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ABSTRACT 

Happens-before relation is widely used to detect data races dynam-

ically. However, it could easily hide many data races as it is inter-

leaving sensitive. Existing techniques based on randomized sched-

uling are ineffective on detecting these hidden races. In this paper, 

we propose DrFinder, an effective and precise dynamic technique 

to detect hidden races. Given an execution, DrFinder firstly ana-

lyzes the lock acquisitions in it and collects a set of "may-trigger" 

relations. Each may-trigger relation consists of a method and a type 

of a Java object. It indicates that, during execution, the method may 

directly or indirectly acquire a lock of the type. In the subsequent 

executions of the same program, DrFinder actively schedules the 

execution according to the set of collected may-trigger relations. It 

aims to reverse the set of happens-before relation that may exist in 

the previous executions so as to expose those hidden races. To ef-

fectively detect hidden races in each execution, DrFinder also col-

lects a new set of may-trigger relation during its scheduling, which 

is used in its next scheduling. Our experiment on a suite of real-

world Java multithreaded programs shows that DrFinder is effec-

tive to detect 89 new data races in 10 runs. Many of these races 

could not be detected by existing techniques (i.e., FastTrack, Con-

Test, and PCT) even in 100 runs.  

Categories and Subject Descriptors 

D.2.4 [Software Engineering]: Program Verification; D.2.5 

[Software Engineering]: Testing and Debugging, testing tools; 

D.4.1 [Operating Systems]: Processing Management –

synchronizations, threads. 

General Terms 
Reliability, verification. 

Keywords  

Data race, thread scheduling, hidden race, synchronization order 

1. INTRODUCTION 
A data race (or race for short) [17] occurs when two or more 

threads access a same memory location concurrently, and at least 

one of these accesses is a write [17]. Data race occurrences often 

indicate other concurrency bugs in the same program [34]. Many 

dynamic data race detectors are based on the locking discipline [40] 

or the happens-before relations (HBR for short) [25]. The locking 

discipline requires every two concurrent accesses (one of them is a 

write) to a shared memory location to be protected by a common 

set of locks. But, such lockset-based detectors are imprecise [18]. 

HBR-based detectors (or HB detectors for short) precisely [17] re-

port a data race only if they observe the two accesses involving in 

a race not ordered by any HBR in an execution/trace. (In this paper, 

we use the two terms execution and trace interchangeably.) 

Some races in a program can be easily exposed in many traces and 

HB detectors [17][35][37] can effectively detect them. There are 

other races that are difficult to be detected due to reasons like con-

ditional variables and ad-hoc synchronizations. They can be de-

tected by two most recent techniques RVPredict [20] through data 

flow analysis offline and Racageddon [16] through generating spe-

cific test inputs for each predicted race.  

HB detectors are interleaving-sensitive [49]. They may miss to de-

tect a race if the two accesses of this race are ordered by HBRs in 

an execution; but the same race can be detected in another execu-

tion with a different thread interleaving such that no HBR orders 

the two accesses. That is, such a race is hidden by HB edges in some 

executions [43]. Some of these races, even on repeated executions, 

can still be hard to detect [43]. For ease of reference, we refer to 

such a race as a hidden race (also known as a "hard" race [43]). 

This paper focuses on the detection of hidden races. 

Existing online techniques (e.g., [8][15][41][50]) are ineffective to 

detect hidden races. Randomized scheduling techniques (e.g., PCT 

[8] and ConTest [15]) only randomly identify changed points [8] or 

insert random time delays [15] to modify thread priorities. They are 

ineffective in exposing races whose accesses are separated by con-

secutive sequences of locking orders [25] among threads. Active 

testing (e.g., [41][50], Racageddon and RVPredict) techniques are 

built on top of random (or native) scheduling and/or concurrency 

bug patterns to produce a predictive trace for potential race analy-

sis. It fails to be successfully applied if no hidden race can be pre-

dicted in the predictive run. Besides, they need many runs to deem 

a potential race as a false positive with confidence. Coverage-

driven testing techniques [50] or using adequacy criteria [53] de-

mand either patterns of problematic memory accesses as well as 

synchronization operations or applicable adequacy criteria as in-

puts. To the best of our knowledge, there is no effective pattern or 

adequacy criterion for hidden races discovered yet.  

As such, a key challenge for dynamic race detectors is to generate 

executions that effectively expose hidden races.  

Offline techniques [20][43] to may infer hidden races. The Caus-

ally-Precedes (CP) detector [43] can interestingly predict hidden 

races in a given trace under limited scenarios. CP is however inap-

plicable if a hidden race is separated by HBR (i.e., HB edges) hav-

ing conflicting data accesses [43]. Also, analyzing large traces (e.g., 
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running Eclipse for 1 hour of code development) by CP is still im-

practical; besides, no online CP detector has been invented yet [43]. 

RVPredict [20] confirms each predicted data race via constraint 

solving. Like other predictive techniques [41], it needs to solve the 

scheduling constraints for each predicted data race, which may fail.  

Our work exploits two observations: (1) many races hidden in one 

execution can be detected by reversing the direction of one or more 

consecutive HBRs [25] in another execution, and (2) in real-world 

programs, only a small proportion of methods generates lock ac-

quisition events, and these methods usually generate events on des-

ignated (instead of arbitrary) lock objects.  

In this paper, we propose DrFinder (Data races Finder), a dynamic 

technique to detect hidden races by reversing possible HBRs. 

DrFinder is based on may-trigger relation. This relation relates a 

method to a type of lock object in Java programs. It represents that 

the method may directly or indirectly (by calling several other 

methods) trigger a lock acquisition on a lock object of that type.  

DrFinder consists of two phases. Figure 1 shows an overview of 

DrFinder. In Phase I, DrFinder analyzes each lock acquisition event 

in a given trace to relate each selected method to the type of the 

lock object of the event and takes them as a set of may-trigger re-

lations (i.e., MTR in Figure 1). In Phase II, it generates a trace for 

hidden race detection based on the collected set of may-trigger re-

lation. Specifically, if a thread generates a lock acquisition event e1 

on a lock of type c and some other thread may-trigger a lock acqui-

sition event e2 on a lock of the same type c, DrFinder postpones the 

execution of e1 until an expected event e2 occurs. As such, the lock-

ing order on these two events that they may form in the trace ana-

lyzed in Phase I is reversed. In this way, the races originally hidden 

by such HBRs are exposed in the later trace.  

DrFinder also collects a set of new may-trigger relations in each 

scheduled execution which is used in the next scheduled execution. 

This feedback mechanism makes DrFinder effective to detect new 

hidden races in each its scheduled execution.  

We have implemented DrFinder in the Jikes RVM [3], and evalu-

ated it on the Dacapo benchmarks [6]. The experimental result 

shows that DrFinder finds races that cannot be effectively detected 

by both native runs, ConTest, and PCT configured with FastTrack. 

In total, DrFinder detects 89 new data races on 5 Dacapo bench-

marks within 10 runs each. Besides, many of these new races could 

not be detected by existing techniques in 100 runs.  

In summary, the main contributions of this paper are:  

 This paper proposes a may-trigger relation and a novel hidden 

data race detector DrFinder. DrFinder predicts locking orders, 

and makes decisions on the reversals of locking orders at the 

may-trigger relation level. It profiles no memory accesses in 

Phase I, and only carries forward the may-trigger relations be-

tween phases.  

 It reports the feasibility of DrFinder by implementing it as a 

prototype tool in the Jikes RVM. It presents an experiment to 

evaluate DrFinder. In the experiment, DrFinder detects 89 new 

races and is promising in exposing hidden races. DrFinder is 

scalable to large-scale Java programs (e.g., Eclipse).  

In the rest of this paper, Section 2 reviews preliminaries followed 

by a motivating example in Section 3. Sections 4 and 5 present the 

design rationales and the details of DrFinder, respectively. Section 

6 reports the evaluation of DrFinder. In Sections 7 and 8, we discuss 

the related work and conclude this paper, respectively.  

2. PRELIMINARIES 
A multithreaded Java program 𝑝 contains a set of classes denoted 
as C. Each class 𝑐 in C consists of a set of fields and a set of meth-
ods. We denote the set of all methods of 𝑝 as M. An object 𝑜  O 
is an instance of a class 𝑐, and the type of 𝑜, denoted as type(o), is 
𝑐. Each lock is an instance of a class.  

Each thread 𝑡 in program 𝑝 executes a nested sequence of methods. 
Each method may execute a set of operations OP = { 𝑟𝑑, 𝑤𝑟, 𝑎𝑐𝑞, 
𝑟𝑒𝑙, 𝑒𝑛𝑡𝑒𝑟, 𝑟𝑒𝑡𝑢𝑟𝑛 }, where 𝑟𝑑 and 𝑤𝑟 mean read and write to a 
field of a class instance, respectively; 𝑎𝑐𝑞 and 𝑟𝑒𝑙 mean acquisi-
tion and release of a lock, respectively; and 𝑒𝑛𝑡𝑒𝑟  and 𝑟𝑒𝑡𝑢𝑟𝑛 
mean a call and a return to and from a method, respectively.  

An event 𝑒 = 𝑡, 𝑜𝑝, 𝑜 means that a thread 𝑡 performs an operation 
𝑜𝑝  OP on an object 𝑜  O  M. We denote 𝑜 in 𝑒 by 𝒐𝒃𝒋𝒆𝒄𝒕(𝑒). 
A trace 𝜎 is a sequence of events.  

The Happens-before relation (↣, HBR) [25] in a trace is defined 
by three rules: (1) if two events  and  are performed by the same 
thread, and  appeared before , then  ↣ . (2) if two events α =
𝑡𝛼 , 𝑟𝑒𝑙,𝑚 and β = 𝑡𝛽 , 𝑎𝑐𝑞,𝑚  are performed by two different 
threads, and  appeared before , then  ↣ . (3) if  ↣  and  ↣ 
, then  ↣ .  

Two memory events 𝑒1 = 𝑡1, 𝑜𝑝1, 𝑣1 and 𝑒2 = 𝑡2, 𝑜𝑝2, 𝑣2 form 
a race on 𝑣1  if (1) 𝑡1 ≠ 𝑡2 ∧ 𝑣1 = 𝑣2, (2) {𝑤𝑟} ∩ {𝑜𝑝1, 𝑜𝑝2} ≠ ∅, 
and (3) neither 𝑒1 ↣ 𝑒2 nor 𝑒2 ↣ 𝑒1.  

The relation 𝑒1 ↣ 𝑒2 is called an HB edge if 𝑒1 = 𝑡1, 𝑟𝑒𝑙, 𝑙, 𝑒2 =
𝑡2, 𝑎𝑐𝑞, 𝑙, and 𝑡1 ≠ 𝑡2 [43]. For instance, the two arrows in Figure 

2 depict two HB edges 𝑒1 ↣ 𝑒9 and 𝑒3 ↣ 𝑒6, where "sync(o){…}" 

denotes a pair of events " 𝑎𝑐𝑞(𝑜) … 𝑟𝑒𝑙(𝑜) "; and we will use this 

short form in Section 3. Given two traces 𝜎 and 𝜎′ and a pair of 

events 𝑒1  and 𝑒2, if 𝑒1  and 𝑒2 form a race in 𝜎 but does not form 

any race in 𝜎′, then the race is called a Hidden Race in 𝜎′.  

In a Java program, each thread starts its execution from its method 

run(). 

3. MOTIVATING EXAMPLE 
Figure 2 shows our motivating example, where, each thread (i.e., 

𝑡1, 𝑡2, or 𝑡3) executes a sequence of events from top to bottom. 

These events are memory accesses (i.e., 𝑚1 to 𝑚4) to the locations 

𝑥 and 𝑦, and lock acquisition/release events (i.e., 𝑒1 to 𝑒9) on seven 

lock objects 𝑘 , 𝑛, and 𝑜1  to 𝑜1 . The two HB edges 𝑒1 ↣ 𝑒9  and 

𝑒3 ↣ 𝑒6 on the two lock objects 𝑛 and 𝑘, respectively, are denoted 

as arrows. We denote the trace as 𝜎1 = … , 𝑒1… , 𝑒9… , 
𝑒3… , 𝑒6… . The two pairs of accesses to locations x and y (i.e., 𝑚1 

May-Trigger

Collector

Data Races

HB Race Detector

DrFinder

Scheduler

acquire, release

enter, return

acquire, release

enter, return

Phase I

MTR: {mt(f, c)}
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A depth value d
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by DrFinder.
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Figure 1. An overview of DrFinder. 
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and 𝑚4, and 𝑚2 and 𝑚3) are ordered by the HB edges 𝑒1 ↣ 𝑒9 and 

𝑒3 ↣ 𝑒6, respectively. Hence, no HB detector can detect any race 

in the trace 𝜎1.  

Next, we reverse the direction of each HB edge shown in Figure 2 

to sketch Figure 3, which represents the trace 𝜎2 = … , 𝑒9… , 
𝑒1… , 𝑒6… , 𝑒3…  of the same program. An HB detector can now 

report the two (hidden) races on x and y in 𝜎1.  

If a native schedule exhibits the trace 𝜎1 as shown in Figure 2, the 

probability to observe the trace 𝜎2 shown in Figure 3 is very low 

[43]. Hence, the two races may not be easily detected.  

Naïve strategy: A naive strategy is to suspend every lock acquisi-

tion event observed in a trace before executing the event. For trace 

𝜎2, it suspends the three threads from executing 𝑒1, 𝑒4, and 𝑒7, re-

spectively, producing an occurrence of the suspension of all the 

threads of the trace (known as thrashing [41]). Thrashing is typi-

cally resolved by randomly resuming one of the suspended threads. 

There is no thoughtful design to ensure 𝑒9 ↣ 𝑒1 in order to expose 

the hidden race on x effectively.  

Offline techniques: CP [43] can infer these two races from 𝜎1, 

providing that no conflicting memory accesses exist inside the syn-

chronization bodies of 𝑒1  and 𝑒9 . That is, if 𝑧 is a new location, 

where 𝑒1 protects a write access to 𝑧 (i.e., 𝑒1 = 𝑠𝑦𝑛𝑐(𝑘){… ,𝑤𝑟(𝑧) 
…}) and 𝑒9 protects a read access to z (i.e., 𝑒9 = 𝑠𝑦𝑛𝑐(𝑘){… , 𝑟𝑑(𝑧) 
…}). Then, the race on x cannot be detected by CP (and the case on 

y is similar). This is restrictive. In their experiment [43], on only 2 

out of 11 programs, can CP detect 2 and 7 more races than 

FastTrack [17] (an online HB detector).  

Online randomized schedulers: ConTest [15] inserts a small 

amount of random time delays on some lock acquisitions. Suppose 

that 𝑒1 is generated but not executed by 𝑡1 yet. A small time delay 

in between the generation and execution of 𝑒1  may not be long 

enough for 𝑡3 to have generated and executed 𝑒9, which depends on 

both the underlying (native or randomized) scheduler and the se-

quence of operations performed by 𝑡3 in between the current exe-

cution point and 𝑒9. The design of ConTest is insensitive to both 

factors. PCT [8] provides a theoretical guarantee to find a concur-

rency bug, but this guarantee is very low even for the illustrating 

example. Its guaranteed probability (i.e.,  ÷ (𝑛 × 𝑘𝐵𝑢𝑔𝐷𝑒𝑝𝑡ℎ−1)) 

[8], where 𝑛 is the number of threads and 𝑘 is the number of in-

structions executed) also decreases exponentially as 𝐵𝑢𝑔𝐷𝑒𝑝𝑡ℎ in-

creases. From our first-hand experience, many bugs can be detected 

using 1 as 𝐵𝑢𝑔𝐷𝑒𝑝𝑡ℎ, and yet a significant amount of races still can-

not be detected using much deeper depths with 100 runs.  

Our technique: DrFinder can effectively reverse the two HB edges 

𝑒1 ↣ 𝑒9 and 𝑒3 ↣ 𝑒6 observed in the trace 𝜎1 when generating the 

trace 𝜎2. When observing 𝑒1, it effectively foresees the execution 

of the event 𝑒9; and similarly, when observing 𝑒3 , it effectively 

foresees the execution of the event 𝑒6. DrFinder achieves this pre-

diction via a novel strategy.  

We denote the types of the lock objects 𝑘, 𝑛, 𝑜1 to 𝑜5 as 𝑐𝑘, 𝑐𝑛, 𝑐1 

to 𝑐5, respectively, and the methods that contain above events as 𝑓1 

to 𝑐8 as shown in Figure 2, where an upper method in a column 

invokes the method immediately below it (e.g., 𝑓1 invokes 𝑓2). 

Specifically, in Phase I, DrFinder constructs every may-trigger re-

lation mt(f, c) (see Section 4.3 for definition) between a method f 

and a lock object type c observed in 𝜎1. Each may-trigger relation 

mt(f, c) means that f may trigger a lock acquisition event on a lock 

object of type c. Table 1 shows the set of may-trigger relations con-

structed from 𝜎1 in Figure 2. (Note that may-trigger relation also 

considers program call stack, not a single function.)  

In Phase II, firstly, suppose that 𝑡2 is executing some events in the 

method 𝑓3 and 𝑡3 is executing some events in the method 𝑓6. When 

DrFinder observes the event 𝑒1 produced by 𝑡1, it checks the may-

trigger relations involving 𝑓3 and 𝑓6 (i.e., the two methods being 

executed by the other two threads 𝑡2  and 𝑡3 , respectively), and 

finds a may-trigger relation mt(𝑓6, 𝑐𝑘), meaning that 𝑓6 may-trigger 

a lock acquisition event on an object of type 𝑐𝑘, which is the same 

type as that of 𝑒1. DrFinder thus suspends 𝑡1 (depicted as a solid 

rectangle in Figure 3), and sets 𝑡1 to wait for an event of this object 

type 𝑐𝑘. It further escorts 𝑡3 to execute all its events until 𝑡3 exe-

cutes the event 𝑒9, which is the first encountered event on a lock 

object having the type 𝑐𝑘. DrFinder then resumes 𝑡1 to execute 𝑒1 

to form the targeted HB edge 𝑒9 ↣ 𝑒1. A further execution of the 

two threads will execute memory accesses on x, which expose the 

hidden race on x.  

Next, it is feasible for 𝑡1 to execute 𝑒2 or for 𝑡2 to execute 𝑒4. Be-

cause neither mt(𝑓4 , type(𝑜1)) nor mt(𝑓2 , type(𝑜2)) matches any 

may-trigger relation, DrFinder resolves the tie randomly: (1) Sup-

pose that 𝑡1 is selected. When 𝑡1 generates 𝑒3, DrFinder finds that 

mt(𝑓4, type(n)) is a may-trigger relation. Thus, it suspends 𝑡1, and 

escorts 𝑡2  to execute until 𝑡2  has executed 𝑒6 . After that, 𝑡1  exe-

cutes 𝑒3, and the HB edge 𝑒6 ↣ 𝑒3 is formed. When 𝑡2 executes 

𝑚3, the race on y is detected. (2) Suppose that 𝑡2 executes 𝑒4 first. 

Table 1. The May-Trigger relation for methods and lock object types 

of program shown in Figure 2. 

May-Trigger Relation May-Trigger Relation 

mt(𝑓1, 𝑐𝑘), mt(𝑓1, 𝑐1), mt(𝑓1, 𝑐𝑛) mt(𝑓5, 𝑐𝑛) 

mt(𝑓2, 𝑐1), mt(𝑓2, 𝑐𝑛) mt(𝑓6, 𝑐4), mt(𝑓6, 𝑐5), mt(𝑓6, 𝑐𝑘) 

mt(𝑓3, 𝑐2), mt(𝑓3, 𝑐3), mt(𝑓3, 𝑐𝑛) mt(𝑓7, 𝑐4), mt(𝑓7, 𝑐5), mt(𝑓7, 𝑐𝑘) 

mt(𝑓4, 𝑐2), mt(𝑓4, 𝑐3), mt(𝑓4, 𝑐𝑛) mt(𝑓8, 𝑐𝑘)   

𝑡1

⋮

  :   ( )

𝒆 :    𝒄( ){…}

𝑒2 : 𝑠𝑦𝑛𝑐(𝑜1){…}

  :   ( )

𝒆 :    𝒄( ){…}

𝑡2

⋮

⋮

𝑒4 : 𝑠𝑦𝑛𝑐(𝑜2){…}

𝑒5 : 𝑠𝑦𝑛𝑐(𝑜3){…}

⋮

⋮

𝒆 :    𝒄( ){…}

  :   ( )

𝑡3

⋮

⋮

⋮

𝑒7 : 𝑠𝑦𝑛𝑐(𝑜4) {…}

⋮

𝑒8 : 𝑠𝑦𝑛𝑐(𝑜5) {…}

𝒆 :    𝒄( ) {…}

  :   ( )

𝑓1

𝑓2

𝑓3

𝑓4

𝑓5

𝑓6

𝑓7

𝑓8
 

Figure 3. A trace 𝝈  generated by DrFinder, exposed two races on x 

and y. 

𝑡1

⋮

  :   ( )

𝒆 :    𝒄( ){…}

𝑒2 : 𝑠𝑦𝑛𝑐(𝑜1){…}

  :   ( )

𝒆 :    𝒄( ){…}

𝑡2

⋮

⋮

𝑒4 : 𝑠𝑦𝑛𝑐(𝑜2){…}

𝑒5 : 𝑠𝑦𝑛𝑐(𝑜3){…}

⋮

⋮

𝒆 :    𝒄( ){…}

  :   ( )

𝑡3

⋮

⋮

⋮

𝑒7 : 𝑠𝑦𝑛𝑐(𝑜4) {…}

⋮

𝑒8 : 𝑠𝑦𝑛𝑐(𝑜5) {…}

𝒆 :    𝒄( ) {…}

  :   ( )

𝑓1

𝑓2

𝑓3

𝑓4

𝑓5

𝑓6

𝑓7

𝑓8
 

Figure 2. A trace 𝝈  hiding two races on x and y as two HB edges 𝒆 ↣
𝒆  and 𝒆 ↣ 𝒆  order the two accesses of each race, respectively.  

452



 

 

When 𝑡2 further generates 𝑒5, DrFinder finds that mt(𝑓2, type(𝑜3)) 

does not match any may-trigger relation. Thus, both threads 𝑡1 and 

𝑡2 may proceed further. So, DrFinder resolves the tie randomly. If 

𝑡1 is selected to execute first, a race on y is detected. Otherwise, no 

race is reported because the HB edge between 𝑒3  and 𝑒6  is still 

𝑒3 ↣ 𝑒6.  

4. DESIGN RATIONALES 
In this section, we present the design rationales of DrFinder, with 

the help of two traces 𝜎1 and 𝜎2, and their corresponding set of HB 

edges are 1 and 2, respectively. Besides, there are two threads 𝑡1 

and 𝑡2 in two traces and they produce two events 𝑒1 and 𝑒2, respec-

tively, in trace 𝜎1; however, the two events may not be produced by 

two threads in trace 𝜎2.  

4.1 Basic Requirements  
We recall that a hidden race is difficult to expose in a trace gener-

ated by a native scheduler or a pure randomized scheduler. That is, 

although the two accesses involving in a hidden race may appear in 

a trace, yet the pair of accesses may be separated by non-trivial 

numbers of HB edges (e.g., the two accesses 𝑚1 and 𝑚4 in Figure 

2). For ease of reference, we refer to such a native or pure random-

ized scheduler as a default scheduler.  

A strategy modeled after the above intuition is as follows: In Phase 

I, a technique observes the set of HB edges 1 in the trace 𝜎1 pro-

duced by a default scheduler. Then, in Phase II, it aims to reverse 

the directions of some HB edges in 1 on generating the trace 𝜎2. 

That is, if the two events 𝑒1 ↣ 𝑒2 ∈ 1, it aims to produce 𝑒2 ↣ 𝑒1 

 2 if possible as shown in Figure 4 (a) and (b), respectively.  

As such, a dynamic hidden race detector should aim to: 

Phase I) keep a (sub)set of HB edges (i.e., 1) in trace 𝜎1, 

Phase II) and schedule a subsequent execution (generating 

trace 𝜎2) to reverse HB edges in 1 to expose races hid-

den in trace 𝜎1.  

However, DrFinder does not target to keep any HB edges as which 

usually incurs high runtime overhead [12][21][41]. It tries to pre-

dict HB edges dynamically via the type of locks. In the next two 

subsections, we present how DrFinder achieves this aim to reverse 

HB edges.  

4.2 Reversing Happens-before Edges 
Suppose that 𝑒1 ↣ 𝑒2 is an HB edge in 1 as depicted in Figure 

4(a), there is a good chance that, using the default scheduler, 𝑒1 ↣
𝑒2 may also exist in 2. That is, most of HB edges in 1 cannot be 

easily reversed in 2. Therefore, our target is to actively produce 

𝑒2 ↣ 𝑒1 as depicted in Figure 4(b).  

Suppose that during the execution (to generate the trace 𝜎2), both 

events 𝑒1 and 𝑒2 exist. In theory, a precise but hypothetical strategy 

can be formulated as follows:  

 

However, implementing such a strategy is challenging: if there is 

no such an event 𝑒2 in trace 𝜎2, then the HB edge 𝑒2 ↣ 𝑒1 will not 

exist, and no HB edge needs to be reversed. Hence, above strategy 

will suspend the thread 𝑡1  until the thread 𝑡2  terminates. If all 

events (or at least lock acquisition events) in trace 𝜎1 are logged to 

check the existence of an event 𝑒2, it is necessary to compute an 

object abstraction [13][21][41] (e.g., a unique id) for each event. 

However, before the occurrence of 𝑒2, there is no way to compute 

an object abstraction for 𝑒2.  

Therefore, an effective technique must address a problem: Given 

an event 𝑒1 to be executed by a thread 𝑡1, how to determine whether 

some other thread 𝑡2 will execute an event 𝑒2 such that 𝑜𝑏𝑗𝑒𝑐𝑡(𝑒2) 
= 𝑜𝑏𝑗𝑒𝑐𝑡(𝑒1)  without computing an object abstraction for each 

event?  

4.3 Stack and Type Based Events Predictions  
Let us refine the problem further as the two events 𝑒1 and 𝑒2 should 

be causally related; otherwise, there is no need to consider them to 

form an HB edge. Suppose that when 𝑡1  is about to execute 𝑒1 , 

thread 𝑡2 is executing an event 𝑒∗ within the body of a method 𝑓𝑘 

as shown in Figure 5(a). To ease our explanation, we refer to the 

current call stack of thread 𝑡2 as stack s. If the event 𝑒2 will occur 

in future in the execution of 𝑡2, there will be another call stack frag-

ment: 𝑠1 in the below Backward Case or 𝑠2 in the below Forward 

Case:  

 Backward Case shown in Figure 5(b): after thread 𝑡2 returns 

from method 𝑓𝑘  recursively to a method 𝑓1 , and then calls 

some other methods, an event 𝑒2 from a method 𝑓𝑑 ′ is exe-

cuted. We refer to the two call stack fragments 𝑓1 …, 𝑓𝑘 and 

𝑓1 …, 𝑓𝑑 ′ as 𝑠′ and 𝑠1, respectively, as depicted.  

 Forward Case shown in Figure 5(c): before thread t2 returns 

from its execution in method 𝑓𝑘, it further calls some meth-

ods and then an event 𝑒2 from a method 𝑓𝑑 ′′ is executed. We 

refer to the call stack fragments 𝑓𝑘  …, 𝑓𝑑 ′′ as 𝑠2 , as de-

picted.  

Therefore, to predict the existence of event 𝑒2, thread 𝑡2 should be 

aware of the method 𝑓𝑑 ′ (in Backward Case) or the method 𝑓𝑑 ′′ (in 

Forward Case) that executes an event 𝑒2. To do so, it is necessary 

to record the events that a given method will execute directly or 

indirectly (i.e., via calling other methods). With such information, 

given an event 𝑒∗  from a method 𝑓𝑘 , it becomes easy to know 

whether there will be an event 𝑒2. 

However, directly implementing above idea to detect hidden races 

is ineffective or even does not work. It is because each method, 

once called, directly (for event within this method) or indirectly (for 

events out of this method) executes all later events. For example, 

the method run() executes all events. Therefore, to make the pre-

diction of an event effective for detection of hidden races via re-

versing HB edges, the used stack should be limited. In other words, 

only some methods in a stack should be used to do prediction, but 

not all.  

Let's further review the two cases. For Backward Case, we can ob-

serve from Figure 5(b) that the effective call stack to predict the 

event 𝑒2 (when thread 𝑡2 is executing an event 𝑒∗ in method 𝑓𝑘) is 

only the stack fragments 𝑠′ and 𝑠1. Similarly, for Forward Case, the 

effective stack is the stack fragment 𝑠2.  

Therefore, we only use the stack fragments 𝑠′ and 𝑠1, or 𝑠2 to pre-

dict events. In theory, the size of the stack 𝑠′ can range from 1 to 

infinite. In this paper, we aim to present the basic model of 

To reverse an HB edge from 𝑒1 ↣ 𝑒2 to 𝑒2 ↣ 𝑒1, the thread 𝑡1 

should be suspended when it generates but does not execute the 

event 𝑒1 until the thread 𝑡2 has executed the event 𝑒2.  

𝑡2𝑡 
𝑒1

𝑒2

(a) Observed trace 𝜎1 (b) Targeted trace 𝜎2

𝑒1
𝑒2

𝑡2𝑡 

 

Figure 4. Reversing an HB edge.  
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DrFinder. Hence, we choose the size of 𝑠′ to be 1, which is a mini-

mal setting. In this case, we have 𝑓𝑘 = 𝑓1. Therefore, the two cases 

(i.e., Backward Case and Forward Case) are actually the same one. 

And the prediction of event 𝑒2 is based on one stack fragment (i.e., 

𝑠1 or 𝑠2) to be formed. Thus, we propose our stack based events 

prediction model M to predict the event 𝑒2 as follows:  

 

We refer to the size of the above stack s1 plus the method 𝑓𝑑 ′ as the 

depth d of model M. Model M looks forward to see whether there 

will be a sequence of at most d methods (i.e., 𝑠1 ) with the last 

method containing an above discussed event 𝑒2.  

However, for above prediction model, we still need to address a 

new problem: given an event 𝑒1 by 𝑡1 and a stack s of 𝑡2, does there 

exist a method 𝑓𝑑 ′ in the stack contains an event 𝑒2?  

We propose the May-Trigger Relation to further predict whether a 

given method will trigger a certain event. Suppose that there is an 

event e from a method f such that 𝑒 = 𝑒2 . Then, we must have 

𝑜𝑏𝑗𝑒𝑐𝑡(𝑒) = 𝑜𝑏𝑗𝑒𝑐𝑡(𝑒2) , and 𝑡𝑦𝑝𝑒(𝑜𝑏𝑗𝑒𝑐𝑡(𝑒)) =
𝑡𝑦𝑝𝑒(𝑜𝑏𝑗𝑒𝑐𝑡(𝑒2)). Our insight is that in real-world Java programs, 

most methods only acquire specific (instead of arbitrary) lock ob-

jects, and their method instances often follow the same locking pat-

terns. We propose to use the type of a lock object in a lock acquisi-

tion event to predict the possible occurrence of the event e2 to 

achieve the reversal of the HB edges from 𝑒1 ↣ 𝑒2 in 1 to 𝑒2 ↣
𝑒1 in 2.  

Formally, May-Trigger Relation is defined as follows: Given a 

method 𝑓, a type 𝑐, and an execution trace 𝜎. If a method 𝑓′ is 
reachable from 𝑓 during the generation of a trace 𝜎 by a sequence 

of at most 𝑑  methods, and 𝑓′  produces an event 𝑒 = 𝑡, 𝑎𝑐𝑞, 𝑜 
such that 𝑡𝑦𝑝𝑒(𝑜) = 𝑐, then we say 𝑓 and 𝑐 forms a May-Trigger 

Relation (MTR for short), denoted as mt(𝑓, 𝑐).  

DrFinder is developed on top of M using MTR to predict occur-

rences of events like 𝑒2  to schedule a program to detect hidden 

races. It uses two pieces of information for its prediction: (1) an 

event 𝑒1 from a thread 𝑡1, and (2) a method 𝑓1 from a second thread 

𝑡2 and a depth d. It interestingly predicts the presence of an event 

𝑒2 by checking whether mt(𝑓1, 𝑡𝑦𝑝𝑒(𝑒1)) is a MTR identified from 

𝜎1.  

4.4 Effective Scheduling via Feedbacks 
From above discussion, DrFinder executes a program once to col-

lect a set of MTR and then schedules the program execution based 

on the relation set. However, races in a program cannot be dynam-

ically detected in merely one run. Therefore, it is necessary for 

DrFinder to execute a program multiple times to detect more hidden 

races.  

On the other hand, if a same set of MTR relation is used in each 

execution by DrFinder, the increment of new races detected is mar-

ginal. Actually, after the first scheduling execution by DrFinder, the 

probability to detect new hidden races for DrFinder at its other sub-

sequent executions is the same as the existing dynamic techniques 

(e.g., FastTrack) and may be even lower than existing active sched-

ulers (e.g., PCT). It is because, the subsequent executions are sim-

ilar to the first scheduled execution as they are scheduled by 

DrFinder based on a same set of MTR.  

Therefore, we design DrFinder, at each of its executions, to both 

schedule the execution and collect a new set of MTR from the ex-

ecution being scheduled. The newly collected set of MTR is re-

garded as a feedback to be used in the next execution by DrFinder. 

As such, DrFinder is able to effectively schedule each execution 

based on a set of MTR exactly from the previous execution, to de-

tect new hidden races. This feedback mechanism is also depicted in 

Figure 1.  

5. DRFINDER IN DETAILS  

5.1 Phase I: May-Trigger Relation Collector 
The MTCollector algorithm is responsible to collect may-trigger re-

lations, shown in Algorithm 1. Given a program 𝑝 and a depth 𝑑, 

MTCollector executes the program, and collects a set of may-trig-

ger relations (i.e., MTR in Algorithm 1) from the observed trace.  

Algorithm 1 first assigns the set of all threads in 𝑝 to the set Ena-

bled, null to MTR, and assigns Stack(t) for each thread 𝑡 in En-

abled to empty at lines 3–4. It uses the data structure Stack(𝑡) to 

keep track of the call stack fragment. It then uses randomized 

scheduling to execute the program 𝑝 by selecting the next event 𝑒 

During the generation of a trace 𝜎2, if a thread 𝑡2 is executing 

an event 𝑒∗ from a method 𝑓𝑘, and there exists a method 𝑓𝑑 ′, 
such that the method 𝑓𝑑 ′: 

(1) contains an event 𝑒2 and  

(2) is reachable by thread 𝑡2 via a sequence methods 𝑠1 after 

executing the event 𝑒∗, 
then thread 𝑡2 will execute the event 𝑒2. 

Algorithm 1: DrFinder.MTCollector 
1.   
2.   

3.   
4.   

5.   
6.   
7.   
8.   
9.   
10.   
11.   
12.   
13.   
14.   
15.   
16.   
17.   
18.   
19.   

Input: 𝑝 – a given program 
Output: MTR – may-trigger relations 

Enabled ≔ all threads in 𝑝; MTR ≔ ∅ 
Stack(𝑡) ≔ ∅, for each thread 𝑡 ∈ Enabled //method stack 

while Enabled ≠ ∅ do 
│  let 𝑡 be a random thread from Enabled. 
│  let 𝑒 ≔ 𝑡, 𝑜𝑝, 𝑜 be the next event of 𝑡. 
│  if 𝑜𝑝 = 𝑒𝑛𝑡𝑒𝑟 then 
│  │  push 𝑜 into Stack(𝑡) //o is a method 
│  else if 𝑜𝑝 = 𝑟𝑒𝑡𝑢𝑟𝑛 then 
│  │  pop out from Stack(𝑡) 
│  else if 𝑜𝑝 = 𝑎𝑐𝑞 then  
│  │  for 𝑖 = 1 to min(d, Stack(𝑡).size()) do 
│  │  │  let 𝑓 ≔ Stack(𝑡).get(𝑖) //collect lock type 
│  │  │  MTR ≔ MTR ∪ { mt(𝑓, Type(𝑜)) } 
│  │  end for 
│  end if 
│  execute(𝑒) 
end while  
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Figure 5. Call stack based prediction of event 𝒆 . 

454



 

 

(i.e., 𝑡, 𝑜𝑝, 𝑜) from a random thread (lines 6–7) and checks the op-

eration 𝑜𝑝 of the event 𝑒:  

 If 𝑜𝑝  is either 𝑒𝑛𝑡𝑒𝑟  or 𝑟𝑒𝑡𝑢𝑟𝑛 , Algorithm 1 pushes the 

method o into the Stack(𝑡) or pops out the topmost method 

from the Stack(𝑡), respectively (lines 8–11).  

 If 𝑜𝑝  is 𝑎𝑐𝑞 , Algorithm 1 updates MTR ≔  MTR∪ {mt( 𝑓 , 

𝑡𝑦𝑝𝑒(𝑜))}, for each method 𝑓  in the top 𝑑  methods in the 

Stack(𝑡) (lines 13–16) to maintain may-trigger relations. 

Then, the algorithm executes the event at line 18.  

5.2 Part A of Phase II: DrFinder Agent 
The Agent (Algorithm 2) is responsible to execute each event. For 

the acq events, their executions depend on Scheduler.  

Algorithm 2 accepts the given program 𝑝, the set MTR (i.e., may-

trigger relations) from Phase I, and an HB race detector RD. It re-

turns a set of new may-trigger relations (i.e., MTR'). Algorithm 2 

firstly assigns the set of all threads of p to the set Enabled, which 

is shared by both Agent and Scheduler, and set MTR' to be empty 

(line 5). It then starts Scheduler (i.e., Algorithm 3 to be presented in 

Section 5.3) through a fork() call (line 6). Next, it takes a next event 

𝑒 = 𝑡, 𝑜𝑝, 𝑜 from a random thread 𝑡 (lines 8–9), and checks the 

operation 𝑜𝑝  of the event 𝑒 . If 𝑜𝑝  is 𝑎𝑐𝑞 , Agent asks Scheduler 

whether 𝑡 is allowed to execute 𝑒 through a function call to re-

questALock() of Scheduler (line 11). If the function returns a false 

value, Agent simply keeps 𝑒 from execution. (Note: the thread t has 

been removed from Enabled by Scheduler at line 10 in Algorithm 

3). If requestALock() does not return a false value (line 12), 

Agent will both execute and pass 𝑒 to the race detector RD (lines 

16–17). Finally, if 𝑒 is an 𝑎𝑐𝑞 event, Agent also informs Scheduler 

that the thread 𝑡  has acquired the lock object specified in 𝑒  via 

function lockAcquired() (lines 18–20). It also collects a new set 

of MTR' at line 21 (which is based on Algorithm 1) as the input 

MTR of the next scheduling execution.  

5.3 Part B of Phase II: DrFinder Scheduler 
Scheduler (Algorithm 3) maintains four data structures: ATHs, 

RTHs, allowedTH, and allowedLK (lines 1–4), to make sched-

uling decision:  

 ATHs is a set of all the threads in the program p.  

 RTHs is a set of pairs of a thread 𝑡 and a lock object 𝑜, each 

of which representing that 𝑡 is requesting to acquire the object 

𝑜, but Scheduler suspends this acquisition. Thus, all the threads 

in this set are waiting to be scheduled by Scheduler. For ease 

of our presentation, we use RTHs.get(𝑡) to denote the lock 𝑜 

paired with the thread 𝑡.  

 allowedTH keeps a particular thread 𝑡 that both (i) is "es-

corted" by DrFinder with a top priority to execute its lock ac-

quisition events and (ii) is the thread expected by DrFinder to 

acquire a lock object defined by allowedLK. 

 allowedLK keeps a lock object 𝑜 . DrFinder expects the 

thread defined by allowedTH to acquire a lock object having 

the same type as this lock object.  

Scheduler consists of four functions: requestALock(), lock-

Acquired(), mayTrigger(), and schedule(). In Section 5.2, 

we have presented that Agent (Algorithm 2) invokes the first two 

functions. We firstly present them followed by presenting sched-

ule() which is the core part of DrFinder.  

The function requestALock() is called by Agent on determining 

whether to execute the event 𝑒 (i.e., the lock acquisition on 𝑜 by 𝑡). 
It checks whether the given thread 𝑡 is a chosen thread to execute 

any event (i.e., allowedTH) at line 6. (As such, a targeted HB edge 

may be formed as soon as it can.) If a true value is returned, it in-

dicates that the event 𝑒 is allowed to execute (line 7); otherwise, the 

thread 𝑡 is added to the set RTHs and is also removed from the set 

Enabled (lines 9–10) so that Agent will not pick any event of it 

for execution (line 8 in Algorithm 2). Next, the function notifies 

Scheduler (that there is a thread to be scheduled, see line 30, to be 

explained below). On the other hand, if it returns a false value at 

line 12, it indicates that the event 𝑒 is not allowed to be executed.  

The function lockAcquired() is called by Agent right after a lock 

acquisition event 𝑒  is executed (lines 17–19 in Algorithm 2). It 

checks whether the executed lock acquisition event e is an event 

expected by Scheduler (line 16). An event 𝑒 = 𝑡, 𝑜𝑝, 𝑜 is an ex-

pected event if (1) 𝑡 is the thread defined by allowedTH (i.e., 𝑡 = 

allowedTH) and (2) 𝑒 operates on a lock object defined by al-

lowedLK (i.e., 𝑡𝑦𝑝𝑒(𝑜) = 𝑡𝑦𝑝𝑒(allowedLK)) at line 16. If so, an 

expected event occurs and Scheduler resets both allowedTH and 

allowedLK to null (line 17). It then notifies function sched-

ule()that there is no thread marked as "allowedTH" (line 18).  

We are going to explain the function schedule(). Scheduler is 

started by Agent (at line 5 in Algorithm 2). If no thread is requesting 

any lock object (i.e., RTHs.size() = 0) or there is no event expected 

by Scheduler (i.e., allowedTH ≠ ∅ ) at line 30, the function 

schedule() just waits for notifyScheduler() to notify it at ei-

ther line 11 or line 18.  

Once schedule() is notified, the same function selects a random 

thread t from the set ATHs. It then checks whether there is any 

thread whose currently executing method 𝑓  and the type of the 

given object 𝑜  match any may-trigger relation kept in MTR via 

mayTrigger() (lines 35–39). All the threads that match this con-

dition are collected as the set CT (line 37), in which a thread 𝑡′ is 

randomly selected and escorted by DrFinder to execute all its events 

before 𝑡 is allowed to continue its execution (line 41). The function 

then assigns the thread t' and the lock object 𝑜 to allowedTH and 

allowedLK, respectively (lines 42–43). If the thread 𝑡′ is also in 

the set RTHs, 𝑡′ will be removed from RTHs and added to Ena-

bled (lines 44–46). Scheduler then waits until the thread 𝑡′ being 

escorted by DrFinder has acquired a lock object having the type 

Algorithm 2: DrFinder.Agent 
1.  
2.   
3.  

4.   
5.   

6.   
7.  
8.   
9.   
10.   
11.   
12.   
13.   
14.  
15.   
16.   
17.   
18.   
19.   
20.   
21.   
22.   

Input: 𝑝 – a given program. 
Input: MTR – may-trigger relations returned by MTCollector 
Input: RD – an HB race detector (e.g., FastTrack) 
Output: MTR' – a set of new may-trigger relations //feedbacks 

Enabled ≔ all threads in 𝑝, MTR' ≔ ∅ 
fork(schedule()) //start scheduler (in Algorithm 3) 

while Enabled ≠ ∅ do 
│  let 𝑡 be a random thread from Enabled. 
│  let 𝑒 ≔ 𝑡, 𝑜𝑝, 𝑜  be the next event of 𝑡. 
│  if 𝑜𝑝 = 𝑎𝑐𝑞 then 
│  │  allow ≔ DrFinder.Scheduler.requestALock(𝑡, 𝑜) 
│  │  │  if allow = false then 
│  │  │   continue //while loop 
│  │  end if 
│  end if 
│  execute(𝑒) 
│  RD.onEvent(𝑒)  //for detection of data races 
│  if 𝑜𝑝 = 𝑎𝑐𝑞 then 
│  │  DrFinder.Scheduler.lockAcquired(𝑡, 𝑜) 
│  end if 
│  update MTR' according to Algorithm 1 
end while 
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type(allowedLK) (see the function lockAcquired()) (lines 

48–50). Otherwise, if CT is empty (line 40), the thread 𝑡 is allowed 

to execute (lines 52–55).  

The function mayTrigger() accepts two threads 𝑡 and 𝑡′ as its 

parameters. This function firstly gets the lock object o being re-

quested by 𝑡 (i.e., paired with 𝑡 in RTHs) and the current executing 

method 𝑓  of 𝑡′  (line 22). It then checks whether the tuple (𝑓 , 

type(o)) is a valid May-trigger relation (i.e., in the set MTR ) and 

returns a true-or-false result accordingly (lines 23–26).  

5.4 Discussion 
DrFinder is an active scheduler. It suffers from thrashing [21][41], 

and may lead the execution to form deadlocks [12][41]. Similar to 

existing techniques [9][11][12][21][41], when a thrashing occurs, 

DrFinder randomly selects a suspended thread to execute and when 

a deadlock occurs, the whole execution is restarted (see Section 

6.1).  

DrFinder actively schedules an execution to produce HB edges that 

cannot be easily formed in normal executions to expose races. It 

drives a happens-before based detector (e.g., FastTrack) to detect 

races precisely and report all races. Therefore, like other HB 

detectors, DrFinder is also precise.   

6. EXPERIMENT  
This section presents our evaluation on DrFinder and its compari-

son with the state-of-the-art HB race detector FastTrack, a random 

delay scheduler ConTest, and a state-of-the-art randomized sched-

uler PCT. All these techniques are reviewed in Sections 1 and 3.  

6.1 Implementation and Benchmarks 
Implementation. We implemented DrFinder, FastTrack, ConTest, 

and PCT in Jikes RVM [2][3]. Jikes RVM is a Java virtual ma-

chine, developed almost in Java language, and could be run on 

Linux and Mac OSX systems. These tools report a race at the Java 

class field level [17]. Our tool uses the shadow mechanism [18] to 

track the state of an execution and adds a shadow lock to each object 

instance to keep the vector clock data and type information. For 

each memory location (i.e., an instance of a field of a Java class), it 

allocates a shadow memory to track the reads and writes to this 

memory location. For each thread, it adds a member in the 

RVMThread class [2] to keep the Java thread data.  

To generate memory and synchronization events in runtime, our 

tool instruments each class when it is loaded, except those Jikes 

RVM classes and Java standard library classes. It uses a static es-

cape analysis [5] to identify accesses to provably thread local 

memory location. It also fully tracks happens-before relations on 

other program semantics (e.g., accesses to volatile fields [17]).  

Our implementation periodically monitors the states of all threads 

by tracking various synchronizations events and scheduling of 

DrFinder as well as other functions calls (e.g., sleep()). Such 

monitoring is helpful to identify deadlock ocucrrences and 

thrashing occurrences.  

Benchmarks. We used the Dapaco benchmark suite [6] to evaluate 

DrFinder. We selected two multithreaded programs from Dacapo 

2006-10-M1 (xalan06 and eclipse06) and five multithreaded pro-

grams from Dacapo 2009 (xlan09, pmd09, sunflow09, luindex09, 

and lusearch09). Dacapo 2009 includes other multithreaded 

benchmarks; however, they cannot be run on the latest Jikes RVM 

3.1.3 even without our tool. In total, we selected 7 multithreaded 

benchmarks, including a large-scale real-word program Eclipse 

(eclipse06).  

Table 2 shows the descriptive statistics of the benchmarks. The first 

two columns show the benchmark name and size. The third column 

Table 2. Descriptive and execution statistics of benchmarks. 

Benchmark 
Jar Files 

 Size (KB) 

# of locks / 

threads 

# of methods 

(with sync) 

# of HB 

 edges 

xalan06 81.23 19,565 /   9 1,731 (1.7%) 2,607,853 
eclipse06 41,821.53 118,803 / 26 7,581 (4.9%) 22,879,127 
xalan09 4,826.81 10,522 /   5 1,869 (1.4%) 3,864,084 
pmd09 2,996.30 230 /   5 2,289 (0.2%) 2,288 
sunflow09 1,016.91 22 /   9 698 (1.6%) 778 
luindex09 878.37 2,612 /   2 804 (14.8%) 217,343 
lusearch09 883.02 94,668 /   5 484 (4.6%) 1,371,744 

Total 52,504.16 246,422 / 61 15,456 (3.8%) 30,943,217 
 

Algorithm 3: DrFinder.Scheduler  
1.  
2.   
3.   
4.   

5.   
6.   
7.   
8.  
9.   
10.   
11.   
12.   
13.   
14.   

15.  
16.   
17.   
18.   
19.   
20.   

21.   
22.  
23.   
24.  
25.   
26.   
27.  

28.   
29.   
30.   
31.   
32.   
33.   
34.  
35.   
36.   
37.   
38.   
39.   
40.   
41.  
42.   
43.   
44.   
45.   
46.   
47.   
48.  
49.   
50.   
51.   
52.   
53.   
54.   
55.   
56.   
57.   

ATHs  ≔ all threads in p 
RTHs  ≔  //a set of pairs of threads and locks 
allowedTH   ≔ ∅ //a thread that is expected to acquire a lock 
allowedLK  ≔ ∅ //the lock expected to be acquired 

Function requestALock(𝑡, 𝑜) 
│  if allowedTH = 𝑡 then 
│  │  return true 
│  else 
│  │  RTHs.add(𝑡, 𝑜) 
│  │  Enabled ≔ Enabled \ {𝑡} 
│  │  notifyScheduler() 
│  │  return false 
│  end if 
end Function 

Function lockAcquired(𝑡, 𝑜) 
│  if allowedTH = 𝑡 and type(allowedLK) = type(𝑜) then 
│  │  allowedTH ≔ ∅, allowedLK ≔ ∅ 
│  │  notifyScheduler() 
│  end if 
end Function  

Function mayTrigger(𝑡, 𝑡′) 
│  let o ≔ RTHs.get(𝑡), f ≔ getCurrentMethod(𝑡′) 
│  if ∃ mt(𝑓, 𝑐) ∈ MTR such that 𝑐 = type(𝑜) then 
│  │  return true 
│  end if 
│  return false 
end Function 

Function schedule() 
│  while Agent does not exit do 
│  │  while RTHs.size() = 0 or allowedTH ≠ ∅ do 
│  │  │  wait() 
│  │  end while 
│  │  𝑡 ≔ a random thread from ATHs 
│  │  CandidateThread CT ≔ ∅ 
│  │  for each thread 𝑡′ ∈ ATHs do 
│  │  │  if 𝑡 ≠ 𝑡′ and mayTrigger(𝑡, 𝑡′) then 
│  │  │  │  CT ≔ CT ∪ {𝑡′} 
│  │  │  end if 
│  │  end for       
│  │  if CT ≠ ∅ then 
│  │  │  𝑡′ ≔ a random thread from CT 
│  │  │  allowedTH ≔ 𝑡′ 
│  │  │  allowedLK ≔ RTHs.get(𝑡′) 
│  │  │  if 𝑡′ RTHs then 
│  │  │  │  Enabled ≔ Enabled ∪ {𝑡′} 
│  │  │  │  RTHs.remove(𝑡′) 
│  │  │  end if 
│  │  │  while allowedTH   do 
│  │  │  │  wait() 
│  │  │  end while 
│  │  end if 
│  │  Enabled ≔ Enabled ∪ {𝑡} 
│  │  RTHs.remove(𝑡′) 
│  │  allowedTH ≔ 𝑡 //let t to acquire the lock RTHs.get(t) 
│  │  allowedLK ≔ RTHs.get(𝑡) 
│  end while 
end Function 
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shows the numbers of locks and threads in the benchmarks. The last 

two columns show the numbers of methods (all and those contain-

ing lock acquisitions) and the mean number of HB edges in each 

benchmark over 10 runs. All dynamic data are collected under na-

tive scheduling.  

6.2 Experimental Setup 
Our experiment was performed on an Apple Mac Pro with 2.6GHz 

Intel Core i5 and 8GB memory running OS X 10.9.2. We compiled 

Jikes RVM with GNU Class-path 0.98 [1]. We configured 

FastTrack with the native (OS) scheduler, with ConTest, with PCT, 

and with DrFinder, which are referred to as FT, CT, PCT, and DR, 

respectively. We followed the previous experiments [43] and ran 

each technique on each subject for 10 times.   

6.3 Experimental Results 
Table 3 summaries the experimental results. The first column 

shows the benchmark name. The second major column shows the 

number of distinct data races reported by each technique in 10 runs. 

The third major column shows the number of new data races 

detected by DR but not detected by FT, CT, and PCT. The fourth 

major column shows that the total number of distinct races detected 

by all four techniques. The fifth major column shows the number 

of races not detected by each technique compared to the total 

number of distinct races (i.e., the data in the fourth major column). 

The sixth major column shows the mean time in seconds for each 

technique to run each benchmark. It also shows the time of native 

run (i.e., without any testing tool) and the time needed by both 

phases of DR (as P-I and P-II, respectively). The overhead of 

each technique is also calculated. The last column shows the 

thrashing rate ("Thrash. rate")  of DR. The last row shows 

either the total ("Sum") or the mean value ("Avg") of each column.  

6.3.1 Summary of Results 
Effectiveness. From Table 3 (the second and third major columns), 

DR detects more races on 5 out of 7 benchmarks by 11.1% to 

240.0%. On the remaining two benchmarks, all four techniques de-

tect the same set of data races. In total, DR detects 89 more new 

races from all benchmarks. We find that FT, CT, and PCT detect 

almost the same set of data races (where the difference is at most 

10). This is consistent with an intuition that the random sleep strat-

egy used by CT is not quite effective and randomized scheduling 

strategy used by PCT is also not quite effective without a larger 

number of runs.  

Performance. From the column on time, we observe that FT has 

the best performance, which is expected. The overhead of CT on 

top of FT ranges from 0.11x to 5.28x except on eclipse06. For 

PCT, it incurs about 2.2x higher overhead than DR on average.1 

                                                                 
1 Note that, there is a parallel version of PCT known as PPCT [33] that has the same effectiveness but runs faster than PCT. Hence, the time overhead of PCT in Table 3 is for 

reference only and we do not discuss the overhead of PCT in the next paragraph. We believe our DrFinder could also be implemented in parallel and we leave it as a future work.   

The overhead of the Phase I of DR is only 0.39x. The overhead of 

DR (Phase II) on top of FT ranges from 1.1x to 4.0x. On average, 

DR only incurs 2.65x on top of FT. 

On eclipse06, CT incurs a heavy overhead, which is 19.5x on top 

of FT; but, DR only incurs 1.1x on top of FT. Although eclipse06 

included 26 threads, in most of the execution time, there are only 

two active threads. We find that DR is able to suspend these two 

threads according to their locking orders most of the time. But, CT 

has to delay each lock acquisition by a random period. As a result, 

the total time overhead of CT is much heavier than that of DR on 

this benchmark.  

Thrashing Rate. From the last column of Table 3, DR is able to 

make successful thread suspension decisions in nearly 60% of all 

cases. In the remaining cases (40.73%), thrashing occurred. We 

have inspected these thrashing occurrences and found that about 

half of them were caused due to the type of the unique and global 

instance of Class Loader class used by the Dacapo test harness to 

load each class instead of the program under test. (This harness 

strictly speaking is not a part of each benchmark.) In our 

experiment, we have not seen any deadlock occurrence. 

6.3.2 Comparison on Not Detected Races  
Table 3 also shows the total number of distinct races detected by all 

four techniques in the fourth major column. It also shows the num-

ber of races that are not detected by each technique but detected by 

other three techniques in the fifth major column. Overall speaking, 

among all 474 detected races detected by all four techniques on all 

the benchmarks, DR only misses 26 races; however, FT, CT, and 

PCT misses 96, 102, and 89 races, respectively.  

From above analyses, we find that DR is effective in exposing hid-

den races; but it may be unable to expose some races that can be 

detected by HB detectors with randomized or native scheduling. 

We argue that this is not a major issue. It is because, in practice, 

one may run a program with random or native scheduling to detect 

these races (e.g., configured in Phase I of DR) followed by detect-

ing the hidden races in Phase II of DR. We have checked the races 

not detected by DR and found that almost all 26 races have been 

detected by FT in each of 10 runs, and the remaining ones can be 

detected by FT in at least one run.  

6.3.3 Comparison on Races Detected in 10 Runs 
Figure 6 shows the cumulative number of races detected in the ex-

periment by the four techniques on each benchmark except on 

luindex09 (on which, all three techniques detected exactly one 

race in each run). The x-axis shows these 10 runs and y-axis shows 

the cumulative number of races detected.  

Table 3. Summary of results on 10 runs for FastTrack (FT), ConTest (CT), PCT, and DrFinder (DR) (depth d = 12). 

Bench- 

mark 

Total races by New races  

by DR (%) 

Total  

races 

Missed races Time in seconds (slowdown factor) Thrash. 

 rate FT CT PCT DR FT CT PCT DR Native FT CT PCT DR (P-I) DR (P-II) 

xalan06 16 16 18 26 13 (+72.2%) 31 15 15 13 5 5.62 30.7 (5.5) 60.3 (10.7) 63.4 (11.3) 11.8 (2.1) 52.3 (9.3) 45.1% 

eclipse06 313 308 318 351 54 (+17.0%) 372 59 64 54 21 45.63 119 (2.6) 1,007.9 (22.1) 178.2 (3.9) 56.4 (1.2) 167.2 (3.7) 79.2% 

xalan09 12 12 12 20 8 (+66.7%) 20 8 8 8 0 5.43 24.6 (4.5) 35.4 (6.5) 61.8 (11.4) 9.2 (1.7) 41.0 (7.6) 10.9% 
pmd09 18 17 18 20 2 (+11.1%) 20 2 3 2 0 3.58 6.9 (1.9) 7.3 (2.0) 15.6 (4.4) 4 (1.1) 12.7 (3.5) 35.1% 

sunflow09 5 5 5 17 12 (+240.0%) 17 12 12 12 0 10.36 63.0 (6.1) 84.1 (8.1) 136.7 (13.2) 12.7 (1.2) 99.7 (9.6) 68.7% 

luindex09 1 1 1 1 0 (+0.0%) 1 0 0 0 0 2.41 8.4 (3.5) 9.8 (4.1) 21.7 (9.0) 3.2 (1.3) 11.9 (4.9) 33.3% 
lusearch09 13 13 13 13 0 (+0.0%) 13 0 0 0 0 6.18 17.2 (2.8) 21.1 (3.4) 49.1 (7.9) 6.8 (1.1) 42.1 (6.8) 12.8% 

Sum: 378 372 385 448 89 (+23.1%)  474 96 102 89 26 Avg: 3.84 8.14 8.7 1.39 6.49 40.73% 
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Figure 6 shows that FT, CT, and PCT almost always detect the 

same numbers of races except on eclipse06. This indicates that 

they have similar race detection ability among all 10 runs (where 

the detected races are almost the same ones). Whereas, DR has an 

increasing trend on the number of detected races. Apparently, DR 

may detect fewer races in some runs (e.g., the first five runs on xa-

lan09). But, we have shown in Table 3 that DR actually exposes 

more races.  

To measure the ability of DR on the detection of new races with 

increasing number of runs, we further analyze the cumulative 

number of 89 new data races detected by DR in the first "i" (where 

i is from 1 to 10) runs. We normalize this cumulative number by 

the total number of new races detected by DR on the corresponding 

benchmark. The result is shown in Figure 7. Note that we do not 

show the result on luindex09 and lusearch09 in Figure 7 as no 

new races is detected on them.  

Figure 7 shows that on each benchmark except eclipse06, all the 

new races detected by DR were detected in the first 7 runs. On 

eclipse06, almost on each run, more new races were detected by 

DR; and moreover, more than 71.43% new races were detected in 

the first 4 runs. Therefore, we tend to believe that DR is able to 

effectively detect hidden races, even on large-scale multithreaded 

programs (e.g., eclipse06), which cannot be detected by FT, CT, 

and PCT in 10 runs (or even up to 100 runs, see Section 6.3.5).  

6.3.4 DrFinder with Different Depths 
In our main experiment, we have set the depth to 12. To evaluate 

the ability of DR on its detection of hidden races with different 

depths, we repeated the main experiment for DR but set the depth 

from 2 to 20 with step 2 in turn, where each configuration was also 

conducted for 10 runs. The results are summarized in Table 4. In 

each data cell, the format is "x (y)" where the "x" is the total number 

of races detected by DR with corresponding depth and the "y" is the 

number of new races that cannot be detected by FT, CT, and PCT 

in their10 runs. On each benchmark, if DR is able to detect most 

new races among all its depths, we mark the corresponding cell 

with gray color. Similarly, we do not mark cells corresponding to 

luindex09 and lusearch09 (as the data in the either entire row 

shows that there is no new race detected).  

From Table 4, we observe that with different depths, DR is gener-

ally able to detect more races than that detected by FT, CT, and 

PCT. DR also detects new races in almost all these depths, where 

the exception is on sunflow09.  

Another observation from Table 4 is that when depth values are 

within 4 and 12, DR is likely to detect a significant amount of new 

races on top of FT, CT, and PCT. And these depths values also 

lead to a larger amounts of total races. We also highlight these cells 

in gray color in the last row of Table 4.  

In future, we will study both how the depth values affect the ability 

of DR and non-parametric strategies to determine the depth.  

6.3.5 Further Evaluation on New Races 
In the 10 runs by all techniques, DR detects 89 new races. We 

further repeatedly ran other three techniques more times until either 

 

Figure 6. Number of distinct races detected in 10 runs by FT, CT, 

PCT, and DR. 
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Figure 7. Cumulative number of new races detected by DR in each 

run but missed in all the 10 runs by FT, CT, and PCT. 
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Table 4. The total number of data races detected by DR with depths from 2 to 20 (with Step 2) in 10 runs. 

Bench- 

mark 

DR with a different Depth (total number of races and number of new races) 

2 4 6 8 10 12 14 16 18 20 

xalan06 28 (16) 31 (15) 30 (15) 27 (15) 27 (15) 26 (13) 31 (15) 26 (15) 27 (15) 27 (15) 
eclipse06 306 (13) 337 (43) 336 (42) 343 (46) 336 (41) 351 (54) 316 (21) 301 (18) 284 (15) 312 (15) 
xalan09 18 (7) 18 (7) 18 (7) 18 (6) 18 (7) 20 (8) 17 (6) 12 (6) 11 (5) 13 (1) 
pmd09 20 (2) 18 (1) 19 (2) 20 (2) 20 (2) 20 (2) 20 (2) 20 (2) 20 (2) 20 (2) 
sunflow09 5 (0) 5 (0) 6 (0) 5 (0) 14 (9) 17 (12) 6 (1) 6 (0) 5 (0) 5 (0) 

luindex09 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 
lusearch09 13 (0) 13 (0) 13 (0) 13 (0) 12 (0) 13 (0) 13 (0) 13 (0) 13 (0) 13 (0) 

Sum: 391 (38) 423 (66) 423 (66) 427 (69) 428 (74) 448 (89) 404 (45) 379 (41) 361 (37) 391 (33) 
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(1) they detect the same number of distinct races as that detected by 

DR or (2) the number of runs is up to 100 on each benchmark except 

on luindex09 and lusearch09. On these two benchmarks, other 

three techniques already detect the same set of races as DR in 10 

runs.  

We found that on eclipse06, xalan06, xalan09, and pmd09, other 

three techniques could not detect as many races even exhausting all 

100 runs as what DR detects in the 10 runs. On sunflow09, all three 

techniques need more than 25 runs to catch up with DR.  

Because eclipse06 is the largest one in our benchmarks, we fur-

ther analyzed the ability of FT, CT, and PCT on detecting the 56 

new races from eclipse06 that are only detected by DR but missed 

by all the other three in their 10 runs in the main experiment. The 

result is shown in Figure 8, where we also list the 56 races for com-

parison. It shows that FT, CT, and PCT were able to detect only 

35, 13, and 19 races out of the 56 races in all 100 runs. (Note that, 

in a run, FT detects 17 races. Excluding these 17 races, it detects 

less races than that by PCT in all 100 runs.) This experiment, once 

more, illustrates that DR is effective on detecting hidden races.  

7.  RELATED WORK 
Many techniques on data race detection have been proposed. They 

mainly fall into two groups: static techniques [22] [32][36] [46] and 

dynamic techniques [17][35][40][43][49]. Static techniques like 

RELAY [46] and LockSmith [36] rely on statically but imprecisely 

identifying memory-accessing statements that may concurrently 

visit same memory locations without the protection of the same 

locksets. Chord [32] reduces the number of false warnings by using 

several stages of refinement on the entire data race warning set. But, 

it loses the soundness guarantee of reporting all data races in a pro-

gram.  

Many dynamic detectors use the locking discipline [40][42] to pre-

dict races. However, this discipline is not necessarily to be obeyed 

even for data-race-free programs so that many false positives may 

be generated using such a strategy. HB based dynamic ones [17] 

[35] can precisely report data races. However, they are sensitive to 

particular thread interleaving (even with improvement [45][47]) 

which provides less coverage than those using the lockset strategy.  

RaceMob [23] statically detects data race warnings and distributes 

them to a large number of user processes to validate real races. 

However RaceMob only works on limited scenarios where a distrib-

uted user site computation is available. Active testing techniques 

[41][37] need runs for confirmation after an imprecise race detec-

tion phase. In such a run, the schedules are guided by the set of data 

race warnings to trigger real data races. This kind of approach is 

able to confirm real races but cannot eliminate false positives.  

DrFinder takes another approach by using a precise data race detec-

tor, i.e., FastTrack [17], in the first place. With the inherent limita-

tion of the sensitivity on thread interleaving, an effective thread 

scheduling technique such as DrFinder is a desirable complement 

with HB detectors (if used in our Phase I) to provide precise data 

race reports with high coverage.  

Thread Scheduling techniques are more promising to detect races 

than pure stress testing. Systematic scheduling techniques such as 

model checking [48][30], are in theory able to exhaustively execute 

every schedule. However, due to the state explosion problem, enu-

merating each schedule is not practical for real-world programs. 

Chess [30] sets a heuristic bound on the number of pre-emptions to 

explore the schedules. Also, although systematic approaches avoid 

executing previously explored schedules and are more scalable than 

pure model checking techniques [14], they usually incur large over-

heads and fail to scale up to handle long running programs. Alt-

hough improvement for Chess exists [4], finding the positions for 

such bounded exhaustive exploration from a large trace to effec-

tively expose hidden races is challenging [24]. 

Another type of scheduling technique is based on some coverage 

criteria of concurrent programs [7][19]. For example, Maple [50] 

relies on patterns (i.e., iRoots [50]) to mine certain coverage to ex-

pose concurrency bugs. However, Maple is insensitive to detect 

races requiring reversing more than one HB edge. Existing experi-

ments (e.g., [10]) have shown that on a large benchmark like Chro-

mium, there may be 16 million or more HB edges in a trace. It is 

challenging to select an effective subset of all such HB edges to 

confirm given patterns as Maple is designed to confirm one pattern 

per confirmation run. Besides, the relation between the coverage of 

a specific metric and targeted concurrency bugs cannot be verified 

in theory. A previous empirical study [26] has shown that different 

criteria have different effectiveness on different testing techniques. 

This increases the difficulty of choosing a suitable criterion. 

DrFinder is specially designed to detect hidden races based on our 

may-trigger relation. Unlike above reviewed systematic scheduling 

techniques or coverage based techniques that have to restrict their 

scheduling bounds [30][50], DrFinder is able to scale up to large-

scale programs (i.e., Eclipse in our benchmark) and does not require 

any bug patterns. 

8. CONCLUSION 
This paper presents a dynamic technique DrFinder to detect hidden 

races in multithreaded Java programs. It tries to reverse possible 

HB edges based on a type based May-trigger Relation. The experi-

ment shows that DrFinder is promising in detecting hidden races 

and detected 89 news races that were missed by existing techniques 

FastTrack, ConTest, and PCT. Many new races detected by 

DrFinder in 10 runs cannot be detected by other techniques even in 

100 runs. DrFinder is also efficient as it incurs less overhead than 

other active scheduling techniques CT and PCT. In future, we will 

extend our basic model of DrFinder proposed in this paper to fur-

ther validate its ability on detection of hidden data races.  
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Figure 8. Cumulative effectiveness of FT, CT, and PCT in 100 runs on 

the 56 races that can only be detected by DR in 10 runs. 
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