
Symbolic Model Checking of Finite Precision

Timed Automata ?

Rongjie Yan1,2, Guangyuan Li1, and Zhisong Tang1

1 Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences,Beijing,100080,China

2 Graduate School of the Chinese Academy of Sciences,Beijing,100039,China
{yrj,ligy}@ios.ac.cn

Abstract. This paper introduces the notion of finite precision timed au-
tomata (FPTAs) and proposes a data structure to represent its symbolic
states. To reduce the state space, FPTAs only record the integer values
of clock variables together with the order of their most recent resets.
We provide constraints under which the reachability checking of a timed
automaton can be reduced to that of the corresponding FPTA, and then
present an algorithm for reachability analysis. Finally, the paper reports
some preliminary experimental results, and analyzes the advantages and
disadvantages of the new data structure.

Key words: finite precision timed automata, model checking, symbolic methods

1 Introduction

Timed automata (TAs) [1] provide a formal framework for the automatic analysis
and verification of real-time systems, and in the past few years several tools for
the model checking of TAs have been developed and used, including Uppaal [20],
Kronos [15, 11], Red [22–24] and Rabbit [9].
State space explosion is likely to be the most serious problem that any model

checker has to deal with. Within the model checking community, there were many
different attempts to reduce memory consumption and to accelerate the speed
of exploration, including symmetry reduction [10, 18], partial order reduction [6]
and active clock reduction [16] (all based on the structural characteristics of the
system being verified), as well as region equivalence partition of state space [1],
and the discretization of time models [3, 9].
In addition to the approaches mentioned above, many works were based

on symbolic representations of the state space. The region equivalence of [1]
is the precursor of the symbolic methods in which the state space is covered
using regions with the same integer parts of clock values and the ordering of

? Supported by 973 Program of China under Grant No. 2002cb312200; and the Na-
tional Natural Science Foundation of China under Grant Nos. 60273025, 60223005,
60421001.

fractional parts. As a result, an infinite state space may then become finite. A
zone, based on region equivalence, uses a set of clock difference constraints to
represent all the states satisfying these constraints. Currently, most of verifiers,
like Uppaal, Kronos, and Red, use zones to represent symbolic states. And there
exist different data structures to describe the constraint sets, for example, DBM
(difference bound matrices) [5] and BDD-like (binary decision diagrams) [13]
data structures. In DBMs, employed by Uppaal and Kronos, a constraint set is
expressed as a weighted, directed graph with vertices corresponding to all the
clock variables and a zero-vertex 0. In BDD-like data structures, a node of the
decision tree represents a clock difference, an edge is labelled with an integral
interval, and a node together with an outgoing edge represents a constraint.
Uppaal and Kronos implemented such data structures too [4, 12].
Discrete timed automata [2] may achieve higher efficiency in analysis and

verification due to having fewer states, but they are not suitable to describe
asynchronous systems. On the other hand, timed automata with continuous
semantics [1] are appropriate to both synchronous and asynchronous systems,
but the complexity remains very high. To apply the mature techniques in discrete
time models to improve the efficiency of model checking, we try to discretize the
continuous time.
The present paper introduces a finite precision timed automaton (FPTA)

together with a data structure, different from DBMs and BDDs, for a symbolic
representation of the state space (note that Finite precision means that the
clocks have integral valuations). It can be shown that the reachability problem of
TA may be reduced to that of the corresponding FPTA under certain constraints
(see Theorm 1). The paper also develops a reachability analysis algorithm for
the FPTAs, and shows some initial experimental results.
The paper is organized as follows. In section 2, we briefly recall the definition

of TAs and their semantics. In section 3, we introduce FPTAs. In section 4, we
discuss the reachability problem equivalence for the TAs and FPTAs. In sec-
tion 5, we present the new symbolic data structure and the reachability analysis
algorithm for the FPTAs. In section 6, we give some experiment results. In the
concluding section, we discuss related work.

2 Timed Automata

A timed automaton (TA), proposed by Alur and Dill [1], is a finite state automa-
ton extended with a finite set of real-valued clock variables. Nodes of a TA rep-
resent locations, and arcs represent transitions between them. Clock constraints
within a node (invariants) restrict the time that can elapse in it. Constraints
labelling arcs act as guards for transitions between the nodes.

Definition 1. (Syntax of Timed Automata). Let X be a finite set of clocks, and
C(X) be the clock constraint set over X, given by the syntax:

φ ::= (x ∼ c) | φ1 ∧ φ2 | true

where x ∈ X, ∼∈ {<,≤, >,≥} and c ∈ N
+ (N+ is the set of non-negative

integers).
A timed automaton over X is a tuple A = 〈L, l0, Σ,X, I, E〉, where

– L is a finite set of locations, and l0 ∈ L is the initial location,
– I is a mapping that labels each location l ∈ L with some constraint in
C(X),and I(l) is called the invariant of l,

– Σ is a finite set of synchronization labels, and
– E ⊆ L× C(X)×Σ × 2X × L is the set of transitions.

A transition (l, φ, σ, Y, l′) ∈ E means that one can move from the location l
to l′ through a transition labelled with σ ∈ Σ. Moreover, φ the guard must be
satisfied by the current clock values, and all the clocks in Y (Y ⊆ X) are reset
to 0.
A clock valuation is a function µ : X 7→ R

+, where R
+ is the set of non-

negative reals. µX denotes the set of all clock valuations over X. For t ∈ R
+,

µ+ t denotes the clock valuation such that µ(x+ t) = µ(x)+ t, for all x ∈ X. For
Y ⊆ X, µ[Y := 0] denotes the clock valuation such that µ[Y := 0](x) = 0, for
all x ∈ Y and otherwise µ[Y := 0](x) = µ(x). µ satisfies a constraint φ ∈ C(X),
denoted by µ |= φ, if φ evaluates to true under the assignment given by µ.
The continuous semantics of a timed automaton A = 〈L, l0, Σ,X, I, E〉 over

X is defined as a transition system JAKC = 〈S, s0, Σ∪R
+,→〉, where S = L×µX ;

s0 = (l0, µ0) is the initial state where µ0(x) = 0 for all x ∈ X; and the transition
relation → comprises two kinds of moves:

– delay transition: (l, µ)
δ
−→ (l, µ+ δ), if δ ∈ R

+ and µ |= I(l) and µ+ δ |= I(l);

– discrete transition: (l, µ)
σ
−→ (l′, µ[Y := 0]), if (l, φ, σ, Y, l′) ∈ E and µ |= φ

and µ[Y := 0] |= I(l′).

In the transition system of A = 〈L, l0, Σ,X, I, E〉, for a state sk = (l, µ) where

l ∈ L, if there exists a transition sequence such that s0
α0−→ s1

α1−→ · · ·
αk−1

−−−→ sk,
then sk is called reachable in the continuous semantics of A where αi ∈ Σ ∪R

+.
Given a location l and a clock constraint φ, if there exists a reachable state (l, µ)
such that µ |= φ, then (l, φ) is called reachable in A.

3 Finite Precision Timed Automata

The syntax of FPTAs is the same as that of TAs. The feature that differentiates
an FPTA from a discrete time TA is that it can distinguish the ordering of clock
resets, by the introduction of an order. To define the semantics of FPTAs, we
introduce the notion of order firstly.

Definition 2. (Order). An order over X is a mapping o : X 7→ N
+, and the set

of all such mappings is denoted by oX . For x1, x2 ∈ X with o(x1) < o(x2), we
say that the order of x1 is less than that of x2.

Since different order valuations may represent the same ordering relationship
between the clocks, we introduce order normalization.

Definition 3. (Order Normalization).

1. An order o over X is normalized if the image o(X) is an initial interval of
N

+.
2. Two orders, o and o′, are equivalent if o(x) ≤ o(y) iff o′(x) ≤ o′(y), for all

x, y ∈ X.
3. For each order o, we denote by norm(o) the unique normalized order which

is equivalent to o.

For example, the normalization of the order o1 = (1, 0, 3, 4, 3) is norm(o1) =
(1, 0, 2, 3, 2).
For an FPTA A = 〈L, l0, Σ,X, I, E〉, a clock valuation is a mapping v :

X 7→ N
+, and the set of all such valuations is denoted by vX . A state of A is

s = (l, (v, o)) where l ∈ L, v ∈ vX is a clock valuation, o ∈ oX is a normalized
order, and (v, o) is the clock information of the state. For a state s = (l, (v, o))
and a constraint φ ∈ C(X), if v |= φ, we say that s satisfies (l, φ), denoted by
s |= (l, φ).
The semantics of A is the transition system JAKFP = 〈S, s0, Σ,→〉, where

S = L× (vX ×oX); s0 = (l0, (v0, o0)) is the initial state where v0(x) = o0(x) = 0
for all x ∈ X; and the transition relation → comprises two kinds of moves:

– delay transition: (l, (v, o))
ε
−→ (l, (v, o)⊕ k) (or simply (l, (v, o))→ (l, (v, o)⊕

k)), if k ∈ N
+ and (v, o)⊕ k |= I(l), where ((v, o)⊕ k)(x) = (v(x) + (o(x) +

k) div m, (o(x) + k) mod m) for m = 1 +max o(X);
– discrete transition: (l, (v, o))

σ
−→ (l′, (v′, o′)), if there exists (l, φ, σ, Y, l′) ∈

E such that v |= φ and v′ |= I(l′) and (v′, o′) = reset((v, o), Y) where
reset((v, o), Y) = (v[Y := 0],norm((o+ 1)[Y := 0])) and for each x ∈ X:

v[Y := 0](x) =

{

0 if x ∈ Y
v(x) if x ∈ X − Y,

(o+ 1)[Y := 0](x) =

{

0 if x ∈ Y
o(x) + 1 if x ∈ X − Y.

A run of an FPTA A is an infinite sequence of its discrete and delay transi-
tions:

(l0, (v0, o0))
α0−→ (l1, (v1, o1))

α1−→ (l2, (v2, o2))
α2−→ (l3, (v3, o3))

α3−→ . . .

where α ∈ Σ ∪ {ε}.
Here we show one of runs for the FPTA in Figure 1. For convenience, in

Figure 1, the discrete transition from l0 to l1 is called t1; the other is called t2.

Example 1. One of the runs for the FPTA in Figure 1 is:1 (l0, 0000)→ (l0, 1100)→

(l0, 2200)
a
−→ (l1, 2010) → (l1, 3001) → (l1, 3110) → (l1, 4101) → (l1, 4210) →

(l1, 5201)→ (l1, 5310)
b
−→ (l0, 0301)→ · · ·

1 To simplify the representation of clock information, we list them as clock values
followed by clock orders, e.g., the first two values of 0000 are the values of clock
variable x and y, the last two values are their orders.

x<5,y>=2

b

1l0l

x:=0

y>=3,x>=3
y:=0

a

y<=5

x<=5y<=4

Fig. 1. A simple timed automaton

Before discrete transitions, all the clock values will increase by one after every
time unit and the orders will not change. When the state (l0, 2200) is generated,
the guard of t1 is satisfied, and its occurrence leads to (l1, 2010). Now the guard
of t2 is not satisfied, and time elapses in location l1 on condition that its invariant
is satisfied. When (l1, 5310) is generated, transition t2 can occur and generate
successive states. ¤

Since safety and bounded liveness properties can be expressed in terms of
reachability [8], many model checkers for real-time systems concentrate on the
latter. The reachability checker of FPTAs will analyze whether (l, φ) is reachable.

Definition 4. (The Reachable State of FPTAs). Let A be an FPTA. For a state
(ln, (vn, on)), if there is a finite state sequence such that

(l0, (v0, o0))
α0−→ (l1, (v1, o1))

α1−→ (l2, (v2, o2))
α2−→ . . .

αn−1

−−−→ (ln, (vn, on))

then (ln, (vn, on)) is called reachable. Given a location l and a clock constraint
φ, if there exists a reachable state (l, (v, o)) in A such that v |= φ, we say that
(l, φ) is reachable in A.

4 The relationship between FPTAs and TAs

In this section, we investigate the relationship between reachability in FPTAs
and TAs. We have left proofs of Lemma 1 and 2 to Appendix A.

Definition 5. (Left Closed and Right Open Timed Automata). A clock con-
straint φ generated by the syntax

φ ::= x ≥ c | x < c | φ1 ∧ φ2 | true

is called left-closed and right-open (lcro-constraint). If all the constraints of a
TA are of this kind, we call it an lcro-TA.

With the lcro-constraint φ, the clock valuation of TAs µ |= φ iff bµc |= φ
(where bµc is the mapping which assigns every x ∈ X an integer bµ(x)c). Let
A be an lcro-TA, we will investigate the relationship between the continuous
semantics JAKC and the finite precision semantics JAKFP .

Definition 6. (Relation .). Let µ : X 7→ R
+ be a clock valuation of TAs, and

(v, o) be a clock information of FPTAs. Then µ . (v, o) if, for all x, y ∈ X,
v(x) = bµ(x)c and (frac(µ(x)) < frac(µ(y)) ⇒ o(x) < o(y)), where frac(r)
denotes the fractional part of a non-negative real r.

Lemma 1. For an lcro-TA A, if (l, µ) is reachable in JAKC , then there exists
(v, o) such that (l, (v, o)) is reachable in JAKFP , and µ . (v, o).

Definition 7. (Relation l). Let µ : X 7→ R
+ be a clock valuation of TAs, and

(v, o) be a clock information of FPTAs. Then µ l (v, o) if, for all x, y ∈ X,
v(x) = bµ(x)c and (frac(µ(x)) < frac(µ(y))⇔ o(x) < o(y)).

Lemma 2. For an lcro-TA A, if (l, (v, o)) is reachable in JAKFP , then there
exists µ such that (l, µ) is reachable in JAKC , and (v, o) l µ.

Let ReachC(A) = {(l, φ)|l ∈ L, φ ∈ C(X), and (l, φ) is reachable in the
continuous semantics}, and ReachFP (A) = {(l, φ)|l ∈ L, φ ∈ C(X), and (l, φ) is
reachable in the finite precision semantics}.

Theorem 1. Let A be an lcro-TA, φ be an lcro-constraint, then (l, φ) ∈ ReachC(A)
iff (l, φ) ∈ ReachFP (A).

Proof. “⇒:” If (l, φ) is reachable in JAKC , then there exists a state (l, µ) such
that (l, µ) is reachable in JAKC and µ |= φ. Followed from the claim of Lemma
1, there exists a state (l, (v, o)) such that it is reachable in JAKFP , and µ. (v, o).
Therefore, v |= φ by the Definition 6, then (l, φ) ∈ ReachFP (A).
“⇐:” The proof is similar to the above using Lemma 2 and Definition 7. ¤

In FPTAs, state equivalence is determined by the clock value and its order,
which is different from the region equivalence in TAs [1]. The clock information
of FPTAs (v, o) ' (v′, o′), if they hold the following relation:

– for all x ∈ X, either v(x) = v′(x), or (v(x) ≥ cx + 1) ∧ (v
′(x) ≥ cx + 1

2),
– for all x ∈ X, o(x) = o′(x)

The equivalence classification can ensure the finiteness of the state space.
When the clock value of x is equal to or greater than cx + 1, it is recorded as
cx + 1, which prevents the infiniteness of the state space. The models proposed
in [22, 23] are similar to FPTAs, which use integer to record clock values and
orders. However, they are based on the continuous semantics.

5 Reachability Analysis of FPTAs

One of the most common properties being checked by the verifiers is the reach-
ability whose analysis is based on the exploration of the graph. There are two
kinds of search strategies during state space exploration: forward and backward
search. Currently our tool uses the forward search technique.

2 cx is the maximal constant in clock constraints on x in the automaton.

To relieve the state space explosion problem, verifiers usually use symbolic
methods to record set of states. And the key issue is how to represent them.
Different from the constraint based symbolic methods, the checker of FPTAs
uses a data structure to describe the state set explicitly, meaning that all the
sequences created by time delays are enumerated.
In this section, according to the characteristics of state space generation, we

first analyze the features and the representation of a sequence of states created
by time delays (called delay sequence). Then, based on the relation of the states
generated from a segment of delay sequence by the discrete transition, we propose
a data structure to represent the set of states symbolically. Thirdly, we present
the symbolic transition systems of FPTAs. Finally, we introduce the algorithm
for reachability analysis.
Let us fix for the rest of this section an FPTA A = 〈L, l0, Σ,X, I, E〉.

5.1 Representation of States in the Delay Sequence

The generation of the state space is started from the initial state (l0, (v0, o0)).
Whenever allowed by the invariant of l0, the sequence (l0, (v0, o0))→ (l0, (v0, o0)⊕
1) → . . . can be generated by time delays, where ((v0, o0) ⊕ i) |= I(l0), i ≥ 0.
Here we introduce a symbolic representation for this kind of sequence.

Definition 8. (Symbolic Representation of Delay Sequence).

– Let (l, (v, o), k) denote the set of states {(l, (v, o)⊕0), (l, (v, o)⊕1), . . . , (l, (v, o)
⊕(k − 1))}, where k ∈ N

>0 (N>0 is the set of positive integers).
– Let (l, (v, o),∞) denote the set of states {(l, (v, o) ⊕ 0), (l, (v, o) ⊕ 1), . . .}.
Based on the equivalence relation, for all x ∈ X, all the clock valuations
greater than cx+1 are treated as cx+1. Therefore, though time can progress
infinitely, the number of states in the delay sequence is finite.

We say that (l, (v, o), k) is a delay sequence(DS) generated by delay transitions
from the state (l, (v, o)), where k ∈ N

>0 ∪ {∞} .

In a delay sequence, when some states satisfy the guard of a transition,
the corresponding discrete transition can be taken, leading to the new states.
From these new states, the execution of delay or discrete transitions will be
continued. So it is necessary to judge which state will satisfy the guard of the
discrete transition. To compare every state with the guard is time-consuming.
In this paper, we can get a set of such states rapidly according to the form of
inequations in the guards.
According to the Definition 1, the guard is the conjunction of the inequations

of the form x ∼ c,∼∈ {<,≤, >,≥}. The inequations in the forms of x > c and
x ≥ c determine the minimum value the clock variable should be to switch to
other locations; and inequations in the forms of x < c and x ≤ c determine the
maximal clock value to take discrete actions. By computing the sets of states
satisfying the two kinds of constraints, we can get those that satisfy the guard
of the discrete transition. Then the successors can be generated.

Next, we will generalize the features of the delay sequence. For example, the
delay sequence formed from the initial state in Figure 1 is

(l0, 0000, 5) = {(l0, 0000), (l0, 1100), (l0, 2200), (l0, 3300), (l0, 4400)}.

With the increase of i, we can compute every state in the sequence respectively
with (v, o) ⊕ i, 0 ≤ i < 5. Moreover, there is an ordering between the clock
information of the states. Because of the convex nature of the constraints, if
we find the state with the maximal clock value satisfying the constraints in the
form of x < c or x ≤ c, all its pre-states in the delay sequence will meet the
constraints too. Similarly, when we get the state with the minimum clock value
satisfying the constraints in the form of x > c or x ≥ c, all its subsequent states
in the delay sequence will satisfy this kind of constraints. The following definition
describes how to determine the delay sequence restricted by constraints.

To facilitate the computation, let c ∈ N
+, we assume that ∞− c = ∞, and

∞ > c.

Definition 9. (Constrained Delay Sequence). Let (l, (v, o), k) be a delay se-
quence, and φ ∈ C(X) be the constraint, the constrained delay sequence (l, (v, o),
k)|φ is defined recursively as follows.

1. if φ is true, (l, (v, o), k)|φ is (l, (v, o), k).

2. if φ is (x ≤ c), let lc = min{(c − v(x)) ∗ m + m − o(x), k} where m =
1 +max o(X), then (l, (v, o), k)|x≤c is (l, (v, o), lc).

3. if φ is (x ≥ c), let d = (c − v(x)) ∗ m − o(x), if 0 ≤ d < k, let (v′, o′) =
(v, o) ⊕ d, gc = k − d, then (l, (v, o), k)|x≥c is (l, (v′, o′), gc). If d ≥ k, then
(l, (v, o), k)|x≥c is empty. When v(x) ≥ c, the original sequence keeps un-
changed.

4. if φ = φ1 ∧ φ2, (l, (v, o), k)|φ is ((l, (v, o), k)|φ1
)|φ2

.

Now let us consider the model in Figure 1 again, to interpret the function of
the above computation in the state space generation process.

Example 2. Computation on the Constrained Delay Sequence.

Here, we try to determine the states capable of switching to l1 by discrete
transition t1, with the guard x < 5 and y ≥ 2. Since I(l0) is y ≤ 4, the de-
lay sequence started from the initial state is (l0, 0000, 5). First, the result of
constrained delay sequence by x < 5 is (l0, 0000, 5); (l0, 2200, 3) is the result of
(l0, 0000, 5) being constrained by y ≥ 2, whose states can take discrete transition
t1. ¤

To check whether (v1, o1) ∈ ((v, o), k), we can judge whether there exists k
′

such that (v, o) ⊕ k′ = (v1, o1) and k
′ < k, where k′ = max{(v1(x) − v(x)) ∗

m + o1(x) − o(x)|x ∈ X and v1(x) ≤ cx}. Let (l, (v, o), k) and (l, (v1, o1), k1)
be two sets of states, if (v, o) ∈ ((v1, o1), k1) or (v1, o1) ∈ ((v, o), k), then the
intersection of the two sets is not empty.

5.2 The Formation of Symbolic States

In the last subsection we have analyzed the features and the representation of the
delay sequence. If we use it as the symbolic method to record the state space,
the number of the symbolic states is still larger. However, if we can organize
them into a coarser data structure, based on some relationship between these
delay sequences, the number of the symbolic states can be reduced effectively.
In Figure 1, started from the initial state, the segment that can take discrete

transition t1 is (l0, 2200, 3) = {(l0, 2200), (l0, 3300), (l0, 4400)}. The occurrence of
t1 leads to the new set {(l1, 2010), (l1, 3010), (l1, 4010)}. Among the new states,
the clock information of y is (0, 0) at every state, and the clock value of x
increases monotonically.
Then given a state generated by the discrete transition, we can compute all

other new successors from the states in the same delay sequence. Let (vr, or) be
the clock information after a discrete transition, where Y is the reset clock set.
The clock information of the ith state from (vr, or) is (vir, oir) = ((vr, or)~i)\Y ,
where (((v, o)~ i) \ Y)(x) =







(v(x) + (o(x)− 1 + i) div m′, (o(x) + i− 1) mod m′ + 1) if x /∈ Y and Y 6= ∅
(0, 0) if x ∈ Y and Y 6= ∅
(v(x), o(x)) if Y = ∅

,

and m′ = max o(X).

Definition 10. (Series of Delay Sequences). Let (l, (v, o)) be a state, θ ∈ N
>0

and Y ⊆ X, we use (l, (v, o), θ, Y) as the symbolic representation for the set of
states {(l, (v′, o′))|(v′, o′) = ((v, o)~i)\Y, 0 ≤ i < θ}. We call this representation
the series of delay sequence (SDS). When Y = ∅, (l, (v, o), θ, Y) is (l, (v, o), 1, ∅).

For instance, (l1, 2010, 3, {y}) = {(l1, 2010), (l1, 3010), (l1, 4010)} is a set of states
in the example of Figure 1.
A symbolic state consists of a set of so-called start states, which are generated

from states in the same delay sequence by a discrete transition. And new delay
sequences will be generated from these start states.
In certain cases, some start states of the symbolic state may not satisfy the

invariant of the new location. So we should determine the start states that meet
the new invariant.

Definition 11. (Constrained Symbolic State by Invariants (l′, (v, o), θ, Y) ºI(l′)).
Let (l′, (v, o), θ, Y) be a symbolic state, and φ = I(l′) be the invariant of l′.

– if Y = ∅, assume that (l′, (v, o),∞)|φ = (l
′, (v′, o′), g), then (l′, (v, o), θ, Y) ºφ

is (l′, (v′, o′), 1, ∅).
– if Y 6= ∅.

• if φ is true, then (l′, (v, o), θ, Y) ºφ is (l′, (v, o), θ, Y).
• if φ is x ≤ c, and x /∈ Y , let θ′ = min{θ, (c−v(x))∗m′+m′−o(x)+1},
then (l′, (v, o), θ, Y) ºx≤c is (l

′, (v, o), θ′, Y).

• if φ is x ≥ c, and x /∈ Y , let d = (c− v(x)) ∗m′+1− o(x). If 0 ≤ d < θ′,
let (v′, o′) = ((v, o) ~ d) \ Y, θ′′ = θ′ − d, then (l′, (v, o), θ′, Y) ºx≥c is
(l′, (v′, o′), θ′′, Y). If d ≥ θ′, (l′, (v, o), θ′, Y) ºx≥c is empty.

• if φ = φ1 ∧ φ2, then (l
′, (v, o), θ, Y) ºφ is ((l′, (v, o), θ, Y) ºφ1

) ºφ2
.

The inclusion relation between the series of delay sequences can be judged
quickly, which is similar to the judgement between delay sequences.
Let (l, (v1, o1)), (l, (v2, o2)) be two states which are generated from a delay

sequence by the same discrete transition (with reset clock set Y 6= ∅), and
v1(x) ≤ v2(x) for all x ∈ X. To simplify the representation, we introduce a
function len((v1, o1), (v2, o2), Y) =

{

max{(v2(x)− v1(x)) ∗m
′ + o2(x)− o1(x)|x ∈ Z} if Z 6= ∅

max{(cx − v1(x)) ∗m
′ +m′ − o1(x)|x ∈ X − Y } if Z = ∅

,

where Z = {x|v2(x) ≤ cx, and x ∈ X − Y },m′ = max o1(X).
Let (l, (v, o), k) be a delay sequence meeting the guards of a discrete transi-

tion (l, φ, σ, Y, l′). Then the successor generated from (l, (v, o), k) with transition
(l, φ, σ, Y, l′) is (l′, (vr, or), θ, Y), where

– (vr, or) = reset((v, o), Y),
– θ = dist((v, o), k, Y),
– dist((v, o), k, Y) =







1 if Y = ∅ or Y = X
len((vr, or), reset((v, o)⊕ (k − 1), Y)) + 1 else if k 6=∞
max{(cx − vr(x) + 1) ∗m

′ − or(x)|x ∈ X − Y }+ 1 else
,

– m′ = max or(X).

For example, when the discrete transition t1 in Figure 1 is taken, the delay
sequence (l0, 2200, 3) will generate the new symbolic state (l1, 2010, 3, {y}).

5.3 The Symbolic Transition Systems of FPTAs

The symbolic transition system of FPTA A = 〈L, l0, Σ,X, I, E〉 is 〈S, s0, Σ,Ã
〉. S = L × D is the set of symbolic states where D = {((v, o), θ, Y)|(v, o) ∈
(vX × oX), Y ⊆ X, θ ∈ N

>0}. s0 = (l0, D0) is the initial symbolic state, where
l0 ∈ L,D0 = ((v0, o0), 1, ∅) ∈ D is the initial symbolic clock information. The
symbolic transition relation Ã is defined as follows, which explains how the
symbolic successor is created.

Definition 12. (Symbolic Transition Relation Ã). Let (l,D), (l′, D′) ∈ L × D
be two symbolic states, where D = ((v, o), θ, Y), D′ = ((v′, o′), θ′, Y ′). We say
((l,D), (l′, D′)) ∈Ã, if there exist an integer i ∈ {0, 1, 2, . . . , θ − 1} and a tran-
sition e = (l, φ, α, Y ′, l′) ∈ E, such that ((v′, o′), θ′, Y ′) = ((vr, or), θr, Y

′) ºI(l′),
where

– (vr, or) = reset((v′′, o′′), Y ′),

– θr = dist((v′′, o′′), gφ, Y
′), and

– ((v′′, o′′), gφ) = (((v, o)~ i) \ Y,∞)|I(l)∧φ.

With the state equivalent relation in FPTAs, the symbolic semantics results
in a finite symbolic state space.

Example 3. The Generation of Symbolic States of the model in Figure 1.
The initial symbolic state is s0 = (l0, 0000, 1, ∅). Then it just has one delay

sequence (l0, 0000, 5), in which some states can take discrete transition t1. The
occurrence of t1 leads to the symbolic state s1 = (l1, 2010, 3, {y}). Time can
elapse in l1 when its invariant is satisfied. Among the states resulting from time
delays, only the state (l1, 5310) created from the start state (l1, 2010) can meet
the guard of t2. So the next symbolic state is s2 = (l0, 0301, 1, {x}) ¤

5.4 Algorithms for Reachability Analysis

In this subsection we firstly present a reachability analysis algorithm. Then we
list the generated symbolic states during the state space exploration in the ex-
ample of Figure 1.
During the forward search of the state space, we use two lists W and P to

record the states waiting for checking and being examined respectively. Another
function of P is to avoid revisiting parts of the state space. W and P are empty
in the beginning. Then the initial symbolic state is pushed into W . In every
repetition, if the popped symbolic state from W has not been examined, the
satisfiability of (l, φ) is checked. If it is satisfied, the whole process is completed.
Otherwise, it is stored in P , and then successors are generated and pushed into
W . The process can be described as Algorithm 1.

Algorithm 1 ReachabilityAnalysis

SDS: wa;
List of State: Succ;
List of SDS:P,W := ∅;
wa := (l0, (v0, o0), 1, ∅);
W := {wa};
while W 6= ∅ do

get wa from W ;
if wa /∈ P then

if Satisfy(wa, l, φ) then

return(true)
else

Add(wa, P);
Succ :=Unfolding(wa);
CreateSuccessive(Succ)

end if

end if

end while

In Algorithm 1, Satisfy is true if there exists a state s in a delay sequence
of a start state in wa such that s |= (l, φ). Succ stores the start states unfolded
from the symbolic state by the unfolding function, which computes all the start
states meeting the invariant of the current location. CreateSuccessive computes
the successive symbolic states from the start states in Succ. If the new symbolic
states have no inclusion relation with the states in P , they are pushed into W .
Here we use the example in Figure 1 to explain how the whole state space is

generated. The steps to compute the symbolic states can refer to the definitions
and examples above. We just list the symbolic states in P and W during the
reachability analysis process in Table 1.

Table 1. Symbolic states in W and P

Step W P

1 {(l0, 0000, 1, ∅)} {}
2 {(l1, 2010, 3, {y})} {(l0, 0000, 1, ∅)
3 {(l0, 0301, 1, {x})} {(l0, 0000, 1, ∅), (l1, 2010, 3, {y})
4 {(l1, 0010, 2, {y})} {(l0, 0000, 1, ∅), (l1, 2010, 3, {y}), (l0, 0301, 1, {x})}
5 {(l0, 0401, 1, {x})} {(l0, 0000, 1, ∅), (l1, 2010, 3, {y}), (l0, 0301, 2, {x}), (l1, 0010, 2, {y})}
6 {} {(l0, 0000, 1, ∅), (l1, 2010, 3, {y}), (l0, 0301, 2, {x}), (l1, 0010, 2, {y})}

In the 5th step of Table 1, the successor of (l1, 0010, 2, {y}) is (l0, 0301, 2, {x}).
However, it includes the state (l0, 0301, 1, {x}) in P . After P is updated, the
unexamined part (l0, 0401, 1, {x}) is pushed into W . The generated state in step
6 is already in P , so W is empty. Then the whole state space is generated.

6 Experiment

x:=0k:=id,
k=0
x:=0

x>=b,k!=id

k:=0

43 x>=b,k=id
x<a
21

Fig. 2. Fischer’s mutual exclusive protocol

We have implemented a prototype to support the verification of real-time sys-
tems with multi-processes, synchronizations, and broadcasts. The tool is avail-
able at http://lcs.ios.ac.cn/∼xyz/FPTA. Due to the page limit, we only use
Fischer’s mutual exclusive protocol [19] (see Figure 2) as the example. We com-
pare the results with those of Uppaal 3.4.6 in various assignments of a and b,

when the whole state space is created in breadth first search strategy. The envi-
ronment is Intel P4 2.60GHz Dell PC with 512MB memory. In Table 2, we list
the time consumption in seconds and the number of generated symbolic states
(zones or SDSs) in the passed list. “-” indicates that the verification did not
terminate within 600 seconds, and “N/A” stands for “not available”.

Table 2. Results with Fischer’s mutual exclusive protocol

Uppaal(a=2,b=4) FPTA(a=2,b=4) FPTA(a=9,b=19)
no
Time(s) Zones Time(s) SDSs Time(s) SDSs

2 0.12 21 0 23 0.02 23

3 0.12 145 0.06 271 0.22 413

4 0.14 1073 0.61 1907 69.24 15185

5 1.13 8581 27.13 27155 - N/A

6 41.09 75385 - 497980 - N/A

The time and space consumption of Uppaal will not be quite different with
various assignments of a and b. However, our prototype may be sensitive to the
maximal constant of the constraints. And with the increasing number of pro-
cesses or clock variables, the performance of FPTA checker is not so well as that
of Uppaal, which has employed many methods to improve the efficiency of model
checking [17]. Currently, except for the active clock reduction method [16], our
prototype does not use other techniques to reduce the state space, or to compress
the data yet. From this point of view, there is a great gap between the proto-
type and Uppaal. Though there are lots of work to be done, the discretization
of FPTA is still a promising attempt, based on the preliminary results.

7 Related Work and Conclusion

Though FPTAs have integer clock valuations, they are different from the discrete
time models, which do not concern about the ordering of events in a time unit.
The model in [21] uses a global clock as the reference. The ordering of events
happened in one time unit is distinguishable. But when the global clock reaches
an integer point, all clock values will increase by 1. Then the ordering information
disappears. FPTAs can keep the ordering until the next reset happens. The
model in [14] uses integer clock valuations too. In its model, if no clock is reset
in a discrete transition, all clock values will increase by 1. Otherwise, only reset
clocks will be set to 0, and others will not change.
As to the data structures, recording time constraints in a DBM can reduce the

sensitivity to the maximal constant of clock constraints. However, it can only
express convex zones, and is not suitable for the data sharing. The BDD-like
structures, like CDDs [4], REDs [22, 23], and CRDs [24], can express non-convex
zones, and are easy to share the existed data. But the ordering between variables
will affect the memory consumption greatly. An SDS enumerates all the delay

sequences in the state space, which is different from the structures based on the
constraints. Compared with DBMs, memory consumption is low in SDSs. And
all operations on SDSs are very simple with linear complexity, lower than that
of DBMs [7]. The shortcoming of SDSs is that the number of states described
by one SDS may be smaller than that by a DBM. Compared with BDD-like
data structures, SDSs avoid state space explosion caused by the inappropriate
ordering between processes and variables. And they need not consider the nor-
malization of different forms. But SDSs are sensitive to the number of clocks
variables.
Based on the discussion, our future work will be as follows. Firstly, the perfor-

mance of the prototype must be improved and more industrial examples should
be carried out. Then the research on the features of FPTAs will be continued.
Finally, the data structure needs to be adjusted to facilitate the data sharing,
and to reduce the sensitivity to the number of clock variables and the maxi-
mal constant. SDSs are just an attempt as one of data structures of FPTAs, we
will apply more mature techniques in discrete time models such as BDD data
structure in the checker.

Acknowledgements. Thanks to Maciej Koutny for suggestions not only to
the English but also to some technical content, and Yubo Xu and Chunming Liu
for the implementation of the prototype. We also thank the anonymous referees
for their helpful criticisms, comments, and suggestions.

References

1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science
126(2), (1994) 183-235

2. Alur, R., Henzinger, T.A.: A Really Temproal Logic. IEEE FOCS (1989) 164-169
3. Asarin, E., Bozga, M., Kerbrat, A., Maler, O., Pnueli, A., Rasse, A.: Data-
Structures for the Verification of Timed Automata. In Proceedings of the Interna-
tional Workshop on Hybrid and Real-Time Systems, LNCS 1201 (1997) 346-360

4. Behrmann, G., Larsen, K.G., Weise, C., Wang, Y., Pearson, J.: Efficient Timed
Reachability Analysis Using Clock Difference Diagrams. CAV (1999) 341-353

5. Bellman, R.: Dynamic Programming. Princeton University Press (1957)
6. Bengtsson, J., Jonsson, B., Lilius, J., Wang, Y.: Partial Order Reductions for Timed
System. CONCUR (1998) 485-500

7. Bengtsson, J., Wang,Y.: Timed Automata: Semantics, Algorithms and Tools.
LNCS 3098 (2004) 87-124

8. Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Sch-
noebelen, P.: Systems and Software Verification: Model-Checking Techniques and
Tools. Springer (2001)

9. Beyer, D., Lewerentz, C., Noack, A.: Rabbit: A Tool for BDD-based Verification
of Real-Time Systems. CAV (2003) 122-125

10. Bosnacki, D., Dams, D., Holenderski, L.: A Heuristic for Symmetry Reductions
with Scalarsets. LNCS 2021, FME (2001) 518-533

11. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: a
Model-Checking Tool for Real-Time Systems. LNCS 1427, CAV (1998) 298-302

12. Bozga, M., Maler, O., Pnueli, A., Yovine, S.: Some Progress in the Symbolic Veri-
fication of Timed Automata. LNCS 1254, CAV (1997) 179-190

13. Bryant, R.: Graph-based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, 35(8) (1986) 677-691

14. Dang, Z., Ibarra, O.H., Bultan, T., Kemmerer, R.A., Su, J.: Binary Reachability
Analysis of Discrete Pushdown Timed Automata. LNCS 1855, CAV (2000) 69-84

15. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool KRONOS. Hybrid Systems
III, LNCS 1066 (1996) 208-219

16. Daws, C., Yovine, S.: Reducing the Number of Clock Variables of Timed Automata.
IEEE RTSS (1996) 73-81

17. Gerd, B., Johan, B., Alexandre, D., Larsen, K.G., Paul, P., Wang, Y.: UPPAAL
Implementation Secrets. FTRTFT (2002) 3-22

18. Hendriks, M., Behrmann, G., Larsen, K.G., Vaandrager, F.: Adding Symmetry
Reduction to Uppaal. FORMATS (2003) 46-59

19. Lamport, L.: A Fast Mutual Exclusion Algorithm. ACM Transactions on Computer
Systems, 5(1), (1987) 1-11

20. Larsen, K.G., Pettersson, P., Wang, Y.: UPPAAL in a Nutshell. International
Journal on Software Tools for Technology Transfer, 1(1/2), (1997) 134-152

21. Raskin, J.F., Schoebbens, P.: Real-Time Logics: Fictitious Clock as an Abstraction
of Dense Time. LNCS 1217, TACAS (1997) 165-182

22. Wang, F.: Efficient Data Structure for Fully Symbolic Verification of Real-Time
Software Systems. TACAS (2000) 157-171

23. Wang, F.: Region Encoding Diagram for Fully Symbolic Verification of Real-Time
Systems. COMPSAC (2000) 509-515

24. Wang, F: Efficient Verification of Timed Automata with BDD-like Data-Structures.
VMCAI (2003) 189-205

25. Wang, F.: Formal Verification of Timed Systems: A Survery and Perspective. In
Proceedings of the IEEE, 92(8), (2004) 1283-1307

A Proofs of Lemma 1 and 2

A.1 Lemma 1

Proof. According to the definition of transition relations, it suffices to show the
following:

– if µ . (v, o), then for all d ∈ R
+, there exists k ∈ N

+ such that (µ + d) .
(v, o)⊕ k.

– if µ1 . (v1, o1) and (l1, µ1)
σ
−→ (l2, µ2), then there exists (v2, o2) such that

µ2 . (v2, o2) and (l1, (v1, o1))
σ
−→ (l2, (v2, o2)).

Firstly, we prove that the states resulting from delay transitions in FPTAs
and TAs satisfy the . relation. Suppose this is not true, and D is the set of all d
such that there is no k ∈ N

+ such that (µ+d). (v, o)⊕k. Let d0 be the infimum
of D, then d0 ∈ D.
Let Z = {x ∈ X | frac(µ(x) + d0) = 0}, then Z is the set of clocks whose

values will become integer after x increased by d0. If Z is empty, no clocks will
be integer when time increased by d0. Then (µ + d0) . (v, o), contrary to the
hypothesis. So Z is nonempty.

Since clock values increased by d0 will cause the change of fractional parts
of clock values, so will the ordering. Let δ2 =

1
2 min{{1} ∪ {frac(µ(x) + d0) |x ∈

X−Z}}, then (µ+ d0 − δ2) will not affect the ordering of the fractional parts.
If there exists k1, such that (µ + d0 − δ2) . (v, o) ⊕ k1, then let k2 = 1 +

max{o1(x)− o1(y) |x, y ∈ Z}, where o1 = o⊕ k1. Therefore, (µ+ d0) . (v, o)⊕
(k1 + k2), contrary to the fact that d0 ∈ D.
It is straightforward to prove the states generated by discrete transitions hold

the relation. Let (v2, o2) =reset((v1, o1), Y), then µ2 . (v2, o2), where Y is the
reset clock set in the transition. ¤

A.2 Lemma 2

Proof. According to the definition of transition relations, it suffices to show the
following:

– if (v, o) l µ, then for all k ∈ N
+, there exists d ∈ R

+ such that (v, o)⊕ k l
(µ+ d).

– if (v1, o1) l µ1 and (l1, (v1, o1))
σ
−→ (l2, (v2, o2)), then there exists d ∈ R

+

such that (v1, o1) l (µ1 + d), (l1, µ1 + d)
σ
−→ (l2, µ2) and (v2, o2) l µ2.

Firstly we prove that the states resulting from delay transitions in FPTAs
and TAs satisfy the l relation. Assume this is not true, and K is the set of all k
such that there is no d ∈ R

+ such that (v, o)⊕ k l (µ+ d). Let k0 be the least
element in K, then k0 > 0 (otherwise (v, o) ⊕ 0 l µ, then k0 /∈ K, contrary to
the fact that k0 ∈ K).
If there exists d1, such that (v, o)⊕(k0−1) l (µ+d1), then let d2 = min{1−

frac(µ(x)+ d1) |x ∈ X}. So after time increased by d1+ d2, the clock value with
the largest fractional part will become integer. Therefore,(v, o)⊕ (k0 − 1 + 1) =
(v, o)⊕ k0 l (µ+ d1 + d2), contrary to the fact that k0 ∈ K.
Now we prove the second claim. Let d = 1

2 min{1− frac(µ(x))|x ∈ X}. Since
min{1− frac(µ(x))} is the real number that causes some clock values to become
integer, µ + d will not affect the relative ordering of fractional parts of clock
values. So (v1, o1) l (µ1 + d).
Let µ2 = (µ1 + d)[Y := 0] where Y is the clock set to be reset, then (l1, µ1 +

d)
σ
−→ (l2, µ2) and (v2, o2) l µ2. ¤

