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ABSTRACT
We present a new automata-based interface model describ-
ing the interaction behavior of software components. Con-
trary to earlier component- or interface-based approaches,
the composition of components in our model guarantees that
no behavior of one component can be blocked by the other
component, independent of the actual implementation of the
component as long as the interface description is respected.
To this end, we develop an algorithm to compute the un-
blockable interaction behavior, called the interface model
of a component, from its execution model. Based on this
model, we introduce composition and coordination opera-
tors for the components, and we prove important composi-
tionality results, showing the conditions under which com-
position of interface models preserves unblockable sequences
of provided services.

1. INTRODUCTION
In component-based software engineering, large software

systems are decomposed into individual software compo-
nents with clearly articulated interfaces in order to facilitate
a sound development process across different teams of de-
velopers. An interface theory should then define the basic
principles for composing several software components based
on their interfaces while the concrete implementation of the
components is invisible to its environment. This means that
components can be treated as back-boxes and the theory
allows for independent implementability.
Since the 90s, component-based approaches have drawn

a lot of attention in software engineering [Szy97, AG97,
Arb04, LMS09] and there has been a considerable research
activity studying how interfaces of components can be for-
mally described in order to automatically decide whether
two components can be composed together in a well-formed
way [LT89, dAH01b, DAH01a, LNW07a, DLL+10]. How-
ever, none of these approaches can guarantee that the com-
position of several components does not lead to malfunction-
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ing components exposed to potentially blocked behaviours.
We examine to what extent an interface model can be re-

alized in a way that ensures nonblocking executions for all
possible compositions of components respecting the given
interfaces, and present an automata-based interface model
that posses this desirable property. In our model, a com-
ponent comprises of a provided interface and a required in-
terface. The former describes which executions of services
the component offers to its environment, while the latter
specifies what services the component needs to call in or-
der to provide the services from its provided interface. The
execution model of a component describes the interaction
behavior between the component and its environment.
The interface model we propose in this paper supports a

black-box composition in the sense that components can be
composed without an a priori knowledge of their concrete
implementation as long as the specified sequences of pro-
vided services and the corresponding sequences of required
services are respected by the implementation. This in par-
ticular means that any sequence of services specified in the
provided interface cannot be blocked when being composed
with any other component. We prove that this is the case if
and only if the interface model is input-deterministic, mean-
ing that after calling any fixed sequence of provided services,
there is a unique selection of currently available provided ser-
vices, and this selection is independent of the component’s
internal state and, in particular, also independent of the ser-
vice sequences the component has called in order to execute
its provided services.
In order to generate an interface model for any given exe-

cution model, we describe a new algorithm that computes all
unblockable sequences of services provided by a component
from its execution model. For the application of our model
in the context of a component-based design approach, we
also introduce composition and coordination operators for
manipulating the components. The composition of compo-
nents is used to synchronize services provided by one and
required by another component. A specific form of compo-
sition is the plugging of components, where one component
only provides services to the other component without re-
quiring any services from it. On the other hand, the ser-
vices of components can be coordinated by triggering ser-
vices internally via a coordination process. We prove that
unblockable sequences of services provided by the plugging
of execution models are the same as those of the plugging of
their interface models, and show why similar results do not
hold for composition and coordination.



Comparison with I/O and Interface Automata.
There are two broadly-known approaches to interface the-

ories, the I/O Automata [LT89, LT87] and the Interface
Automata [dAH01b, DAH01a, DAH05]. Both are centered
around an interface-based design and have some similarities
to our approach, however, they have been developed with
different aims and are based on different assumptions. In
fact, we shall argue that our approach is positioned between
these existing approaches, trying to overcome their limita-
tions.
Input/Output (I/O) Automata [LT89, LT87] were defined

by Lynch and Tuttle to model concurrent and distributed
discrete event systems. The actions are separated into in-
put, output, and internal actions. In this model, input-
enabledness is required in the sense that all the input actions
must be enabled at any state. Synchronization is realized
by broadcasting on the outputs, i.e., an output synchronizes
with all corresponding input actions of the other automata.
The compatibility of two components is checked in a pes-
simistic way, which requires that there is no deadlock for
all possible environments. On the contrary, our interface
model does not enforce that all inputs are always enabled
which can be sometimes unrealistic to achieve, but we as-
sume input-determinism in order to guarantee that all se-
quences of provided services accepted by the interface model
can be executed without even being blocked.
To overcome the restrictions of I/O Automata, which are

forced to react in a pessimistic way to every possible in-
put, de Alfaro and Henzinger introduced their Interface Au-
tomata [dAH01b, DAH01a, DAH05] that are based on the
optimistic assumption that a component is normally used in
a specific environment and thus does not need to react to
every input. In this model, methods of a component that
can be called are modeled as input actions; external meth-
ods that the component calls are output actions; internal
actions are used to model internal method invocations. In-
terface automata guarantee the specified output executions
on the assumption that the environment only invokes meth-
ods provided as the inputs. The optimistic compatibility of
two interface automata implies that two interface automata
are compatible if there is at least one environment avoiding
deadlock states in composed product of the two components.
Such a condition for compositionally may be too relaxed for
certain applications.
In contrast to the existing approaches, the model we pres-

ent in this paper combines both the optimistic and pes-
simistic views for component-based systems: the interface
model of a component directly specifies which sequences of
provided services guarantee deadlock-free executions. Thus,
it is on the one hand not as pessimistic as I/O automata,
because all provided services do not have to be available at
every state, and on the other hand, it is not as optimistic as
interface automata, because we restrict the possible service-
invocation environments such that, under these restricted
environments, we have a guarantee of non-blocking behav-
ior in any possible execution.
In the rest of the paper, we shall analyze the properties of

our new interface model and demonstrate in which situations
it is superior to the previous models and in which cases using
the existing techniques is beneficial.

Summary of contributions.
The contributions of this paper are (1) a new interface

model ensuring unblockable compositions of software com-
ponents; (2) an algorithm to generate the interface model of
a component based on its execution model; (3) definitions of
basic operations used in component-based design; (4) a for-
mal analysis showing that unblockable behavior is preserved
for the full plugging of components but not in the case of
general composition and coordination.

Outline of the paper.
The rest of the paper is organized as follows. In Sect. 2,

we introduce component automata and an algorithmic way
to generate their interface models. In Sect. 3, we present
the composition operators to compose components as well
as processes and prove important properties for these oper-
ators. In Sect. 4, we show how components can be coordi-
nated by active processes, and in Sect. 5 we conclude the
paper and discuss the future work.

2. COMPONENT AUTOMATA
In this section, we will first introduce some notions that

will be used throughout the paper and then motivate compo-
nent automata and component interface automata. At last,
we will give an algorithm transforming component automata
to component interface automata and prove its correctness.

2.1 Preliminary Definitions
Let A,B ⊆ L∗ be two languages. The set concatenation

A ◦ B is defined as {wAwB | wA ∈ A, wB ∈ B}. The first
and the second projection on a pair of elements ` = (x, y)
are denoted by π1 and π2, and defined by π1(`) = x and
π2(`) = y, and it is naturally extended to sequences of pairs
of elements. For a sequence ρ = 〈x0, x1, . . . , xk〉 over an
alphabet L and a set X ⊆ L, a projection on the elements
from X is denoted by ρ�X and defined as 〈xi1 , xi2 , . . . , xin〉
where 0 ≤ i1 < i2 < . . . < in ≤ k are all the indices of
elements such that xij ∈ X for all j, 1 ≤ j ≤ n. The empty
sequence is denoted as ε. The concatenation of sequences
tr1 and tr2 is denoted by tr1 ◦ tr2, and also extended to sets
of sequences such that T1 ◦ T2 contains all concatenations
tr1 ◦ tr2 for tr1 ∈ T1 and tr2 ∈ T2.

2.2 Execution Model of a Component
An execution of a component can be modeled as an al-

ternating sequence of provided service invocations (initiated
by the environment) and a set of causality sequences of re-
quired service invocations (initiated by the component). In
our automata-based model, the invocation of a provided ser-
vice is modeled as an atomic provided event and the invoca-
tion of the required services as a sequence of atomic required
events. As there may be many choices of required services
in order to provide a service, we allow sets of sequences of
required events with the intuition that an implementation
of the component may choose which of the sequences it ac-
tually implements in order to provide a service. The formal
definition is as follows.

Definition 1. A tuple C = (S, s0, P,R, δ) is called a
component automaton where
� S is a finite set of states,

� s0 ∈ S is the initial state,

� P and R are disjoint and finite sets of provided and
required events, respectively,



� δ ⊆ S × Σ(P,R) × S is the transition relation, where
the set of labels is defined as Σ(P,R) = P × (2R

∗
\ ∅).

Whenever there is (s, `, s′) ∈ δ with ` = (a, T ), we simply
write s a/T−−→ s′ and call it a transition step. A compo-
nent automaton is called closed if T = {ε} for all transitions
s
a/T−−→ s′. Otherwise, it is called open. In component design,

one is finally interested in closed components, i.e., compo-
nents which are not depending on further services from the
environment.
An alternating sequence of states and labels of the form

e = 〈s0, `0, s1, `1, . . . , sk, `k, sk+1〉

is called an execution of the component automaton C if
si

`i−→ si+1 for all i, 0 ≤ i ≤ k, where s0 is the initial state. A
sequence of labels tr = 〈`0, `1, . . . , `k〉 is called a trace of C
if there is an execution e of C such that tr = e�Σ(P,R). In
other words, a trace contains only the labels of an execution
and abstracts away from the states. The set of all traces
of C is denoted as T (C), and we write s0

tr==⇒ s if there is
an execution from s0 to s under the trace tr . A sequence of
provided events pt ∈ P ∗ is called a provided trace if there is a
trace tr such that π1(tr) = pt. The set of all provided traces
of C is denoted as Tp(C). For a given state s of a component
C = (S, s0, P,R, δ) the set of provided traces starting from
this state s is defined by Tp

(
(S, s, P,R, δ)

)
and denoted as

Tp(s).
Given a provided trace pt ∈ Tp(C), the set caused(pt) of

caused traces for pt is defined as

caused(pt) = {T0 ◦ · · · ◦ Tk | tr ∈ T (C),
π1(tr) = pt, π2(tr) = 〈T0, . . . , Tk〉} .

Example 1. As a demonstrating example, we consider a
simple internet-connection component presented in Fig. 1. It
provides the services login, wifi, print, read, and disc avail-
able to the environment. The services model the logging into
the system, request for wifi connection, invocation of print-
ing a document, an email service, and disconnecting from
the internet, respectively. The component calls the services
unu1 , unu2 , cserv, getm. The first three of them model the
searching for a wifi router nearby, connecting to the unu1
or unu2 wireless network, and connecting to an application
server, respectively. The getm is a service that fetches an
email, connects to a printer, sends a document for a print
and starts the printing job. The print service is only avail-
able for the wifi network unu1 and read can be accessed at
both networks.
In the component model of Fig. 1 we can perform e.g.

e = 〈0, (login/{ε}), 1, (wifi/{unu1}), 2, (print/{ε}), 2〉 .

Now pt = 〈login,wifi, print〉 is a provided trace of the exe-
cution e and the set of caused traces of pt is caused(pt) =
{unu1}. This example will be used throughout this paper to
show the features of our model.

2.3 Unblockable Equivalence
The environment interacts with the component in a way

that it chooses a sequence of provided events and the com-
ponent (non-deterministically) determines the sequence of
required events that it will request from other components.

0

start

1

2

3

login/{ε}
wifi/{unu1}

wifi/{unu2}

read/{cserv · getm}

print/{ε}disc/{ε}

read/{cserv · getm}

disc/{ε}

Figure 1: Execution model of internet connection
component Cic

As the interface of a component should be defined indepen-
dent of the actual internal choices done by the component,
we have to make sure that if the interface model provides a
sequence of events in one execution scenario, it is also capa-
ble to do so in any other execution scenario determined by
the component. This guarantees that a possible component
composition will be deadlock free, regardless of the actual
implementation of the components.
In the example, we may observe that including the pro-

vided event print to the interface of the internet connection
component from Fig. 1 is not safe, as the sequence of re-
quested services 〈login,wifi, print〉 can be executed if the
connection is made to the network unu1 , but it will be im-
possible if network unu2 was chosen. This will cause a block-
ing in the component composition and as the environment is
not in control of the selection of the network, exposing print
to the component interface model is not safe; the service
should not be advertised. For this reason, we will require
that our interface models of components have the property
of input-determinism, meaning that after any sequence of
provided service invocations, the component should be at
states with identical provided services. This will guarantee
that the provided traces are not blocked during any run-time
execution.
Given a component automaton C = 〈S, s0, P,R, δ〉, let us

define for any s ∈ S the set of enabled provided events as

enabled(s) = {a ∈ P | s a/T−−→ s′} .

Then, we define the concept of input-determinism.

Definition 2 (Input-determinism). A component au-
tomaton is input-deterministic iff

s0
tr1==⇒ s1 and s0

tr2==⇒ s2

with π1(tr1) = π1(tr2) implies

enabled(s1) = enabled(s2).

Now we can also define the notion of an unblockable trace.
An unblockable provided trace is never blocked by the com-
ponent in the sense that the component can always pro-
vide the trace independent of how the internal choices of
the causality traces are resolved in an implementation of
the component.



Definition 3 (Unblockable Trace). We call a pro-
vided trace pt = 〈a0, . . . , ak〉 of a component automaton
C = (S, s0, P,R, δ) unblockable iff whenever s0

tr==⇒ s such
that π1(tr) = 〈a0, . . . , ai〉 for some i, 0 ≤ i ≤ k − 1, then
ai+1 ∈ enabled(s). A trace in C is unblockable iff its pro-
vided trace is unblockable. The set of all unblockable traces
of C is denoted by Tu(C).

The next theorem shows that the property of input-determi-
nism guarantees that all traces are unblockable and vice
versa.

Theorem 1. A component automaton C = (S, s0, P,R, δ)
is input-deterministic iff all of its traces are unblockable.

Proof. First, we prove the direction from left to right.
From the input-determinism of C follows that for each pro-
vided trace pt = (a0, . . . , ak) and for each state s with
s0

tr==⇒ s and π1(tr) = 〈a0, . . . , ai〉 for 0 ≤ i ≤ k − 1, the
set enabled(s) is the same. Since pt is a provided trace, so
ai+1 ∈ enabled(s). This shows that all provided traces are
unblockable, and so all traces are unblockable too.
Second, we prove the direction from right to left by con-

traposition. We assume that C is not input-deterministic,
so there exist traces tr1 and tr2 with π1(tr1) = π1(tr2) and
s0

tr1==⇒ s1, s0
tr2==⇒ s2 such that enabled(s1) 6= enabled(s2).

Then we can w.l.o.g. assume that there is a provided event
a such that a ∈ enabled(s1) and a /∈ enabled(s2). Now
π1(tr1) ◦ 〈a〉 is a provided trace of C that is blockable.

For the purpose of our interface theory, we will consider
two component automata equivalent whenever their sets of
unblockable traces are the same.

Definition 4 (Unblockable Equivalence). Let C1
and C2 be two component automata. They are equivalent
with respect to unblockable traces, denoted by C1 ≡ C2, if
Tu(C1) = Tu(C2). Similarly, we write C1 ≡pt C2 if the sets
of unblockable provided traces of C1 and C2 are equal.

2.4 Interface Model of a Component
In the example shown in Fig. 1, the provided trace 〈login,

wifi, print〉 may be blocked, when the component resolves
the non-determinism by choosing to call unu2. This reveals
that the component contains a potential deadlock when com-
posed with another component using the print service. Thus,
we propose an input-deterministic model to support dead-
lock-free black-box composition as the interface model.

Definition 5. An interface automaton is an input de-
terministic component automaton.

We now present an algorithm that, for a given component
automaton C, constructs the largest interface automaton
I(C) that is equivalent with respect to its unblockable traces
with the component automaton. The automaton I(C) can
be understood as the interface behavior of the component
that can be advertised to other components and guarantees
a deadlock-free composition as long as the interaction de-
scribed by the interface automaton is respected.
A general construction of an interface automaton I(C) for

a given component automaton C is given in Algorithm 1.
The states of the interface automaton are pairs (Q, r) con-
sisting of a subset of states Q of the original automaton and

Algorithm 1: Construction of Interface Automaton
I(C)
Input: C = (S, s0, P,R, δ)
Output: I(C) = (SI , ({s0}, s0), P,R, δI), where

SI ⊆ 2S × S
1: Initialization: SI := {({s0}, s0)}; δI := ∅;
todo := {({s0}, s0)}; done := ∅

2: while todo 6= ∅ do
3: choose (Q, r) ∈ todo;

todo := todo \ {(Q, r)}; done := done ∪ {(Q, r)}
4: for each a ∈

⋂
s∈Q enabled(s) do

5: Q′ :=
⋃
s∈Q {s

′ | (s a/T−−→ s′) ∈ δ}

6: for each (r a/T−−→ r′) ∈ δ do
7: if (Q′, r′) /∈ (todo ∪ done) then
8: todo := todo ∪ {(Q′, r′)}
9: SI := SI ∪ {(Q′, r′)}
10: end if
11: δI := δI ∪ {(Q, r)

a/T−−→ (Q′, r′)}
12: end for
13: end for
14: end while

a single state r. In the first element of the pair, the power-set
construction (similar to the construction of a deterministic
automaton from a non-deterministic one) is adopted to iden-
tify the set of all states Q that can be reached by a provided
trace in C, which is used to identify all non-blocking pro-
vided traces. In the second element of the pair, we compute
the intersection of the languages of provided traces of C and
the constructed power-set automaton. By this, the original
executions of the C are simulated for the non-blockable pro-
vided traces.

Example 2. We illustrate our algorithm on an example
shown in Fig. 2. All states of I(C) consist of pairs. In the
first element of the pair, we have the set of states reachable
by the executions in C, and a state has a transition with a
provided event e if and only if all states in the first element
of the pair enable such a transition. For instance, the state
({1, 2}, 1) has an outgoing transition labeled with a2, because
in C both states 1 and 2 enable a2. The second element of the
state pair, namely 1, has influence on the caused trace: the
outgoing transition of ({1, 2}, 1) is labeled with T4, because
the a2 transition of state 1 in C is also labeled with T4. On
the other hand, there is no outgoing transition labeled with
a3 for ({1, 2}, 1) as a3 is enabled only from the state 2 but
not from the state 1.

We now argue about the correctness of the algorithm. In
what follows, we fix a component automaton C = (S, s0, P,
R, δ) and the interface automaton I(C) = (SI , ({s0}, s0), P,
R, δI) produced by Algorithm 1. We will not explicitly men-
tion whether the transitions are performed in C or I(C) as
this is clear from the structure of the states. We begin with
three lemmas showing the relation between the states (Q, r)
and r (Lemma 1), showing that unblockable traces in C are
preserved in I(C) (Lemma 2), and showing that traces in
I(C) correspond to unblockable traces in C (Lemma 3).

Lemma 1. Let (Q, r) ∈ SI be a reachable state in the
interface automaton I(C).
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Figure 2: Component automaton C top, interface automaton I(C) bottom

1. If r a/T−−→ r′ such that a ∈
⋂
s∈Q enabled(s) then

(Q, r) a/T−−→ (Q′, r′)

where Q′ = {s′ | s a/T ′−−−→ s′, s ∈ Q}.

2. If (Q, r) a/T−−→ (Q′, r′) then

Q′ = {s′ | s a/T ′−−−→ s′, s ∈ Q,T ′ ∈ 2R
∗
} and r a/T−−→ r′ .

Proof. For the first claim assume that (Q, r) is a reach-
able state in I(C), implying that (Q, r) was during some
iteration of the while-loop selected at line 3 of the algo-
rithm. From the assumption a ∈

⋂
s∈Q enabled(s) we get

that the body of the for-loop at line 4–13 will be executed
for such an a. The set Q′ is then constructed as required at
line 5 and the transition (Q, r) a/T−−→ (Q′, r′) is added at line
11 thanks to the assumption that r a/T−−→ r′.
For the second claim we again observe that

(Q, r) a/T−−→ (Q′, r′) (1)

implies that Q′ = {s′ | s a/T ′−−−→ s′, s ∈ Q,T ′ ∈ 2R
∗
} as

such Q′ is constructed at line 5, and (1) is added at line
11. Clearly, the transition can be added only if r a/T−−→ r′

because this is the condition of the for-loop at line 6–12.

Lemma 2. Let pt ∈ Tp(C) be an unblockable provided
trace in C. If s0

tr==⇒ r where π1(tr) = pt, then

({s0}, s0) tr==⇒ (Q, r)

such that Q = {s′ | s0
tr′==⇒ s′, π1(tr ′) = pt}.

Proof. By induction on the length of pt: The base case
where |pt| = 0 follows directly from the definitions and line
1 of the algorithm. Let |pt| > 0. Then pt = pt′ · a for
some provided event a. Let tr = tr ′ · a/T be a trace with

π1(tr) = pt such that s0
tr==⇒ r and r a/T−−→ r′. By induction

hypothesis, ({s0}, s0) tr′==⇒ (Q, r) where

Q = {s′ | s0
tr′′==⇒ s′, π1(tr ′′) = pt′} .

As the provided trace pt′ · a is by assumption unblockable,
we have a ∈

⋂
s∈Q enabled(s). By the fact that r a/T−−→ r′

and Lemma 1 we get (Q, r) a/T−−→ (Q′, r′) where

Q′ = {s′ | s a/T ′−−−→ s′, s ∈ Q′} ,

so in other words Q′ = {s | s0
tr′′==⇒ s, π1(tr ′′) = pt} and

({s0}, s0) tr==⇒ (Q′, r′).

Lemma 3. If ({s0}, s0) tr==⇒ (Q, r) then

Q = {s | s0
tr′==⇒ s, π1(tr ′) = π1(tr)}

and s0
tr==⇒ r, where tr is unblockable in C.

Proof. By induction on the length of tr . The base case
where |tr | = 0 is trivial. Let |tr | > 0. Then tr = tr ′ · a/T
such that ({s0}, s0) tr′==⇒ (Q, r) and (Q, r) a/T−−→ (Q′, r′). By
induction hypothesis,

Q = {s | s0
tr′′==⇒ s, π1(tr ′′) = π1(tr ′)}

and s0
tr′==⇒ r such that tr ′ is unblockable in C. By the fact

that (Q, r) a/T−−→ (Q′, r′) and Lemma 1, we have

Q′ = {s′ | s a/T ′−−−→ s′, s ∈ Q} and r a/T−−→ r′ .

By combining these observations we get s0
tr==⇒ r′ and also

Q′ = {s | s0
tr′′==⇒ s, π1(tr ′′) = π1(tr ′ · a/T )}. Notice that by

the construction of the interface automaton I(C) we have
a ∈

⋂
s∈Q enabled(s), so tr ′ · a/T is unblockable since tr ′ is

unblockable by the induction hypothesis.



Now we can present an important theorem stating that
the constructed interface automaton preserves the set of un-
blockable traces of the input component automaton.

Theorem 2. Algorithm 1 terminates for every given com-
ponent automaton C and produces a unique interface au-
tomaton I(C) such that C ≡ I(C).

Proof. The termination follows from the fact that in the
interface automaton there are only finitely many possible
states of the form (Q, r). Every iteration of the while-loop
at line 2–14 removes one element from the set todo and places
it to the set done (line 3) and any (Q, r) can be inserted to
the set todo at most once due to the condition at line 7.
Also, even though the choice of (Q, r) at line 3 is nonde-
terministic, the algorithm returns the same output I(C) as
each reachable state in the interface automaton has to be
processed, independent of the order which is chosen.
We prove that I(C) is input-deterministic. By Lemma 3

we get that for any two states in the interface automaton
I(C) that are reachable with the same provided trace, the
first element of the state pair is equal: (Q, r1) and (Q, r2).
Thus, we only need to show that we have enabled(Q, r1) =
enabled(Q, r2). However, this follows from enabled(Q, r) =⋂
s∈Q enabled(s).
Thus, I(C) is an interface automaton, and hence all of

its traces are unblockable. Lemma 2 shows that Tu(C) ⊆
Tu(I(C)) and Lemma 3 shows that Tu(I(C)) ⊆ Tu(C).
Hence C ≡ I(C).

Corollary 1. Whenever C1 ≡ C2 for two component
automata C1 and C2 then also I(C1) ≡ I(C2).

Proof. Follows directly from Theorem 2 and from the
fact that the unblockable equivalence ≡ is transitive.

3. COMPOSITION OPERATORS
“Components are for composition.” [Szy97]. A compo-

nent interacts with other components by providing services
or requiring services. A closed component provides services
without the need to require services from other components.
We consider closed components as stable service providers.
Open components will provide services under assumptions
that the required services are guaranteed. Composition al-
lows for components interacting with each other to build up
new components. It also enables reusability and decomposi-
tion of components. In this section, we will introduce some
basic composition operators including the product and the
plugging of components.

3.1 Product of Component Automata
The product of two components assembles the compo-

nents together and synchronizes them when a sequence of
required service calls can be provided by the other compo-
nent. We call two components composable if their provided
services are disjoint, because invocations to joint services
will trigger both of the components, which will cause non-
deterministic executions.
Let us now motivate the product composition of compo-

nent automata. The definition is similar to the standard
product for finite automata, except that we synchronize
transitions if a caused service of one component is provided
by a corresponding transition of the other component, e.g.,
for transitions

r1
a/{b1·b2}−−−−−−→ r′1 and r2

b1/{c1·c2}−−−−−−−→ r′2

in C1 and C2, the synchronized transition will be

(r1, r2) a/{c1·c2·b2}−−−−−−−−→ (r′1, r′2).

In definition of the product, there is an additional condi-
tion for synchronization. Assume that there also exists

r1
a/{d1}−−−−→ r′′1

where d1 is a provided event of C2 but d1 /∈ enabled(r2).
With this, the component C1 can trigger the service d1 that
is declared as provided in C2, but component C2 cannot
provide it in r2. This causes a potential deadlock in the
component C1, because whether b1 · b2 or d1 is called is
determined by the component internally, in other words, it is
invisible to the outside. The solution to avoid the potential
internal deadlock is to make a unavailable at state (r1, r2).
Informally, should the product construction guarantee a at
state (r1, r2), it must require that all caused traces of a at
state r1 restricted to the set of provided services of C2 are
also provided by C2 at state r2.
We use the notation caused(s, a) = {α | s a/T−−→ s′, α ∈ T}

to denote the set of all caused traces for the provided event a
at state s; by events(T ) we denote the set of required events
that occur in the set T of required event sequences.

Definition 6 (Product). Two component automata
C1 = (S1, s

1
0, P1, R1, δ1) and C2 = (S2, s

2
0, P2, R2, δ2) are

composable if P1 ∩ P2 = ∅. The product C1 ⊗ C2 is then
defined as a component automaton (S, s0, P,R, δ) where

� S = S1 × S2,

� s0 = (s1
0, s

2
0),

� P = (P1 \R2) ∪ (P2 \R1),

� R = (R1 \ P2) ∪ (R2 \ P1), and

� δ is the smallest relation constructed as follows.

Let r1
a/T−−→ r′1 ∈ δ1 with a ∈ P and r2 ∈ S2. If

there is a sequence α ∈ caused(r1, a) such that α�P2 /∈
Tp(r2)—that is, a service from the caused traces in r1
which is provided by the second component is blocked
by the possible executions starting in r2—then there
is no corresponding a transition in δ. Otherwise we
distinguish between a synchronization step and a non-
synchronized step.

1. Non-synchronized transition step:
if events(T ) ∩ P2 = ∅, then

(r1, r2) a/T−−→ (r′1, r2) ∈ δ.

2. Synchronized transition step:
if events(T ) ∩ P2 6= ∅, then

(r1, r2) a/T ′−−−→ (r′1, r′2) ∈ δ

whenever r2
〈(a0,T0),...,(ak,Tk)〉=============⇒ r′2 with

〈a0, . . . , ak〉 = β�P2, β ∈ T

and

T ′ = {β[β0/a0, β1/a1, . . . , βk/ak]
| βi ∈ Ti, 0 ≤ i ≤ k}.
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Figure 3: Component automaton Cip top and product Cic ⊗ Cip bottom

These presented rules are based on transitions from δ1;
the rules for transitions from δ2 are symmetric.

We will now use an example to illustrate the construction.

Example 3. In the context of the internet component of
Example 1, we consider a new component that provides the
services unu1 , unu2 , info and requires the service print. The
service info returns information on the status of this compo-
nent. The execution model of this internet-provider compo-
nent is pictured in the upper part of Fig. 3. The component
at the bottom shows the product of the internet-connection
component Cic from Fig. 1 and the internet-provider com-
ponent. The common services that are used for synchroniza-
tion are unu1 , unu2 , print.
Note that the trace 〈login,wifi, info〉 is an unblockable trace

of the product (there are two possible executions, one ending
in 2A and one ending in 3A). Thus, this trace is also in the
interface I(Cic⊗Cip). However, if we compute the interfaces
of the product constituents, we will find that I(Cip) (equal
to Cip of Fig. 3) requires the print service. On the other
hand, we saw in Sect. 2.3 that the interface of the internet-
connection component Cic does not contain the print ser-
vice, even though the component provides this service. Thus,
the trace 〈login,wifi, info〉 in the composition of the inter-
faces I(Cic)⊗I(Cip) (that is the same as the product Cic⊗
Cip without the state 2A) is blockable. Consequently, the
product of two components can generally resolve potentially
blocking executions, or in other words, the product of two
components can have more unblockable executions than the
unblockable traces produced by its constituents. Since the in-
terface only contains the unblockable executions of the model
and it is in general not possible to derive the interface of a
product from the interfaces of the single components.

For this reason, we introduce a special case of product, the
plugging of components, where the second component does

not required any events provided by the first one. This plug-
ging product has the desired congruence property that the
interface model of the composed components can be derived
from the interfaces of its constituents.

Definition 7 (Plugging). A component C1 = (S1, s
1
0,

P1, R1, δ1) is pluggable (can be plugged) by a component au-
tomaton C2 = (S2, s

2
0, P2, R2, δ2) if C1 and C2 are compos-

able and P1 ∩R2 = ∅. The plugging of C1 by C2, denoted by
C1 � C2, is then given as the product C1 ⊗ C2.
We shall now discuss the properties of the plugging op-

erator. The lemma below shows that a provided trace of a
component automaton C1 is preserved in the product with
a component automaton C2 if its causality traces projected
to the services provided by C2 are unblockable in C2.
In the rest of this section we fix two components C1 =

(S1, s
1
0, P1, R1, δ1) and C2 = (S2, s

2
0, P2, R2, δ2) such that C1

is pluggable by C2. Let C1 � C2 = (S, s0, P,R, δ).

Lemma 4. Let C1 be pluggable by C2. If s1
0

tr1==⇒ r1 in C1

and s2
0

tr2==⇒ r2 in C2 with π1(tr2) ∈ Q where Q = {α�P2 |
α ∈ π2(tr1)} and all traces in Q are unblockable in C2, then
(s1

0, s
2
0) tr==⇒ (r1, r2) for some tr with π1(tr) = π1(tr1).

Proof. By induction on the length of tr1. The base case
where |tr1| = 0 is trivial. Let |tr1| > 0. Then tr1 = tr ′1 ·a/T

such that s1
0

tr′1==⇒ r′1 and r′1
a/T−−→ r1. Now s2

0
tr′2·tr2====⇒ r2

such that s2
0

tr′2==⇒ r′2 and r′2
tr2==⇒ r2 with that π1(tr ′2) ∈ Q′

and π1(tr ′2 · tr2) ∈ Q where Q′ = {α�P2 | α ∈ π2(tr ′1)}
and Q = {α�P2 | α ∈ π2(tr1)} are unblockable in C2.
By induction hypothesis, there exists (s1

0, s
2
0) tr′==⇒ (r′1, r′2)

where π1(tr ′) = π1(tr ′1). By the transition rule of the prod-

uct, we have (r′1, r′2) a/T ′−−−→ r1, r2, because that Q and Q′

are unblockable implies caused(r′1, a) can be accepted by
C2 without being blocked. So (s1

0, s
2
0) tr==⇒ r1, r2 where

π1(tr) = π1(tr ′) · a = π1(tr1).



For the preservation of unblockable traces in plugging, it is
obvious that the general plugging will not work. If there are
some services provided by C2 available also to the environ-
ment, the behavior of C2 is uncertain and the unblockable
traces cannot be preserved from C1 to C1 � C2. Therefore,
we consider a special case of plugging, complete plugging,
requiring that all services of C2 are provided only to C1 and
not available to the environment, formally P2 ⊆ R1. Such
complete plugging is often the case in the component-based
design when the functionality of a component is to solely
provide services to a single component invoking the services.

Theorem 3. Let C1 be pluggable by C2 such that P2 ⊆
R1. Then a provided trace pt is an unblockable in C1 �
C2 if and only if pt is unblockable in C1 and all traces in
{α�P2 | α ∈ caused(pt)} are unblockable in C2.

Proof. By induction on the length of pt. The base case
where |pt| = 0 is trivial. If |pt| > 0 then let pt = pt′ ·a. The
induction hypothesis gives that pt′ is unblockable in C1 and
{α�P2 | α ∈ caused(pt′)} are unblockable in Tp(C2) iff pt′ is
unblockable in C1 � C2.
First, we prove the ⇐ direction by contradiction. That is

pt is blockable in in C1 � C2. Then there exists (s1
0, s

2
0) tr==⇒

(r′1, r′2) such that a /∈ enabled((r′1, r′2)). By Lemma 4, this
is a contradiction to the statements of the left side.
Second, we prove the⇒ direction also by contradiction. If

pt is blockable in C1, so there exists s1
0

tr′==⇒ r′1 with π1(tr ′) =
pt′ such that a /∈ enabled(r′1). By induction hypothesis,
we know pt′ is unblockable in C1 � C2. By Lemma 4,
there exists (s1

0, s
2
0) tr==⇒ (r′1, r′2) where π1(tr) = pt′, but

a /∈ enabled(r′1, r′2) because a /∈ enabled(r′1) and P2 ⊆ R1.
This contradicts the fact that pt′ · a is unblockable in C1 �
C2. If {α�P2 | α ∈ caused(pt)} are blockable in C2, then
there exists r2 ∈ S2 such that C2 cannot accept caused(r1, a)
starting from state r2, because {α�P2 | α ∈ caused(pt′)}
are unblockable by induction hypothesis. By the transition
rules of the automaton C1 � C2, a /∈ enabled((r1, r2)). This
contradicts that pt is unblockable in C1 � C2, and the proof
of this direction is also established.

3.2 Composition of Interface Models
Every component interface automaton is also a compo-

nent automaton, so the definitions of product and plugging
can also be used to define the composition of interface mod-
els. But as shown in Example 3, the product construction
on interface models may drop some unblockable traces that
could be present in the product of their execution models.
So for the interface models, we can compose them only when
the plugging condition is satisfied. In that case, the com-
position of interface models is significant in the sense that
unblockable traces are preserved.
However, as demonstrated in Fig. 4, the result is not

necessarily a component interface automaton. The figure
shows that plugging of two interface automata (the left one
is plugged by the right one in the top of Fig. 4) may contain
blockable executions, as ac is blockable from the state 1A
even though the two inteface automata above do not contain
any blockable traces.
Hence we define the composition of two pluggable com-

ponent interface automata as the product construction in-
troduced in the previous section followed by the call of the
algorithm I for removing the blockable executions.
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Figure 4: Plugging of interface automata

Definition 8. Given two component interface automata
I1 and I2, if I1 can be plugged by I2, then their composition
(plugging), denoted by I1 �I I2, is defined as I(I1 � I2).

We can now show that plugging of two components is
equivalent (w.r.t. to unblockable equivalence) with the com-
position of the corresponding interface models. This prop-
erty shows that unblockable provided traces allowed in the
composition of interface models are also available in the
plugging of their execution models.

Theorem 4. Let C1 be pluggable by C2 such that P2 ⊆
R1. Then I(C1)�I I(C2) ≡pt C1 � C2.

Proof. Theorem 1 shows that I(C1) ≡pt C1, I(C2) ≡pt
C2, and I(C1) �I I(C2) ≡pt I(C1)� I(C2). From Theo-
rem 3 we get C1 ≡pt C1 � C2 and I(C1) ≡pt I(C1)� I(C2).
All together we get I(C1)�I I(C2) ≡pt C1 � C2.

4. COORDINATION OF COMPONENTS
The components discussed in the previous section pro-

vide a set of services while causing sequences of required
services. A component is like a container of services. For
instance, the two components Cic and Cip discussed above
interact with other components by providing and invoking
services. However, if we want to trigger some services in-
ternally, the components will not be enough. For example,
after login is invoked, we want the status information of the
internet component to be shown regularly and automati-
cally. In component-based design, we also need particular
processes to interconnect components and such processes co-
ordinate ordinary components by triggering invocations to
services provided by these components. Thus, processes can
be taken as components that provide nothing but require
services according to their control flow.
Invocations to services provided by other components are

modeled as active events, which means that these events are
started by the processes actively. The behavior of a process
can be modeled by a traditional finite automata [HMU79],
where the alphabet is the set of active events in the process.

Definition 9. A process automaton is defined as a tuple
A = (S, s0, E, δ) where

� S is a finite set of states,



� s0 ∈ S is the initial state,

� E is a finite set of active events, and

� δ ⊆ S × E × S is a transition relation.

As in the component automaton, we write s a−→ s′ instead of
(s, a, s′) ∈ δ. An alternating sequence of states and active
events execp = 〈s0, a0, . . . , ak, sk+1〉 is called an execution of
the process A if si

ai−→ si+1 for all 0 ≤ i ≤ k where s0 is the
initial state. A sequence of active events β = 〈a0, a1, . . . , ak〉
is called a trace if there is an execution execp such that
execp�E = β. The set of traces in A is denoted as Ta(A).
Now, we will introduce coordination of components by

processes. The intuitive idea is to synchronize provided ser-
vices of the component and the invocation to these services
by the process, and the corresponding causality traces will
be caused by previous provided service. It is a little differ-
ent from the product of components. For example, assume
for a component automaton C and a process A, there are
transitions

r
a/T1−−−→ r′

b/T2−−−→ r′′ and s b−→ s′,

in C and A respectively, then the synchronization will be

(r, s) a/T1◦T2−−−−−→ (r′′, s′),

provided there is no more synchronization transition subse-
quent to r′′ and s′. And if there is one more transition from
r′, e.g., r′ c/T3−−−→ r1 such that c is not required by A, the pro-
vided service c should also be available to the environment,
which will form additional transitions

(r, s) a/T1−−−→ (r′, s) and (r′, s) c/T3−−−→ (r1, s).

For convenience, we use conc for the concatenation of sets
of sequences, that is, conc(〈T0, . . . , Tk〉) = T0 ◦ · · · ◦ Tk.

Definition 10. A coordination of a component automa-
ton C = (S1, s

1
0, P,R, δ1) by a given process automaton A =

(S2, s
2
0, E, δ2) is a component CnA = (S, s0, P

′, R, δ) where

� S = S1 × S2,

� s0 = (s1
0, s

2
0),

� P ′ = P \ E,

� δ is the smallest relation constructed as follows.

Let r1
a/T−−→ r′1 ∈ δ1 with a ∈ P ′ and r2 ∈ S2. If

r′1
tr==⇒ r′′1 and r2

π1(tr)====⇒ r′2

with enabled(r′′1 ) ∩ enabled(r′2) = ∅ or enabled(r′′1 ) ∩
P ′ 6= ∅, then we add

(r1, r2) a/T ′−−−→ (r′′1 , r′2)

where

T ′ = T ◦ conc(π2(tr)).

Given a component automaton C = (S1, s
1
0, P,R, δ1), a

process automaton A = (S2, s
2
0, E, δ2), and the coordination

CnA = (S, s0, P
′, R, δ), the next theorem shows the relation

between transition relations between the coordination and
the component.
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Figure 5: Process wifi-connection A top, component
Cic ⊗ Cip middle, and Coordination Cic nA bottom

Theorem 5. For any execution (s1
0, s

2
0) tr==⇒ (r1, r2) in δ,

we have

s1
0

tr1==⇒ r1 and s2
0

tr2==⇒ r2

in C and A respectively, such that

1. π1(tr) = π1(tr1)�P ′, that is, there exists an equal pro-
vided trace in C when projecting to P ′;

2. conc(π2(tr)) = conc(π2(tr1)), that is, the caused traces
in C and C nA are equal;

3. tr2 = π1(tr1)�E, showing that the internally triggered
sequence of provided events is invoked by the process.

Proof. For one transition step the proposition can be
directly derived from the transition rules of the coordination.
The general case can be proven by induction over the length
of tr .

Example 4. A wifi-connection process A is depicted in
Fig. 5. The process coordinates internet-connection compo-
nent by repeatedly requiring wifi. The coordination of this
process and internet-connection component Cic n A shown
at the bottom of the figure. For simplicity, we do not draw
the event read in the figure. When login is invoked by the
environment, wifi is triggered internally and the component
causes unu1 or unu2 automatically.

5. CONCLUSION AND FUTURE WORK
We have presented a formal model for component inter-

faces that guarantees unblockable composition of software
components. To this end, we have provided an algorithm



to compute the unblockable interface from a component’s
execution model. This interface serves as a behavioral con-
tract for the component: as long as the environment calls
only the sequences of provided services that are specified
by the interface and all required services are provided, then
non-blocking behavior is guaranteed. Moreover, the comple-
menting operation of coordination of components has been
defined so that processes can be used to glue components
together in order to support component-based design by
building-up new components from the existing ones.
During the construction of a software system from com-

ponents, one is at the end interested in closed components
where all needed required services are resolved, i.e., there are
no dangling references to required services. Therefore, we
introduced the operators of composition and plugging. We
showed that plugging preserves unblockable behavior such
that the unblockable sequences of a plugging can be com-
puted from the interfaces of the plugged components. On
the other hand, such a result does not hold for the more gen-
eral composition. The reason is a cyclic dependence between
components that may in principle resolve a blockable behav-
ior such that the composition has a larger interface than the
one computed from the interfaces of the components.
Due to this restriction, the presented interface model is

not suited to reflect low-level interaction protocols with cyclic
behaviour, but instead describes, on a higher level, the inter-
faces of components in service-oriented computing where the
non-cyclic service call does usually not impose any practical
restriction as mentioned in e.g. [BDF05, CLL+07, BBNL08].
There are several open problems left for the future work.

We have shown that the plugging operator preserves the un-
blocking behavior of its constituents, but it is so far not clear
for which other composition operators this property holds
too. Similarly, it has to be investigated whether the com-
position operators preserve a refinement relation on com-
ponents. Intuitively, a refined component provides more
services while relying on fewer invocations to required ser-
vices. It seems that the notion of modal refinement [LT88,
LNW07b] can be applicable in this situation. Another re-
search direction are interface models with timing character-
istics to support timing analysis of components and schedul-
ing analysis of application processes as well as unblockable
behavior in the presence of timed synchronization.
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