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Abstract—Existing fault localization techniques combine 
various program features and similarity coefficients with the 
aim of precisely assessing the similarities among the dynamic 
spectra of these program features to predict the locations of 
faults. Many such techniques estimate the probability of a 
particular program feature causing the observed failures. 
They ignore the noise introduced by the other features on the 
same set of executions that may lead to the observed failures. 
In this paper, we propose both the use of chains of key basic 
blocks as program features and an innovative similarity coef-
ficient that has noise reduction effect. We have implemented 
our proposal in a technique known as MKBC. We have empir-
ically evaluated MKBC using three real-life medium-sized 
programs with real faults. The results show that MKBC out-
performs Tarantula, Jaccard, SBI, and Ochiai significantly. 

Keywords—fault localization; key block chain; noise 
reduction 

I. INTRODUCTION 
Fault localization is an important and yet time-

consuming activity in the software development process. 
Coverage-based fault localization (CBFL) techniques, also 
known as statistical or spectrum-based techniques, have 
been developed to alleviate the problem. Better known 
examples include Jaccard [2], Tarantula [14], CBI [16], 
SOBER [17], and CP [26] 

A typical CBFL technique involves a number of phases. 
It first selects a set of program features, and then collects the 
execution statistics of such features for both passed and 
failed executions. By comparing the similarities between 
two such sets of statistics for each feature, it estimates the 
extents of the program features correlated to a fault, and 
ranks the program features accordingly. Thus, two basic 

elements that affect the fault localization effectiveness in a 
CBFL technique are the choice of the program features and 
the similarity coefficient used by the technique. 

Existing work has proposed to use nodes [3][15], edges 
[19][26], predicates [16][17], sequences of edges [8][18], 
sequences of conditionals in predicates [1][27], and data 
values [12] as program features. Moreover, the program 
locations to collect execution statistics for these features 
have been studied [3][8]. At the same time, many similarity 
coefficients [2][16][17][24][26] or derived coefficients [19] 
[26][27] have been formulated. 

Nonetheless, on a closer look at the experimental results 
of these techniques, such as [3][14][17][19][26], the mean 
fault localization effectiveness, even for medium-sized pro-
grams, is far below 10% when a small portion of the code 
(say, 2 percent) is examined. CBFL techniques are still 
inadequate in consistently locating program faults with a 
high probability. 

A CBFL technique abstractly models a program as a set 
of features, and estimates the probability of each feature 
(such as fault suspiciousness) being related to the observed 
failures. Ideally, a program can be statically and completely 
partitioned into a set of equivalent classes of these features. 
For instance, nodes can be used as an equivalence criterion, 
in which case every node in a given program can be 
assigned to exactly one partition. Such a partitioning process 
may also be applied when edges or predicates are used as a 
criterion. Intuitively, the use of a finer-grained partitioning 
scheme enables a more sensitive diagnosis. However, not all 
kinds of models preserve such a property. For example, 
owing to the numerous number of possible choices, a static 
approach to constructing partitions such that each partition 
contains exactly one path or data value is impractical. 
Existing techniques [8][12] resolve to use dynamic parti-
tioning strategies, which only identify a particular program 
feature when a program execution exhibits that feature. 
Methods using sequence of conditionals, such as DES [27], 
allow a static partitioning of predicates into sequences of 
conditionals. Nonetheless, to the best of our knowledge, 
existing approaches (such as [27]) are limited to the 
handling of individual compound predicates. In any case, 
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the granularity of DES is finer than those of pure predicate-
based counterparts [17]. An adaptive version of DES may 
consider all the predicates in a program and enumerate all 
possible sequences of decision values formed by these 
predicates, but such a simple adaptation is tedious, non-
scalable, and intractable in the presence of loops. 

In this paper, we propose a strategy that can statically 
divide a Java program into a set of partitions, each of which 
typically contains a series of predicates. The granularity of 
our method is finer than that of a node-based, edge-based, 
predicate-based, or the DES approach, but coarser than that 
of a path-based approach. 

Our strategy works on an intermediate representation of 
the Java language, which can be described in terms of basic 
blocks, transition edges, and control flow graphs (CFGs) 
[5]. Every such block has at most one atomic predicate. We 
assign a sequence of such blocks into the same partition if 
the atomic predicate of each block is evaluated to be false. 
Then, a sequence of blocks to be executed will be in the 
same partition. We refer to such a sequence to as a Key 
Block Chain (KBC). Our crucial observation is that KBC 
provides precise information to represent the set of 
evaluation sequences [27] in the partition. Moreover, KBC 
gives clear relationships among statements, basic blocks, 
and predicates, which ease the tracing of a fault from the 
position of a predicate to a particular statement in the same 
block chain. 

Any estimate on a particular program feature based on 
the result of a full path (that is, the output of an execution) is 
affected by the presence of other program features on the 
same path. Surprisingly, most existing CBFL techniques do 
not directly address this problem. We propose an innovative 
similarity coefficient that has a noise reduction effect. For 
each evaluation sequence, we estimate the noise factor by 
computing the ratio between (a) the percentage of failed 
executions that does not exercise the given evaluation 
sequence and (b) the percentage of all executions (passed or 
failed) that does not exercise the given evaluation sequence. 
We subtract this noise factor from an existing similarity 
coefficient. We call our technique Minus and Key Block 
Chain (MKBC). In this paper, we use the suspiciousness 
metric in Tarantula as the existing similarity coefficient. We 
note that the use of the suspiciousness metric merely serves 
as an illustration of our approach. Our approach is general. 

We evaluate MKBC using a controlled experiment, and 
compare its effectiveness with those of Jaccard [2], SBI 
[24], Ochiai [2], Tarantula [14], DES [27], and CBI [16]. 
We use jtopas, xml-security, and ant as subject programs, 
which are real-life medium-sized programs and contain real 
faults in multiple releases. The experimental results show 
that, in terms of fault localization effectiveness, MKBC 
significantly outperforms all the other techniques studied in 
the experiment. For example, when checking no more than 1 
percent of the code, the best peer technique (Ochiai) can 
find 3.45% of all faults, while MKBC finds 10.35% of them. 

The main contribution of this paper is fourfold: (i) It 
investigates the use of KBC as feature for fault diagnosis. 
(ii) It proposes a formula with an explicit noise reduction 

term. (iii) It initiates a new fault localization technique 
called MKBC. (iv) It validates MKBC via an experiment. 

The rest of this paper is organized as follows. Section II 
shows a motivating example. Section III presents our 
technique. Section IV presents an experimental evaluation. 
Section V and VI review related work and conclude this 
paper, respectively. 

II. MOTIVATING EXAMPLE 
This section uses an example to motivate the use of Key 

Block Chains for fault localization. Fig. 1 shows the 
program code excerpted from a faulty version of the 
program ant, downloaded from the Software-artifact Infra-
structure Repository (SIR) [9]. The functionality of this 
code excerpt is to translate the path of a file from OS-format 
into VM-format. A fault exists on statement S2, where the 
second parameter of the method path.indexOf( ) should be 1 
(rather than 0). In this example, exercising S2 followed by S4 
triggers a failure. 

1) Jimple 
Jimple is an intermediate representation [20][21] of Java. 

We observe that Jimple has several desirable properties to 
support fault localization. First, Jimple always normalizes 
every compound Boolean expression into atomic Boolean 
expressions, each of which resides in exactly one basic 
block. Second, each basic block contains at most one atomic 
Boolean expression. Third, mapping a Boolean expression 
in Jimple code to its corresponding statement in Java code is 
easy. 

The Jimple code of the program excerpt 
1 and the control 

flow graph (CFG) based on Jimple code are also shown in 
Fig. 1. We observe that the compound predicate at S6 is split 
into two basic blocks. Also, a basic block B2 contains the 
statements S2 and S3. Its preceding block is B1 and its 
succeeding blocks are B3 and B4. The connections between a 
basic block and its preceding/succeeding basic blocks are 
explicitly captured in Jimple representation. For ease of 
presentation, we add a dummy block B8 (marked as a dashed 
box) and four edges (marked as dashed arrows) to make the 
mapping between the Jimple code and the CFG more 
explicit. 

We further denote the predicate in a block Bi by Pi and 
the corresponding predicate at a statement Si by pi. For 
instance, we use P1 to denote predicate for B1 and p3 to 
denote predicate for S3. 

2) Test Cases and Executions 
Fig. 1 shows 10 sample test cases, together with their 

pass/fail statuses. The statement- and block-execution 
information is also shown in the figure. A cell filled with 
“■” indicates that the corresponding statement or block is 
exercised by the execution of that test case.  A cell filled 
with “▲” indicates that the corresponding statement or 
block is only partially exercised. Let us take the fourth test 
case T4 as an example. When the program executes T4,  

                                                           
1 Note that, to realize the streamline design [20][21] in Jimple, the source 

code has been transformed with some branches switched without altering 
the program behavior. For example, the condition “index == –1” in S3 
is changed to “index != –1” with the corresponding branches swapped.  
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statement S1 is exercised, S6 is partially exercised, and basic 
blocks B1 and B5 are exercised. The compound predicate of 
S6 is split into two basic blocks B5 and B6 at the Jimple level, 
where B5 represents the first conditional of S6, which is 
exercised by T4; B6 represents the second conditional of S6, 
which is not exercised. Consequently, we mark S6 by “▲” in 
the T4 column. Other test cases can be interpreted similarly. 

3) Peer Techniques 
 We apply techniques Jaccard [2], SBI [24], Tarantula 

[14], CBI [16], and HOLMES [8] on the same example and 
compute, for each statement or block, the corresponding 
suspiciousness scores and their ranks. They are shown in the 
“sus” and “r” columns, respectively. By calculating the value 
of expense [24] for each technique, their effectiveness in 
locating the fault in S2 is measured by the percentage of code 
that must be examined (as recommended by the expense 
technique) to include S2. The value of expense is shown in 
the “% of code examined to local fault” row. 

None of Tarantula, Jaccard, and SBI can rank S2 as the 
most suspicious statement. Nonetheless, statements S6, S7, 
and S8 are mistakenly deemed as highly suspicious by these 
techniques. Intuitively, these statements are considered 
dubious because they are closest to the fault and, at the same 
time, have been executed by both failed and passed test 
cases. 

CBI also fails to assign high suspiciousness values to the 
predicates p1 and p2, which are the predicates closest to the 
faulty position. Apparently, this is because these predicates 
have been evaluated to be true by quite a number of passed 
test cases. CBI even ranks other predicates such as p6 higher 
than the predicates p1 and p2. HOLMES uses paths as a 
feature to locate faults. In the example, the 10 test cases 
result in seven paths as shown in the “Paths of HOLMES” 
section of Fig. 1. We observe that the same predicate may 
appear in multiple paths, and a path may contain many 
predicates. Obviously, many non-faulty statements need to 
be examined before the most fault-relevant paths can be 
identified by HOLMES. 

4) A Sketch of Our Approach 
Our approach consists of three steps. We first construct 

KBC predicates as a program feature, then use a similarity 
coefficient formula to estimate the fault suspiciousness, and 
finally map the feature suspiciousness into block suspicious-
ness. 

We traverse the Jimple code block by block, starting 
from the first block. We iteratively mark every block con-
taining a predicate until we encounter a block whose last 
statement is not a predicate. We link all the marked blocks 
during this search to form a chain, and clear all the marks. 
We then repeat the search. In this way, we partition the 
Jimple code into a number of sections, and refer to each 
section as a Key Block Chain (KBC). We further extract the 
set of predicates from each KBC as a program feature for the 
KBC, and refer to each feature as a KBC predicate. In Fig. 1, 
for example, we start the search from B1. Because the last 
statement in B1 is a predicate, we mark B1 and continue to 
traverse B2. B2 is also marked because it also contains a 
predicate. We then visit B3, which contains no predicate. As 

such, we link blocks B1 and B2 to form a KBC. We then clear 
the marks in B1 and B2, and repeat the search at the next 
block B4. Note that we do not include B3 into the formed 
KBC because it contains no predicate. Finally, we construct 
another KBC by linking B5 and B6. We therefore obtain two 
sets of KBC predicates, {P1, P2} and {P5, P6}. 

A KBC predicate may contain several atomic Boolean 
expressions. We use them to construct evaluation sequences 
[27] according to their decision results. Given a KBC Ni, let 
P(Ni, j) denote the sub-path j of Ni. We compute its suspi-
ciousness score using a formula in the form of “α – β”. The 
first term α calculates the ratio between (i) the percentage of 
failed executions that exercise P(Ni, j) and (ii) the percentage 
of all executions (passed or failed) that exercise P(Ni, j). 
Thus, α estimates the probability of exercising P(Ni, j) when 
failures occur. We use the suspiciousness metric %ୟ୧୪ୣୢሺሺே,ೕሻሻ%ୟ୧୪ୣୢ൫ሺே,ೕሻ൯ା%୮ୟୱୱୣୢሺሺே,ೕሻሻ in Tarantula as the similarity 
coefficient to compute α. The second term β calculates the 
ratio between (iii) the percentage of failed executions that do 
not exercise P(Ni, j) and (iv) the percentage of all executions 
that do not exercised P(Ni, j). In this way, β estimates the 
probability of not exercising P(Ni, j) when failures occur. We 
use the term 

ଵି%ୟ୧୪ୣୢሺሺே,ೕሻሻଵି%ୟ୧୪ୣୢ൫ሺே,ೕሻ൯ାଵି%୮ୟୱୱୣୢሺሺே,ೕሻሻ to compute β. 

As a result, the formula α – β is a more precise estimation of 
how much a sub-path P(Ni, j) relates to the observed failures. 

Surprisingly, many existing fault suspiciousness formulas 
ignore the second term. Attributing it to the nature of noise 
reduction, we call our formula Minus. We note that by 
substituting P(Ni, j) for a statement Si into the formula, it can 
be adapted to work at the statement level. For example, the 
suspiciousness of statement S4 can be computed as ଵ/ଶଵ/ଶାଵ/଼ െଵିଵ/ଶଵିଵ/ଶାଵିଵ/଼ ൌ 0.80 െ 0.36 ൌ 0.44. The term 0.80 is due to 
Tarantula while the term 0.36 is the noise reduction using 
Minus, so that the suspiciousness score of the correct state-
ment S4 is reduced accordingly. 

We recall that a block may reside on more than one sub-
path under the same KBC predicate. We define the suspi-
ciousness of a block to be the maximal suspiciousness of all 
the sub-paths of the KBC predicate that the block resides on. 
Moreover, we use the mean value of these suspiciousness 
scores as the tie breaker value for the block in case it is in tie 
with any other block. 

We call our technique Minus and Key Block Chain 
(MKBC). For example, the suspiciousness of statement S2 is 
finally calculated as (sus = 0.44, conf = 0.16) and (sus = 
0.44) by MKBC with and without tie breaking, respectively. 
The details are given in Section III. 

In the example, we compare five peer techniques with 
Minus (which adopts our formula to work on statements), 
MKBC– (which adopts our method but works at the KBC 
predicate level), and MKBC (with our tie breaking strategy). 
As shown in Fig. 1, the expense values [24] of the various 
techniques are (from left) 62.5%, 62.5%, 62.5%, 87.5%, 
100%, 25%, 50%, and 37.5%, respectively. The example 
shows that the use of our formula at either the statement 
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level or the KBC predicate level, either with or without tie 
breaking, can be promising. 

III. OUR MODEL 

A. Preliminaries 
Given a program, we use G(P) = 〈B, E〉 to denote the 

control flow graph (CFG) of its Jimple code, where B = 〈B1, 
B2, …, Bn〉 is the set of basic blocks [5]. Let T = 〈t1, t2, …, tu〉 
be a set of passed test cases, and T' = 〈t1', t2', …, tv' 〉 be a set 
of failed test cases. 

B. Key Block Chain Model 
Our model consists of three major steps: the construction 

of KBC predicates as a program feature, the calculation of 
suspiciousness scores for the KBC predicates, and the map-
ping of the suspiciousness scores to the blocks. 

1) Constructing KBC Predicates as Program Feature 
As illustrated in the motivating example, we start from 

the first block B1 in the Jimple code, and create an empty 
sequence s. We then conduct the following general 
procedure: If a block Bi contains a predicate, we append Bi to 
s. If Bi contains no predicate, then we output s as a KBC and 
reset s to empty. After the checking, we increase the counter 
i by 1, and repeat the procedure until the last block has been 
processed. Since the process is straightforward, we do not 
include the formal algorithm in this section. 

Every KBC contains a sequence of blocks, each of which 
contains exactly one atomic predicate. This sequence of 
atomic predicates is called a KBC predicate. According to 
Jimple semantics, if such an atomic predicate in a block is 
evaluated to be true, the block following the atomic predicate 
(which is a block in the same KBC) will not be executed. 
Moreover, the execution will jump to a succeeding block 
(defined by the “[succ]” annotation) of that block. For each 
KBC, by enumerating the possible underlying decision value 
of each atomic predicate, the corresponding KBC predicate 
can be mapped to a set of sub-paths in the program. We use 
the notation P(Ni, j) to denote such a sub-path j with respect 
to the KBC Ni. In Fig. 1, for example, the KBC N1, which 
contains the KBC predicates (P1, P2), may be resolved into 
three sub-paths P(1, 5), P(1, 2, 3), and P(1, 2, 4), where 
P(1, 5) denotes the sub-path B1 B5 and so on. 

2) Calculating Suspiciousness Scores for Features 
To calculate the suspiciousness score of P(Ni, j), which is 

denoted by θ(P(Ni, j)), we propose the following equation: 
 θ ቀܲ൫ ܰ,൯ቁ ൌ 

% ୟ୧୪ୣୢ൫ሺேሻ൯% ୟ୧୪ୣୢቀ൫ே,ೕ൯ቁା% ୮ୟୱୱୣୢቀ൫ே,ೕ൯ቁ  
(1) 

 െ ଵି% ୟ୧୪ୣୢቀ൫ே,ೕ൯ቁଵି% ୟ୧୪ୣୢቀ൫ே,ೕ൯ቁାଵି% ୮ୟୱୱୣୢ൫ሺே,ሻ൯. 
 

Equation (1) is in the form of “α – β”. The first term α 
calculates the ratio between (i) the percentage failed execu-
tions that exercise P(Ni, j) and (ii) the percentage all execu-
tions (passed or failed) that exercise P(Ni, j). This roughly 
estimates the extent that the exercising of P(Ni) causes the 
observed failures. Similarly, the second term β calculates the 
ratio between (iii) the percentage of failed executions that do 

not exercise P(Ni, j) and (iv) the percentage all executions 
that do not exercise P(Ni, j). In this way, the expression α – β 
is a more precise estimation of the extent that the exercising 
of P(Ni, j) relates to the observed failures. This expression 
represents a change in failure probability from not executing 
a path to executing a path, aiming at reducing the effect of 
the tailing parts of the first term (that is, exercising some 
other sub-paths when we measure the probability based on 
P(Ni, j)). Owing to the noise reduction involved, we refer to 
equation (1) as Minus. 

Consider P(1, 2, 4) in Fig. 1 as an example. %failed(P(1, 
2, 4) = 0.5 and %passed(P(1, 2, 4) = 0.625. Hence, α = 0.5 / 
(0.5 + 0.625) = 0.44 and β = (1 – 0.5) / (1 – 0.5 + 1 – 0.625) 
= 0.57, giving θ(P(1, 2, 4)) = α – β = –0.13. 

3) Mapping to Suspiciousness Scores to Blocks 
A block may appear in multiple sub-paths. We therefore 

define the suspiciousness of a block in a sub-path to be the 
maximum of the suspiciousness scores of all the sub-paths of 
the same KBC that the block resides on, thus: 

ሻܤሺݏݑݏ  ൌ max ቄθ ቀܲ൫ ܰ,൯ቁቅ (2) 
 

We choose to use the maximum operator because we aim to 
keep a close relationship between the block and the most 
effective sub-path that the block resides on. 

Finally, we give a tie breaking strategy to resolve tie 
cases [14]. We use the mean suspiciousness value of all the 
sub-paths of the same KBC that the block resides on as the 
tie breaker value of the block. The formula is 

ሻܤሺ݂݊ܿ  ൌ  θ ቀܲ൫ ఫܰ,൯ቁഢேണ,ೖ
തതതതതതതതതതതതതതതതതതതതതതതതതത

 (3) 
 

For example, the tie breaker value of B2 is calculated as 
conf(B2) = (0.44 + (–0.13)) / 2 = 0.16. 

4) Further Issues 
After obtaining the suspiciousness score for every block, 

it is simple to compute the suspiciousness score for every 
statement. A statement in the source code may be split into 
multiple Jimple statements, which may belong to different 
blocks. We choose the highest suspicious value of all those 
Jimple statements to be the suspiciousness value of the 
statement at the source code. Finally, we may assign ranks to 
statements. Like previous work, the rank of a statement is 
defined as the total number of statements whose suspicious-
ness values are higher or equal to it. 

Sometimes, a function in a program may contain no 
predicate. In that case, we simply add a dummy predicate 
that is always evaluated to be false at the end of the first 
block, so that the faults in the function will not be 
overlooked. We also note that we need only check the last 
statement of each block to determine whether it is a predi-
cate. This search can be performed in O(n) time, where n is 
the number of blocks in the Jimple code. 

IV. CONTROLLED EXPERIMENT 
In this section, we report a controlled experiment that 

evaluates the effectiveness of our techniques and compare 
them with peer techniques. 
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A. Experimental Setup 
1) Subject Programs 

The experiment uses three real-life programs, namely, 
jtopas, xml-security, and ant, as subject programs. We have 
downloaded them (including all the faulty versions and 
associated test suites) from the SIR site [9]. Table I shows 
the descriptive statistics of each subject program, including 
the versions, the program size (in LOC), the number of faulty 
versions, and the size of the associated test pool. Following 
[14], we execute each version with each test case, and input 
the entire set of executions to each technique, which will be 
described below. 

TABLE I. DESCRIPTIVE STATISTICS OF SUBJECT PROGRAMS 

 Real-Life 
Versions 

Program 
Description LOC No. of 

Versions 
No. of 

Test Cases 

jtopas 0.4 – 0.6 Text parser 5400 25 207 

xml-
security 

1.0.4 – 
1.0.71 

XML signature 
and encryption 16800 49 94 

ant 1.6 beta Tool building 80500 12 830 

Total    86 1131 

 
Following the documentation of SIR [9] and previous 

experiments [1][10][17][26], we exclude the versions whose 
faults cannot be revealed by any test case. This is because 
both our techniques and peer techniques do comparisons on 
profiling produced by failed test cases and passed test cases. 
In addition, several old program versions such as ant 
versions prior to 1.6, which are based on JDK 1.4, are 
excluded. Our instrumentation tool, implemented on Soot 
[20] version 2.3.0 running on JDK 1.6, does not support 
them. We finally use all the remaining 86 faulty versions, as 
shown in Table I, in the experiment. 

2) Experimental Environment 
Our experiments were run on a Ubuntu 8.04 Desktop 

system serving a VMware virtual machine with a configura-
tion of a single Intel® Core™ Duo 2.66 GHz CPU, 512 MB 
memory, and 20 GB hard disk. Our tool is developed on top 
of Soot version 2.3.0 [20]. All the programs and tools are 
compiled with JDK 1.6. Test cases are managed by the JUnit 
framework version 3. All the work was run automatically 
using bash scripts. 

3) Peer Techniques 
Because our techniques can be adopted to operate at the 

statement level, we select four statement-level peer tech-
niques to compare with in the experiment. Tarantula [14] 
with its tie breaking strategy is used because the use of a tie 
breaking strategy has been shown to give Tarantula a better 
result owing to a finer division of ranks. Jaccard [2] and 
Ochiai [2], with strong mathematical theory, are shown to be 
effective in fault localization. SBI [24] has been adapted 
from CBI [16] to statement level. In short, all the four 
selected techniques have been validated to be excellent fault 
localization techniques by existing research. 

4) Effectiveness Metric 
Each of these techniques produces a ranked list of all the 

executed statements in descending order of their computed 
suspiciousness values. The rank of a statement is defined as 
the largest number of statements from the top of the list until 
and including this statement and all the next following 
statements sharing the same suspicious score with it. 

Previous work [24] defines the expense metric as the 
ratio between the rank of the faulty statement and the total 
number of executable statements. We consider, however, 
that the use of the number of executed statements as the 
denominator in the expense formula is more suitable because 
other unrelated statements do not need to be checked in 
practice. 

At the same time, if a fault is on a non-executable 
statement (such as a code omission fault), the use of dynamic 
execution information cannot help locate the fault directly. 
Following [12], we mark the directly affected statement or an 
adjacent executable statement as the faulty position, followed 
by applying the expense metric. 

5) Experimental Procedure 
We compare Jaccard, Ochiai, SBI, and Tarantula with 

our techniques. We use the data created from the techniques 
described in papers [2], [2], [24], and [14], respectively, and 
compare them with MKBC and its variant Minus. Minus is 
an adapted technique from MKBC, where we use statements 
at the source code level (instead of KBCs) as the program 
feature. The aim of the experiment is to study whether 
MKBC is an effective technique to locate faults. 

In the experiment, we input the entire test pool for each 
version to each technique studied and measure their expense 
values accordingly. 

B. Data Analysis 
1) Overall Results 

Fig. 2 shows a comparison of overall effectiveness. The 
x-axis indicates the percentage of code that needs to be 
examined to locate the fault. We also refer to it as the code 
examination effort in this paper. The y-axis indicates the 
percentage of faults located. Take the curve of MKBC in 
Fig. 2 as an illustration. MKBC locates 35.63% of all the 
faults by examining no more than 10 percent of the code in a 
faulty version. The curves of Jaccard, Ochiai, SBI, Tarantula, 
and Minus can be interpreted similarly. Note that the curves 
of Jaccard and Ochiai are almost completely overlapping. 

We observe that MKBC can locate many more faults 
than all the others in the code examination range between 0 
to 90 percent, and Minus is almost as effective as (and hence 
has little advantage over) the other techniques in most 
ranges. The latter shows that merely adopting the formula of 
equation (1) has marginal advantages or disadvantages over 
existing techniques. 

Table II shows the detailed results in Fig. 2. It indicates 
that, when no more than 1 percent of the code can afford to 
be examined, Jaccard, Ochiai, Tarantula, and Minus locates 
3.45% of the faults, while SBI does not locate any fault. 
MKBC is the best among all the techniques in the 
experiment, locating 10.35% of the faults. 

1616



Table III presents the minimums (min), maximums 
(max), medians, means, and standard derivations (stdev) of 
the effectiveness of these techniques on the 86 faulty ver-
sions. Take the first row as an illustration. MKBC can locate 
a fault by examining 0.32% of the code in the best case, 
while others need to examine more. Overall, the table shows 
that MKBC is the best among the six techniques. The results 
show that the use of KBC as a feature is very promising. 

 

To further study the relative merits of our techniques, we 
compare the effectiveness of MKBC and Minus with every 
peer technique. The results are shown in Table IV. 

Take the cell in column “MKBC – Tarantula” and row 
“< –5%” as an example. It states that, for 34 (39.53%) of the 
86 faulty versions, the code examination effort when using 
MKBC to locate a fault is less than that when using 
Tarantula by more than 5%. Similarly, for the row “> 5%”, 
for only 3 (3.49%) of the 86 versions, the code examination 
effort of MKBC is greater than that of Tarantula by more 
than 5%. For 49 (56.98%) of the faulty versions, the 
effectiveness between MKBC and Tarantula cannot be 
distinguished at a 5% significance level. 

We therefore conclude that, on average, at a 5% signific-
ance level, the probability of MKBC performing better than 
Tarantula on the subject programs is higher than that of 
Tarantula performing better than MKBC. We further vary 
the significance level from 5% to 1% and 10% to check the 
sensitivity of our result. It shows that the probability of 
MKBC performing better than peer techniques is consis-
tently higher than that in the other way round. 

2) Results on Individual Subject Programs 
We further compare the effectiveness of Minus and 

MKBC with peer techniques on each individual subject pro-
gram. Fig. 3 shows the results. Each plot can be interpreted 
similar to Fig. 2. 

For example, if 10 percent of the code is examined, 
MKBC can locate faults in 56.00%, 28.00%, and 25%, and 

Figure 2. Overall effectiveness comparison. 

TABLE II. OVERALL EFFECTIVENESS  

expense MKBC Minus Jaccard [2] Ochiai [2] SBI [24] Tarantula 
[14] 

1% 10.35% 3.45% 3.45% 3.45% 0% 3.45% 

2% 13.79% 6.90% 6.90% 6.90% 3.45% 6.90% 
5% 20.70% 10.34% 12.64% 12.64% 6.90% 10.34% 
7% 28.76% 19.54% 20.70% 20.70% 11.49% 17.24% 
10% 35.63% 26.44% 26.44% 26.44% 14.94% 21.84% 
20% 42.53% 34.48% 34.48% 34.48% 27.59% 33.33% 

30% 49.43% 41.38% 41.38% 41.38% 33.33% 41.38% 

40% 56.32% 51.72% 49.43% 49.43% 40.23% 49.43% 

50% 63.22% 55.17% 52.87% 52.87% 44.83% 52.87% 

60% 65.52% 58.62% 56.32% 57.47% 45.98% 55.17% 

70% 75.86% 68.97% 66.67% 66.67% 52.87% 66.67% 

80% 81.61% 79.31% 75.86% 75.86% 60.92% 77.01% 

90% 89.66% 83.91% 81.61% 81.61% 62.07% 82.76% 

100% 100% 100% 100% 100% 100% 100% 
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of the faulty versions of the program xml-security, jtopas, and 
ant, respectively; while Minus can locate 48.00%, 18.00%, 
and 16.7% of faults, respectively. Tarantula can only locate 
36% and 16%, and 16.7% respectively. The results of 
Jaccard, Ochiai, and SBI can be interpreted similarly. 

We find that MKBC performs consistently better than 
peer techniques on xml-security and ant. For jtopas, there is 
only a small code examination range that MKBC is less 

effective than Minus or Ochiai. Note that in the initial code 
examination range, MKBC still performs better than all the 
other techniques studied. We conclude that MKBC is prom-
ising on every subject. 

C. Performance Analyses 
We compare MKBC and Minus with peer techniques in 

terms of the run time from profiling to the output of a ranked 
list of statements. We run every version 20 times and then 
use the average time as the result, which is shown in Table V. 

Take the comparison between Minus and Tarantula as an 
example. Let TMinus denotes the run time of Minus and 
TTarantula denote that of Tarantula. If the ratio TMinus / TTarantula 
is more than 1, the performance of Minus is worse than 
Tarantula. Consider the cells in column “Minus / Tarantula” 
and rows “> 1.1”, “0.9 to 1.1”, “< 0.9”, and “mean”. They 
indicate that (a) the run times from profiling to ranking by 
Minus are greater than those by Tarantula in 15 faulty 
versions by more than 10%, (b) they cannot be distinguished 
in 61 faulty versions at a 10% significance level of 10%, 
(c) the run times by Minus are less than those by Tarantula in 
10 faulty versions by less than 10%, and (d) the mean ratio 
of run times is 1.01. The comparisons among other 
techniques can be interpreted similarly. 
  

TABLE III. STATISTICS OF OVERALL EFFECTIVENESS 

 MKBC Minus Jaccard 
[2] Ochiai [2] SBI [24] Tarantula 

[14] 

min 0.32% 0.65% 0.65% 0.65% 1.02% 0.65% 

max 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

median 26.83% 38.12% 38.54% 38.54% 61.87% 39.78% 

mean 38.72% 45.39% 46.87% 46.73% 58.30% 47.39% 

stdev 34.28% 35.17% 36.28% 36.24% 38.37% 35.37% 

TABLE IV. COMPARISONS IN OVERALL EFFECTIVENESS 

 
Difference (Percentage Difference) in Overall Effectiveness 

MKBC – 
Minus 

MKBC – 
Jaccard [2] 

MKBC –
Ochiai [2] 

MKBC – 
SBI [24] 

MKBC –
Tarantula [14]

< –1% 43 
(50.00%) 

47 
(54.65%) 

47 
(54.65%) 

59 
(68.60%) 

48 
(55.81%) 

–1% 
to 1% 

36 
(41.86%) 

33 
(38.37%) 

33 
(38.37%) 

25 
(29.07%) 

34 
(39.53%) 

> 1% 7 
(8.14%) 

6 
(6.98%) 

6 
(6.98%) 

2 
(2.33%) 

4 
(4.65%) 

< –5% 26 
(30.23%) 

28 
(32.56%) 

28 
(32.56%) 

49 
(56.98%) 

34 
(39.53%) 

–5% 
to 5% 

56 
(65.12%) 

53 
(61.63%) 

53 
(61.63%) 

35 
(40.70%) 

49 
(56.98%) 

> 5% 4 
(4.65%) 

5 
(5.81%) 

5 
(5.81%) 

2 
(2.33%) 

3 
(3.49%) 

< –10% 20 
(23.26%) 

22 
(25.58%) 

22 
(25.58%) 

36 
(41.86%) 

21 
(24.42%) 

–10% 
to 10% 

64 
(74.42%) 

61 
(70.93%) 

61 
(70.93%) 

48 
(55.81%) 

63 
(73.26%) 

> 10% 2 
(2.33%) 

3 
(3.49%) 

3 
(3.49%) 

2 
(2.33%) 

2 
(2.33%) 

 
(a) jtopas 

 
(b) xml-security 

  
(c) ant 

Figure 3. Effectiveness on individual programs.

TABLE V. COMPARISONS OF RUN TIME COSTS  

 Minus 
/Jaccard 

Minus 
/Ochiai 

Minus 
/SBI 

Minus 
/Tarantula

Minus 
/MKBC 

> 1.1 11 14 12 15 0 
0.9 to 1.1 46 53 57 61 0 

< 0.9 29 19 17 10 88 
mean 0.94 0.98 0.99 1.01 0.37 

 MKBC 
/Jaccard 

MKBC 
/Ochiai 

MKBC 
/SBI 

MKBC 
/Tarantula

MKBC 
/Minus 

> 1.1 78 82 85 86 86 
0.9 to 1.1 7 4 1 0 0 

< 0.9 1 0 0 1 1 
mean 2.94 3.05 3.06 3.08 3.09 
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Considering Tables III to V together, we conclude that 
Minus and MKBC can be used in different situations. If we 
want to locate faults quickly, Minus is a better choice. Its run 
time from profiling to ranking is about the same as other 
techniques but can locate a fault by examining less number 
of statements than existing peer techniques. On the other 
hand, MKBC is much slower than peer techniques, with a 
run time almost three times those of the others. However, it 
can locate 6% to 8% more faults when examining the same 
percentage of code. 

D. Threats to Validity and Discussions 
We use Soot to insert probes into the Java bytecode. Soot 

gives a good solution for specific Java features such as 
exception handling. Previous work [11][25] has investigated 
on this topic, as exception information in run time contains 
plenty of error information, thus providing good support to 
fault localization. In this paper, we consider exception han-
dling in programs as normal control flow because Soot is 
able to transform a Java program into Jimple and still main-
tain the exception handling structures. Hence, if faults are 
located in these “Catch” blocks, the approach in this paper 
can still find them. 

An interesting strategy is that, since we find ant 1.6 beta 
to be our test subject, we also use the latest ant as a build 
tool. 

Soot 2.3.0 is based on Java 1.5 or higher, but some of our 
subject programs are originally based on Java 1.4. We need 
to modify these subjects so that they are compatible to Java 
1.5 or higher. It entails some modifications, and we have 
carefully reviewed the conversion. 

The strategy we use to construct a KBC is only one 
possible solution among many. Other strategies are also 
feasible. We briefly discuss some possible extensions of our 
work. The first strategy is to identify blocks containing pre-
dicates that are as long as possible. This strategy is close to 
the full path tracking idea used in HOLMES [8]. Such a 
strategy, however, requires a search of the longest path from 
a graph, which takes more than O(n) time. A second strategy 
is to identify blocks containing predicates and use a random 
sequence of blocks to construct a chain. Yet another strategy 
is to identify sequences of blocks within certain lengths and 
split a long chain into several shorter ones. An optimal 
length of a block chain is hard to be determined. Moreover, 
one obvious limitation of the last two strategies is that they 
may knot irrelevant blocks together. 

Another important prospect is that KBC can be applied to 
any program entity level. In computing, compilers usually 
decompose programs into their basic blocks as the first step 
in the analysis process. Other languages can also have 
streamline representations like Jimple for Java. Applying 
KBC to them helps locate faults written in these programs. 

V. RELATED WORK 
Tarantula [14] uses the proportions of failed or passed 

executions to calculate the suspiciousness of every statement. 
Jones et al. [15] further use Tarantula to explore how to 
assist multiple developers to debug a program in parallel. 
CBI [16] uses predicates as fault indicators to locate faults. 

They rank the predicates P according to the probability that 
the program under study will fail when P is observed to be 
true. Arumuga Nainar et al. [1] use compound Boolean 
predicates based on CBI to locate faults. Zhang et al. [27] 
show experimentally that short-circuit rules in the evaluation 
of Boolean expressions may significantly affect the effec-
tiveness of predicate-based techniques, and propose DES 
[27] accordingly. HOLMES [8] uses a full path as a fault 
predicator and proposes an iterative way to reduce the cost of 
profiling. Jiang and Su [13] propose another way to generate 
faulty control flow paths from bug predicators by using a 
depth-first search to greedily find paths that connect as many 
fault indictors as possible and reducing unlikely faulty paths 
to generate fault-related paths interactively. Zhang et al. [26] 
develop a CP approach that captures the propagation of 
infected program states through edges in a control flow 
graph. CP associates suspiciousness scores of control flow 
edges to suspiciousness scores of basic blocks to locate 
faults. Santelices et al. [19] investigate different program 
entities (such as statements, edges, and du-pairs). They show 
that integrated results of different entities may perform better 
than individual ones. Yilmaz et al. [23] leverage time spectra 
as abstractions of program executions. They use them for 
functional correctness debugging by identifying program 
segments that take a “suspicious” amount of time to execute. 

Selecting a set of good test cases is also an important way 
to improve the effectiveness of fault localization. Baudry et 
al. [6] identify a property known as dynamic basic block to 
improve the accuracy of a diagnosis algorithm. Cellier [7] 
combines association rules and formal concept analysis to 
figuring out whether a failure is due to one statement or 
multiple ones. 

Abreu et al. [1] propose a new approach to locating faults 
in multi-fault programs. We believe that our future work can 
incorporate this aspect because the Minus formula appears to 
have the potential to insulate the interferences among 
multiple faults. 

VI. CONCLUSION 
Various techniques have been proposed in existing 

coverage-based fault-localization research. They choose 
different program features, combine some of them, or enrich 
individual features with context-sensitive information. They 
then compute a ranked list of the suspiciousness of the 
program features using different models. It is important to 
choose suitable program features and models, as well as 
consider the trade-off among them and their computing 
costs. On the other hand, in existing problem settings, 
similarity coefficients are employed to contrast the feature 
spectra in passed and failed executions and pinpoint the 
suspicious features. 

In this paper, we have proposed a program feature known 
as Key Block Chains (KBCs), a suspiciousness estimation 
formula known as Minus, and a technique named MKBC. 
We have conducted a controlled experiment on three 
medium-sized subject programs to evaluate our technique. 
The results show that all these three ideas are promising. 
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Future work may include the study of the localization of 
multiple faults in a program, as well as potential generaliza-
tion of our noise reduction technique. 
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