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Abstract

In this paper we propose a new approach to clustering
high dimensional data based on a novel notion of cluster
cores, instead of nearest neighbors. A cluster core is a
fairly dense group with a maximal number of pairwise simi-
lar/related objects. It represents the core/center of a cluster,
as all objects in a cluster are with a great degree attracted to
it. As a result, building clusters from cluster cores achieves
high accuracy. Other characteristics of our cluster cores-
based approach include: (1) It does not incur the curse of
dimensionality and is scalable linearly with the dimension-
ality of data. (2) Outliers are effectively handled with clus-
ter cores. (3) Clusters are efficiently computed by applying
existing algorithms in graph theory. (4) It outperforms both
in efficiency and in accuracy the well-known clustering al-
gorithm, ROCK.

1 Introduction

Clustering is a major technique for data mining, together
with association mining and classification [4, 11, 21]. It
divides a set of objects (data points) into groups (clusters)
such that the objects in a cluster are more similar (or re-
lated) to one another than to the objects in other clusters.
Although clustering has been extensively studied for many
years in statistics, pattern recognition, and machine learn-
ing (see [14, 15] for a review), as Agrawal et al [3] point
out, emerging data mining applications place many special
requirements on clustering techniques, such as scalability
with high dimensionality of data. A number of cluster-
ing algorithms have been developed over the last decade in
the data base/data mining community (e.g., DBSCAN [5],
CURE [9], CHAMELEON [17], CLARANS [18], STING
[20], and BIRCH [22]). Most of these algorithms rely on
a distance function (such as the Euclidean distance or the
Jaccard distance that measures the similarity between two
objects) such that objects are in the same cluster if they

are nearest neighbors. However, recent research shows
that clustering by distance similarity is not scalable with
the dimensionality of data because it suffers from the so-
called curse of dimensionality [13, 12], which says that for
moderate-to-high dimensional spaces (tens or hundreds of
dimensions), a full-dimensional distance is often irrelevant
since the farthest neighbor of a data point is expected to be
almost as close as its nearest neighbor [12, 19]. As a re-
sult, the effectiveness/accuracy of a distance-based cluster-
ing method would decrease significantly with increase of di-
mensionality. This suggests that ”shortest distances/nearest
neighbors” are not a robust criterion in clustering high di-
mensional data.

1.1 Contributions of the Paper

To resolve the curse of dimensionality, we propose a new
definition of clusters that is based on a novel concept of
cluster cores, instead of nearest neighbors. A cluster core
is a fairly dense group with a maximal number of pairwise
similar objects (neighbors). It represents the core/center of
a cluster so that all objects in a cluster are with a great de-
gree attracted to it. This allows us to define a cluster to be
an expansion of a cluster core such that every object in the
cluster is similar to most of the objects in the core.

Instead of using Euclidean or Jaccard distances, we de-
fine the similarity of objects by taking into account the
meaning (semantics) of individual attributes. In particular,
two objects are similar (or neighbors) if a certain number
of their attributes take on similar values. Whether two val-
ues of an attribute are similar is semantically dependent on
applications and is defined by the user. Note that since any
two objects are either similar/neighbors or not, the concept
of nearest neighbors does not apply in our approach.

Our definition of clusters shows several advantages.
Firstly, since the similarity of objects is measured seman-
tically w.r.t. the user’s application purposes, the resulting
clusters would be more easily understandable by the user.
Secondly, a cluster core represents the core/center of a clus-
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ter, with the property that a unique cluster is defined given
a cluster core and that all objects in a cluster are with a
great degree attracted to the core. Due to this, the cluster
cores-based method achieves high accuracy. Thirdly, since
clusters are not defined in terms of nearest neighbors, our
method does not incur the curse of dimensionality and is
scalable linearly with the dimensionality of data. Finally,
outliers are effectively eliminated by cluster cores, as an
outlier would be similar to no or just a very few objects
in a core.

1.2 Related Work

In addition to dimensionality reduction (e.g., the prin-
cipal component analysis (PCA) [14, 8]) and projec-
tive/subspace clustering (e.g., CLIQUE [3], ORCLUS [2]
and DOC [19]), more closely related work on resolving the
dimensionality curse with high dimensional data includes
shared nearest neighbor methods, such as the Jarvis-Patrick
method [16], SNN [6], and ROCK [10]. Like our cluster
cores-based method, they do not rely on the shortest dis-
tance/nearest neighbor criterion. Instead, objects are clus-
tered in terms of how many neighbors they share. A major
operation of these methods is to merge small clusters into
bigger ones. The key idea behind the Jarvis-Patrick method
is that if any two objects share more than T (specified by
the user) neighbors, then the two objects and any cluster
they are part of can be merged. SNN extends the Jarvis-
Patrick method by posing one stronger constraint: two clus-
ters Ci and Cj could be merged if there are two representa-
tive objects, oi ∈ Ci and oj ∈ Cj , which share more than
T neighbors. An object A is a representative object if there
are more than T1 objects each of which shares more than T
neighbors with A. To apply SNN, the user has to specify
several thresholds including T and T1. ROCK is a sophisti-
cated agglomerative (i.e. bottom-up) hierarchical clustering
approach. It tries to maximize links (common neighbors)
within a cluster while minimizing links between clusters by
applying a criterion function such that any two clusters Ci

and Cj could be merged if their goodness value g(Ci, Cj)
defined below is the largest:

link[Ci, Cj ]

(|Ci| + |Cj |)1+2f(θ) − |Ci|1+2f(θ) − |Cj |1+2f(θ)

where link[Ci, Cj ] is the number of common neighbors be-
tween Ci and Cj , θ is a threshold for two objects to be sim-
ilar under the Jaccard distance measure (see Equation (2)),
and f(θ) is a function with the property that for any cluster
Ci, each object in it has approximately |Ci|f(θ) neighbors.
The time complexity of ROCK is O(|DB|2 ∗ log|DB| +
|DB| ∗DG ∗m), where DB is a dataset, and DG and m are
respectively the maximum number and average number of
neighbors for an object. To apply ROCK, the user needs to

provide a threshold θ and define a function f(θ). However,
as the authors admit [10], it may not be easy to decide on an
appropriate function f(θ) for different applications.

Unlike the above mentioned shared nearest neighbor ap-
proaches, our cluster cores-based method does not perform
any merge operations. It requires the user to specify only
one threshold: the minimum size of a cluster core. We will
show that our method outperforms ROCK both in clustering
efficiency (see Corollary 4.3) and in accuracy (see experi-
mental results in Section 5).

2 Semantics-based Similarity

Let A1, ..., Ad be d attributes (dimensions) and V1, ..., Vd

be their respective domains (i.e. Ai takes on values from
Vi). Each Vi can be finite or infinite, and the values in Vi

can be either numerical (e.g., 25.5 for price) or categorical
(e.g., blue for color). A dataset (or database) DB is a finite
set of objects (or data points), each o of which is of the form
(ido, a1, ..., ad) where ido is a natural number representing
the unique identity of object o, and ai ∈ Vi or ai = nil. nil
is a special symbol not appearing in any Vi, and ai = nil
represents that the value of Ai is not present in this object.
For convenience of presentation, we assume the name o of
an object is the same as its identity number ido.

To cluster objects in DB, we first define a measure of
similarity. The Euclidean distance and the Jaccard distance
are two similarity measures which are most widely used by
existing clustering methods. Let o1 = (o1, a1, ..., ad) and
o2 = (o2, b1, ..., bd) be two objects. When the ais and bjs
are all numerical values, the Euclidean distance of o1 and
o2 is computed using the formula

distance(o1, o2) = (

d∑

k=1

(ak − bk)2)1/2 (1)

When the ais and bjs are categorical values, the Jaccard
distance of o1 and o2 is given by

distance(o1, o2) = 1 −

∑d
k=1 ak • bk

2d −
∑d

k=1 ak • bk

(2)

where ak • bk = 1 if ak = bk 6= nil; otherwise ak • bk = 0.
The similarity of objects is then measured such that for
any objects o1, o2 and o3, o1 is more similar (or closer)
to o2 than to o3 if distance(o1, o2) < distance(o1, o3).
o2 is a nearest neighbor of o1 if distance(o1, o2) ≤
distance(o1, o3) for all o3 ∈ DB − {o1, o2}.

As we mentioned earlier, clustering by a distance simi-
larity measure like (1) or (2) suffers from the curse of di-
mensionality. In this section, we introduce a non-distance
measure that relies on the semantics of individual attributes.



We begin by defining the similarity of two values of an at-
tribute. For a numerical attribute, two values are consid-
ered similar w.r.t. a specific application if their difference
is within a scope specified by the user. For a categorical at-
tribute, however, two values are viewed similar if they are in
the same class/partition of the domain. The domain is par-
titioned by the user based on his/her application purposes.
Formally, we have

Definition 2.1 (Similarity of two numerical values) Let
A be an attribute and V be its domain with numerical
values. Let ω ≥ 0 be a scope specified by the user. a1 ∈ V
and a2 ∈ V are similar if |a1 − a2| ≤ ω.

Definition 2.2 (Similarity of two categorical values) Let
A be an attribute and V = V1 ∪ V2 ∪ ...∪ Vm be its domain
of categorical values, with each Vi being a partition w.r.t
the user’s application purposes. a1 ∈ V and a2 ∈ V are
similar if both are in some Vi.

For instance, we may say that two people are similar
in age if the difference of their ages is below 10 years,
and similar in salary if the difference is not over $500.
We may also view two people similar in profession if both
of their jobs belong to the group {soldier, police, guard}
or the group {teacher, researcher, doctor}. The similar-
ity of attribute values may vary from application to appli-
cation. As an example, let us consider an attribute, city,
with a domain Vcity = {Beijing, Shanghai, Guangzhou,
Chongqing, Lasa, Wulumuqi}. For the user of government
officials, Vcity would be partitioned into {Beijing, Shang-
hai, Chongqing} ∪ {Lasa, Wulumuqi} ∪ {Guangzhou}, as
Beijing, Shanghai and Chongqing are all municipalities di-
rectly under the Chinese Central Government, while Lasa
and Wulumuqi are in two autonomous regions of China.
However, for the user who is studying the SARS epidemic,
Vcity would be partitioned into {Beijing, Guangzhou} ∪
{Shanghai, Chongqing} ∪ {Lasa, Wulumuqi}, as in 2003,
Beijing and Guangzhou were two most severe regions in
China with the SARS epidemic, Shanghai and Chongqing
had just a few cases, and Lasa and Wulumuqi were among
the safest zones with no infections.

With the similarity measure of attribute values defined
above, the user can then measure the similarity of two ob-
jects by counting their similar attribute values. If the num-
ber of similar attribute values is above a threshold δ, the two
objects can be considered similar w.r.t. the user’s applica-
tion purposes. Here is the formal definition.

Definition 2.3 (Similarity of two objects) Let o1 and o2

be two d-dimensional objects and K be a set of key at-
tributes w.r.t. the user’s application purposes. Let δ be a
similarity threshold with 0 < δ ≤ |K| ≤ d. o1 and o2 are
similar (or neighbors) if they have at least δ attributes in K
that take on similar values.

The set of key attributes is specified by the user. Whether
an attribute is selected as a key attribute depends on whether
it is relevant to the user’s application purposes. In case that
the user has difficulty specifying key attributes, all attributes
are taken as key attributes. The similarity threshold δ is ex-
pected to be specified by the user. It can also be elicited
from a dataset by trying several possible choices (at most
d alternatives) in clustering/learning experiments. The best
similarity threshold is one that leads to a satisfying clus-
tering accuracy (see Section 5). Note that since any two
objects are either similar/neighbors or not, the concept of
nearest neighbors does not apply in our approach.

3 Cluster Cores and Disjoint Clusters

The intuition behind our clustering method is that every
cluster is believed to have its own distinct characteristics,
which are implicitly present in some objects in a dataset.
This suggests that the principal characteristics of a cluster
may be represented by a certain number of objects Cr such
that (1) any two objects in Cr are similar and (2) no other
objects in the dataset can be added to Cr without affecting
property (1). Formally, we have

Definition 3.1 (Cluster cores) Cr ⊆ DB is a cluster core
if it satisfies the following three conditions. (1) |Cr| ≥ α,
where α is a threshold specifying the minimum size of a
cluster core. (2) Any two objects in Cr are similar w.r.t. the
user’s application purposes. (3) There exists no C ′, with
Cr ⊂ C ′ ⊆ DB, that satisfies condition (2). Cr is a max-
imum cluster core if it is a cluster core with the maximum
cardinality.

Note that a cluster core Cr is a fairly dense group with a
maximal number of pairwise similar/related objects. Due to
this, it may well be treated as the core/center of a cluster, as
other objects of the cluster not in Cr must be attracted with
a great degree to Cr.

Definition 3.2 (Clusters) Let Cr ⊆ DB be a cluster core
and let θ be a cluster threshold with 0 ≤ θ ≤ 1. C is a
cluster if C = {v ∈ DB|v ∈ Cr or Cr contains at least
θ ∗ |Cr| objects that are similar to v}.

The threshold θ is the support (degree) of an object being
attracted to a cluster core. Such a parameter can be learned
from a dataset by experiments (see Section 5). Note that a
unique cluster is defined given a cluster core. However, a
cluster may be derived from different cluster cores, as the
core/center of a cluster can be described with different sets
of objects that satisfy the three conditions of Definition 3.1.

The above definition of cluster cores/clusters allows us
to apply existing graph theory to compute them. We first
define a similarity graph over a dataset.



Definition 3.3 (Similarity graphs) A similarity graph,
SGDB = (V, E), of DB is an undirected graph where
V = DB is the set of nodes, and E is the set of edges such
that {o1, o2} ∈ E if objects o1 and o2 are similar.

Example 3.1 Let us consider a sample dataset, DB1, as
shown in Table 1, where nil is replaced by a blank. For
simplicity, assume all attributes have a domain {1} with a
single partition {1}. Thus, two values, v1 and v2, of an
attribute are similar if v1 = v2 = 1. Let us assume all at-
tributes are key attributes, and choose the similarity thresh-
old δ ≥ 2. The similarity relationship between objects of
DB1 is depicted by a similarity graph SGDB1

shown in
Figure 1.

Table 1. A sample dataset DB1.
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Figure 1. A similarity graph SGDB1
.

Let G = (V, E) be an undirected graph and V ′ ⊆ V .
We denote G(V ′) for the subgraph of G induced by V ′;
namely, G(V ′) = (V ′, E′) such that for any v1, v2 ∈ V ′,
{v1, v2} ∈ E′ if and only if {v1, v2} ∈ E. G is complete
if its nodes are pairwise adjacent, i.e. for any two different
nodes v1, v2 ∈ V , {v1, v2} ∈ E. A clique C is a subset
of V such that G(C) is complete. A maximal clique is a
clique that is not a proper subset of any other clique. A
maximum clique is a maximal clique that has the maximum
cardinality. It turns out that a cluster core in DB corresponds
to a maximal clique in SGDB .

Theorem 3.1 Let Cr ⊆ DB with |Cr| ≥ α. Cr is a cluster
core if and only if it is a maximal clique in SGDB . Cr is a
maximum cluster core if and only if it is a maximum clique
in SGDB .

Similarly, we have the following result.

Theorem 3.2 Let Cr ⊆ DB with |Cr| ≥ α and let V =
{v 6∈ Cr|v is a node in SGDB and there are at least θ∗|Cr|
nodes in Cr that are adjacent to v}. C is a cluster with a
cluster core Cr if and only if Cr is a maximal clique in
SGDB and C = Cr ∪ V .

Example 3.2 In Figure 1, we have four maximal cliques:
C1 = {1, 2, 3, 4}, C2 = {4, 5}, C3 = {5, 6, 7} and C4 =
{5, 6, 8}. If we choose the least cluster size α = 2, all of
the four maximal cliques are cluster cores. Let us choose
α = 3 and the cluster threshold θ = 0.6. C1, C3 and C4 are
cluster cores. C1 is also a cluster and {5, 6, 7, 8} is a cluster
which can be obtained by expanding either C3 or C4.

From Example 3.2, we see that there may be overlaps
among cluster cores and/or clusters. In this paper we are
devoted to building disjoint clusters.

Definition 3.4 (Disjoint clusters) DC(DB) =
{C1, ..., Cm} is a collection of disjoint clusters of
DB if it satisfies the following condition: C1 is a cluster in
DB, and for any i > 1, Ci is a cluster in DB−

⋃j=i−1
j=1 Cj .

Consider Figure 1 again. Let α = 2 and θ =
0.6. We have several collections of disjoint clusters in-
cluding: DC(DB1)1 = {{1, 2, 3, 4}, {5, 6, 7, 8}} and
DC(DB1)2 = {{4, 5}, {1, 2, 3}, {6, 7}}. Apparently, we
would rather choose DC(DB1)1 than DC(DB1)2. To ob-
tain such optimal ones, we introduce a notion of maximum
disjoint clusters.

Definition 3.5 (Maximum disjoint clusters)
DC(DB) = {C1, ..., Cm} is a collection of maxi-
mum disjoint clusters if it is a collection of disjoint clusters
with the property that each Ci is a cluster with a maximum
cluster core in DB −

⋃j=i−1
j=1 Cj .

Back to the above example, DC(DB1)1 is a collection
of maximum disjoint clusters, but DC(DB1)2 is not, as
{4, 5} is not a maximum cluster core in DB1.

4 Approximating Maximum Clusters

Ideally, we would like to have maximum disjoint clus-
ters. However, this appears to be infeasible for a massive
dataset DB, as computing a maximum cluster core over
DB amounts to computing a maximum clique over its cor-
responding similarity graph SGDB (Theorem 3.1). The



maximum clique problem is one of the first problems shown
to be NP -complete, which means that, unless P=NP , ex-
act algorithms are guaranteed to return a maximum clique
in a time which increases exponentially with the number of
nodes in SGDB .

In this section, we describe our algorithm for approxi-
mating maximum disjoint clusters. We begin with an algo-
rithm for computing a maximal clique. For a node v in a
graph G, we use ADG(v) to denote the set of nodes adja-
cent to v, and refer to |ADG(v)| as the degree of v in G.

Algorithm 1: Computing a maximal clique.
Input: An undirected graph G = (V, E).
Output: A maximal clique C in G.
function maximal clique(V, E) returns C
1) C = ∅;
2) V ′ = V ;
3) while (V ′ 6= ∅) do begin
4) Select v at random from V ′;
5) C = C ∪ {v};
6) V ′ = ADG(V ′)(v)
7) end
8) return C
end

Since there may be numerous maximal cliques in a
graph, Algorithm 1 builds one in a randomized way. Ini-
tially, C is an empty clique (line 1). In each cycle of lines 3
- 7, a new node is added to C. After k ≥ 0 cycles, C grows
into a clique {v1, ..., vk}. In the beginning of cycle k+1,
V ′ consists of all nodes adjacent to every node in C. Then,
vk+1 is randomly selected from V ′ and added to C (lines
4-5). The iteration continues with V ′ = ADG(V ′)(vk+1)
(line 6) until V ′ becomes empty (line 3).

Let DG be the maximum degree of nodes in G and let S
be the (sorted) set of nodes in G that are adjacent to a node
v. The time complexity of line 6 is bounded by O(DG),
as computing ADG(V ′)(v) is to compute the intersection of
the two sorted sets S and V ′. Thus we have the following
immediate result.

Theorem 4.1 Algorithm 1 constructs a maximal clique

with the time complexity O(D
2

G).

Algorithm 1 randomly builds a maximal clique. This
suggests that a maximum clique could be approximated if
we apply Algorithm 1 iteratively for numerous times. Here
is such an algorithm (borrowed from Abello et al. [1, 7]
with slight modification).

Algorithm 2: Approximating a maximum clique.
Input: A graph G = (V, E) and an integer maxitr.
Output: A maximal clique Cr.
function maximum clique(V, E, maxitr) returns Cr

1) Cr = ∅;
2) i = 0;
3) while (i < maxitr) do begin
4) C = maximal clique(V, E);
5) if |C| > |Cr| then Cr = C;
6) i = i + 1
7) end
8) return Cr

end

The parameter maxitr specifies the times of iteration. In
general, the bigger maxitr is, the closer the final output Cr

would be to a maximum clique. In practical applications, it
would be enough to do maxitr ≤ DG iterations to obtain
a maximal clique quite close to a maximum one. For in-
stance, in Figure 1 choosing maxitr = 2 guarantees to find
a maximum clique, where DSGDB1

= 4.
By Theorem 3.1, Algorithm 2 approximates a maximum

cluster core Cr when G is a similarity graph SGDB . There-
fore, by Theorem 3.2 an approximated maximum cluster
can be built from Cr by adding those nodes v such that Cr

contains at least θ ∗ |Cr| nodes adjacent to v. So we are
ready to introduce the algorithm for approximating maxi-
mum disjoint clusters over a similarity graph.

Algorithm 3: Approximating maximum disjoint clusters.
Input: SGDB = (V, E), maxitr, α and θ.
Output: Q = {C1, ..., Cm}, a collection of

approximated maximum disjoint clusters.
function disjoint clusters(V, E, α, θ, maxitr) returns Q
1) Q = ∅;
2) (V ′, E′) = peel((V, E), α);
3) while (|V ′| ≥ α) do begin
4) Cr = maximum clique(V ′, E′, maxitr);
5) if |Cr| < α then break;
6) C = Cr ∪ {v ∈ V ′ − Cr|Cr has at least

θ ∗ |Cr| nodes adjacent to v};
7) Add C to the end of Q;
8) V1 = V ′ − C;
9) (V ′, E′) = peel(SGDB(V1), α)
10) end
11) return Q
end

Given a graph G, the function peel(G, α) updates G into
a graph G′ = (V ′, E′) by recursively removing (labeling
with a flag) all nodes whose degrees are below the least
size of a cluster core α (lines 2 and 9), as such nodes will
not appear in any disjoint clusters. By calling the function
maximum clique(V ′, E′, maxitr) (line 4), Algorithm 3
builds a collection of disjoint clusters Q = {C1, ..., Cm},
where each Ci is an approximation of some maximum clus-
ter in DB −

⋃j=i−1
j=1 Cj .



Theorem 4.2 When Algorithm 3 produces a collection of
m disjoint clusters, its time complexity is O(m ∗ maxitr ∗

D
2

G).

Since it costs O(|DB|2) in time to construct a similarity
graph SGDB from a dataset DB,1 the following result is
immediate to Theorem 4.2.

Corollary 4.3 The overall time complexity of the cluster

cores-based clustering is O(|DB|2 + m ∗ maxitr ∗ D
2

G).

In a massive high dimensional dataset DB, data points
would be rather sparse so that DG � |DB|. Our experi-
ments show that most of the time is spent in constructing

SGDB because |DB|2 � m ∗maxitr ∗D
2

G. Note that the
complexity of our method is below that of ROCK.

5 Experimental Evaluation

We have implemented our cluster cores-based cluster-
ing method (Algorithms 1-3 together with a procedure for
building a similarity graph SGDB) and made extensive ex-
periments over real-life datasets. Due to the limit of paper
pages, in this section we only report experimental results
on one dataset: the widely-used Mushroom data from the
UCI Machine Learning Repository (we downloaded it from
http://www.sgi.com/tech/mlc/db/). The Mushroom dataset
consists of 8124 objects with 22 attributes each with a cat-
egorical domain. Each object has a class of either edible or
poisonous. One major reason for us to choose this dataset is
that ROCK [10] has achieved very high accuracy over it, so
we can make a comparison with ROCK in clustering accu-
racy. Our experiments go through the following two steps.

Step 1: Learn a similarity threshold δ. In most cases, the
user cannot provide a precise similarity threshold used for
measuring the similarity of objects. This requires us to be
able to learn it directly from a dataset.

For a dataset with d dimensions, δ has at most d possi-
ble choices. Then, with each δi ≤ d we construct a sim-
ilarity graph SGδi

DB and apply Algorithm 3 with θ = 1
to derive a collection of disjoint clusters. Note that since
θ = 1, each cluster is itself a cluster core. Next, we compute
the clustering precision for each selected δi using the for-
mula precision(δi, 1, |DB|) = N

|DB| , where N is the num-
ber of objects sitting in right clusters. Finally, we choose
δ = maxδi

{precision(δi, 1, |DB|)} as the best threshold
since under it the accuracy of a collection of disjoint cluster
cores would be maximized.

Step 2: Learn a cluster threshold θ given δ. With the simi-
larity threshold δ determined via Step 1, we further elicit a

1It costs O(d) to compute the similarity of two objects with d dimen-
sions. Since d � DB, it is often ignored in most existing approaches.

cluster threshold θ from the dataset, aiming to construct a
collection of disjoint clusters with high accuracy.

With each θi ∈ {0.8, 0.81, ..., 0.99, 1} we apply Algo-
rithm 3 to generate a collection of disjoint clusters and com-
pute its precision using the formula precision(δ, θi, |DB|).
The best θ comes from maxθi

{precision(δ, θi, |DB|)}.
Note that θi begins with 0.8. This value was observed

in our experiments. It may vary from application to
application. In addition, to obtain clusters with largest
possible sizes, one may apply different cluster thresholds:
a relatively small one for large cluster cores and a relatively
big one for small cluster cores. Again, such cluster thresh-
olds can be observed during the learning process.

We performed our experiments on a PC computer with
a Pentium 4 2.80GHz CPU and 1GB of RAM. To ap-
proximate maximum cluster cores (Algorithm 2), we set
maxitr = 10 (i.e. we do 10 times of iteration). In Step
1, different similarity thresholds were tried, with different
accuracy results produced as shown in Figure 2. Clearly,
δ = 15 is the best for the Mushroom dataset. With this
similarity threshold, in Step 2 we applied different cluster
thresholds and obtained different accuracy results as shown
in Figure 3. We see that the highest accuracy is obtained
at θ = 0.88. The sizes of clusters that were produced with
δ = 15 and θ = 0.88 are shown in Table 2 (C# stands for
the cluster number and the results of ROCK were copied
from [10]). Note that our method achieves higher accuracy
than ROCK.

Figure 2. Accuracy with varying similarity
thresholds.

To show that the two thresholds learned via Steps 1
and 2 are the best, we made one more experiment by
learning the two parameters together. That is, for each
δi ≤ d and θj ∈ {0.8, 0.81, ..., 0.99, 1}, we compute
precision(δi, θj , |DB|). If δ and θ selected in Steps 1
and 2 are the best, we expect precision(δ, θ, |DB|) ≈
maxδi,θj

{precision(δj , θj , |DB|)}. Apparently, Figure 4
confirms our expectation.

In addition to having high clustering accuracy, our clus-
ter cores-based method can achieve high accuracy when be-
ing applied to make classifications. The basic idea is as



Figure 3. Accuracy with varying cluster
thresholds given δ = 15.

Figure 4. Accuracy with varying similarity and
cluster thresholds.

follows. We first apply Algorithm 3 over a training dataset
to learn a similarity threshold δ and generate a collection of
disjoint cluster cores with this threshold and θ = 1. Then,
we label each cluster core with a class. Next, for each new
object o to be classified we count the number Ni of similar
objects of o in each cluster core Cr

i . Finally, we compute
i = maxi{Ni/|Cr

i |} and label o with the class of Cr
i .

We also made experiments for classification on the
Mushroom data. The 8,124 objects of the Mushroom
dataset have already been divided into a training set (5416
objects) and test set (2,708 objects) on the SGI website
(http://www.sgi.com/tech/mlc/db/). The experimental re-
sults are shown in Figure 5, where we obtain over 98% of
classification accuracy at δ = 15.

6 Conclusions and Future Work

We have presented a new clustering approach based on
the notion of cluster cores, instead of nearest neighbors. A
cluster core represents the core/center of a cluster and thus

Table 2. Clustering results (Mushroom data).
Cluster Cores-based Clustering

C# Edible Poisonous C# Edible Poisonous
1 1704 0 12 192 0
2 0 1280 13 0 172
3 0 1556 14 32 72
4 762 0 15 96 0
5 0 288 16 96 0
6 288 0 17 48 0
7 509 0 18 48 0
8 192 0 19 0 36
9 0 256 20 0 32

10 0 192 21 24 0
11 192 0

Precision = 8035/8124 = 98.9%

ROCK
C# Edible Poisonous C# Edible Poisonous
1 96 0 12 48 0
2 0 256 13 0 288
3 704 0 14 192 0
4 96 0 15 32 72
5 768 0 16 0 1728
6 0 192 17 288 0
7 1728 0 18 0 8
8 0 32 19 192 0
9 0 1296 20 16 0

10 0 8 21 0 36
11 48 0

Precision = 7804/8124 = 96.1%

using cluster cores to derive clusters achieves high accuracy.
Since clusters are not defined in terms of nearest neighbors,
our method does not incur the curse of dimensionality and
is scalable linearly with the dimensionality of data. Out-
liers are effectively eliminated by cluster cores, as an outlier
would be similar to no or just a very few objects in a cluster
core. Although our approach needs three thresholds, α (the
minimum size of a cluster core) and δ (the similarity thresh-
old) and θ (the cluster threshold), the last two can well be
learned from data. We have shown that our approach out-
performs both in efficiency and in accuracy the well-known
ROCK algorithm.

Like all similarity matrix/graph-based approaches, most
of the time of our approach is spent in building a similar-
ity graph. Therefore, as part of future work we are seeking
more efficient ways to handle similarity graphs of massive
datasets. Moreover, we are going to make detailed com-
parisons with other closely related approaches such as SNN
[6].



Figure 5. Accuracy of clustering-based clas-
sification (Mushroom data).
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