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ABSTRACT
Software testing is always an effective method to show

the presence of bugs in programs, while debugging is never
an easy task to remove a bug from a program in software
development. To facilitate the debugging task, statistical
fault localization estimates the location of faults in programs
automatically by analyzing the program executions to narrow
down the suspicious code region. We observe that program
structure has strong impacts on the assessed suspiciousness
of the program elements. However, existing techniques inad-
equately pay attention to this problem in locating faults. In
this paper, we emphasize the biases caused by program struc-
ture in fault localization, and propose a method to address
them. Our method is dedicated to boost a fault localization
technique by adapting it to various program structures, in a
software development process. It collects the suspiciousness
of program elements when locating historical faults, statisti-
cally captures the biases caused by program structure, and
removes such an impact factor from a fault localization result.
An empirical study using the Siemens test suite shows that
our method can greatly improve the effectiveness of the most
representative fault localization Tarantula.
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1. INTRODUCTION
With the fast development of software and software system,

both the scales and complexities of programs are greatly in-
creased. At the same time, software failures are still problems
hard to solve. Most software failures are caused by faults
(bugs) in programs. Failures revealed in testing confirm the
existence of faults in programs. However, even we know there
are faults in programs, a software failure will not always ap-
pear in different program runs. Debugging is the activity to
locate a fault in a program and remove it from the program.
It is never an easy task in software development [15, 19].

To facilitate the debugging task, automatic fault local-
ization mechanisms are invented. In order to alleviate the
problem, researchers have proposed many automated fault-
localization methods. Among these techniques, there is a
category of techniques known as statistical fault-localization
techniques, such as Tarantula [11, 12], Jaccard [1], CBI [13],
SOBER [14] and so on. The basic intuition behind these
techniques is that they attempt to identify program features
whose execution is correlated with the program failures, and
the strengths of the correlations can be used as indicators of
the degree to which those program features may explain the
failures. Techniques like Tarantula can produce real number
values (aka. suspiciousness scores) for program entities to
represent the correlations with program failures and sort the
entities by value in descending order. Then a ranked list of
program entities is produced and programmers can localize
the fault under the guidance of such a ranked list.

In recent years, promising experimental results with the
statistical fault localization techniques have been reported.
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However, we have realized huge space for improvements for
such techniques. For example, the effectiveness to locate
faults is unavoidably influenced by a number of factors. Co-
incidental correctness has been perceived as a factor that can
adversely affect the effectiveness of testing [16]. This factor
occurs when “no failure is detected, even though a fault has
been executed [18]”, which has attracted many researchers’
interests (eg., [8, 20]). Noise has been reported as another
factor that affects the effectiveness of the fault localization
techniques. It can be estimated as the possibility of not exe-
cuting a feature causing a failure [22] and some techniques
have been proposed to generalize the fault localization tech-
niques of noise-reduction. Zhang et al. [25] reported that the
short-circuiting evaluation manner also has influence on sta-
tistical fault localization, and empirically showed that the use
of short-circuiting evaluation information can significantly
improve some predicate-based statistical fault-localization
techniques.

In this paper, we perceive that the program structure may
have impacts on the effectiveness of the fault localization
techniques. As a result, a common but previously ignored
phenomenon is that some statements always have higher
suspiciousness values than others, while some statements
always have lower suspiciousness values at the same time.
Since a statement is not likely to correlate with all program
failures across program versions, we deem the fundamental
reason for that to be the impact of program structure. For
example, the statements in a catch block in exception handler
are apt to be executed more in failed program runs and less
frequently in passed runs, so that the statements in such a
program structure are more probable to have abnormally
high suspiciousness scores.

In this paper, we proposed a program structure aware fault
localization technique that can be used to capture the impacts
caused by program structures. In a software development
scenario, for each statements, we record its suspiciousness
calculated in locating each faults in history. We use such
historical information to analyze the impact of the program
structure on it, i.e., whether its suspiciousness was ever
overestimated due to specific program structure pattern. We
then erase the impact from future fault-localization to restore
the unbiased suspiciousness. To verify the effectiveness of
our method, we apply it on the most representative fault
localization technique Tarantula, and carry out a controlled
experiment to evaluate. The results show that our method
can greatly improve the effectiveness of Tarantula on the
subject programs.

The main contributions of our work are at least threefold.
First, we noticed and confirmed that the program structure
can have significant impact on effectiveness of a fault local-
ization technique. Second, we proposed a general method to
capture and remove the impacts of the program structure.
Third, we conducted an experiment on a common data set
and a medium-scaled realistic program with a representative
peer technique to validate the effectiveness of our method.

The rest of this paper is organized as follows. Section
2 reviews related work. Section 3 uses three examples to
motivate this work. Section 4 presents our technique, which
is evaluated in Section 5. Section 6 concludes this paper.

2. RELATED WORK
Many statement-level fault localization techniques have

been proposed. They contrast program execution spectra of

statements in passed and failed execution, and then use some
heuristics to estimate the extent of a statement being related
to faults. Jones et al. [12] proposed Tarantula, which uses the
proportions of passed and failed executions to compute the
suspiciousness of each statement in a program. The suspi-
ciousness of a statement denotes the likelihood of a statement
to be faulty. Specifically, the suspiciousness of statement s is
computed using the percentage of failed program runs that
execute s and the percentage of passed program runs that
execute s. Other statement-level fault localization techniques
include Jaccard [1], Ochiai [2], etc. These techniques are
similar to Tarantula except that they use different formulas
to compute the suspiciousness of a statement.

Predicates have also been adopted as fault indicators. Lib-
lit et al. [13] developed CBI, which uses the number of times
a predicate being evaluated true in passed and failed program
runs with reconciling the specificity and sensitivity of the
predicates to estimate the suspiciousness of predicates. How-
ever, for those predicates that are always evaluated true, the
CBI is ineffective. SOBER [14] compares the distributions
of evaluation biases between passed runs and failed runs to
obtain the suspiciousness of predicates. The larger the value
of evaluation biases, the more likely the predicate associates
with the root cause of failure. We do not limit the use of our
method, which can be applied on a general fault localization
technique no matter what kind of granularity it is of.

Many factors can have impacts on the effectiveness of
fault localization techniques. The noise introduced by some
features on the same set of executions with the statement,
has been noticed as such a factor in [22]. It can be estimated
as the possibility of not executing a feature causing a failure.

Program structure can be another impact factor to local-
izing precision. A fault may be triggered, propagates along
any execution path, and finally causes an observable failure.
Zhang et al. [24] proposed the approach, which captures the
propagation of infected program states through the program
structure, namely the edges in a control flow graph. It as-
sociates scores of control flow edges to suspiciousness scores
of basic blocks to locate faults. In this paper, instead of
adopting a CFG-related approach, we argue that a better
choice is to statistically capture the impact of the program
structure on the effectiveness of fault localization.

3. MOTIVATION
Statistical fault localization techniques make use of two

kinds of information collected in the testing process, namely
testing results and program spectrum, to estimate the suspi-
ciousness of a program element to be related to faults. The
testing result of a test case represents whether the output is
expected (a passed program run) or not (a failed program
run), while a program spectrum is a collection of data that
provides a specific view on the dynamic behavior of the
program during execution [7, 17]. Generally speaking, it
records the runtime profiles of various program entities for a
specific test suite. The program entities could be statements,
branches, basic blocks, and so on. Typically, the runtime
profile is in the form of execution counts of program entity [5,
21]. We notice that the program structure mostly determines
the execution counts, and accordingly has impacts on the
suspiciousness of program entities.
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3.1 Ineffective Case

Table 1: Statements in the main entry.

passed runs failed runs
r1 r2 r3 r4

int main() {
n int[] arr = new int[2]; • • • •
n+1 arr[0] = 1; • • • •

· · ·
}

The code segment in Table 1 includes the main function
of a program. Since the main function is where the program
starts its execution, as an entry point, the statements in
such a structure will be executed almost by all runs. As a
result, a neutral suspiciousness score (e.g., 0.5 by Tarantula)
will be given to such statements. If there are some faults
among the statements, most such fault localization techniques
are ineffective to assess the extent of suspiciousness of such
statements, when contrasting their execution counts in passed
executions to those in failed executions. As a result, that is
an ineffective case for fault-localization.

3.2 Misleading Case

Table 2: Statements in an exception-handler.

passed runs failed runs
r1 r2 r3 r4

try{· · · } catch(Exception e) {
n println(e.getMessage()); • •

· · ·
}

The example in Table 2 shows an exception-handler. When
we come across the exceptions by accident during program
execution, the program flow will enter the exception block
and generate relevant exception information. The statements
in catch block are apt to be executed by most failed runs
and few passed runs, so that they have higher suspicious
scores than the statements in other blocks. Let us take
Tarantula to illustrate. These statements are given higher
suspiciousness scores (i.e., close to 1). However, we notice
that the statements in the catch block may not be faulty.
As a result, such program structure will mislead the fault-
localization process.

3.3 Unfair Case

Table 3: Statements in an if-return structure.
passed runs failed runs
r1 r2 r3 r4

n if(x > y) • • • •
n+1 return x; • •
n+2 return y; • •

The code excerpt in Table 3 shows a common if-return
structure. Due to the existence of statement n + 1, the
execution counts of statement n is always no less than that
of statement n + 2. Since the suspicious score is a function of
the execution counts of statements in failed runs and passed
runs, we know that the suspiciousness of statement n and

statement n + 2 will be unfairly estimated. Apparently, such
a program structure has impacts on the fault-localization
result. However, it is still not easy to statically know whether
the bias involved is positive or negative.

The above examples successfully show the impacts of pro-
gram structure on the accuracy of fault localization tech-
niques. If we can find out and remove the biases involved,
the effectiveness of fault localization can be improved.

However, we still foresee some challenges related to such an
approach. First, we have no confidence that we can iterate
all legitimate pattern of program structures. Second, we
cannot statically know whether the impact of a program
structure (like the case in Section 3.3) is positive or negative
for a pattern. Third, the existence of function calls and
loops in program greatly increases the difficulty of frequency
counting [24]. As a result, we adopt a statistical approaching
not relying on any CFG-related methodology, which will be
elaborated on in the next section.

4. OUR MODEL
In this section, we revisit current statistical fault localiza-

tion techniques and a realistic software development scenario,
and after that propose our method to capture and remove
the impacts on the existing fault localization technique.

4.1 Statistical Fault Localization
Existing statistical fault localization techniques, such as

Tarantula [11, 12], Ochiai [2], Jaccard [1], CBI [13], DES [25]
and SOBER [14], use a suspiciousness function to assess the
suspiciousness of a program entity being related to faults.
They then rank all suspiciousness value in descending order,
and generate a ranked list of program entities. Programmers
may check the entities along the ranked list, from the most
suspicious (top of the ranked list) to the least suspicious (tail
of the ranked list) to locate the fault. The position of the
faulty entity found in the ranked list reflects the effectiveness
of a statistical fault localization technique.

Given a program P = 〈s1, s2, . . . , sn〉 with n statements
and executed by a test suite of m test cases T = {t1, t2, . . .,
tm}. During software testing, we can get the runtime profiles
for a specific test case, namely a tuple Ai = 〈 aief ,ainf ,aiep, ainp

〉, where ai
ef represents the number of failed test cases that

execute statement si, a
i
nf represents the number of failed

test cases that do not execute statement si, a
i
ep represents

the number of passed test cases that execute statement si,
and ai

np represents the number of passed test cases that do
not execute statement si.

A suspiciousness score formula is constructed using the
four variables following some heuristics, and applied on each
statement si to compute a real value that indicates the
extent of statement si correlating to the program failures.
For example, the suspiciousness score formula, Tarantula [12],
is modeled as follows.

Tarantula(si) =

ai
ef

ai
ef + ai

nf

ai
ef

ai
ef + ai

nf

+
ai
ep

ai
ep + ai

np

The ranking order of two statements si and sj is deter-
mined by the suspiciousness scores computed. Let us use the
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technique Tarantula to illustrate. The order of statements
si and sj in the resultant ranked list are accordingly deter-
mined. The statement (e.g., si) having the prior order in
the ranked list means that the statement si is deemed to be
more suspicious than the statement sj .

4.2 Realistic Developing Scenario

Figure 1: A scenario of software development.

Most modern software development process follows a con-
tinuous integration [10, 23] manner. Fig. 1 illustrates such a
scenario. Firstly, a programmer gets an initial program (V0
in Fig. 1). When program failures are revealed during testing,
debugging is carried out. A fault localization technique can
be applied to estimate the fault position and the resultant
ranked list is adopted by a programmer to narrow down the
search region. After locating and correcting the first fault,
a new version (V1 in Fig. 1) of the program is generated.
Programmers need to carry out a testing task with it. If
there still exist failed runs, a new round of debugging and
testing starts (Vn in Fig. 1).

Fig. 1 shows the typical process of a software development
scenario. We notice that generally there are more than one
fault found in the history of development. Also, there are
often more than one fault localization rounds conducted in
the history of the software development. That provides us
the possibility to capture the impact of program structure
on fault-localization. We will elaborate on our idea in the
next section.

4.3 Our Proposal
Our method consists of two steps. First, we use histor-

ical fault localization information to capture the impacts
of program structure. Second, we remove the captured im-
pacts from a fault localization result when locating fault in
a program version in hand.

4.3.1 Capturing the Impacts of Program Structure
To capture the impacts of program structures, we inves-

tigate the historical suspiciousness ranked lists. Our basic

heuristics is that“a statement always having high suspi-
ciousness score in all previous program versions has
a chance to be overestimated to be fault-relevant by
a fault localization technique, due to the bias caused
by specific program structure related to it”. In our
model, we formalize the impacts by statistically investigating
the historical suspiciousness scores associated to a statement.
We denote the impacts on statement si by program struc-
tures as Impv(si), where v represents the v-th version of the
program. Impv(si) is calculated as follows.

Impv(si) =

{
0 if v = 1

1
v−1

∑v−1
k=1 Tarantula

k(si) O.W.

Note that for the first version of the program, Imp1(si) = 0,
which means that no history can be referenced and the impact
is accordingly set to zero.

4.3.2 Removing the Impacts of Program Structure
After the impacts are captured, we can remove them to

restore the unbiased effectiveness of fault localization tech-
niques. In our model, we adopt a simply strategy to reduce
the impacts from the suspiciousness score computed by a
fault localization technique. Suppose we are using Tarantula
as the fault localization tool, we use Tarantulav(si) to de-
note the suspiciousness score of si calculated by Tarantula.
To differentiate from that, we use Oursv(si) to denote the
suspiciousness score of our method, which is as follows.

Oursv(si) = Tarantulav(si)− Impv(si)

Note that for the first version of the program, Ours1(si) =
Tarantula1(si), which means that no history can be refer-
enced and our method gives results identical to those of
Tarantula.

4.4 Complexity
The basic complexity of applying our method is O(V × n),

where V is the number of program versions in history and
n is the number of statements in the program version in
hand. The complexity can be reduced to O(n) if we calculate
Impv(si) in an incremental manner.

5. EMPIRICAL EVALUATION
In this section, we conduct experiments to evaluate the

effectiveness of our method.

5.1 Experiment Setup

5.1.1 Subject Programs

Table 4: Descriptive statistics of subject programs.

Program # of executable # of # of
statements Versions Cases

print tokens 194–195 7 4130
print tokens2 196–200 10 4115
replace 241–246 32 5542
schedule 151–154 9 2650
schedule2 128–130 10 2710
tcas 63–67 41 1608
tot info 122–123 23 1052
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Figure 2: Overall effectiveness

To evaluate our approach, we choose the common data set
— Siemens suite of programs as our subject programs, which
are downloaded from the Software-artifact Infrastructure
Repository (SIR) [6]. Each of them have many sequential
versions. Table 4 shows the descriptive statistics of the
subject programs, including the number of applicable faulty
versions, the number of executable statements (LOC), and
the size of the test pools. Take print tokens as an example,
it is a program with 194 to 195 lines of executable statements,
depending on which subversion. Five single-fault versions are
used in this experiment, and they share a test suite consisting
of 4130 test cases.

Following the documentation of SIR [6] and previous
work [11, 13, 24], we exclude the versions whose fault cannot
be revealed by any test case. That is because that our tech-
nique and the peer techniques rely on the existence of failed
runs [1, 11, 13, 24]. At the same time, we mark the directly
affected statement or an adjacent executable statement a
faulty when the faulty statement is non-executable (such
as [9]). The remaining 128 single-fault versions are used in
the experiment. Meanwhile, we use some tactics associated
with gcov to keep track of the traces of program executions
to make the experiment more accurate, even though there
are some crashing errors during execution.

5.1.2 Peer Technique
In our experiment, we choose the most representative

statistical fault localization technique, Tarantula, to test.
Tarantula [12] is chosen because it pioneers the work in this
field and has many variants. The formula of Tarantula has
been introduced in previous section.

5.1.3 Effectiveness Metrics
Tarantula generates a ranked list of all the executable

statements in descending order of their suspiciousness scores.
Then we check all statements along the ranked list, until
a faulty statement is found. When two statements share
identical suspiciousness score, we use the Confidence met-
ric to further distinguish their degree of suspiciousness. A

statement having a high Confidence value will have a high
rank.

Confidence(s) = max(%failed(s),%passed(s))

It can be understood that a higher confidence is given to
statements that are executed by more test cases.

Since a programmer is suggested to search for fault along
the ranked list, the Expense metric is used to measure the
fault-localizing quality of a ranked list.

Expense =
rank of faulty statement

number of executable statements
∗ 100%

It is calculated as the percentage of the rank of the faulty
statement to the total number of executable statements. The
result can be understood as the code examination effort to
locate a fault by examining a ranked list generated. The lower
the value, the better the effectiveness of the fault localization
is.

5.2 Results
In this section, we apply our method on Tarantula and

evaluate the improvement. We use “Ours” to refer to the
result of our method applied on Tarantula in the rest of the
paper.

5.2.1 Overall Effectiveness
Fig. 2 shows the overall effectiveness of Tarantula and

our technique. To give a better presentation, both the box-
whisker plot and the cumulative plot are given to show the
effectiveness of each technique. In the box-whisker plot (see
Fig. 2(a)), we use two columns to show the effectiveness of
Tarantula and our method, respectively. For each column,
the cross in the box indicates the median value of the code
examination effort to locate faults in each faulty version of
the specific program. The bottom of the box corresponds to
the 25% percentile, while the top of the box corresponds to
the 75% percentile. The upper whiskey shows the maximum
code examination effort within 1.5 IQR [4] of the upper
quartile, while the lower whiskey shows the minimum code
examination effort with 1.5 IQR of the lower quartile. The
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Figure 3: Effectiveness on programs of scale 0− 100L (tcas)
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Figure 4: Effectiveness on programs of scale 200L+ (replace)

data not included between the whiskers are plotted as stars.
Let us take Tarantula to illustrate, the lower whisker shows
that the minimum code examination effort to locate a fault
in one of the 128 faulty programs is 0.41%. The upper
whiskey shows that the maximum code examination effort
to locate a fault in one of the 128 faulty programs is 81.4%.
The bottom and top of the box, which shows the 25% and
75% percentiles for code examination efforts with respect
to each of the 128 faulty versions, are 2.80% and 34.27%,
respectively. The cross in the box indicates that the median
value of the code examination effort for the 128 faulty versions
is 14.67%. While using our method, the median value of the
code examination effort for the 128 faulty versions is 2.44%,
the 25% and 75% percentiles for code examination efforts
are 1.23% and 7.36%, respectively.

Fig. 2(b) shows the cumulative plot of the overall effective-
ness of Tarantula and Ours. The x-axis indicates the code

examination effort. The y-axis indicates the percentage of
faults located within the code examination effort indicated
by the x-coordinate. Both the curves for Tarantula and
Ours starts from the point (0%, 0%) and finally reaches the
point (100%, 100%). Apparently, no faults can be located
when examining 0% of the code, while all faults can be lo-
cated when examining 100% of the code. The plot shows
that Tarantula can locate about 44.53% of all the faults by
examining no more than 10% of the code in a faulty version,
while our method can locate about 83.59% of all the faults.
We observe that our method can always locate more faults
than Tarantula in the code examination range between 0%
and 88%.

In Fig. 2, we have the basic observation that applying
our method on Tarantula can improve Tarantula greatly.
Furthermore, we also want to know the detailed information
on the effectiveness on each individual programs.
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Figure 5: Effectiveness on programs in scale 100L− 200L (others)

5.2.2 Effectiveness on Individual Programs
We further compare the effectiveness of Tarantula and our

method on each subject program. To give a clear view, we
categorize the programs according to their scales (measured
by the number of executable statements in a program). The
program with executable statements less than 100, tcas, is
extracted. And the program with executable statements
more than 200, replace, is extracted. The programs with
executable statements between 100 and 200 are grouped
together, which includes 56 faulty program versions.

Fig. 3 shows the effectiveness of the two techniques over
the program tcas. Fig. 3(a) shows the effectiveness using
box-whisker plot, while Fig. 3(b) shows the cumulative plot.
In Fig. 3(a), the median using Tarantula is 15.38%, the
25% and 75% percentiles for code examination efforts with
respect to each of the 40 faulty versions are 6.16% and 35.38%,
respectively. While the median using our method is 3.13%,
the 25% and 75% percentiles for code examination efforts
are 1.54% and 8.46%, respectively. In Fig. 3(b), the x-axis
indicates the code examination effort in this paper, and the
y-axis indicates the percentage of faults located. From it, we
can see that the curve Tarantula passes through the point
(10%, 42.5%), while the curve Ours passes through the point
(10%, 85%). It means by examining up to 10% of code in
each faulty program, our method can locate 85% of faults,
while Tarantula can only locate 42.5% of faults. Both plots
in Fig. 3 show that our method outperforms Tarantula on
programs having a scale of 100 lines of executable code or
less.

Fig. 4 shows the effectiveness of the two techniques over the
program replace. Like the program tcas, replace shows the
effectiveness using the box-plot and the cumulative plot. In
Fig. 4(a), the median using Tarantula is 7.38%, the 25% and
75% percentiles for code examination efforts with respect
to each of the 32 faulty versions are 1.44% and 24.18%,
respectively. While the median using our method is 1.23%,
the 25% and 75% percentiles are respectively 0.41% and
2.88%. In Fig. 4(b), the meanings of the x-axis and y-axis
are similar with Fig. 2. From here, we can see the curve

Table 5: Improvements on subject programs
Program Tarantula Ours Increment Ratio

print tokens 24.72% 15.70% 36.49%
print tokens2 18.44% 11.81% 35.95%

replace 17.18% 5.31% 69.09%
schedule 3.87% 2.13% 44.96%
schedule2 52.17% 23.52% 54.92%

tcas 19.39% 6.01% 69.00%
tot info 24.05% 10.68% 55.59%
Average 22.83% 10.74% 52.29%

Tarantula passes through the point (10%, 53.13%), while the
curve Ours passes through the point (10%, 90.63%). Fig. 5
shows the effectiveness of the two techniques over the program
set other, which consists of six programs with 56 faulty
versions. Like the above two programs tcas and replace,
the box-plot and cumulative plot are shown. In Fig. 5(a),
the median using Tarantula is 15.45%, the 25% and 75%
percentiles for code examination efforts with respect to each
of the 56 faulty versions are 4.07% and 38.76%, respectively.
While the median using our method is 2.44%, the 25% and
75% percentiles are respectively 1.02% and 8.54%. From
Fig. 5(b), we can see the curve Tarantula passes through the
point (10%, 41.07%), while the curve Ours passes through
the point (10%, 78.57%). Results in Fig. 4 and Fig. 5 also
show that our method outperforms Tarantula on programs
having a scale of 100+ lines of executable code.

The three figures confirms the existence of the impact
of program structure on fault-localization effectiveness and
validates the effectiveness of our method in removing the
impacts. Further, we want to know how many improvements
we made,which details are listed out in the next section.

5.2.3 Statistics of Improvements
Table 5 shows the code examination effort of Tarantula

and Ours, accompanied with the increment ratio on code ex-
amination effort from Tarantula to that of Ours. We define
the increment ratio as the ratio between the increment in
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the code examination effort from Tarantula to Ours to that
of Tarantula. Take the program print tokens as an example
(the second row), we can see that the average code exam-
ination effort using Tarantula on print tokens is 24.72%,
while our method only used 15.70%, and the increment ratio

is
24.72%− 15.70%

24.72%
= 35.49%. Furthermore, the increment

ratios on other programs are all between 35.95% to 69.09%.
From the last row of the Table, we can see that the average
code examination using Tarantula in all the faulty program
versions is 22.83%, while our method only used 10.74%, and
the average increment ratio is 52.29%. We observe that our
method always has an improvement over Tarantula.

5.3 Threats to Validity
We use gcov to keep track of the traces of program ex-

ecutions. Meanwhile, we use some tactics associated with
gocv to get the traces for runtime executions for crashing
cases. As exception information in runtime contains plenty
error information, we take the runtime exception runs as
failed runs. Different experiment setup may result in different
observation.

Our method is general because it needs history suspicious-
ness list. Given a fault localization technique and history
suspiciousness list, our method can be applied. However,
the strategy we use to capture the impacts from program
structure is only one possible solution.

We follow the SIR documents to manipulate the com-
mon data set to simulate a software development scenario.
Experiments in realistic scenario may manifest different ob-
servations.

6. CONCLUSION
Existing statistical fault localizations utilize the executing

information to estimate the positions of faults and narrow
down the region of the faulty statements. However, most of
them pay little attention to the biases caused by program
structure.

In this paper, we studied the impacts by the program
structure on the effectiveness of statistical fault localization
techniques. We proposed a strategy to capture the impacts
caused by the program structure on the fault localization
techniques, and remove them. We conducted a controlled
experiment on the representative technique Tarantula over
Siemens test suite to evaluate the effectiveness of our method.
The experimental result confirms the existence of the con-
cerned impacts and validates the effectiveness of our method
in improving the effectiveness of Tarantula.

Further work includes a thorough study on other fault
localization techniques and the performance on other pro-
grams. In order to enhance the effectiveness of our method, a
prospective is to integrate date flow profiles as well. Further,
Abreau et al. [3] proposed an approach to locate faults in
multi-fault programs. Our future work can incorporate this
aspect because our method has the potential to downplay the
statements that always have with unreal high suspiciousness.
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