every two concurrent accesses (one of them is a

write) to a shared memory location to be protected by a common

set of locks. But, such lockset-based detectors are imprecise [18].

HBR-based detectors (or HB detectors for short) precisely [17] re-

port a data race only if they observe the two accesses involving in

a race not ordered by any HBR in an execution/trace. (In this paper,

we use the two terms execution and trace interchangeably.)

Some races in a program can be easily exposed in many traces and

HB detectors [17][35][37] can effectively detect them. There are

other races that are difficult to be detected due to reasons like con-

ditional variables and ad-hoc synchronizations. They can be de-

tected by two most recent techniques RVPredict [20] through data

flow analysis offline and Racageddon [16] through generating spe-

cific test inputs for each predicted race.

HB detectors are interleaving-sensitive [49]. They may miss to de-

tect a race if the two accesses of this race are ordered by HBRs in

an execution; but the same race can be detected in another execu-

tion with a different thread interleaving such that no HBR orders

the two accesses. That is, such a race is hidden by HB edges in some

executions [43]. Some of these races, even on repeated executions,

can still be hard to detect [43]. For ease of reference, we refer to

such a race as a hidden race (also known as a "hard" race [43]).

This paper focuses on the detection of hidden races.

Existing online techniques (e.g., [8][15][41][50]) are ineffective to

detect hidden races. Randomized scheduling techniques (e.g., PCT

[8] and ConTest [15]) only randomly identify changed points [8] or

insert random time delays [15] to modify thread priorities. They are

ineffective in exposing races whose accesses are separated by con-

secutive sequences of locking orders [25] among threads. Active

testing (e.g., [41][50], Racageddon and RVPredict) techniques are

built on top of random (or native) scheduling and/or concurrency

bug patterns to produce a predictive trace for potential race analy-

sis. It fails to be successfully applied if no hidden race can be pre-

dicted in the predictive run. Besides, they need many runs to deem

a potential race as a false positive with confidence. Coverage-

driven testing techniques [50] or using adequacy criteria [53] de-

mand either patterns of problematic memory accesses as well as

synchronization operations or applicable adequacy criteria as in-

puts. To the best of our knowledge, there is no effective pattern or

adequacy criterion for hidden races discovered yet.

As such, a key challenge for dynamic race detectors is to generate

executions that effectively expose hidden races.

Offline techniques [20][43] to may infer hidden races. The Caus-

ally-Precedes (CP) detector [43] can interestingly predict hidden

races in a given trace under limited scenarios. CP is however inap-

plicable if a hidden race is separated by HBR (i.e., HB edges) hav-

ing conflicting data accesses [43]. Also, analyzing large traces (e.g.,

† Corresponding author.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08...
http://dx.doi.org/10.1145/2786805.2786839

450

running Eclipse for 1 hour of code development) by CP is still im-

practical; besides, no online CP detector has been invented yet [43].

RVPredict [20] confirms each predicted data race via constraint

solving. Like other predictive techniques [41], it needs to solve the

scheduling constraints for each predicted data race, which may fail.

Our work exploits two observations: (1) many races hidden in one

execution can be detected by reversing the direction of one or more

consecutive HBRs [25] in another execution, and (2) in real-world

programs, only a small proportion of methods generates lock ac-

quisition events, and these methods usually generate events on des-

ignated (instead of arbitrary) lock objects.

In this paper, we propose DrFinder (Data races Finder), a dynamic

technique to detect hidden races by reversing possible HBRs.

DrFinder is based on may-trigger relation. This relation relates a

method to a type of lock object in Java programs. It represents that

the method may directly or indirectly (by calling several other

methods) trigger a lock acquisition on a lock object of that type.

DrFinder consists of two phases. Figure 1 shows an overview of

DrFinder. In Phase I, DrFinder analyzes each lock acquisition event

in a given trace to relate each selected method to the type of the

lock object of the event and takes them as a set of may-trigger re-

lations (i.e., MTR in Figure 1). In Phase II, it generates a trace for

hidden race detection based on the collected set of may-trigger re-

lation. Specifically, if a thread generates a lock acquisition event e1

on a lock of type c and some other thread may-trigger a lock acqui-

sition event e2 on a lock of the same type c, DrFinder postpones the

execution of e1 until an expected event e2 occurs. As such, the lock-

ing order on these two events that they may form in the trace ana-

lyzed in Phase I is reversed. In this way, the races originally hidden

by such HBRs are exposed in the later trace.

DrFinder also collects a set of new may-trigger relations in each

scheduled execution which is used in the next scheduled execution.

This feedback mechanism makes DrFinder effective to detect new

hidden races in each its scheduled execution.

We have implemented DrFinder in the Jikes RVM [3], and evalu-

ated it on the Dacapo benchmarks [6]. The experimental result

shows that DrFinder finds races that cannot be effectively detected

by both native runs, ConTest, and PCT configured with FastTrack.

In total, DrFinder detects 89 new data races on 5 Dacapo bench-

marks within 10 runs each. Besides, many of these new races could

not be detected by existing techniques in 100 runs.

In summary, the main contributions of this paper are:

 This paper proposes a may-trigger relation and a novel hidden

data race detector DrFinder. DrFinder predicts locking orders,

and makes decisions on the reversals of locking orders at the

may-trigger relation level. It profiles no memory accesses in

Phase I, and only carries forward the may-trigger relations be-

tween phases.

 It reports the feasibility of DrFinder by implementing it as a

prototype tool in the Jikes RVM. It presents an experiment to

evaluate DrFinder. In the experiment, DrFinder detects 89 new

races and is promising in exposing hidden races. DrFinder is

scalable to large-scale Java programs (e.g., Eclipse).

In the rest of this paper, Section 2 reviews preliminaries followed

by a motivating example in Section 3. Sections 4 and 5 present the

design rationales and the details of DrFinder, respectively. Section

6 reports the evaluation of DrFinder. In Sections 7 and 8, we discuss

the related work and conclude this paper, respectively.

2. PRELIMINARIES
A multithreaded Java program 𝑝 contains a set of classes denoted
as C. Each class 𝑐 in C consists of a set of fields and a set of meth-
ods. We denote the set of all methods of 𝑝 as M. An object 𝑜 O
is an instance of a class 𝑐, and the type of 𝑜, denoted as type(o), is
𝑐. Each lock is an instance of a class.

Each thread 𝑡 in program 𝑝 executes a nested sequence of methods.
Each method may execute a set of operations OP = { 𝑟𝑑, 𝑤𝑟, 𝑎𝑐𝑞,
𝑟𝑒𝑙, 𝑒𝑛𝑡𝑒𝑟, 𝑟𝑒𝑡𝑢𝑟𝑛 }, where 𝑟𝑑 and 𝑤𝑟 mean read and write to a
field of a class instance, respectively; 𝑎𝑐𝑞 and 𝑟𝑒𝑙 mean acquisi-
tion and release of a lock, respectively; and 𝑒𝑛𝑡𝑒𝑟 and 𝑟𝑒𝑡𝑢𝑟𝑛
mean a call and a return to and from a method, respectively.

An event 𝑒 = 𝑡, 𝑜𝑝, 𝑜 means that a thread 𝑡 performs an operation
𝑜𝑝 OP on an object 𝑜 O M. We denote 𝑜 in 𝑒 by 𝒐𝒃𝒋𝒆𝒄𝒕(𝑒).
A trace 𝜎 is a sequence of events.

The Happens-before relation (↣, HBR) [25] in a trace is defined
by three rules: (1) if two events and are performed by the same
thread, and appeared before , then ↣ . (2) if two events α =
𝑡𝛼 , 𝑟𝑒𝑙,𝑚 and β = 𝑡𝛽 , 𝑎𝑐𝑞,𝑚 are performed by two different
threads, and appeared before , then ↣ . (3) if ↣ and ↣
, then ↣ .

Two memory events 𝑒1 = 𝑡1, 𝑜𝑝1, 𝑣1 and 𝑒2 = 𝑡2, 𝑜𝑝2, 𝑣2 form
a race on 𝑣1 if (1) 𝑡1 ≠ 𝑡2 ∧ 𝑣1 = 𝑣2, (2) {𝑤𝑟} ∩ {𝑜𝑝1, 𝑜𝑝2} ≠ ∅,
and (3) neither 𝑒1 ↣ 𝑒2 nor 𝑒2 ↣ 𝑒1.

The relation 𝑒1 ↣ 𝑒2 is called an HB edge if 𝑒1 = 𝑡1, 𝑟𝑒𝑙, 𝑙, 𝑒2 =
𝑡2, 𝑎𝑐𝑞, 𝑙, and 𝑡1 ≠ 𝑡2 [43]. For instance, the two arrows in Figure

2 depict two HB edges 𝑒1 ↣ 𝑒9 and 𝑒3 ↣ 𝑒6, where "sync(o){…}"

denotes a pair of events " 𝑎𝑐𝑞(𝑜) … 𝑟𝑒𝑙(𝑜) "; and we will use this

short form in Section 3. Given two traces 𝜎 and 𝜎′ and a pair of

events 𝑒1 and 𝑒2, if 𝑒1 and 𝑒2 form a race in 𝜎 but does not form

any race in 𝜎′, then the race is called a Hidden Race in 𝜎′.

In a Java program, each thread starts its execution from its method

run().

3. MOTIVATING EXAMPLE
Figure 2 shows our motivating example, where, each thread (i.e.,

𝑡1, 𝑡2, or 𝑡3) executes a sequence of events from top to bottom.

These events are memory accesses (i.e., 𝑚1 to 𝑚4) to the locations

𝑥 and 𝑦, and lock acquisition/release events (i.e., 𝑒1 to 𝑒9) on seven

lock objects 𝑘 , 𝑛, and 𝑜1 to 𝑜1 . The two HB edges 𝑒1 ↣ 𝑒9 and

𝑒3 ↣ 𝑒6 on the two lock objects 𝑛 and 𝑘, respectively, are denoted

as arrows. We denote the trace as 𝜎1 = … , 𝑒1… , 𝑒9… ,
𝑒3… , 𝑒6… . The two pairs of accesses to locations x and y (i.e., 𝑚1

May-Trigger

Collector

Data Races

HB Race Detector

DrFinder

Scheduler

acquire, release

enter, return

acquire, release

enter, return

Phase I

MTR: {mt(f, c)}

Trace 𝜎2

Trace 𝜎

Phase II

A depth value d

A data race

is hidden

by a HB edge.

A data race

is exposed

by DrFinder.

acquire, release

read, write

Figure 1. An overview of DrFinder.

451

and 𝑚4, and 𝑚2 and 𝑚3) are ordered by the HB edges 𝑒1 ↣ 𝑒9 and

𝑒3 ↣ 𝑒6, respectively. Hence, no HB detector can detect any race

in the trace 𝜎1.

Next, we reverse the direction of each HB edge shown in Figure 2

to sketch Figure 3, which represents the trace 𝜎2 = … , 𝑒9… ,
𝑒1… , 𝑒6… , 𝑒3… of the same program. An HB detector can now

report the two (hidden) races on x and y in 𝜎1.

If a native schedule exhibits the trace 𝜎1 as shown in Figure 2, the

probability to observe the trace 𝜎2 shown in Figure 3 is very low

[43]. Hence, the two races may not be easily detected.

Naïve strategy: A naive strategy is to suspend every lock acquisi-

tion event observed in a trace before executing the event. For trace

𝜎2, it suspends the three threads from executing 𝑒1, 𝑒4, and 𝑒7, re-

spectively, producing an occurrence of the suspension of all the

threads of the trace (known as thrashing [41]). Thrashing is typi-

cally resolved by randomly resuming one of the suspended threads.

There is no thoughtful design to ensure 𝑒9 ↣ 𝑒1 in order to expose

the hidden race on x effectively.

Offline techniques: CP [43] can infer these two races from 𝜎1,

providing that no conflicting memory accesses exist inside the syn-

chronization bodies of 𝑒1 and 𝑒9 . That is, if 𝑧 is a new location,

where 𝑒1 protects a write access to 𝑧 (i.e., 𝑒1 = 𝑠𝑦𝑛𝑐(𝑘){… ,𝑤𝑟(𝑧)
…}) and 𝑒9 protects a read access to z (i.e., 𝑒9 = 𝑠𝑦𝑛𝑐(𝑘){… , 𝑟𝑑(𝑧)
…}). Then, the race on x cannot be detected by CP (and the case on

y is similar). This is restrictive. In their experiment [43], on only 2

out of 11 programs, can CP detect 2 and 7 more races than

FastTrack [17] (an online HB detector).

Online randomized schedulers: ConTest [15] inserts a small

amount of random time delays on some lock acquisitions. Suppose

that 𝑒1 is generated but not executed by 𝑡1 yet. A small time delay

in between the generation and execution of 𝑒1 may not be long

enough for 𝑡3 to have generated and executed 𝑒9, which depends on

both the underlying (native or randomized) scheduler and the se-

quence of operations performed by 𝑡3 in between the current exe-

cution point and 𝑒9. The design of ConTest is insensitive to both

factors. PCT [8] provides a theoretical guarantee to find a concur-

rency bug, but this guarantee is very low even for the illustrating

example. Its guaranteed probability (i.e., ÷ (𝑛 × 𝑘𝐵𝑢𝑔𝐷𝑒𝑝𝑡ℎ−1))

[8], where 𝑛 is the number of threads and 𝑘 is the number of in-

structions executed) also decreases exponentially as 𝐵𝑢𝑔𝐷𝑒𝑝𝑡ℎ in-

creases. From our first-hand experience, many bugs can be detected

using 1 as 𝐵𝑢𝑔𝐷𝑒𝑝𝑡ℎ, and yet a significant amount of races still can-

not be detected using much deeper depths with 100 runs.

Our technique: DrFinder can effectively reverse the two HB edges

𝑒1 ↣ 𝑒9 and 𝑒3 ↣ 𝑒6 observed in the trace 𝜎1 when generating the

trace 𝜎2. When observing 𝑒1, it effectively foresees the execution

of the event 𝑒9; and similarly, when observing 𝑒3 , it effectively

foresees the execution of the event 𝑒6. DrFinder achieves this pre-

diction via a novel strategy.

We denote the types of the lock objects 𝑘, 𝑛, 𝑜1 to 𝑜5 as 𝑐𝑘, 𝑐𝑛, 𝑐1

to 𝑐5, respectively, and the methods that contain above events as 𝑓1

to 𝑐8 as shown in Figure 2, where an upper method in a column

invokes the method immediately below it (e.g., 𝑓1 invokes 𝑓2).

Specifically, in Phase I, DrFinder constructs every may-trigger re-

lation mt(f, c) (see Section 4.3 for definition) between a method f

and a lock object type c observed in 𝜎1. Each may-trigger relation

mt(f, c) means that f may trigger a lock acquisition event on a lock

object of type c. Table 1 shows the set of may-trigger relations con-

structed from 𝜎1 in Figure 2. (Note that may-trigger relation also

considers program call stack, not a single function.)

In Phase II, firstly, suppose that 𝑡2 is executing some events in the

method 𝑓3 and 𝑡3 is executing some events in the method 𝑓6. When

DrFinder observes the event 𝑒1 produced by 𝑡1, it checks the may-

trigger relations involving 𝑓3 and 𝑓6 (i.e., the two methods being

executed by the other two threads 𝑡2 and 𝑡3 , respectively), and

finds a may-trigger relation mt(𝑓6, 𝑐𝑘), meaning that 𝑓6 may-trigger

a lock acquisition event on an object of type 𝑐𝑘, which is the same

type as that of 𝑒1. DrFinder thus suspends 𝑡1 (depicted as a solid

rectangle in Figure 3), and sets 𝑡1 to wait for an event of this object

type 𝑐𝑘. It further escorts 𝑡3 to execute all its events until 𝑡3 exe-

cutes the event 𝑒9, which is the first encountered event on a lock

object having the type 𝑐𝑘. DrFinder then resumes 𝑡1 to execute 𝑒1

to form the targeted HB edge 𝑒9 ↣ 𝑒1. A further execution of the

two threads will execute memory accesses on x, which expose the

hidden race on x.

Next, it is feasible for 𝑡1 to execute 𝑒2 or for 𝑡2 to execute 𝑒4. Be-

cause neither mt(𝑓4 , type(𝑜1)) nor mt(𝑓2 , type(𝑜2)) matches any

may-trigger relation, DrFinder resolves the tie randomly: (1) Sup-

pose that 𝑡1 is selected. When 𝑡1 generates 𝑒3, DrFinder finds that

mt(𝑓4, type(n)) is a may-trigger relation. Thus, it suspends 𝑡1, and

escorts 𝑡2 to execute until 𝑡2 has executed 𝑒6 . After that, 𝑡1 exe-

cutes 𝑒3, and the HB edge 𝑒6 ↣ 𝑒3 is formed. When 𝑡2 executes

𝑚3, the race on y is detected. (2) Suppose that 𝑡2 executes 𝑒4 first.

Table 1. The May-Trigger relation for methods and lock object types

of program shown in Figure 2.

May-Trigger Relation May-Trigger Relation

mt(𝑓1, 𝑐𝑘), mt(𝑓1, 𝑐1), mt(𝑓1, 𝑐𝑛) mt(𝑓5, 𝑐𝑛)

mt(𝑓2, 𝑐1), mt(𝑓2, 𝑐𝑛) mt(𝑓6, 𝑐4), mt(𝑓6, 𝑐5), mt(𝑓6, 𝑐𝑘)

mt(𝑓3, 𝑐2), mt(𝑓3, 𝑐3), mt(𝑓3, 𝑐𝑛) mt(𝑓7, 𝑐4), mt(𝑓7, 𝑐5), mt(𝑓7, 𝑐𝑘)

mt(𝑓4, 𝑐2), mt(𝑓4, 𝑐3), mt(𝑓4, 𝑐𝑛) mt(𝑓8, 𝑐𝑘)

𝑡1

⋮

 : ()

𝒆 : 𝒄(){…}

𝑒2 : 𝑠𝑦𝑛𝑐(𝑜1){…}

 : ()

𝒆 : 𝒄(){…}

𝑡2

⋮

⋮

𝑒4 : 𝑠𝑦𝑛𝑐(𝑜2){…}

𝑒5 : 𝑠𝑦𝑛𝑐(𝑜3){…}

⋮

⋮

𝒆 : 𝒄(){…}

 : ()

𝑡3

⋮

⋮

⋮

𝑒7 : 𝑠𝑦𝑛𝑐(𝑜4) {…}

⋮

𝑒8 : 𝑠𝑦𝑛𝑐(𝑜5) {…}

𝒆 : 𝒄() {…}

 : ()

𝑓1

𝑓2

𝑓3

𝑓4

𝑓5

𝑓6

𝑓7

𝑓8

Figure 3. A trace 𝝈 generated by DrFinder, exposed two races on x

and y.

𝑡1

⋮

 : ()

𝒆 : 𝒄(){…}

𝑒2 : 𝑠𝑦𝑛𝑐(𝑜1){…}

 : ()

𝒆 : 𝒄(){…}

𝑡2

⋮

⋮

𝑒4 : 𝑠𝑦𝑛𝑐(𝑜2){…}

𝑒5 : 𝑠𝑦𝑛𝑐(𝑜3){…}

⋮

⋮

𝒆 : 𝒄(){…}

 : ()

𝑡3

⋮

⋮

⋮

𝑒7 : 𝑠𝑦𝑛𝑐(𝑜4) {…}

⋮

𝑒8 : 𝑠𝑦𝑛𝑐(𝑜5) {…}

𝒆 : 𝒄() {…}

 : ()

𝑓1

𝑓2

𝑓3

𝑓4

𝑓5

𝑓6

𝑓7

𝑓8

Figure 2. A trace 𝝈 hiding two races on x and y as two HB edges 𝒆 ↣
𝒆 and 𝒆 ↣ 𝒆 order the two accesses of each race, respectively.

452

When 𝑡2 further generates 𝑒5, DrFinder finds that mt(𝑓2, type(𝑜3))

does not match any may-trigger relation. Thus, both threads 𝑡1 and

𝑡2 may proceed further. So, DrFinder resolves the tie randomly. If

𝑡1 is selected to execute first, a race on y is detected. Otherwise, no

race is reported because the HB edge between 𝑒3 and 𝑒6 is still

𝑒3 ↣ 𝑒6.

4. DESIGN RATIONALES
In this section, we present the design rationales of DrFinder, with

the help of two traces 𝜎1 and 𝜎2, and their corresponding set of HB

edges are 1 and 2, respectively. Besides, there are two threads 𝑡1

and 𝑡2 in two traces and they produce two events 𝑒1 and 𝑒2, respec-

tively, in trace 𝜎1; however, the two events may not be produced by

two threads in trace 𝜎2.

4.1 Basic Requirements
We recall that a hidden race is difficult to expose in a trace gener-

ated by a native scheduler or a pure randomized scheduler. That is,

although the two accesses involving in a hidden race may appear in

a trace, yet the pair of accesses may be separated by non-trivial

numbers of HB edges (e.g., the two accesses 𝑚1 and 𝑚4 in Figure

2). For ease of reference, we refer to such a native or pure random-

ized scheduler as a default scheduler.

A strategy modeled after the above intuition is as follows: In Phase

I, a technique observes the set of HB edges 1 in the trace 𝜎1 pro-

duced by a default scheduler. Then, in Phase II, it aims to reverse

the directions of some HB edges in 1 on generating the trace 𝜎2.

That is, if the two events 𝑒1 ↣ 𝑒2 ∈ 1, it aims to produce 𝑒2 ↣ 𝑒1

 2 if possible as shown in Figure 4 (a) and (b), respectively.

As such, a dynamic hidden race detector should aim to:

Phase I) keep a (sub)set of HB edges (i.e., 1) in trace 𝜎1,

Phase II) and schedule a subsequent execution (generating

trace 𝜎2) to reverse HB edges in 1 to expose races hid-

den in trace 𝜎1.

However, DrFinder does not target to keep any HB edges as which

usually incurs high runtime overhead [12][21][41]. It tries to pre-

dict HB edges dynamically via the type of locks. In the next two

subsections, we present how DrFinder achieves this aim to reverse

HB edges.

4.2 Reversing Happens-before Edges
Suppose that 𝑒1 ↣ 𝑒2 is an HB edge in 1 as depicted in Figure

4(a), there is a good chance that, using the default scheduler, 𝑒1 ↣
𝑒2 may also exist in 2. That is, most of HB edges in 1 cannot be

easily reversed in 2. Therefore, our target is to actively produce

𝑒2 ↣ 𝑒1 as depicted in Figure 4(b).

Suppose that during the execution (to generate the trace 𝜎2), both

events 𝑒1 and 𝑒2 exist. In theory, a precise but hypothetical strategy

can be formulated as follows:

However, implementing such a strategy is challenging: if there is

no such an event 𝑒2 in trace 𝜎2, then the HB edge 𝑒2 ↣ 𝑒1 will not

exist, and no HB edge needs to be reversed. Hence, above strategy

will suspend the thread 𝑡1 until the thread 𝑡2 terminates. If all

events (or at least lock acquisition events) in trace 𝜎1 are logged to

check the existence of an event 𝑒2, it is necessary to compute an

object abstraction [13][21][41] (e.g., a unique id) for each event.

However, before the occurrence of 𝑒2, there is no way to compute

an object abstraction for 𝑒2.

Therefore, an effective technique must address a problem: Given

an event 𝑒1 to be executed by a thread 𝑡1, how to determine whether

some other thread 𝑡2 will execute an event 𝑒2 such that 𝑜𝑏𝑗𝑒𝑐𝑡(𝑒2)
= 𝑜𝑏𝑗𝑒𝑐𝑡(𝑒1) without computing an object abstraction for each

event?

4.3 Stack and Type Based Events Predictions
Let us refine the problem further as the two events 𝑒1 and 𝑒2 should

be causally related; otherwise, there is no need to consider them to

form an HB edge. Suppose that when 𝑡1 is about to execute 𝑒1 ,

thread 𝑡2 is executing an event 𝑒∗ within the body of a method 𝑓𝑘

as shown in Figure 5(a). To ease our explanation, we refer to the

current call stack of thread 𝑡2 as stack s. If the event 𝑒2 will occur

in future in the execution of 𝑡2, there will be another call stack frag-

ment: 𝑠1 in the below Backward Case or 𝑠2 in the below Forward

Case:

 Backward Case shown in Figure 5(b): after thread 𝑡2 returns

from method 𝑓𝑘 recursively to a method 𝑓1 , and then calls

some other methods, an event 𝑒2 from a method 𝑓𝑑 ′ is exe-

cuted. We refer to the two call stack fragments 𝑓1 …, 𝑓𝑘 and

𝑓1 …, 𝑓𝑑 ′ as 𝑠′ and 𝑠1, respectively, as depicted.

 Forward Case shown in Figure 5(c): before thread t2 returns

from its execution in method 𝑓𝑘, it further calls some meth-

ods and then an event 𝑒2 from a method 𝑓𝑑 ′′ is executed. We

refer to the call stack fragments 𝑓𝑘 …, 𝑓𝑑 ′′ as 𝑠2 , as de-

picted.

Therefore, to predict the existence of event 𝑒2, thread 𝑡2 should be

aware of the method 𝑓𝑑 ′ (in Backward Case) or the method 𝑓𝑑 ′′ (in

Forward Case) that executes an event 𝑒2. To do so, it is necessary

to record the events that a given method will execute directly or

indirectly (i.e., via calling other methods). With such information,

given an event 𝑒∗ from a method 𝑓𝑘 , it becomes easy to know

whether there will be an event 𝑒2.

However, directly implementing above idea to detect hidden races

is ineffective or even does not work. It is because each method,

once called, directly (for event within this method) or indirectly (for

events out of this method) executes all later events. For example,

the method run() executes all events. Therefore, to make the pre-

diction of an event effective for detection of hidden races via re-

versing HB edges, the used stack should be limited. In other words,

only some methods in a stack should be used to do prediction, but

not all.

Let's further review the two cases. For Backward Case, we can ob-

serve from Figure 5(b) that the effective call stack to predict the

event 𝑒2 (when thread 𝑡2 is executing an event 𝑒∗ in method 𝑓𝑘) is

only the stack fragments 𝑠′ and 𝑠1. Similarly, for Forward Case, the

effective stack is the stack fragment 𝑠2.

Therefore, we only use the stack fragments 𝑠′ and 𝑠1, or 𝑠2 to pre-

dict events. In theory, the size of the stack 𝑠′ can range from 1 to

infinite. In this paper, we aim to present the basic model of

To reverse an HB edge from 𝑒1 ↣ 𝑒2 to 𝑒2 ↣ 𝑒1, the thread 𝑡1

should be suspended when it generates but does not execute the

event 𝑒1 until the thread 𝑡2 has executed the event 𝑒2.

𝑡2𝑡
𝑒1

𝑒2

(a) Observed trace 𝜎1 (b) Targeted trace 𝜎2

𝑒1
𝑒2

𝑡2𝑡

Figure 4. Reversing an HB edge.

453

DrFinder. Hence, we choose the size of 𝑠′ to be 1, which is a mini-

mal setting. In this case, we have 𝑓𝑘 = 𝑓1. Therefore, the two cases

(i.e., Backward Case and Forward Case) are actually the same one.

And the prediction of event 𝑒2 is based on one stack fragment (i.e.,

𝑠1 or 𝑠2) to be formed. Thus, we propose our stack based events

prediction model M to predict the event 𝑒2 as follows:

We refer to the size of the above stack s1 plus the method 𝑓𝑑 ′ as the

depth d of model M. Model M looks forward to see whether there

will be a sequence of at most d methods (i.e., 𝑠1) with the last

method containing an above discussed event 𝑒2.

However, for above prediction model, we still need to address a

new problem: given an event 𝑒1 by 𝑡1 and a stack s of 𝑡2, does there

exist a method 𝑓𝑑 ′ in the stack contains an event 𝑒2?

We propose the May-Trigger Relation to further predict whether a

given method will trigger a certain event. Suppose that there is an

event e from a method f such that 𝑒 = 𝑒2 . Then, we must have

𝑜𝑏𝑗𝑒𝑐𝑡(𝑒) = 𝑜𝑏𝑗𝑒𝑐𝑡(𝑒2) , and 𝑡𝑦𝑝𝑒(𝑜𝑏𝑗𝑒𝑐𝑡(𝑒)) =
𝑡𝑦𝑝𝑒(𝑜𝑏𝑗𝑒𝑐𝑡(𝑒2)). Our insight is that in real-world Java programs,

most methods only acquire specific (instead of arbitrary) lock ob-

jects, and their method instances often follow the same locking pat-

terns. We propose to use the type of a lock object in a lock acquisi-

tion event to predict the possible occurrence of the event e2 to

achieve the reversal of the HB edges from 𝑒1 ↣ 𝑒2 in 1 to 𝑒2 ↣
𝑒1 in 2.

Formally, May-Trigger Relation is defined as follows: Given a

method 𝑓, a type 𝑐, and an execution trace 𝜎. If a method 𝑓′ is
reachable from 𝑓 during the generation of a trace 𝜎 by a sequence

of at most 𝑑 methods, and 𝑓′ produces an event 𝑒 = 𝑡, 𝑎𝑐𝑞, 𝑜
such that 𝑡𝑦𝑝𝑒(𝑜) = 𝑐, then we say 𝑓 and 𝑐 forms a May-Trigger

Relation (MTR for short), denoted as mt(𝑓, 𝑐).

DrFinder is developed on top of M using MTR to predict occur-

rences of events like 𝑒2 to schedule a program to detect hidden

races. It uses two pieces of information for its prediction: (1) an

event 𝑒1 from a thread 𝑡1, and (2) a method 𝑓1 from a second thread

𝑡2 and a depth d. It interestingly predicts the presence of an event

𝑒2 by checking whether mt(𝑓1, 𝑡𝑦𝑝𝑒(𝑒1)) is a MTR identified from

𝜎1.

4.4 Effective Scheduling via Feedbacks
From above discussion, DrFinder executes a program once to col-

lect a set of MTR and then schedules the program execution based

on the relation set. However, races in a program cannot be dynam-

ically detected in merely one run. Therefore, it is necessary for

DrFinder to execute a program multiple times to detect more hidden

races.

On the other hand, if a same set of MTR relation is used in each

execution by DrFinder, the increment of new races detected is mar-

ginal. Actually, after the first scheduling execution by DrFinder, the

probability to detect new hidden races for DrFinder at its other sub-

sequent executions is the same as the existing dynamic techniques

(e.g., FastTrack) and may be even lower than existing active sched-

ulers (e.g., PCT). It is because, the subsequent executions are sim-

ilar to the first scheduled execution as they are scheduled by

DrFinder based on a same set of MTR.

Therefore, we design DrFinder, at each of its executions, to both

schedule the execution and collect a new set of MTR from the ex-

ecution being scheduled. The newly collected set of MTR is re-

garded as a feedback to be used in the next execution by DrFinder.

As such, DrFinder is able to effectively schedule each execution

based on a set of MTR exactly from the previous execution, to de-

tect new hidden races. This feedback mechanism is also depicted in

Figure 1.

5. DRFINDER IN DETAILS

5.1 Phase I: May-Trigger Relation Collector
The MTCollector algorithm is responsible to collect may-trigger re-

lations, shown in Algorithm 1. Given a program 𝑝 and a depth 𝑑,

MTCollector executes the program, and collects a set of may-trig-

ger relations (i.e., MTR in Algorithm 1) from the observed trace.

Algorithm 1 first assigns the set of all threads in 𝑝 to the set Ena-

bled, null to MTR, and assigns Stack(t) for each thread 𝑡 in En-

abled to empty at lines 3–4. It uses the data structure Stack(𝑡) to

keep track of the call stack fragment. It then uses randomized

scheduling to execute the program 𝑝 by selecting the next event 𝑒

During the generation of a trace 𝜎2, if a thread 𝑡2 is executing

an event 𝑒∗ from a method 𝑓𝑘, and there exists a method 𝑓𝑑 ′,
such that the method 𝑓𝑑 ′:

(1) contains an event 𝑒2 and

(2) is reachable by thread 𝑡2 via a sequence methods 𝑠1 after

executing the event 𝑒∗,
then thread 𝑡2 will execute the event 𝑒2.

Algorithm 1: DrFinder.MTCollector
1.
2.

3.
4.

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

Input: 𝑝 – a given program
Output: MTR – may-trigger relations

Enabled ≔ all threads in 𝑝; MTR ≔ ∅
Stack(𝑡) ≔ ∅, for each thread 𝑡 ∈ Enabled //method stack

while Enabled ≠ ∅ do
│ let 𝑡 be a random thread from Enabled.
│ let 𝑒 ≔ 𝑡, 𝑜𝑝, 𝑜 be the next event of 𝑡.
│ if 𝑜𝑝 = 𝑒𝑛𝑡𝑒𝑟 then
│ │ push 𝑜 into Stack(𝑡) //o is a method
│ else if 𝑜𝑝 = 𝑟𝑒𝑡𝑢𝑟𝑛 then
│ │ pop out from Stack(𝑡)
│ else if 𝑜𝑝 = 𝑎𝑐𝑞 then
│ │ for 𝑖 = 1 to min(d, Stack(𝑡).size()) do
│ │ │ let 𝑓 ≔ Stack(𝑡).get(𝑖) //collect lock type
│ │ │ MTR ≔ MTR ∪ { mt(𝑓, Type(𝑜)) }
│ │ end for
│ end if
│ execute(𝑒)
end while

𝑡2𝑡1

𝑒1

𝑒2

(a) Current execution of two threads

𝑒∗

𝑓1

𝑓𝑘
𝑓𝑑 ′

𝑒2

(b) Backward Case

𝑓1
𝑓𝑘

𝑓𝑑′

s

⋮

run

s' 𝑠1
𝑓𝑘

𝑓𝑑 ′′

𝑒∗

𝑒2
(c) Forward Case

s
run

𝑠2

𝑒∗

Stack s

Figure 5. Call stack based prediction of event 𝒆 .

454

(i.e., 𝑡, 𝑜𝑝, 𝑜) from a random thread (lines 6–7) and checks the op-

eration 𝑜𝑝 of the event 𝑒:

 If 𝑜𝑝 is either 𝑒𝑛𝑡𝑒𝑟 or 𝑟𝑒𝑡𝑢𝑟𝑛 , Algorithm 1 pushes the

method o into the Stack(𝑡) or pops out the topmost method

from the Stack(𝑡), respectively (lines 8–11).

 If 𝑜𝑝 is 𝑎𝑐𝑞 , Algorithm 1 updates MTR ≔ MTR∪ {mt(𝑓 ,

𝑡𝑦𝑝𝑒(𝑜))}, for each method 𝑓 in the top 𝑑 methods in the

Stack(𝑡) (lines 13–16) to maintain may-trigger relations.

Then, the algorithm executes the event at line 18.

5.2 Part A of Phase II: DrFinder Agent
The Agent (Algorithm 2) is responsible to execute each event. For

the acq events, their executions depend on Scheduler.

Algorithm 2 accepts the given program 𝑝, the set MTR (i.e., may-

trigger relations) from Phase I, and an HB race detector RD. It re-

turns a set of new may-trigger relations (i.e., MTR'). Algorithm 2

firstly assigns the set of all threads of p to the set Enabled, which

is shared by both Agent and Scheduler, and set MTR' to be empty

(line 5). It then starts Scheduler (i.e., Algorithm 3 to be presented in

Section 5.3) through a fork() call (line 6). Next, it takes a next event

𝑒 = 𝑡, 𝑜𝑝, 𝑜 from a random thread 𝑡 (lines 8–9), and checks the

operation 𝑜𝑝 of the event 𝑒 . If 𝑜𝑝 is 𝑎𝑐𝑞 , Agent asks Scheduler

whether 𝑡 is allowed to execute 𝑒 through a function call to re-

questALock() of Scheduler (line 11). If the function returns a false

value, Agent simply keeps 𝑒 from execution. (Note: the thread t has

been removed from Enabled by Scheduler at line 10 in Algorithm

3). If requestALock() does not return a false value (line 12),

Agent will both execute and pass 𝑒 to the race detector RD (lines

16–17). Finally, if 𝑒 is an 𝑎𝑐𝑞 event, Agent also informs Scheduler

that the thread 𝑡 has acquired the lock object specified in 𝑒 via

function lockAcquired() (lines 18–20). It also collects a new set

of MTR' at line 21 (which is based on Algorithm 1) as the input

MTR of the next scheduling execution.

5.3 Part B of Phase II: DrFinder Scheduler
Scheduler (Algorithm 3) maintains four data structures: ATHs,

RTHs, allowedTH, and allowedLK (lines 1–4), to make sched-

uling decision:

 ATHs is a set of all the threads in the program p.

 RTHs is a set of pairs of a thread 𝑡 and a lock object 𝑜, each

of which representing that 𝑡 is requesting to acquire the object

𝑜, but Scheduler suspends this acquisition. Thus, all the threads

in this set are waiting to be scheduled by Scheduler. For ease

of our presentation, we use RTHs.get(𝑡) to denote the lock 𝑜

paired with the thread 𝑡.

 allowedTH keeps a particular thread 𝑡 that both (i) is "es-

corted" by DrFinder with a top priority to execute its lock ac-

quisition events and (ii) is the thread expected by DrFinder to

acquire a lock object defined by allowedLK.

 allowedLK keeps a lock object 𝑜 . DrFinder expects the

thread defined by allowedTH to acquire a lock object having

the same type as this lock object.

Scheduler consists of four functions: requestALock(), lock-

Acquired(), mayTrigger(), and schedule(). In Section 5.2,

we have presented that Agent (Algorithm 2) invokes the first two

functions. We firstly present them followed by presenting sched-

ule() which is the core part of DrFinder.

The function requestALock() is called by Agent on determining

whether to execute the event 𝑒 (i.e., the lock acquisition on 𝑜 by 𝑡).
It checks whether the given thread 𝑡 is a chosen thread to execute

any event (i.e., allowedTH) at line 6. (As such, a targeted HB edge

may be formed as soon as it can.) If a true value is returned, it in-

dicates that the event 𝑒 is allowed to execute (line 7); otherwise, the

thread 𝑡 is added to the set RTHs and is also removed from the set

Enabled (lines 9–10) so that Agent will not pick any event of it

for execution (line 8 in Algorithm 2). Next, the function notifies

Scheduler (that there is a thread to be scheduled, see line 30, to be

explained below). On the other hand, if it returns a false value at

line 12, it indicates that the event 𝑒 is not allowed to be executed.

The function lockAcquired() is called by Agent right after a lock

acquisition event 𝑒 is executed (lines 17–19 in Algorithm 2). It

checks whether the executed lock acquisition event e is an event

expected by Scheduler (line 16). An event 𝑒 = 𝑡, 𝑜𝑝, 𝑜 is an ex-

pected event if (1) 𝑡 is the thread defined by allowedTH (i.e., 𝑡 =

allowedTH) and (2) 𝑒 operates on a lock object defined by al-

lowedLK (i.e., 𝑡𝑦𝑝𝑒(𝑜) = 𝑡𝑦𝑝𝑒(allowedLK)) at line 16. If so, an

expected event occurs and Scheduler resets both allowedTH and

allowedLK to null (line 17). It then notifies function sched-

ule()that there is no thread marked as "allowedTH" (line 18).

We are going to explain the function schedule(). Scheduler is

started by Agent (at line 5 in Algorithm 2). If no thread is requesting

any lock object (i.e., RTHs.size() = 0) or there is no event expected

by Scheduler (i.e., allowedTH ≠ ∅) at line 30, the function

schedule() just waits for notifyScheduler() to notify it at ei-

ther line 11 or line 18.

Once schedule() is notified, the same function selects a random

thread t from the set ATHs. It then checks whether there is any

thread whose currently executing method 𝑓 and the type of the

given object 𝑜 match any may-trigger relation kept in MTR via

mayTrigger() (lines 35–39). All the threads that match this con-

dition are collected as the set CT (line 37), in which a thread 𝑡′ is

randomly selected and escorted by DrFinder to execute all its events

before 𝑡 is allowed to continue its execution (line 41). The function

then assigns the thread t' and the lock object 𝑜 to allowedTH and

allowedLK, respectively (lines 42–43). If the thread 𝑡′ is also in

the set RTHs, 𝑡′ will be removed from RTHs and added to Ena-

bled (lines 44–46). Scheduler then waits until the thread 𝑡′ being

escorted by DrFinder has acquired a lock object having the type

Algorithm 2: DrFinder.Agent
1.
2.
3.

4.
5.

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

Input: 𝑝 – a given program.
Input: MTR – may-trigger relations returned by MTCollector
Input: RD – an HB race detector (e.g., FastTrack)
Output: MTR' – a set of new may-trigger relations //feedbacks

Enabled ≔ all threads in 𝑝, MTR' ≔ ∅
fork(schedule()) //start scheduler (in Algorithm 3)

while Enabled ≠ ∅ do
│ let 𝑡 be a random thread from Enabled.
│ let 𝑒 ≔ 𝑡, 𝑜𝑝, 𝑜 be the next event of 𝑡.
│ if 𝑜𝑝 = 𝑎𝑐𝑞 then
│ │ allow ≔ DrFinder.Scheduler.requestALock(𝑡, 𝑜)
│ │ │ if allow = false then
│ │ │ continue //while loop
│ │ end if
│ end if
│ execute(𝑒)
│ RD.onEvent(𝑒) //for detection of data races
│ if 𝑜𝑝 = 𝑎𝑐𝑞 then
│ │ DrFinder.Scheduler.lockAcquired(𝑡, 𝑜)
│ end if
│ update MTR' according to Algorithm 1
end while

455

type(allowedLK) (see the function lockAcquired()) (lines

48–50). Otherwise, if CT is empty (line 40), the thread 𝑡 is allowed

to execute (lines 52–55).

The function mayTrigger() accepts two threads 𝑡 and 𝑡′ as its

parameters. This function firstly gets the lock object o being re-

quested by 𝑡 (i.e., paired with 𝑡 in RTHs) and the current executing

method 𝑓 of 𝑡′ (line 22). It then checks whether the tuple (𝑓 ,

type(o)) is a valid May-trigger relation (i.e., in the set MTR) and

returns a true-or-false result accordingly (lines 23–26).

5.4 Discussion
DrFinder is an active scheduler. It suffers from thrashing [21][41],

and may lead the execution to form deadlocks [12][41]. Similar to

existing techniques [9][11][12][21][41], when a thrashing occurs,

DrFinder randomly selects a suspended thread to execute and when

a deadlock occurs, the whole execution is restarted (see Section

6.1).

DrFinder actively schedules an execution to produce HB edges that

cannot be easily formed in normal executions to expose races. It

drives a happens-before based detector (e.g., FastTrack) to detect

races precisely and report all races. Therefore, like other HB

detectors, DrFinder is also precise.

6. EXPERIMENT
This section presents our evaluation on DrFinder and its compari-

son with the state-of-the-art HB race detector FastTrack, a random

delay scheduler ConTest, and a state-of-the-art randomized sched-

uler PCT. All these techniques are reviewed in Sections 1 and 3.

6.1 Implementation and Benchmarks
Implementation. We implemented DrFinder, FastTrack, ConTest,

and PCT in Jikes RVM [2][3]. Jikes RVM is a Java virtual ma-

chine, developed almost in Java language, and could be run on

Linux and Mac OSX systems. These tools report a race at the Java

class field level [17]. Our tool uses the shadow mechanism [18] to

track the state of an execution and adds a shadow lock to each object

instance to keep the vector clock data and type information. For

each memory location (i.e., an instance of a field of a Java class), it

allocates a shadow memory to track the reads and writes to this

memory location. For each thread, it adds a member in the

RVMThread class [2] to keep the Java thread data.

To generate memory and synchronization events in runtime, our

tool instruments each class when it is loaded, except those Jikes

RVM classes and Java standard library classes. It uses a static es-

cape analysis [5] to identify accesses to provably thread local

memory location. It also fully tracks happens-before relations on

other program semantics (e.g., accesses to volatile fields [17]).

Our implementation periodically monitors the states of all threads

by tracking various synchronizations events and scheduling of

DrFinder as well as other functions calls (e.g., sleep()). Such

monitoring is helpful to identify deadlock ocucrrences and

thrashing occurrences.

Benchmarks. We used the Dapaco benchmark suite [6] to evaluate

DrFinder. We selected two multithreaded programs from Dacapo

2006-10-M1 (xalan06 and eclipse06) and five multithreaded pro-

grams from Dacapo 2009 (xlan09, pmd09, sunflow09, luindex09,

and lusearch09). Dacapo 2009 includes other multithreaded

benchmarks; however, they cannot be run on the latest Jikes RVM

3.1.3 even without our tool. In total, we selected 7 multithreaded

benchmarks, including a large-scale real-word program Eclipse

(eclipse06).

Table 2 shows the descriptive statistics of the benchmarks. The first

two columns show the benchmark name and size. The third column

Table 2. Descriptive and execution statistics of benchmarks.

Benchmark
Jar Files

 Size (KB)

of locks /

threads

of methods

(with sync)

of HB

 edges

xalan06 81.23 19,565 / 9 1,731 (1.7%) 2,607,853
eclipse06 41,821.53 118,803 / 26 7,581 (4.9%) 22,879,127
xalan09 4,826.81 10,522 / 5 1,869 (1.4%) 3,864,084
pmd09 2,996.30 230 / 5 2,289 (0.2%) 2,288
sunflow09 1,016.91 22 / 9 698 (1.6%) 778
luindex09 878.37 2,612 / 2 804 (14.8%) 217,343
lusearch09 883.02 94,668 / 5 484 (4.6%) 1,371,744

Total 52,504.16 246,422 / 61 15,456 (3.8%) 30,943,217

Algorithm 3: DrFinder.Scheduler
1.
2.
3.
4.

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

15.
16.
17.
18.
19.
20.

21.
22.
23.
24.
25.
26.
27.

28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.

ATHs ≔ all threads in p
RTHs ≔ //a set of pairs of threads and locks
allowedTH ≔ ∅ //a thread that is expected to acquire a lock
allowedLK ≔ ∅ //the lock expected to be acquired

Function requestALock(𝑡, 𝑜)
│ if allowedTH = 𝑡 then
│ │ return true
│ else
│ │ RTHs.add(𝑡, 𝑜)
│ │ Enabled ≔ Enabled \ {𝑡}
│ │ notifyScheduler()
│ │ return false
│ end if
end Function

Function lockAcquired(𝑡, 𝑜)
│ if allowedTH = 𝑡 and type(allowedLK) = type(𝑜) then
│ │ allowedTH ≔ ∅, allowedLK ≔ ∅
│ │ notifyScheduler()
│ end if
end Function

Function mayTrigger(𝑡, 𝑡′)
│ let o ≔ RTHs.get(𝑡), f ≔ getCurrentMethod(𝑡′)
│ if ∃ mt(𝑓, 𝑐) ∈ MTR such that 𝑐 = type(𝑜) then
│ │ return true
│ end if
│ return false
end Function

Function schedule()
│ while Agent does not exit do
│ │ while RTHs.size() = 0 or allowedTH ≠ ∅ do
│ │ │ wait()
│ │ end while
│ │ 𝑡 ≔ a random thread from ATHs
│ │ CandidateThread CT ≔ ∅
│ │ for each thread 𝑡′ ∈ ATHs do
│ │ │ if 𝑡 ≠ 𝑡′ and mayTrigger(𝑡, 𝑡′) then
│ │ │ │ CT ≔ CT ∪ {𝑡′}
│ │ │ end if
│ │ end for
│ │ if CT ≠ ∅ then
│ │ │ 𝑡′ ≔ a random thread from CT
│ │ │ allowedTH ≔ 𝑡′
│ │ │ allowedLK ≔ RTHs.get(𝑡′)
│ │ │ if 𝑡′ RTHs then
│ │ │ │ Enabled ≔ Enabled ∪ {𝑡′}
│ │ │ │ RTHs.remove(𝑡′)
│ │ │ end if
│ │ │ while allowedTH do
│ │ │ │ wait()
│ │ │ end while
│ │ end if
│ │ Enabled ≔ Enabled ∪ {𝑡}
│ │ RTHs.remove(𝑡′)
│ │ allowedTH ≔ 𝑡 //let t to acquire the lock RTHs.get(t)
│ │ allowedLK ≔ RTHs.get(𝑡)
│ end while
end Function

456

shows the numbers of locks and threads in the benchmarks. The last

two columns show the numbers of methods (all and those contain-

ing lock acquisitions) and the mean number of HB edges in each

benchmark over 10 runs. All dynamic data are collected under na-

tive scheduling.

6.2 Experimental Setup
Our experiment was performed on an Apple Mac Pro with 2.6GHz

Intel Core i5 and 8GB memory running OS X 10.9.2. We compiled

Jikes RVM with GNU Class-path 0.98 [1]. We configured

FastTrack with the native (OS) scheduler, with ConTest, with PCT,

and with DrFinder, which are referred to as FT, CT, PCT, and DR,

respectively. We followed the previous experiments [43] and ran

each technique on each subject for 10 times.

6.3 Experimental Results
Table 3 summaries the experimental results. The first column

shows the benchmark name. The second major column shows the

number of distinct data races reported by each technique in 10 runs.

The third major column shows the number of new data races

detected by DR but not detected by FT, CT, and PCT. The fourth

major column shows that the total number of distinct races detected

by all four techniques. The fifth major column shows the number

of races not detected by each technique compared to the total

number of distinct races (i.e., the data in the fourth major column).

The sixth major column shows the mean time in seconds for each

technique to run each benchmark. It also shows the time of native

run (i.e., without any testing tool) and the time needed by both

phases of DR (as P-I and P-II, respectively). The overhead of

each technique is also calculated. The last column shows the

thrashing rate ("Thrash. rate") of DR. The last row shows

either the total ("Sum") or the mean value ("Avg") of each column.

6.3.1 Summary of Results
Effectiveness. From Table 3 (the second and third major columns),

DR detects more races on 5 out of 7 benchmarks by 11.1% to

240.0%. On the remaining two benchmarks, all four techniques de-

tect the same set of data races. In total, DR detects 89 more new

races from all benchmarks. We find that FT, CT, and PCT detect

almost the same set of data races (where the difference is at most

10). This is consistent with an intuition that the random sleep strat-

egy used by CT is not quite effective and randomized scheduling

strategy used by PCT is also not quite effective without a larger

number of runs.

Performance. From the column on time, we observe that FT has

the best performance, which is expected. The overhead of CT on

top of FT ranges from 0.11x to 5.28x except on eclipse06. For

PCT, it incurs about 2.2x higher overhead than DR on average.1

1 Note that, there is a parallel version of PCT known as PPCT [33] that has the same effectiveness but runs faster than PCT. Hence, the time overhead of PCT in Table 3 is for

reference only and we do not discuss the overhead of PCT in the next paragraph. We believe our DrFinder could also be implemented in parallel and we leave it as a future work.

The overhead of the Phase I of DR is only 0.39x. The overhead of

DR (Phase II) on top of FT ranges from 1.1x to 4.0x. On average,

DR only incurs 2.65x on top of FT.

On eclipse06, CT incurs a heavy overhead, which is 19.5x on top

of FT; but, DR only incurs 1.1x on top of FT. Although eclipse06

included 26 threads, in most of the execution time, there are only

two active threads. We find that DR is able to suspend these two

threads according to their locking orders most of the time. But, CT

has to delay each lock acquisition by a random period. As a result,

the total time overhead of CT is much heavier than that of DR on

this benchmark.

Thrashing Rate. From the last column of Table 3, DR is able to

make successful thread suspension decisions in nearly 60% of all

cases. In the remaining cases (40.73%), thrashing occurred. We

have inspected these thrashing occurrences and found that about

half of them were caused due to the type of the unique and global

instance of Class Loader class used by the Dacapo test harness to

load each class instead of the program under test. (This harness

strictly speaking is not a part of each benchmark.) In our

experiment, we have not seen any deadlock occurrence.

6.3.2 Comparison on Not Detected Races
Table 3 also shows the total number of distinct races detected by all

four techniques in the fourth major column. It also shows the num-

ber of races that are not detected by each technique but detected by

other three techniques in the fifth major column. Overall speaking,

among all 474 detected races detected by all four techniques on all

the benchmarks, DR only misses 26 races; however, FT, CT, and

PCT misses 96, 102, and 89 races, respectively.

From above analyses, we find that DR is effective in exposing hid-

den races; but it may be unable to expose some races that can be

detected by HB detectors with randomized or native scheduling.

We argue that this is not a major issue. It is because, in practice,

one may run a program with random or native scheduling to detect

these races (e.g., configured in Phase I of DR) followed by detect-

ing the hidden races in Phase II of DR. We have checked the races

not detected by DR and found that almost all 26 races have been

detected by FT in each of 10 runs, and the remaining ones can be

detected by FT in at least one run.

6.3.3 Comparison on Races Detected in 10 Runs
Figure 6 shows the cumulative number of races detected in the ex-

periment by the four techniques on each benchmark except on

luindex09 (on which, all three techniques detected exactly one

race in each run). The x-axis shows these 10 runs and y-axis shows

the cumulative number of races detected.

Table 3. Summary of results on 10 runs for FastTrack (FT), ConTest (CT), PCT, and DrFinder (DR) (depth d = 12).

Bench-

mark

Total races by New races

by DR (%)

Total

races

Missed races Time in seconds (slowdown factor) Thrash.

 rate FT CT PCT DR FT CT PCT DR Native FT CT PCT DR (P-I) DR (P-II)

xalan06 16 16 18 26 13 (+72.2%) 31 15 15 13 5 5.62 30.7 (5.5) 60.3 (10.7) 63.4 (11.3) 11.8 (2.1) 52.3 (9.3) 45.1%

eclipse06 313 308 318 351 54 (+17.0%) 372 59 64 54 21 45.63 119 (2.6) 1,007.9 (22.1) 178.2 (3.9) 56.4 (1.2) 167.2 (3.7) 79.2%

xalan09 12 12 12 20 8 (+66.7%) 20 8 8 8 0 5.43 24.6 (4.5) 35.4 (6.5) 61.8 (11.4) 9.2 (1.7) 41.0 (7.6) 10.9%
pmd09 18 17 18 20 2 (+11.1%) 20 2 3 2 0 3.58 6.9 (1.9) 7.3 (2.0) 15.6 (4.4) 4 (1.1) 12.7 (3.5) 35.1%

sunflow09 5 5 5 17 12 (+240.0%) 17 12 12 12 0 10.36 63.0 (6.1) 84.1 (8.1) 136.7 (13.2) 12.7 (1.2) 99.7 (9.6) 68.7%

luindex09 1 1 1 1 0 (+0.0%) 1 0 0 0 0 2.41 8.4 (3.5) 9.8 (4.1) 21.7 (9.0) 3.2 (1.3) 11.9 (4.9) 33.3%
lusearch09 13 13 13 13 0 (+0.0%) 13 0 0 0 0 6.18 17.2 (2.8) 21.1 (3.4) 49.1 (7.9) 6.8 (1.1) 42.1 (6.8) 12.8%

Sum: 378 372 385 448 89 (+23.1%) 474 96 102 89 26 Avg: 3.84 8.14 8.7 1.39 6.49 40.73%

457

Figure 6 shows that FT, CT, and PCT almost always detect the

same numbers of races except on eclipse06. This indicates that

they have similar race detection ability among all 10 runs (where

the detected races are almost the same ones). Whereas, DR has an

increasing trend on the number of detected races. Apparently, DR

may detect fewer races in some runs (e.g., the first five runs on xa-

lan09). But, we have shown in Table 3 that DR actually exposes

more races.

To measure the ability of DR on the detection of new races with

increasing number of runs, we further analyze the cumulative

number of 89 new data races detected by DR in the first "i" (where

i is from 1 to 10) runs. We normalize this cumulative number by

the total number of new races detected by DR on the corresponding

benchmark. The result is shown in Figure 7. Note that we do not

show the result on luindex09 and lusearch09 in Figure 7 as no

new races is detected on them.

Figure 7 shows that on each benchmark except eclipse06, all the

new races detected by DR were detected in the first 7 runs. On

eclipse06, almost on each run, more new races were detected by

DR; and moreover, more than 71.43% new races were detected in

the first 4 runs. Therefore, we tend to believe that DR is able to

effectively detect hidden races, even on large-scale multithreaded

programs (e.g., eclipse06), which cannot be detected by FT, CT,

and PCT in 10 runs (or even up to 100 runs, see Section 6.3.5).

6.3.4 DrFinder with Different Depths
In our main experiment, we have set the depth to 12. To evaluate

the ability of DR on its detection of hidden races with different

depths, we repeated the main experiment for DR but set the depth

from 2 to 20 with step 2 in turn, where each configuration was also

conducted for 10 runs. The results are summarized in Table 4. In

each data cell, the format is "x (y)" where the "x" is the total number

of races detected by DR with corresponding depth and the "y" is the

number of new races that cannot be detected by FT, CT, and PCT

in their10 runs. On each benchmark, if DR is able to detect most

new races among all its depths, we mark the corresponding cell

with gray color. Similarly, we do not mark cells corresponding to

luindex09 and lusearch09 (as the data in the either entire row

shows that there is no new race detected).

From Table 4, we observe that with different depths, DR is gener-

ally able to detect more races than that detected by FT, CT, and

PCT. DR also detects new races in almost all these depths, where

the exception is on sunflow09.

Another observation from Table 4 is that when depth values are

within 4 and 12, DR is likely to detect a significant amount of new

races on top of FT, CT, and PCT. And these depths values also

lead to a larger amounts of total races. We also highlight these cells

in gray color in the last row of Table 4.

In future, we will study both how the depth values affect the ability

of DR and non-parametric strategies to determine the depth.

6.3.5 Further Evaluation on New Races
In the 10 runs by all techniques, DR detects 89 new races. We

further repeatedly ran other three techniques more times until either

Figure 6. Number of distinct races detected in 10 runs by FT, CT,

PCT, and DR.

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

#
 o

f
d

at
a

ra
ce

s
FT CT PCT DR

0
50

100
150
200
250
300
350
400

1 2 3 4 5 6 7 8 9 10

#
 o

f
d

at
a

ra
ce

s

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

#
 o

f
d

at
a

ra
ce

s

14

16

18

20

1 2 3 4 5 6 7 8 9 10

#
 o

f
d

at
a

ra
ce

s

4

8

12

16

20

1 2 3 4 5 6 7 8 9 10

#
 o

f
d

at
a

ra
ce

s

10

11

12

13

14

1 2 3 4 5 6 7 8 9 10

#
 o

f
d

at
a

ra
ce

s

(a) xalan06 (b) eclipse06

(c) xalan09 (d) pmd09

(e) sunflow09 (f) lusearch09

Figure 7. Cumulative number of new races detected by DR in each

run but missed in all the 10 runs by FT, CT, and PCT.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

P
er

ce
n
ta

g
e

o
f

ac
cu

m
u
la

te
d

n
u
m

b
er

 o
f

n
ew

 d
at

a
ra

ce
s

10 runs

xalan06 eclipse06 xalan09 pmd09 sunflow09

Table 4. The total number of data races detected by DR with depths from 2 to 20 (with Step 2) in 10 runs.

Bench-

mark

DR with a different Depth (total number of races and number of new races)

2 4 6 8 10 12 14 16 18 20

xalan06 28 (16) 31 (15) 30 (15) 27 (15) 27 (15) 26 (13) 31 (15) 26 (15) 27 (15) 27 (15)
eclipse06 306 (13) 337 (43) 336 (42) 343 (46) 336 (41) 351 (54) 316 (21) 301 (18) 284 (15) 312 (15)
xalan09 18 (7) 18 (7) 18 (7) 18 (6) 18 (7) 20 (8) 17 (6) 12 (6) 11 (5) 13 (1)
pmd09 20 (2) 18 (1) 19 (2) 20 (2) 20 (2) 20 (2) 20 (2) 20 (2) 20 (2) 20 (2)
sunflow09 5 (0) 5 (0) 6 (0) 5 (0) 14 (9) 17 (12) 6 (1) 6 (0) 5 (0) 5 (0)

luindex09 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)
lusearch09 13 (0) 13 (0) 13 (0) 13 (0) 12 (0) 13 (0) 13 (0) 13 (0) 13 (0) 13 (0)

Sum: 391 (38) 423 (66) 423 (66) 427 (69) 428 (74) 448 (89) 404 (45) 379 (41) 361 (37) 391 (33)

458

(1) they detect the same number of distinct races as that detected by

DR or (2) the number of runs is up to 100 on each benchmark except

on luindex09 and lusearch09. On these two benchmarks, other

three techniques already detect the same set of races as DR in 10

runs.

We found that on eclipse06, xalan06, xalan09, and pmd09, other

three techniques could not detect as many races even exhausting all

100 runs as what DR detects in the 10 runs. On sunflow09, all three

techniques need more than 25 runs to catch up with DR.

Because eclipse06 is the largest one in our benchmarks, we fur-

ther analyzed the ability of FT, CT, and PCT on detecting the 56

new races from eclipse06 that are only detected by DR but missed

by all the other three in their 10 runs in the main experiment. The

result is shown in Figure 8, where we also list the 56 races for com-

parison. It shows that FT, CT, and PCT were able to detect only

35, 13, and 19 races out of the 56 races in all 100 runs. (Note that,

in a run, FT detects 17 races. Excluding these 17 races, it detects

less races than that by PCT in all 100 runs.) This experiment, once

more, illustrates that DR is effective on detecting hidden races.

7. RELATED WORK
Many techniques on data race detection have been proposed. They

mainly fall into two groups: static techniques [22] [32][36] [46] and

dynamic techniques [17][35][40][43][49]. Static techniques like

RELAY [46] and LockSmith [36] rely on statically but imprecisely

identifying memory-accessing statements that may concurrently

visit same memory locations without the protection of the same

locksets. Chord [32] reduces the number of false warnings by using

several stages of refinement on the entire data race warning set. But,

it loses the soundness guarantee of reporting all data races in a pro-

gram.

Many dynamic detectors use the locking discipline [40][42] to pre-

dict races. However, this discipline is not necessarily to be obeyed

even for data-race-free programs so that many false positives may

be generated using such a strategy. HB based dynamic ones [17]

[35] can precisely report data races. However, they are sensitive to

particular thread interleaving (even with improvement [45][47])

which provides less coverage than those using the lockset strategy.

RaceMob [23] statically detects data race warnings and distributes

them to a large number of user processes to validate real races.

However RaceMob only works on limited scenarios where a distrib-

uted user site computation is available. Active testing techniques

[41][37] need runs for confirmation after an imprecise race detec-

tion phase. In such a run, the schedules are guided by the set of data

race warnings to trigger real data races. This kind of approach is

able to confirm real races but cannot eliminate false positives.

DrFinder takes another approach by using a precise data race detec-

tor, i.e., FastTrack [17], in the first place. With the inherent limita-

tion of the sensitivity on thread interleaving, an effective thread

scheduling technique such as DrFinder is a desirable complement

with HB detectors (if used in our Phase I) to provide precise data

race reports with high coverage.

Thread Scheduling techniques are more promising to detect races

than pure stress testing. Systematic scheduling techniques such as

model checking [48][30], are in theory able to exhaustively execute

every schedule. However, due to the state explosion problem, enu-

merating each schedule is not practical for real-world programs.

Chess [30] sets a heuristic bound on the number of pre-emptions to

explore the schedules. Also, although systematic approaches avoid

executing previously explored schedules and are more scalable than

pure model checking techniques [14], they usually incur large over-

heads and fail to scale up to handle long running programs. Alt-

hough improvement for Chess exists [4], finding the positions for

such bounded exhaustive exploration from a large trace to effec-

tively expose hidden races is challenging [24].

Another type of scheduling technique is based on some coverage

criteria of concurrent programs [7][19]. For example, Maple [50]

relies on patterns (i.e., iRoots [50]) to mine certain coverage to ex-

pose concurrency bugs. However, Maple is insensitive to detect

races requiring reversing more than one HB edge. Existing experi-

ments (e.g., [10]) have shown that on a large benchmark like Chro-

mium, there may be 16 million or more HB edges in a trace. It is

challenging to select an effective subset of all such HB edges to

confirm given patterns as Maple is designed to confirm one pattern

per confirmation run. Besides, the relation between the coverage of

a specific metric and targeted concurrency bugs cannot be verified

in theory. A previous empirical study [26] has shown that different

criteria have different effectiveness on different testing techniques.

This increases the difficulty of choosing a suitable criterion.

DrFinder is specially designed to detect hidden races based on our

may-trigger relation. Unlike above reviewed systematic scheduling

techniques or coverage based techniques that have to restrict their

scheduling bounds [30][50], DrFinder is able to scale up to large-

scale programs (i.e., Eclipse in our benchmark) and does not require

any bug patterns.

8. CONCLUSION
This paper presents a dynamic technique DrFinder to detect hidden

races in multithreaded Java programs. It tries to reverse possible

HB edges based on a type based May-trigger Relation. The experi-

ment shows that DrFinder is promising in detecting hidden races

and detected 89 news races that were missed by existing techniques

FastTrack, ConTest, and PCT. Many new races detected by

DrFinder in 10 runs cannot be detected by other techniques even in

100 runs. DrFinder is also efficient as it incurs less overhead than

other active scheduling techniques CT and PCT. In future, we will

extend our basic model of DrFinder proposed in this paper to fur-

ther validate its ability on detection of hidden data races.

9. ACKNOWLEDGEMENTS
We thank anonymous reviewers for their invaluable comments and

suggestions on improving this work. We also thank Dr. W.K. Chan

and Mr. Chunbai Yang at City University of Hong Kong for their

help on the preliminary version of this work. This work is partially

supported by the National Natural Science Foundation of China

(NSFC) under grant No. 91418206.

Figure 8. Cumulative effectiveness of FT, CT, and PCT in 100 runs on

the 56 races that can only be detected by DR in 10 runs.

56

35

13
19

0

8

16

24

32

40

48

56

0 10 20 30 40 50 60 70 80 90 100

5
6

 r
ac

es
 o

n
 e

cl
ip

se
0

6
DR FT CT PCT

459

10. REFERENCES
[1] GNU Classpath, version 0.98, https://www.gnu.org/soft-

ware/classpath/.

[2] Jikes RVM 3.1.3. http://jikesrvm.org/.

[3] B. Alpern, C.R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T.

Ngo, J.J. Barton, S.F. Hummel, J.C. Sheperd, and M. Mer-

gen. Implementing jalapeño in Java. In Proc. OOPSLA, 314–

324, 1999.

[4] S. Bindal, S. Bansal, A. Lal. Variable and thread bounding

for systematic testing of multithreaded programs. In Proc. IS-

STA, 145–155, 2013.

[5] M.D. Bond, K. E. Coons and K. S. Mckinley. PACER: Pro-

portional detection of data races. In Proc. PLDI, 255–268,

2010.

[6] S.M. Blackburn, R. Garner, C. Hoffmann, A.M. Khang, K.S.

McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,

S.Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. Eliot

B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D.

von Dincklage, and B. Wiedermann. The Dacapo bench-

marks: Java benchmarking development and analysis. In

Proc. OOPSLA, 169–190, 2006.

[7] A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applications

of synchronization coverage. In Proc. PPoPP, 206–212,

2005.

[8] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte.

A randomized scheduler with probabilistic guarantees of

finding bugs. In Proc. ASPLOS, 167–178, 2010.

[9] Y. Cai, and W.K. Chan. MagicFuzzer: scalable deadlock de-

tection for large-scale applications. In Proc. ICSE, 606–616,

2012.

[10] Y. Cai and W.K. Chan. Magiclock: scalable detection of po-

tential deadlocks in large-scale multithreaded programs.

IEEE Transactions on Software Engineering (TSE), 40(3),

266–281, 2014.

[11] Y. Cai, C.J. Jia, S.R. Wu, K. Zhai, and W.K. Chan. ASN: a

dynamic barrier-based approach to confirmation of dead-

locks from warnings for large-scale multithreaded programs.

IEEE Transactions on Parallel and Distributed Systems

(TPDS), 26(1), 13–25, 2015.

[12] Y. Cai, S.R. Wu, and W.K. Chan. ConLock: A constraint-

based approach to dynamic checking on deadlocks in multi-

threaded programs. In Proc. ICSE, 491–502, 2014.

[13] Y. Cai, K. Zhai, S.R. Wu, and W.K. Chan. TeamWork: syn-

chronizing threads globally to detect real deadlocks for mul-

tithreaded programs. In Proc. PPoPP, 311 – 312, 2013.

[14] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri-

fication of finite-state concurrent systems using temporal

logic specifications. ACM Transactions on Programming

Languages and Systems (TOPLAS), 8(2), 244–263, 1986.

[15] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Mul-

tithreaded java program test generation. In IBM Systems

Journal, 111–125, 2002.

[16] M. Eslamimehr and J. Palsberg. Race directed scheduling of

concurrent programs. In Proc. PPoPP, 301–314, 2014.

[17] C. Flanagan and S. N. Freund. FastTrack: efficient and pre-

cise dynamic race detection. In Proc. PLDI, 121–133, 2009.

[18] C. Flanagan and S. N. Freund. The RoadRunner Dynamic

analysis framework for concurrent programs. In Proc.

PASTE, 1–8, 2010.

[19] S. Hong, J. Ahn, S. Park, M. Kim, and M.J. Harrold. Testing

concurrent programs to achieve high synchronization cover-

age. In Proc. ISSTA, 210–220, 2012.

[20] J. Huang, P.O. Meredith, and G. Rosu. Maximal sound pre-

dictive race detection with control flow abstraction. In Proc.

PLDI, 337–348, 2014.

[21] P. Joshi, C.S. Park, K. Sen, amd M. Naik. A randomized dy-

namic program analysis technique for detecting real dead-

locks. In Proc. PLDI, 110–120, 2009.

[22] V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta.

Fast and accurate static data-race detection for concurrent

programs. In Proc. CAV, 226–239, 2007.

[23] B. Kasikci, C. Zamfir, and G. Candea. RaceMob:

Crowdsourced data race detection. In Proc. SOSP, 406–422,

2013.

[24] M. Kusano and C. Wang. Assertion guided abstraction: a co-

operative optimization for dynamic partial order reduction. In

Proc. ASE, 2014. To Appear.

[25] L. Lamport. Time, clocks, and the ordering of events. Com-

munications of the ACM 21(7):558–565, 1978.

[26] Z. Letko, T. Vojnar, and B. Kˇrena. Coverage metrics for sat-

uration-based and search-based testing of concurrent soft-

ware. In Proc. RV, 177–192, 2011.

[27] N.G. Leveson and C. S. Turner. An investigation of the

Therac-25 accidents. Computer, 26(7), 18–41, 1993.

[28] S. Lu, S. Park, E. Seo, and Y.Y. Zhou, Learning from mis-

takes: A comprehensive study on real world concurrency bug

characteristics. In Proc. ASPLOS, 329–339, 2008.

[29] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace:

effective sampling for lightweight data-race detection. In

Proc. PLDI, 134–143, 2009.

[30] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,

and I. Neamtiu. Finding and reproducing heisenbugs in con-

current programs. In Proc. OSDI, 267–280 2008.

[31] W.N. Sumner and X. Zhang. Memory indexing: canonicaliz-

ing addresses across executions. In Proc. FSE, 217–226,

2010.

[32] M. Naik, A. Aiken, and J. Whaley. Effective static race de-

tection for Java. In Proc. PLDI, 308–319, 2006.

[33] S. Nagarakatte, S. Burckhardt, M. M.K. Martin, and M.

Musuvathi. Multicore acceleration of priority-based sched-

ulers for concurrency bug detection. In Proc. PLDI, 2012,

543–554, 2012.

[34] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B.

Calder. Automatically classifying benign and harmful data

races using replay analysis. In Proc. PLDI, 22–31, 2007.

[35] E. Pozniansky and A. Schuster. Efficient on-the-fly data race

detection in multithreaded C++ programs. In Proc. PPoPP,

179–190, 2003.

[36] P. Pratikakis, J.S. Foster, and M. Hicks. LOCKSMITH: con-

text-sensitive correlation analysis for race detection. In Proc.

PLDI, 320–331, 2006.

[37] C.S. Park, K. Sen, P. Hargrove, and C. Iancu. Efficient data

race detection for distributed memory parallel programs. In

Proc. SC, 2011.

[38] K. Poulsen. Software bug contributed to blackout.

http://www.securityfocus.com/news/8016, Feb. 2004

460

[39] N. Rungta, E.G. Mercer, W. Visser. Efficient testing of con-

current programs with abstraction-guided symbolic execu-

tion. In Proc. SPIN, 174–191, 2009.

[40] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro and T. An-

derson. Eraser: a dynamic data race detector for multi-

threaded programs. ACM TOCS, 15(4), 391–411, 1997.

[41] K. Sen. Race Directed Random Testing of Concurrent Pro-

grams. In Proc. PLDI, 11–21, 2008.

[42] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer: data

race detection in practice. In Proc. WBIA, 62–71, 2009.

[43] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flana-

gan. Sound predictive race detection in polynomial time. In

Proc. POPL, 387–400, 2012.

[44] F. Sorrentino, A. Farzan, and P. Madhusudan. PENELOPE:

weaving threads to expose atomicity violations. In Proc. FSE,

37–46, 2010.

[45] K. Vineet and C. Wang. Universal causality graphs: a precise

happens-before model for detecting bugs in concurrent pro-

grams. In Proc. CAV, 434–449, 2010.

[46] J.W. Voung, R. Jhala, and S. Lerner. RELAY: static race de-

tection on millions of lines of code. In Proc. FSE, 205–214,

2007.

[47] C. Wang, K. Hoang. Precisely Deciding Control State Reach-

ability in Concurrent Traces with Limited Observability. In

Proc. VMCAI, 376–394, 2014.

[48] C. Wang, M. Said, and A. Gupta. Coverage guided system-

atic concurrency testing. In Proc. ICSE, 221–230, 2011.

[49] X.W. Xie and J.L. Xue. Acculock: Accurate and Efficient de-

tection of data races. In Proc. CGO, 201–212, 2011.

[50] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maple: a

coverage-driven testing tool for multithreaded programs. In

Proc. OOPSLA, 485–502, 2012.

[51] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: efficient de-

tection of data race conditions via adaptive tracking. In Proc.

SOSP, 221–234, 2005.

[52] K. Zhai, B.N. Xu, W.K. Chan, and T.H. Tse. CARISMA: a

context-sensitive approach to race-condition sample-instance

selection for multithreaded applications. In Proc. ISSTA,

221–231, 2012.

[53] H. Zhu. A formal analysis of the subsume relation between

software test adequacy criteria. IEEE Transactions on Soft-

ware Engineering (TSE), 22(4), 248–255, 1996.

461

