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Abstract

Fault localization is a major activity in software

debugging. Many existing statistical fault localization

techniques compare feature spectra of successful and

failed runs. Some approaches, such as SOBER, test

the similarity of the feature spectra through parametric

self-proposed hypothesis testing models. Our finding

shows, however, that the assumption on feature spectra

forming known distributions is not well-supported by

empirical data. Instead, having a simple, robust,

and explanatory model is an essential move toward

establishing a debugging theory. This paper proposes

a non-parametric approach to measuring the similarity

of the feature spectra of successful and failed runs,

and picks a general hypothesis testing model, namely

the Mann-Whitney test, as the core. The empirical

results on the Siemens suite show that our technique

can outperform existing predicate-based statistical fault

localization techniques in locating faulty statements.

Keywords: Fault localization, non-parameter statistics

1. Introduction

Software debugging is time-consuming and is often

a bottleneck in the software development process.
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It involves at least two crucial steps, namely fault

localization and fault correction. Fault localization

identifies the causes of abnormal behaviors of a faulty

program. Fault correction modifies the faulty program

or data structure to eliminate the effect of the identified

faults.

A traditional fault localization technique consists

of setting breakpoints, re-executing the faulty program

on the inputs, and examining the corresponding

program states. Recently, statistical fault localization

techniques [8, 10, 12–15] are proposed and reported to

be promising. They locate faults by analyzing the

statistics of dynamic program behaviors. A failed run

is a program execution that reveals a failure, and a

successful run is a program execution that reveals no

failure. A statistical fault localization technique locates

a fault-relevant statement (or a faulty statement directly)

by comparing the statistical information of program

elements in these two kinds of run. Such program

elements can be statements [10] or predicates [12,

13]. Liu et al. [15], for instance, report that statistical

techniques can achieve more accurate results than other

approaches. Previous experiments [12–15] show that

such techniques can identify about 2 faults out of 3 by

examining 20% of all code.

Because of their statistical nature, the techniques

assume that there are statistically enough successful

and failed runs to collectively help locate faults. These

techniques build underlying statistical behavior models

for the aggregated execution data of selected program

elements (known as features), and search for elements

that correlate with the observed program failures.

The Eighth International Conference on Quality Software

1550-6002/08 $25.00 © 2008 IEEE

DOI 10.1109/QSIC.2008.44

385

The Eighth International Conference on Quality Software

1550-6002/08 $25.00 © 2008 IEEE

DOI 10.1109/QSIC.2008.44

385



To compare the spectra of features, there are

diverse approaches. Tarantula [8, 10] gauges the

fraction (x) of successful runs and the fraction (y) of

failed runs with respect to the execution of a statement.

It then uses the ratio 1
y/x+1

to predict how much the

statement is correlated to the observed failure. It also

develops a strategy to rank statements according to the

relative magnitude of the ratio associated with each

statement.

Instead of locating the faulty statements directly,

predicate-based statistical techniques, such as CBI [12,

13] and SOBER [14, 15], locate the program predicates

related to faults. A program predicate is a Boolean

expression about the property of a system at some

program location (such as a statement). CBI [12,

13] and SOBER [14, 15] contrast the feature spectra

of predicates in a program. They collect statistics

about the behaviors of program predicates, such as

evaluations of branch statements. They further assume

that, for predicates near the fault position, the successes

or failures of their evaluations are highly correlated

to the successes or failures of program executions.

Hence, identifying effective program predicates and

formulating correct and robust statistic comparisons are

important for such techniques.

CBI [12, 13] checks the probability of a predicate

to be evaluated to be true in all failed runs and that

in all the runs (irrespectively of whether successful or

failed), and measures the increase from the former to

the latter. This increase is used as the ranking score,

which indicates how much the predicate is related to

a fault. SOBER [14, 15] defines evaluation bias to

estimate the chance that a predicate is evaluated to be

true in each run. More precisely, if P is a predicate and

π(P) is the probability that it is evaluated to be true in

every run, then π(P) can be evaluated by nt
nt+n f

, where

nt is the number of times that P is evaluated to be true

and n f is the number of times that P is evaluated to be

false. SOBER then evaluates the difference between the

distributions of π(P) for successful and failed runs, and

deems that the larger the difference, the more will P be

relevant to a fault. In brief, CBI and SOBER use similar

kinds of statistical mean comparison.

However, the above techniques have a couple

of limitations: Firstly, Tarantula and CBI do not

distinguish the number of times that a particular

program element (statement or predicate) has been

executed in a run. Liu et al. [15] empirically show

that such a method can be less accurate than one in

which the distributions of evaluation biases assembled

from successful and failed runs are considered. Our

study in this paper shows similar results. Secondly,

SOBER uses the central limit theorem in statistics to

measure the behavioral difference of a predicate for

successful and failed runs. In the implementation

provided in the authors’ website, it implicitly assumes

that π(P) is normally distributed. Our empirical study

on the Siemens suite [5] shows that most predicates

are far from having any known distribution. Hence,

a parametric hypothesis testing approach may lose its

discrimination capability significantly and produce non-

robust results.

These motivate us to adopt a statistical fault

localization approach and a generic model without the

undesirable effects. In particular, we propose to use

a non-parametric approach. To evaluate the work,

we stipulate our model in the context of predicate-

based statistical fault localization, and pick a popular

non-parametric hypothesis testing, the Mann-Whitney

test, to determine the degree of difference between

the spectra of program elements for successful and

failed runs. The degree of difference can be used

as the ranking score, which indicates how much a

predicate is related to a fault. Based on the ranking

scores of the predicates, we obtain a ranked list of

predicates. Predicates having high ranking scores are

deemed to be suspicious. Debuggers may use the

suspicious predicates to start the search for program

faults. Empirical results show that our method is

effective in locating faults in programs.

The main contributions of the paper are two-fold:

(i) It gives the first case study on the statistical nature

of the execution spectra over the Siemens suite. It

shows that certain features do not follow a Gaussian

or normal distribution. Such a finding highlights a

threat to construct validity of the empirical results

reported in many fault localization experiments in the

literature. It also serves a reference point for fellow

researchers to work on statistical approaches that mine

software execution data from program behaviors. (ii) It

demonstrates the use of a non-parametric hypothesis

testing to improve the robustness of existing fault-

relevant predicate ranking models. Our experiments

show that our model can discover 70% of the faults

when examining up to 20% of the code.

The remainder of the paper is organized as follows.

Section 2 provides a motivating study. We then discuss

our approach in Section 3, after which we describe

our empirical evaluation in Section 4. Related work is

presented in Section 5. Section 6 concludes the paper.

2. Motivating Study

In this section, we use a program from the Siemens

suite [5] to illustrate our important initial finding on the

statistics of program behaviors. Figure 1 shows the
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P1: if ( rdf ≤ 0 ‖ cdf ≤ 0 ) {
info = -3.0;

goto ret3;

}
...

P2: for ( i = 0; i < r; ++i ) {
double sum = 0.0;

P3: for ( j = 0; j < c; ++j ) {
long k = x(i,j);

P4: if ( k < 0L ){
info = -2.0;

E1: /*goto ret1;*/

}
sum += (double)k;

}
N += xi[i] = sum;

}
P5: if ( N ≤ 0.0 ) {

info = -1.0;

goto ret1;

}
P6: for ( j = 0; j < c; ++j ) {

double sum = 0.0;

P7: for ( i = 0; i < r; ++i )

sum += (double)x(i,j);

xj[j] = sum;

}
...

ret1:

Figure 1. Excerpt from faulty version 1 of program

“tot info” from the Siemens suite.

code excerpted from faulty version 1 of the program

“tot info”. Seven predicates are included, labeled as

P1 to P7. The statement “goto ret1;” (labeled as

E1) is intentionally commented out by the Siemens

researchers to simulate a statement omission fault.

Locating such a kind of fault is often difficult even if

the execution of a failed test case is traced step-by-step.

Let us focus on program behaviors resulting

from predicate evaluations because they have been

successfully used in fault localization research such as

SOBER. We observe that the predicate “P4: k < 0L” is

highly relevant to program failures because the omitted

statement E1 is in the true block of the branch statement.

We further find that none of the predicates P1, P2, and

P3 is related to failures because they neither directly

activate the fault nor propagate an error. Predicate P5

is also related to the fault, since commenting out the

goto statement (E1) will render a higher chance for P5

to be evaluated. Predicates P6 and P7 are increasingly

distant from the faulty statement E1.

Distribution for Distribution for

Successful Runs Failed Runs

P1

P2

P3

P4

P5

P6

P7

Figure 2. Distributions of evaluation biases for

predicates P1 to P7.
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(a) Distribution for successful runs (b) Distribution for failed runs

Figure 3. Distributions of evaluation biases for predicate P7.

The 7 pairs of distributions of evaluation biases

with respect to P1 to P7 are shown via the histograms

in Figure 2. We also zoom in the histograms for P7 in

Figure 3.

In each of these plots, the X-axis stands for the

evaluation biases (varying in the range of [0, 1]), and

the Y-axis is the number of (successful or failed) runs

that share the same value of evaluation bias. They are

produced by executing the program over all the test

cases in Siemens suite. If a predicate is not executed in

a run, there will be no data captured in the distribution.

The series of histograms (distributions of evalu-

ation biases) on the left are for the successful runs

and those on the right are for the failed runs. The

resolution (step) of the histograms is 0.01. Take the

plot in Figure 3(a) as an illustration. The left-most

bar means that there are 82 successful test cases, over

which the evaluation biases of P7 in their corresponding

program execution are in the range of [0.65, 0.66).

We have the following observations from the

histograms:

O1: Evaluation biases for predicates (see Definition 1

in Section 3.1) are not always close to 0 or 1,

but are scattered throughout the range of [0, 1]. It

means that simply checking whether it is evaluated

to be true or false may lead to information loss and

inaccurate analyses.

O2: The histograms for predicate P1 resemble each

other. The same phenomenon is observed for P2,

P3, P6, and P7. Those for P4 and P5, however,

differ significantly. It indicates that the differences

of distributions over successful and failed runs

can be good indicators of the fault-relevance of

predicates.

O3: None of the histograms in Figures 2 and 3

resembles a Gaussian or normal distribution. For

each predicate of every program in the Siemens

suite, we have conducted the standard t-test to

determine whether its evaluation bias follows a

Gaussian distribution. The results show that for

nearly 60% of a total of 10042 distributions, the

assumption of Gaussian distribution is rejected at

the 5% significance level. We further observe

that, as far as the programs under study can

represent, assuming a normal distribution for

predicate evaluation bias is unrealistic.

Besides, SOBER sets the evaluation bias of a

predicate for a successful run to be 0.5 if the predicate

is never evaluated in the run. Is this a valid assumption?

We observe that the values in Figure 2 are not always

distributed across the entire range of [0, 1]. For

predicate P7, for instance, the values only lie within the

range of [0.67, 1]. In other words, the actual evaluation

bias for any run cannot take the value of 0.5. In fact, this

situation is not an isolated case. Indeed, out of all the

142 instrumented predicates in the program “tot info”,

the ranges of evaluation biases for 124 of them (or

87.3%) never include the value of 0.5.

Unlike the reasoning in [15], we argue that it

is not a fair assumption to set 0.5 as the value of

evaluation bias for predicates not evaluated in a run.

In fact, any artificial value has a similar problem.

This motivates us to abandon the use of any preset

value (including 0.5) in our model. Furthermore, in

practice, there often exist only small percentages of test
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cases that reveal failures, and the pool of test cases

is usually not large. A parametric hypothesis testing

technique or the central limit theorem is not suitable

for non-parametric distributions with small samples.

Mathematicians have proposed many non-parametric

analysis techniques instead.

In summary, to conduct statistical fault localiza-

tion, we propose to use generic non-parametric analysis

techniques to compare the statistics from dynamic

program behaviors.

3. Our Predicate Ranking Model

In this section, we explore a non-parametric model

for ranking fault-relevant program locations by fully

utilizing the statistical distribution information from

successful and failed runs.

3.1. Preliminaries

We first revisit the notion of program predicates

and evaluation biases [13, 15].

Liblit et al. [12, 13] propose three types of program

location to sample the execution statistics of successful

and failed runs. Each program location is associated

with a set of Boolean predicates. Collectively, they

define the set of program predicates in the program. The

three types of program location are as follows:

• Branches: At each conditional statement, CBI

tracks the conditional true and false branches

via a pair of program predicates, which monitor

whether the corresponding branches have been

taken. SOBER further collects the number of times

that the branches have been taken in a run.

• Returns: At each return statement, six predicates

are tracked to find whether the returned value r

satisfies r < 0, r ≤ 0, r > 0, r ≥ 0, r = 0, and

r 6= 0, respectively. Both CBI and SOBER collect

evaluation biases for these predicates.

• Scalar-pairs: To track the relationship between a

variable and another variable or constant in each

assignment statement, six predicates (similar to

those for return statements above) are adopted by

CBI. On the other hand, SOBER experimentally

verifies and concludes that not tracking these

predicates will not degrade the fault localization

quality when using the Siemens suite.

Each program predicate may be executed more

than once in a run. Each evaluation will give either

a true or a false value. We thus give the notion of

evaluation bias to estimate the probability of a predicate

being evaluated as true in a run as follows:

Definition 1 (Evaluation Bias [15]) Let nt be the num-

ber of times that a predicate P has been evaluated to be

true in a run, and n f the number of times that it has been

evaluated to be false in the same run. π(P) = nt
nt+n f

is

called evaluation bias of predicate P in this particular

run.

Intuitively, some predicates may not be evaluated in

a run. SOBER sets 0.5 as their evaluation biases. In our

model, they are not assigned any artificial evaluation

bias.

In the next section, we shall elaborate on our non-

parametric hypothesis ranking model.

3.2. Non-Parametric Hypothesis Ranking

Model

Following the conventions from standard statistics,

we treat each run as an independent event. Let Ts and Tf

be the whole sets of possible successful runs and failed

runs, respectively. Given a random test case t in Ts or Tf ,

let X be the random variable representing the evaluation

bias of predicate P for the program execution over t.

We use f (X |θs) and f (X |θ f ) to denote the probability

density functions of the evaluation biases of predicate

P on Ts and Tf , respectively. Ideally, if a predicate is

relevant to a fault, f (X |θs) should differ from f (X |θ f ).
Moreover, the larger the difference, the more relevant

will be P in relation to the fault.

We define a ranking function

R(P) = Diff
(

f (X |θs), f (X |θ f )
)

(1)

to measure the difference between f (X |θs) and

f (X |θ f ).
Without any prior knowledge of f (X |θs) and

f (X |θ f ), we can only estimate them from the sample

set, that is, the test suite attached with the program.

Each corresponding run of a test case from the test suite

is treated as a sample for the random variable X . In this

way, we obtain sample sets for f (X |θs) and f (X |θ f ),
respectively. We deem that the difference between

the two sample sets is an approximation of R(P). To

measure the difference between the two sample sets, a

promising way is to use a parametric hypothesis testing

method. However, according to standard statistics

textbooks such as [16], a parametric hypothesis testing

can be meaningfully applied only if

(a) The two sample sets are independently and

randomly drawn from the source population;
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(b) The scales of measurement for both sample sets

have the properties of an equal interval scale;

(c) The source population(s) can reasonably be

assumed to have a known distribution.

In cases where the data from two independent

samples fail to meet any of these requirements, it

is a well-known advice to use a non-parametric

alternative. This is further supported by our empirical

study presented in Section 2, which shows that the

underlying data populations are indeed far from a

known distribution model. Therefore, we propose

to use the Mann-Whitney test [16], a non-parametric

hypothesis testing technique, to measure the differences

in the sampled distributions of evaluation biases. The

robustness of non-parametric hypothesis testing frees us

from having artificial configuration parameters.

In the rest of the section, we describe how the

Mann-Whitney test is applied to our fault localization

model.

Problem Settings. Let Vs be the sample set of

evaluation biases for a predicate P from m successful

runs. Similarly, let Vf be the sample set of evaluation

biases for predicate P from n failed runs. Without loss

of generality, we assume that m ≥ n. The goal is to

gauge the differences between such Vss and Vf s, and

use the measures to rank the predicates.

Our ranking approach strictly follows the Mann-

Whitney test, 1 and consists of two steps. It firstly

transforms the two sample sets of evaluation biases to

two rank-value sets, and then measures the distance

between two rank-value sets. In the sequel, we shall

use an example to illustrate the process.

Computing the ranks of sampling values in Vs and

Vf . We follow the Mann-Whitney test to compute

the rank-values of all sampling values in Vs and Vf .

Suppose that there is a predicate P whose sets of

evaluation biases are Vs = {0.2, 0.3, 0.4} and Vf =
{0.4, 0.5}. For simplicity, we do not explicitly list the

test case number for each value instance.

The first step is to construct the union set V of Vs

and Vf . There are totally 5 samples for the evaluation

biases of P, namely 0.2, 0.3, 0.4, 0.4, and 0.5. We

assign a rank to each of them. The smallest value 0.2
is assigned a rank of 1. Similarly, the largest value 0.5
is assigned a rank of 5. The value 0.4 appears twice in

the list. The algorithm will assign the average rank 3.5
in both cases. After assigning ranks to the values, we

obtain a rank-value set RS = {1, 2, 3.5, 3.5, 5} for V .

1 We conjunct that other non-parametric tests may be used instead.

We then map the rank-values back to the

corresponding elements in Vs and Vf , thus constructing

two new sets Rs and R f , respectively. In this example,

for instance, we obtain Rs = {1, 2, 3.5} for Vs and R f =
{3.5, 5} for Vf .

Measuring the difference between Rs and R f . After

constructing the two rank-value sets, we then enumerate

all the distribution possibilities of rank-values inside

them. The two sets may contain different number of

elements. The Mann-Whitney test selects m out of m+n

possibilities in Cm
m+n combinations. For instance, there

may be 10 combinations for Rs in the example, namely

{1, 2}, {1, 3.5}, {1, 3.5}, {1, 5}, {2, 3.5}, {2, 3.5},

{2, 5}, {3.5, 3.5}, {3.5, 5}, and {3.5, 5}.

We then proceed to use the ranking function R(P)
in the Mann-Whitney test to derive the ranking score for

the predicate P. Let K be the number of combinations

of rank-values (such as K =Cm
m+n = 10 in this example).

We define the sum of ranks S of a rank-value set RS to

be the sum of the rank-values of all the elements in RS

(that is, S = ∑
i∈RS

[rank-value of i ]). In this example, the

values of S for the 10 combinations are 3, 4.5, 4.5, 6,

5.5, 5.5, 7, 7, 8.5, and 8.5, respectively. For instance,

for the rank-value set of {1, 3.5}, the sum of ranks is

1+3.5, which is 4.5.

Let Kl be the number of combinations whose sum

of ranks is less than that of Rs. Similarly, let Kh be the

number of combinations whose sum of ranks is larger

than that of Rs. We then calculate the minimum of Kl/K

and Kh/K. It indicates the difference between Vs and

Vf . The lower the minimum, the more divergent will be

the two sampled distributions. Based on the above, we

approximate equation (1) by our ranking function

R(P) = −min(Kl/K,Kh/K)

The higher the ranking score, the more relevant will

be P in relation to the fault. In this way, we rank the

predicates in decreasing order of ranking scores. If

two predicates happen to have equal ranking scores,

they share the same rank in the list. In particular,

predicates having a significant difference in terms of the

hypothesis testing are suspected to correlate with faults.

4. Experiment

In this section, we present the experiment to

validate our technique.
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4.1. Subject Programs

The Siemens suite consists of 132 C programs

with seeded faults. Each program is a variation of

one of seven programs, namely “tcas”, “tot info”,

“replace”, “print tokens”, “print tokens2”, “schedule”,

and “schedule2”, varying in size from 133 to 515

executable lines. 2 Each faulty version is seeded with

exactly one fault. We have downloaded these programs

from the Software-artifact Infrastructure Repository

(SIR) [5] website. Table 1 shows the descriptive

statistics of the suite, including the number of faulty

versions, the number of executable lines of code, the

number of test cases, and the percentage of failed test

cases.

4.2. Performance Metrics

Performance metrics are always a central issue in

accurate and objective comparisons. To gauge the fault

localization quality of our method, we use T-scores as

the metric, which was originally proposed by Renieres

and Reiss [17] and later adopted by SOBER [14, 15]

in reporting the performance of their fault localization

techniques. We summarize the measure as follows.

Consider a faulty program together with its

program dependence graph G = (N, E), where N

is the set of statements and E is the set of (data-

and/or control-) dependencies between pairs of related

statements. The set of faulty statements are denoted by

Ndefect. The list of suspicious statements (in order of

suspiciousness) given by a fault localization technique

is denoted by Nblamed. Starting from a node in Nblamed,

developers do a breadth-first search and stop when a

node in Ndefect is reached. The set of nodes examined

is denoted by Nexamined. The T-score T is given by

T =
|Nexamined |

|N|
×100%

where |N| is the size of the N in G. In essence, it

measures the percentage of source code that needs to be

examined in order to find a faulty statement. (In some

previous work such as [3, 17], 1−T is used.)

The T-score helps measure the cost of locating a

fault. The lower the percentage of code examined, the

higher will be the effectiveness of a fault localization

technique. In practice, developers may select the top

n suspicious statements to start the breadth-first search.

Accordingly, the result is named as the top-n T-score

result. Developers may also specify an upper bound of

code examination (such as 20% in previous work [15]).

2 We use the tool “David A. Wheeler’s SLOCCount”

to count the executable statements. It is available at

http://www.dwheeler.com/sloccount/.

4.3. Setup of Experiment

Among the 132 programs, two of them come with

no failed test cases. This is also reported in previous

work [14, 15]. These two versions are excluded because

both our method and SOBER need the presence of both

successful and failed test cases. To evaluate our method,

we follow [14, 15] to use the whole test suite as input to

our method and SOBER. Again, following [14, 15], we

use branches and returns (see Section 3.1) as program

locations for predicates in the experiment.

Our experiment is carried out on a Dell Inspiron

6400 laptop with an Inter Core(TM)2 T5600 @

1.83GHz stepping 06 CPU. The operating system is

Ubuntu 6.06 LTS Linux with kernel version 2.6.15-28-

386 (buildd@terranova). The Mann-Whitney test in our

experiment is implemented using Matlab 7.0.

4.4. Overall Performance Comparison
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Figure 4. Overall performance comparison of top-5

T-score results.

In this section, we evaluate our model using the

Siemens suite and compare our result with those of

SOBER and CBI. We note that all the three techniques

rank predicates and then produce a list of suspicious

faulty predicates from the highest ranking to the lowest

ranking.

The results of CBI are directly cited from [15],

while the results of SOBER are worked out using our

implementation of SOBER and the T-scores according

to their papers. Figure 4 depicts the percentage of faults

that can be located when a certain percentage of code is

examined. We report the results of the top-5 T-score

in this section, because [14, 15] report that the top-5

strategy gives SOBER and CBI the best T-score results.

We show only the range of [0%, 20%], since unlimited
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Program No. of Faulty Versions Executable LOC No. of Test Cases Percentage of Failed Test Cases

print tokens 7 341–342 4130 1.7%

print tokens2 10 350–354 4115 5.4%

replace 32 508–515 5542 2.0%

schedule 9 291–294 2650 3.2%

schedule2 10 261–263 2710 1.0%

tcas 41 133–137 1608 2.4%

tot info 23 272–274 1052 5.6%

Table 1. Statistics of Siemens suite.

code examination is time-consuming and unacceptable,

and this range is also used in previous work [14, 15].

Figure 4 shows the aggregated results of our non-

parametric testing model, as well as those of SOBER

and CBI, on all program versions. Firstly, in the

range of [4%, 10%], our method obviously outperforms

CBI. Generally, we observe that by checking less than

20% code, our method always locate more faults than

SOBER or CBI. Take the 10% code examining point

for illustration. Out method can locate 59% of all the

faults, while SOBER locates 54% and CBI locates 36%,

respectively. When a programmer can examine up to

20% of the code, which is conjectured by SOBER to be

the upper bound of meaningful code examination that

can be afforded, our approach can help discover 70%

of all the faults, while SOBER and CBI can only do so

for about 63% and 62% of all the faults, respectively. If

we deem SOBER and CBI as effective techniques, the

result indicates that our method is also effective.

4.5. Individual Performance Comparison

Unlike the overall comparison between CBI and

our approach, we do not observe large differences

between the results of our model and SOBER in

Figure 4. We decide, therefore, to compare their

performances on each individual Siemens program.

Figure 5 shows the results of our method and

SOBER on each of the seven Siemens programs. The

X-axis and Y-axis of the seven plots in Figure 5 can be

interpreted similarly to those of Figure 4.

The plots for the seven programs are ordered

according to their program sizes, in terms of the

executable statement counts as shown in the column

“Executable LOC” of Table 1. For the relatively larger

programs “replace” and “print tokens2” (Figures 5(a)

and 5(b)), the results of our method consistently

outperform those of SOBER. For the relatively

smaller program “tcas” (Figure 5(c)), our method

produces results comparable with SOBER. For the other

programs (Figures 5(d), 5(e), 5(f), and 5(g)), it is

difficult to tell which one is better. Our method seems

to have better results than SOBER over the programs

“tot info” and “schedule2”. However, SOBER catches

up with our method over the program “print tokens”.

For the program “schedule”, neither our method nor

SOBER has an obvious advantage over the other.

The results show that, the larger the program scale,

the better will be the results of our method when

compared to those of SOBER. This is understandable

for the following reason: Large programs tend to have

many predicates, so that it is harder to execute all of

them in a run. For predicated that are not executed, their

evaluation biases are set to a value of 0.5 in SOBER.

When there are many predicates not executed in a run,

there will be many 0.5 entries in the distributions of

evaluation biases. They will cause the distributions for

successful and failed runs to appear more similar. These

entries have been eliminated in our approach. As such,

intuitively, our approach is more robust (because of the

use of non-parametric test) and more scalable (because

of the above elimination).

4.6. Threats to Validity

Internal validity is mainly caused by factors that

affect experimental results. To avoid implementation

errors, we have implemented SOBER and T-score

strictly according to previous work and tested our

platform with great care.

Since we use Linux as our experimental environ-

ment, the execution statistics of test cases may differ

from previous work owing to platform dependencies

(which is also explained in [5]). We have manually

examined the differences carefully.

Construct validity lies in the evaluation method we

choose. Since T-score is widely used in previous work

(including [14, 15]), we also use T-score to compare

our method with SOBER and CBI. Nevertheless, some

limitations have been reported in the use of T-score

(see [3] for example). Has any other measures

been used to evaluate predicate-based techniques

successfully? We are not aware such alternatives in the

public literature.
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Figure 5. Individual performance comparisons of top-5 T-score results.

On the other hand, it may be unfair to use the

same performance measure (T-score) to compare with

other techniques (such as [3, 8, 10]) and may lead to

unreliable results. We, therefore, adopt only SOBER

and CBI as peer techniques and compare our method

with them.

Another threat is the predicates we choose to

investigate. SOBER has reported that scalar-pair

predicates have minor effects on fault localization

results. Hence, we follow SOBER to adopt the other

two kinds of predicate in the experiment.

External validity is related to the target programs

used. Since the faults in Siemens programs are

manually seeded, they may not truly represent realistic

faults. Using other programs may give different results.

More evaluation should, therefore, be done in the future.

5. Related Work

Program slicing [19] is a code-based technique.

It is widely used in debugging [18]. Gupta et

al. [6] propose a forward dynamic slicing approach

to narrow down slices. They further integrate

the forward approach with standard dynamic slicing

approaches [22].

Collofello and Cousins [4] pioneer the use of test

cases for fault localization. A promising approach

is to use the behavioral statistics collected from test

case executions. Delta debugging helps to simplify or

iron out fragments of failed test cases [21], producing

cause-effect chains [20] and linking them to suspicious

statements [3].

Harrold et al. [7] list nine classes of program
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spectra, such as path count, data-dependency count,

and execution trace. Among them, the execution trace

spectrum is most widely used in debugging. Jones et

al. [8, 10], in their work Tarantula, rank each statement

according to suspiciousness, which is a function of

the percentages of failed and successful test cases that

execute the statement. Renieres and Reiss [17], in

their work NearestNeighbor, find that the execution

trace difference between a failed run and its nearest

successful neighbor run is more effective for debugging.

Baudry et al. [2] observe that some statements (known

as a dynamic basic block) are always executed by

the same set of test cases. They use a bacteriologic

approach to generate test cases so as to maximize the

number of dynamic basic blocks, and use the algorithm

in [8, 10] to rank them. They further extend their work

in [9] to make it possible for multiple developers to

debug at the same time.

The most relevant related projects are CBI [12,

13] and SOBER [14, 15]. Rather than locating faulty

statements, these techniques make use of predicates to

indicate the faults. Since these techniques have been

explained in Section 1, we do not repeat them here.

Arumuga Nainar et al. [1] further extend CBI to address

compound Boolean expressions. Zhang et al. [23]

propose a fine-grained version of such techniques and

use an empirical study to investigate the effectiveness.

6. Conclusion

Fault localization is a time-consuming and yet

crucial activity in software debugging. Many previous

studies contrast the feature spectra of successful and

failed runs to locate the predicates correlated to faults

(or locate the faulty statements directly). However, they

overlook the investigation of the statistical distributions

of the spectra, on which their parametric techniques

fully rely. We have argued and empirically verified that

assuming a specific distribution of feature spectra of

dynamic program statistics is problematic. It highlights

a threat to construct validity in fault localization

research that previous studies do not report in their

empirical evaluation and model development. We have

also explained why parametric approximation is less

desirable.

We have proposed a non-parametric approach that

applies general hypothesis testing techniques proposed

by mathematicians to statistical fault localization, and

cast our technique in a predicate-based setting. We have

conducted experiments on the Siemens suite to evaluate

the effectiveness of our model. The experimental

results show that our model can be effective in

locating faults and requires no artificial parameters or

operators. Empirically, our approach gives a better fault

localization effectiveness than previous predicate-based

fault localization techniques. Future work may include

concurrent debugging of multi-fault programs. It will

also be interesting to find out whether a non-parametric

approach can be formally proven to be more suitable

than a parametric approach.
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