
Inner-approximating Reach-avoid Sets for Discrete-time
Polynomial Systems

Bai Xue1, Naijun Zhan1 and Martin Fränzle3

Abstract— In this paper we propose a computational method
based on semi-definite programming for synthesizing infinite-
time reach-avoid sets in discrete-time polynomial systems. An
infinite-time reach-avoid set is a set of initial states making
the system eventually, i.e., within finite time enter the target
set while remaining inside another specified (safe) set during
each time step preceding the target hit. The reach-avoid set
is first characterized equivalently as a strictly positive sub-
level of a bounded value function, which in turn is shown to
be a solution to a system of derived equations. The derived
equations are further relaxed into a system of inequalities,
which is encoded into semi-definite constraints based on the
sum-of-squares decomposition for multivariate polynomials,
such that the problem of synthesizing inner-approximations
of the reach-avoid set can be addressed via solving a semi-
definite programming problem. Two examples demonstrate the
proposed approach.

I. INTRODUCTION

Discrete-time dynamical systems, where state changes
arise in discrete time instants, are important mathematical
models used to describe the evolution of complex dynam-
ical systems. For example, the population of a species
that reproduces in annual turns is adequately modeled us-
ing discrete-time systems such as the Discrete Malthusian
Growth model (named after the work of Thomas Malthus,
1766–1834). They also play an important role in under-
standing continuous-time dynamical systems by analysing
their induced discrete-time snapshot sequences. In particular,
with numerical simulation being the workhorse of many
practical approaches to the analysis of complex dynamical
systems, the point sequences calculated by a numerical
ordinary differential equations solver form a discrete-time
dynamical system that approximates the solution of an initial
value problem for an ODE [5]. We here consider discrete-
time polynomial systems whose dynamics are represented by
polynomials. These systems are an important class of nonlin-
ear systems due to the fact that many nonlinear systems such
as Lotka-Volterra systems can be modelled as, transformed
into, or approximated by polynomial systems.

Reach-avoid analysis is an established verification tool that
provides formal guarantees of safety (via avoiding unsafe

1State Key Lab. of Computer Science, Institute of Software, CAS,
Beijing, China, and the University of Chinese Academy of Sciences, Beijing,
China {xuebai,znj}@ios.ac.cn

2Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
fraenzle@uni-oldenburg.de

This work has been supported through grants by NSFC under grant No.
61872341, 61836005, 61625206, the CAS Pioneer Hundred Talents Program
under grant No. Y8YC235015, Deutsche Forschungsgemeinschaft through
the grants DFG GRK 1765 “System Correctness under Adverse Conditions”
and FR 2715/4-1 “Integrated Socio-technical Models for Conflict Resolution
and Causal Reasoning”.

states) and liveness (via guaranteed reach of a target set)
for dynamical systems, e.g., [14]. Automatic verification
approaches usually involve computation of reach-avoid sets.
A reach-avoid set or, in the terminology of viability theory,
capture basin [3] is a set of initial states from which the
system is guaranteed to eventually reach a desired target state
set while avoiding a set of unsafe or otherwise undesirable
states throughout the path to the target [21]. It is different
from invariant sets widely studied in, e.g., [2], [6], [17], [23],
[24], which are a set of states just enabling the system to
avoid a set of unsafe states. Reach-avoid analysis plays a vital
role in safety-critical system design such as air traffic man-
agement systems [15] and biomedical systems [13]. There is
a body of work regarding the study of reach-avoid analysis
on continuous-time deterministic systems [7], [14], [22] and
discrete-time stochastic systems [1], [8], [20]. Although there
are some approaches to reachability (rather than reach-avoid)
analysis for discrete-time deterministic systems [10], [12],
[18], [19], [24], studies on reach-avoid analysis are still few.
Recently, a moment-based convex programming method (or,
a semi-definite programming based method) was proposed to
compute outer approximations (i.e., super-sets) of the reach-
avoid set for discrete-time polynomial systems in [9].

This paper complements the aforementioned outer ap-
proximation by providing a computational inner approxi-
mation of the reach-avoid set of discrete-time polynomial
systems. Such an inner approximation is a central tool in
system synthesis, as it generates a set of states that reliably
satisfy the desired reach-avoid property. Our method for
synthesizing reach-avoid sets begins with a bounded value
function whose certain strictly positive sub-level set is equal
to the reach-avoid set. The value function is constructed by
trajectories of a switched system generated by forcing the
considered polynomial system to stay still when it touches
either the target set or the complement of the specified safe
set, and is reduced to a solution of a derived system of
equations. Via relaxing the system of equations into a system
of inequalities, which are further encoded into a set of semi-
definite constraints via the sum-of-squares decomposition for
multivariate polynomials, a semi-definite program is finally
obtained for inner-approximating the reach-avoid set. Finally,
two examples demonstrate the proposed approach.

The main contributions of this paper are summarized as
follows. 1). The exact reach-avoid set over the infinite time
horizon is characterized as a strictly positive sub-level set
of a bounded value function, which is finally reduced to a
unique solution to a system of equations. 2). An overall non-
convex problem of estimating reach-avoid sets is reduced to a

2020 59th IEEE Conference on Decision and Control (CDC)
Jeju Island, Republic of Korea, December 14-18, 2020

978-1-7281-7447-1/20/$31.00 ©2020 IEEE 867

Authorized licensed use limited to: Institute of Software. Downloaded on January 26,2021 at 02:44:11 UTC from IEEE Xplore. Restrictions apply.

problem of solving a single convex program. In addition, the
inner approximations obtained are particularly simple, since
they are represented by a sub-level set of a single polynomial
of a predefined degree. Moreover, an inner approximation
of the reach-avoid set can be readily obtained by solving a
single semi-definite program using freely available software.

This paper is structured as follows. Section II introduces
the concepts of discrete-time polynomial systems and the
corresponding reach-avoid sets of interest. After elucidating
our approach for inner-approximating reach-avoid sets in
Section III, we demonstrate it on two examples in Section
IV and finally conclude this paper in Section V.

II. PRELIMINARIES

In this section we describe discrete-time polynomial sys-
tems and reach-avoid sets of interest in this paper. Before
formulating the reach-avoid problem, let us introduce some
basic notions used throughout this paper: N stands for the set
of nonnegative integers and R for the set of real numbers. For
a set ∆, ∆c denotes its complement. R[·] denotes the ring
of polynomials in variables given by the argument. Vectors
are denoted by boldface letters.

The discrete-time polynomial system (denoted DPS in the
sequel) considered in this paper is an iterative polynomial
map of the following form,

x(l + 1) = f(x(l)),∀l ∈ N,
x(0) = x0 ∈ Rn,

(1)

where f(x) = (f1(x), . . . , fn(x))> with fi(x) ∈ R[x], i =
1, . . . , n.

We use φx0
(·) : N → Rn, induced by x0, to denote the

trajectory of the system DPS, i.e., φx0(l) := x(l),∀l ∈ N.
Now, we define the reach-avoid set such that any trajectory

of the system DPS starting from this set will reach an open
target set TR in finite time while staying within a compact
set X till the target hitting time, where TR and X are defined
by polynomial inequations as

TR = {x ∈ Rn | g(x) < 1} and
X = {x ∈ Rn | h0(x) ≤ 0}

(2)

with g(x), h0(x) ∈ R[x] and TR ⊆ X .
Definition 1 (Reach-Avoid Set): The reach-avoid set RA is

the set of all initial states inducing trajectories of DPS which
enter the target set TR eventually at some time l ∈ N while
staying in the set X over the time horizon [0, l] ∩ N, i.e.,

RA = {x0 ∈ X | ∃l ∈ N.φx0(l) ∈ TR ∧
l∧

j=1

φx0(j) ∈ X}.

An inner-approximation is a subset of the reach-avoid set RA.

III. INNER-APPROXIMATING REACH-AVOID SETS

In this section, we present our approach for inner-
approximating the reach-avoid set RA in Definition 1 via
solving a semi-definite programming problem. To this end,
we first define a value function generated by trajectories of
a switched polynomial system such that its strict sub-level

set w.r.t. level 1 is equal to the reach-avoid set RA. The value
function is shown to be the unique solution to a system of
equations (if solutions exist at all). On the basis of the system
of equations, we finally construct a semi-definite program for
inner-approximating the reach-avoid set RA.

The aforementioned value function is defined by trajecto-
ries of a switched discrete-time polynomial system, which
is built upon the system DPS such that the state of the
system DPS is forced to stay still once it enters either the
complement Xc of the set X or the target set TR.

Definition 2: A switched discrete-time polynomial system
(or, SDPS), which is formed by the system DPS, is a
quintuple (x0, L̂, X̂, X̂ , F̂) with the following components:

- L̂ = {1, 2, 3} is a set of three locations;
- X̂ is the state constraint set;
- X̂ = {X̂i, i = 1, 2, 3};
- x0 ∈ X̂ is the initial state;
- F̂ = {f̂i(x) : X̂i → Rn, i = 1, 2, 3} with

f̂1(x) = f(x)

constraining the evolution of the state by the iterative
polynomial map x̃ := f̂1(x) at location i = 1, and

f̂i(x) = x

constraining the evolution of the state by the iterative
polynomial map x̃ := f̂i(x) at location i ∈ {2, 3},

where

1) X̂ = {x ∈ Rn | h(x) ≤ 0} with h(x) ∈ R[x] and

X̂ ⊇ Ω([0, 1],f , X)

is a compact set in Rn, where

Ω([0, 1],f , X) = {x ∈ Rn | x = f(y),y ∈ X} ∪X

is the set of reach states of the system DPS starting
from the set X with the time instants [0, 1] ∩ N;

2) X̂1 = X \TR = {x ∈ Rn | h0(x) ≤ 0∧1−g(x) ≤ 0};
3) X̂2 = TR = {x ∈ Rn | g(x)− 1 < 0};
4) X̂3 = X̂ \X = {x ∈ Rn | h(x) ≤ 0 ∧ −h0(x) < 0}.
Remark 1: The set X̂ in Definition 2 exists since X is a

compact set in Rn and f(x) ∈ R[x]. It can be computed by
solving a semi-definite programming problem, which will be
presented later.

Definition 3: Given an initial state x0 ∈ X̂ , if there exists
a sequence (x(l))l∈N starting from x0 and satisfying the
dynamics defined by the iterative piece-wise polynomial map

x(l + 1) = f̂(x(l)), ,∀l ∈ N,

where x(0) = x0 and

f̂(x) := 1X̂1
· f̂1(x) + 1X̂2

· f̂2(x) + 1X̂3
· f̂3(x), (3)

with
f̂(·) : S → Rn, S = X̂i if x ∈ X̂i,

868

Authorized licensed use limited to: Institute of Software. Downloaded on January 26,2021 at 02:44:11 UTC from IEEE Xplore. Restrictions apply.

and 1X̂i
: X̂i → {0, 1}, i = 1, 2, 3, representing the indicator

function of the set X̂i, i.e.,

1X̂i
:=

{
1, if x ∈ X̂i,

0, if x /∈ X̂i,

then the trajectory φ̂x0(·) : N→ Rn, induced by x0, of the
system SDPS is defined as follows:

φ̂x0
(l) := x(l),∀l ∈ N.

The set X̂ is an invariant set for the system SDPS. That is,
trajectories of the system SDPS starting from X̂ are trapped
in it. This is formally formulated in Corollary 1.

Corollary 1: If x0 ∈ X̂ , φ̂x0
(l) ∈ X̂ for l ∈ N.

Proof: Clearly, if x0 ∈ X̂2 ∪ X̂3,

φ̂x0(l) ∈ X̂2 ∪ X̂3,∀l ∈ N

holds.
If x0 ∈ X̂ \(∪3i=2X̂i), i.e., x0 ∈ X̂1, one of the following

three cases hold:
1) there exists l ∈ N such that φ̂x0

(i) ∈ X̂2 for i ∈
[l,∞) ∩ N and φ̂x0

(i) ∈ X̂1 for i ∈ [0, l) ∩ N;
2) there exists l ∈ N such that φ̂x0

(i) ∈ X̂3 for i ∈
[l,∞) ∩ N and φ̂x0

(i) ∈ X̂1 for i ∈ [0, l) ∩ N;
3) φ̂x0

(l) ∈ X̂1 for l ∈ N holds.
Therefore, the conclusion holds. �

From the proof of Corollary 1, we observe that trajectories
evolving in the viable domain X̂ can be classified into three
disjoint groups:

1) trajectories touching the set X̂2 = TR in finite time and
staying inside X prior to the target hitting time;

2) trajectories touching the set X̂3 = X̂ \X in finite time;
3) trajectories staying in the set X̂1 = X \TR for all time.

It is obvious that the reach-avoid set RA is equal to the set
of initial states driving their trajectories to enter the target
set TR in finite time and stay within the set X preceding the
target hitting time. Let τ̂x0

TR be the hitting time of the target
set TR for the trajectory φ̂x0

(·) : N→ Rn, i.e.,

τ̂x0
TR = min{l ∈ N | φ̂x0

(l) ∈ TR}.

Lemma 1: RA = {x ∈ X̂ | τ̂xTR < ∞}, where RA is the
reach-avoid set in Definition 1.

Proof: We first prove that RA ⊆ {x ∈ X̂ | τ̂xTR <∞}.
Let x0 ∈ RA. If x0 ∈ TR, it is clear that x0 ∈ {x ∈ X̂ |

τ̂xTR <∞}. Thus, we consider x0 ∈ RA \ TR.
Definition 1 indicates that there exists l ∈ N such that

φx0
(l) ∈ TR

∧
∧li=0φx0

(i) ∈ X.

Let τx0
TR = min{i ∈ N | φx0(i) ∈ TR

∧
∧ij=1φx0(j) ∈ X}.

It is clear that τx0
TR ≥ 1. Definition 2 implies that φ̂x0

(i) =
φx0

(i) for i ∈ [0, τx0
TR] ∩ N. Therefore,

φ̂x0(τx0
TR) ∈ TR

∧
∧τ

x0
TR −1
i=0 φ̂x0(i) ∈ X \ TR.

Consequently, τ̂x0
TR = τx0

TR ≤ l <∞ and thus x0 ∈ {x ∈ X̂ |
τ̂xTR <∞}. We have RA ⊆ {x ∈ X̂ | τ̂xTR <∞}.

Next, we show that {x ∈ X̂ | τ̂xTR < ∞} ⊆ RA. Let
x0 ∈ {x ∈ X̂ | τ̂xTR < ∞}. If x0 ∈ TR, it is clear that
x0 ∈ RA. Thus, we consider x0 ∈ {x ∈ X̂ | τ̂xTR <∞} \ TR.

Then, there exists l ∈ N such that φ̂x0
(l) ∈ TR, implying

that
φ̂x0(l) ∈ TR

∧
∧li=0φ̂x0(i) ∈ X

holds. Similar to the above procedure in proving τ̂x0
TR <∞,

we can show that that τx0
TR = τ̂x0

TR and thus τx0
TR ≤ l.

Therefore, x0 ∈ RA and {x ∈ X̂ | τ̂xTR <∞} ⊆ RA.
In summary, RA = {x0 ∈ X̂ | τ̂x0

TR <∞} holds. �
Now, we present the value function V (x) : X̂ → R, whose

strict one sub-level set, i.e., {x ∈ X̂ | V (x) < 1}, is equal
to the reach-avoid set RA.

V (x) := lim inf
l→∞

∑l−1
i=0 g(φ̂x(i))

l
. (4)

Since φ̂x(l) ∈ X̂ for l ∈ N and g(x) ∈ R[x], V (x) is thus
bounded over X̂ .

Lemma 2: RA = {x ∈ X̂ | V (x) < 1)}, where V (·) :
X̂ → R is the value function in (4).

Proof: Let x0 ∈ RA. Clearly, x0 ∈ X̂ . According to
Lemma 1, we have that τ̂x0

TR <∞. Therefore,

φ̂x0(i) ∈ X,∀i ∈ [0, τ̂x0
TR] ∩ N and

φ̂x0
(i) ∈ TR,∀i ∈ [τ̂x0

TR ,∞) ∩ N.

Also, φ̂x0
(i) = φ̂x0

(τ̂x0
TR) for i ∈ [τ̂x0

TR ,∞) ∩ N and thus

g(φ̂x0
(i)) = g(φ̂x0

(τ̂x0
TR)) < 1,∀i ∈ [τ̂x0

TR ,∞) ∩ N.

Furthermore, we have

lim
l→∞

∑l−1
i=0 g(φ̂x0

(i))

l
= g(φ̂x0

(τ̂x0
TR)) < 1.

Consequently, V (x0) < 1 and thus

RA ⊆ {x ∈ X̂ | V (x) < 1}.

Next, we show that {x0 ∈ X̂ | V (x) < 1} ⊆ RA.

Assume that x0 ∈ {x ∈ X̂ | V (x) < 1} but x0 /∈ RA.

Therefore, φ̂x0
(i) /∈ TR for i ∈ N and thus g(φ̂x0

(i)) ≥ 1
for i ∈ N. As a consequence, V (x0) ≥ 1, contradicting the
assumption that V (x0) < 1. Thus, x0 ∈ RA and further

{x ∈ X̂ | V (x) < 1} ⊆ RA.

In summary, {x ∈ X̂ | V (x) < 1} = RA. �
Lemma 2 implies that the reach-avoid set RA follows

once we obtained the bounded value function V (x). In the
following we show that the bounded value function V (x) is
a solution to a derived system of equations.

Theorem 1: If there exist bounded functions v(x) : X̂ →
R and w(x) : X̂ → R such that for x ∈ X̂ ,

v(x) = v(f̂(x)), (5)

v(x) = g(x) + w(f̂(x))− w(x), (6)

then
v(x) = V (x),∀x ∈ X̂

869

Authorized licensed use limited to: Institute of Software. Downloaded on January 26,2021 at 02:44:11 UTC from IEEE Xplore. Restrictions apply.

and thus RA = {x ∈ X̂ | v(x) < 1}, where V (·) : X̂ → R
is the value function in (4).

Proof: According to Corollary 1, we have that

φ̂x(l) ∈ X̂, ∀l ∈ N

if x ∈ X̂ .
From (5), we have that

v(x) = v(φ̂x(l)),∀l ∈ N. (7)

From (6), we have that

v(φ̂x(l)) = g(φ̂x(l)) + w(φ̂x(l + 1))− w(φ̂x(l)),∀l ∈ N,

which further indicates that
l−1∑
i=0

v(φ̂x(i)) =

l−1∑
i=0

g(φ̂x(i)) + w(φ̂x(l))− w(x),∀l ∈ N.

Combining with (7), we have that

v(x) =

∑l−1
i=0 g(φ̂x(i))

l
+
w(φ̂x(l))− w(x)

l
,∀l ∈ N.

Since w(x) is bounded over x ∈ X̂ ,

v(x) = lim
l→∞

∑l−1
i=0 g(φ̂x(i))

l

holds and thus v(x) = V (x).
An immediate consequence is RA = {x ∈ X̂ | v(x) < 1}

from Lemma 2. �
It may be challenging to directly solve the system of

equations (5) and (6). However, an inner–approximation of
the reach-avoid set RA could be obtained by solving a system
of inequalities, which is generated by relaxing the system of
equations (5) and (6). This is formally stated in Corollary 2.

Corollary 2: If there exist a function v(x) ∈ R[x] and a
function w(x) ∈ R[x] such that for x ∈ X̂ ,

v(x) ≥ v(f̂(x)), (8)

v(x) ≥ g(x) + w(f̂(x))− w(x), (9)

then {x ∈ X̂ | v(x) < 1} ⊆ RA is an inner-approximation
of the set RA.

Proof: According to Corollary 1, φ̂x(l) ∈ X̂ for l ∈ N
if x ∈ X̂ .

Let x0 ∈ {x ∈ X̂ | v(x) < 1}. Obviously, we have
x0 ∈ X due to (9) and the fact that g(x) ≥ 1 for x ∈ X̂ \X .
We will prove that there exists l ∈ N such that φ̂x0

(l) ∈ TR,
i.e., g(φ̂x0

(l)) < 1.
Assume g(φ̂x0(l)) ≥ 1 for l ∈ N, i.e.,

φ̂x0
(l) /∈ TR,∀l ∈ N.

From (8), we have that

v(φ̂x0(l)) ≤ v(x0) < 1,∀l ∈ N.

(9) indicates

g(φ̂x0(l)) + w(φ̂x0(l + 1))− w(φ̂x0(l))

≤ v(φ̂x0
(l)) ≤ v(x0) < 1, ∀l ∈ N.

(10)

Thus,

w(φ̂x0
(l + 1))− w(φ̂x0

(l)) < 0,∀l ∈ N

and consequently

w(φ̂x0
(l + 1)) < w(φ̂x0

(l)),∀l ∈ N.

Also, since w(x) ∈ R[x] and thus the sequence
(w(φ̂x0

(l)))l∈N is bounded, implying that the sequence
(w(φ̂x0

(l)))l∈N converges and thus

lim
l→∞

w(φ̂x0
(l + 1))− w(φ̂x0

(l)) = 0. (11)

However, (10) implies that

w(φ̂x0
(l + 1))− w(φ̂x0

(l))

≤ v(x0)− g(φ̂x0(l)) ≤ v(x0)− 1,∀l ∈ N,
(12)

which contradicts (11) since v(x0) − 1 < 0. Thus, there
exists l ∈ N such that φ̂x0

(l) ∈ TR, i.e., g(φ̂x0
(l)) < 1.

This further indicates x0 ∈ RA according Lemma 1 and thus
{x ∈ X̂ | v(x) < 1} ⊆ RA. �

(8) and (9) can be equivalently reformulated by the fol-
lowing formulas without indicator functions:

3∧
i=1

[
v(x)− v(f̂i(x)) ≥ 0,∀x ∈ X̂i

]
∧

3∧
i=1

[
v(x)− g(x)− w(f̂i(x)) + w(x) ≥ 0,∀x ∈ X̂i

]
.

(13)

When i = 2, 3, we observe that v(x) = v(f̂i(x)) for all
functions v(·) : X̂ → R and x ∈ X̂i. Also, since if there
exists a function v(x) : X̂ → R such that v(x) ≥ g(x)
for x ∈ X̂3, v(x) ≥ 1 for x ∈ X̂3 holds. Based on these
facts, we can construct another system of inequalities, which
can also be used to synthesize inner-approximations of the
reach-avoid set RA but have more solutions than (13).

Corollary 3: If there exists a function v(x) ∈ R[x] and a
function w(x) ∈ R[x] such that

v(x) ≥ v(f(x)),∀x ∈ X \ TR, (14)
v(x) ≥ g(x) + w(f(x))− w(x),∀x ∈ X \ TR, (15)

v(x) ≥ 1,∀x ∈ X̂ \X, (16)

then {x ∈ X̂ | v(x) < 1} ⊆ RA is an inner-approximation
of the reach-avoid set RA.

Proof: Since X̂ = ∪3i=1X̂i, f̂1(x) = f(x) for x ∈ X1,
f̂2(x) = x for x ∈ X̂2 and f̂3(x) = x for x ∈ X̂3, where
X̂1 = X \ TR, X̂2 = TR and X̂3 = X̂ \X , we have that if
v(x) satisfies (14), v(x) satisfies (8), i.e.,

v(x) ≥ v(f̂(x)),∀x ∈ X̂.

Let x0 ∈ {x ∈ X̂ | v(x) < 1} but x0 /∈ RA. (16) implies
that x0 ∈ X . Also, (8) and (16) indicate that

v(φ̂x0
(l)) ∈ X \ TR,∀l ∈ N,

870

Authorized licensed use limited to: Institute of Software. Downloaded on January 26,2021 at 02:44:11 UTC from IEEE Xplore. Restrictions apply.

which indicates that g(φ̂x0
(l)) ≥ 1 for l ∈ N. Thus, from

(15) we have that

v(φ̂x0
(l)) ≥ g(φ̂x0

(l))+w(φ̂x0
(l+1))−w(φ̂x0

(l)),∀l ∈ N.

Then following the proof of Corollary 2, we can obtain a
contradiction and conclude that x0 ∈ RA. Thus, {x ∈ X̂ |
v(x) < 1} ⊆ RA. �

Comparing constraints (14)∼(16) and constraints (8)∼(9),
solutions to constraints (8)∼(9) also satisfy constraints
(14)∼(16). Consequently, we inner-approximate the reach-
avoid set via solving constraints (14)∼(16) rather than
(8)∼(9). For this sake, constraints (14)∼(16) are encoded
into semi-definite constraints using the sum-of-squares de-
composition for multivariate polynomials, finally leading to a
semi-definite program (17), where

∑
[x] is used to represent

the set of sum-of-squares polynomials over variables x, i.e.,∑
[x] = {p ∈ R[x] | p =

k′∑
i=1

q2i , qi ∈ R[x], i = 1, . . . , k′}.

min c · ŵ
s.t.

v(x)− v(f(x)) + s0(x)h0(x) + s1(x)(1− g(x)) ∈
∑

[x],

v(x)− g(x)− w(f(x)) + w(x) + s2(x)h0(x)

+ s3(x)(1− g(x)) ∈
∑

[x],

v(x)− 1 + s4(x)h(x)− s5(x)h0(x) ∈
∑

[x],

(17)

where c·ŵ =
∫
X̂
v(x)dx, ŵ is the constant vector computed

by integrating the monomials in v(x) ∈ R[x] over X̂ , c is
the vector composed of unknown coffecients in v(x) ∈ R[x],
w(x) ∈ R[x] and si(x) ∈

∑
[x], i = 0 . . . , 5.

Theorem 2: Let (v(x), w(x)) be a solution to the semi-
definite program (17), then {x ∈ X̂ | v(x) < 1} is an
inner-approximation of the reach-avoid set RA.

Proof: Since v(x) satisfies the constraint in (17),
we obtain that v(x) satisfies (14)∼(16) according to S−
procedure presented in [4]. Consequently, {x ∈ X̂ | v(x) <
1} ⊆ RA holds from Corollary 3. �

A function h(x) ∈ R[x] such that X̂ = {x ∈ Rn |
h(x) ≤ 0} in Definition 2 could be computed by solving the
semi-definite program (18). The polynomial template for the
function h(x) in this paper is taken as

∑n
i=1(xi− ai)2−R,

where (a1, . . . , an)> is a specified interior point of the set
X and R is an unknown parameter. The reason for taking
this form is mainly for the fast and easy computation of the
integral c · ŵ =

∫
X̂
v(x)dx in (17).

Lemma 3: Let h(x)) be a solution to (18), then

Ω([0, 1],f) ⊆ {x ∈ Rn | h(x) ≤ 0}.
Proof: Since h(x) satisfies the constraint in (18), we

obtain that h(x) satisfies according to S− procedure in [4]

h(x) ≤ 0 and h(f(x)) ≤ 0,∀x ∈ X.

minR

s.t.

− h(x) + s′0h0(x) ∈
∑

[x],

− h(f(x)) + s′1h0(x) ∈
∑

[x],

i = 1, . . . , k,

(18)

where h(x) ∈ R[x] and s′i ∈
∑

[x], i = 0, 1.

SDP (17)
Ex. dv dw ds T
1 15 15 20 26.28
2 16 16 16 61.42

TABLE I
PARAMETERS OF OUR IMPLEMENTATIONS ON (17) FOR EXAMPLES 1

AND 2. dv , dw : DEGREE OF POLYNOMIALS v, w IN (17), RESPECTIVELY;
AND ds : DEGREE OF POLYNOMIALS si IN (17), RESPECTIVELY,

i = 0, . . . , 5; T : COMPUTATION TIMES (SECONDS).

Therefore, Ω([0, 1],f , X) ⊆ {x ∈ Rn | h(x) ≤ 0}. �

IV. EXAMPLES

In this section we demonstrate our semi-definite program-
ming based approach on two examples. All computations
were performed on an i7-7500U 2.70GHz CPU with 32GB
RAM running Windows 10. The parameters controlling the
performance of our approach are presented in Table I and
Table II. YALMIP [11] and Mosek [16] were used to
implement the semi-definite program (17) and (18).

Example 1: We consider a computer-based model of the
following academic ordinary differential equation:{

ẋ = −0.5x− 0.5y + 0.5xy

ẏ = −0.5y + 1
.

When performing computer simulations, Euler’s method is
often used to analyze an ordinary differential equation, which
employs the idea of a linear extrapolation along the local
derivative. When the simulation step is 0.01, the resulting
discrete-time system is of the following form:{
x(l + 1) = x(l) + 0.01(−0.5x(l)− 0.5y(l) + 0.5x(l)y(l))

y(l + 1) = y(l) + 0.01(−0.5y(l) + 1)
.

(19)

SDP (18)
Ex. dh ds′ T
1 2 2 0.50
2 2 4 0.95

TABLE II
PARAMETERS OF OUR IMPLEMENTATIONS ON (18) FOR EXAMPLES 1

AND 2. dh : DEGREE OF POLYNOMIALS h IN (18), RESPECTIVELY; AND

ds′ : DEGREE OF POLYNOMIALS s′i IN (18), RESPECTIVELY, i = 0, 1; T :
COMPUTATION TIMES (SECONDS).

871

Authorized licensed use limited to: Institute of Software. Downloaded on January 26,2021 at 02:44:11 UTC from IEEE Xplore. Restrictions apply.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Fig. 1. Estimations of RA for Example 1. (Black curve denotes the boundary
of X . Green curve denotes the boundary of the target set TR. Gray region
denotes RA obtained by simulation methods. Red curve denotes the boundary
of the computed inner-approximation of the reach-avoid set RA. Blue curves
denote five trajectories starting from (-0.4,-0.8), (-0.2,-0.9), (-0.0,-0.9), (0.3,-
0.8) and (0.5,-0.8), respectively.)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Fig. 2. An illustration of inner-approximating RA for Example 2. (Black
curve denotes the boundary of X . Green curve denotes the boundary of
the target set TR. Gray region denotes RA obtained by simulation methods.
Red curve denotes the boundary of the computed inner-approximation of
the reach-avoid set RA. Blue curves denote five trajectories starting from
(-0.5,0.0), (-0.4,-0.8), (0.7,0.1) and (0.4,0.7), respectively.)

Assume that X = {(x, y) | x2 + y2 − 1 ≤ 0} and TR =
{(x, y) | 10x2 + 10(y − 0.5)2 < 1}.

In this example we computed X̂ = {(x, y) | x2 +
y2 ≤ 1.1} by solving the semi-definite program (18). The
computed inner-approximation of the reach-avoid set RA by
solving the semi-definite program (17) is showcased in Fig.
1, which also presents five trajectories of system (19) leaving
the set X finally after hitting the target set TR.

Example 2: In this example we consider a computer-
based model of the reversed-time Van der Pol oscillator{

ẋ = −2y

ẏ = 0.8x+ 10(x2 − 0.21)y
.

Discretizing the model with the explicit Euler scheme with
a sampling time 0.01, the associated discrete-time system is{
x(l + 1) = x(l) + 0.01(−2y(l))

y(l + 1) = y(l) + 0.01
(
0.8x(l) + 10(x2(l)− 0.21)y(l)

) .

(20)
Assume that X = {(x, y) | x2 + y2 − 1 ≤ 0} and TR =

{(x, y) | 10x2 + 10y2 < 1}.
In this example we computed X̂ = {(x, y) | x2 + y2 −

1.1 ≤ 0} by solving the semi-definite program (18). The
computed inner-approximation of the reach-avoid set RA by
solving the semi-definite program (17) is showcased in Fig.
2, which also presents four trajectories of system (20).

A. Comparisons

Due to the fact that the dual problem of computing inner-
approximations is the computation of outer-approximations,
in this subsection we make comparisons between the semi-
definite programming based method (17) and the method

based on the computation of outer-approximations. The
reach-avoid set RA is equal to the intersection of the reach-
avoid set X \ R̃A and the reach set R̃, where R̃A =

{x0 ∈ X | ∃l ∈ N.φx0
(l) ∈ X̂ \X ∧

l∧
j=1

φx0
(j) ∈ X̂ \ TR}.

is a set of initial states making the system enter the set X̂\X
in finite time while remaining inside the set X̂ \ TR during
each time step preceding the target hitting and the reach set

R̃ = {x0 ∈ X | ∃l ∈ N.φx0(l) ∈ TR}.

is a set of initial states making the system enter the target
set TR in finite time. It is clear that the intersection between
an inner-approximation of the set X \ R̃A and an inner-
approximation of the set R̃ is an inner-approximation of
the reach-avoid set RA. Since R̃ = {x0 ∈ X | ∃l ∈
N.g(f l(x0)) < 1}, where

f l(x0) = f

(
f
(
· · ·f

(
f︸ ︷︷ ︸

l

(x0)
)
· · ·
))

,

the set R̃N = ∪Nl=0Rl with Rl = {x0 ∈ X | g(f l(x0)) < 1}
is an inner-approximation of the reach set R̃, where N ∈ N
is an arbitrary but fixed non-negative integer, we just need
to compute the reach-avoid set R̃A, which is a challeng-
ing issue generally. Fortunately, we can compute an outer-
approximation ÕRA of the reach-avoid set R̃A thanks to the
semi-definite programming based method (or the moment-
based optimization method) in [9], consequently leading to
the fact that R̃N ∩X \ ÕRA is an inner-approximation of the
reach-avoid set RA.

The semi-definite program (7) in [9] is employed for
computing outer-approximations ÕRA, which are respectively
represented by polynomials of degree 15 and 16 for Exam-
ples 1 and 2. The resulting inner-approximations X \ ÕRA for
Examples 1 and 2 are respectively illustrated in Fig. 3 and
Fig. 4. Also, the set R̃49 is illustrated in Fig. 3 for Example
1 and the set R̃17 is illustrated in Fig. 4 for Example 2.

From Fig. 3 and 4, we observe that both the inner-
approximations R̃49∩X \ ÕRA for Example 1 and R̃17∩X \
ÕRA for Example 2 computed by the method based on the
computation of outer-approximations are more conservative
than the ones from the semi-definite programming based
method (17). Moreover, the representation R̃N ∩ X \ ÕRA
of inner-approximations computed by the method based on
the computation of outer-approximations is computationally
much more complex than the one obtained by the semi-
definite program (17) for some systems. For instance, the
function g(f l(x)) in R̃l for Example 1 is a polynomial
of degree higher than 100 when l ≥ 49 and the function
g(f l(x)) in R̃l for Example 2 is a polynomial of degree
higher than 100 when l ≥ 17. The polynomials of degree
higher than 100 are challenging to manipulate generally in
practice. This is why we just show R̃49 and R̃17 in Fig.
3 and 4, respectively. In contrast, the inner-approximations

872

Authorized licensed use limited to: Institute of Software. Downloaded on January 26,2021 at 02:44:11 UTC from IEEE Xplore. Restrictions apply.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

Fig. 3. Estimations of RA for Example 1 using the semi-definite pro-
gramming based method (17) and the method based on the computation
of outer-approximations. (Above: Black curve denotes the boundary of X .
Blue dashed curve denotes the boundary of the inner-approximation X\ÕRA
computed by the method in [9]. Gray region denotes the set R̃49. Below:
Red curve denotes the boundary of the inner-approximation computed by the
semi-definite programming based method. Blue curve denotes the boundary
of the inner-approximation R̃49 ∩X \ ÕRA computed by the method based
on the computation of outer-approximations.)

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

Fig. 4. Estimations of RA for Example 2 using the semi-definite pro-
gramming based method (17) and the method based on the computation
of outer-approximations. (Above: Black curve denotes the boundary of X .
Blue dashed curve denotes the boundary of the inner-approximation X\ÕRA
computed by the method in [9]. Gray region denotes the set R̃17. Below:
Red curve denotes the boundary of the inner-approximation computed by the
semi-definite programming based method. Blue curve denotes the boundary
of the inner-approximation R̃17 ∩X \ ÕRA computed by the method based
on the computation of outer-approximations.)

obtained by the semi-definite program (17) are respectively
represented by a sub-level set of a single polynomial of
degree 15 and 16 for Examples 1 and 2.

V. CONCLUSION

In this paper we considered the unbounded-time reach-
avoid problem for discrete-time polynomial dynamical sys-
tems. The reach-avoid set of interest is a set of states taking
the system to an eventual hit of the target set while remaining
inside a specified (safe) set till the target hit. The reach-
avoid set is approximated from the inner by solving a semi-
definite programming problem, which was constructed by a
system of equations whose solution (if existing) characterizes
the exact reach-avoid set. Two examples demonstrated the
performance of the proposed approach.

In the future work we would extend the method proposed
in this paper to reach-avoid analysis for continuous-time sys-

tems. Moreover, we would like to investigate the convergence
of the proposed method.

REFERENCES

[1] A. Abate, M. Prandini, J. Lygeros, and S. Sastry. Probabilistic
reachability and safety for controlled discrete time stochastic hybrid
systems. Automatica, 44(11):2724–2734, 2008.

[2] A. Adjé, P.-L. Garoche, and V. Magron. A sums-of-squares extension
of policy iterations. Nonlinear Analysis: Hybrid Systems, 25:60–78,
2017.

[3] J.-P. Aubin, A. M. Bayen, and P. Saint-Pierre. Viability theory: new
directions. Springer Science & Business Media, 2011.

[4] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix
inequalities in system and control theory. SIAM, 1994.

[5] J. C. Butcher. Numerical methods for ordinary differential equations.
John Wiley & Sons, 2016.

[6] D. Cattaruzza, A. Abate, P. Schrammel, and D. Kroening. Unbounded-
time safety verification of guarded lti models with inputs by abstract
acceleration. Journal of Automated Reasoning, 2020.

[7] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry. Reach-avoid
problems with time-varying dynamics, targets and constraints. In
HSCC’15, pages 11–20, 2015.

[8] J. D. Gleason, A. P. Vinod, and M. M. Oishi. Underapproximation
of reach-avoid sets for discrete-time stochastic systems via lagrangian
methods. In CDC’17, pages 4283–4290. IEEE, 2017.

[9] W. Han and R. Tedrake. Controller synthesis for discrete-time
polynomial systems via occupation measures. In IROS’18, pages
6911–6918. IEEE, 2018.

[10] M. Korda, D. Henrion, and C. N. Jones. Convex computation of
the maximum controlled invariant set for polynomial control systems.
SIAM Journal on Control and Optimization, 52(5):2944–2969, 2014.

[11] J. Lofberg. Yalmip: A toolbox for modeling and optimization in
matlab. In CACSD’04, pages 284–289. IEEE, 2004.

[12] V. Magron, P.-L. Garoche, D. Henrion, and X. Thirioux. Semidefinite
approximations of reachable sets for discrete-time polynomial systems.
SIAM Journal on Control and Optimization, 57(4):2799–2820, 2019.

[13] J. N. Maidens, S. Kaynama, I. M. Mitchell, M. M. Oishi, and G. A.
Dumont. Lagrangian methods for approximating the viability kernel
in high-dimensional systems. Automatica, 49(7):2017–2029, 2013.

[14] K. Margellos and J. Lygeros. Hamilton–jacobi formulation for reach–
avoid differential games. IEEE Transactions on Automatic Control,
56(8):1849–1861, 2011.

[15] K. Margellos and J. Lygeros. Toward 4-d trajectory management in
air traffic control: a study based on monte carlo simulation and reach-
ability analysis. IEEE Transactions on Control Systems Technology,
21(5):1820–1833, 2012.

[16] A. Mosek. The mosek optimization toolbox for matlab manual, 2015.
[17] A. Oustry, M. Tacchi, and D. Henrion. Inner approximations of the

maximal positively invariant set for polynomial dynamical systems.
IEEE Control Systems Letters, 3(3):733–738, 2019.

[18] S. V. Rakovic, E. C. Kerrigan, D. Q. Mayne, and J. Lygeros. Reach-
ability analysis of discrete-time systems with disturbances. IEEE
Transactions on Automatic Control, 51(4):546–561, 2006.

[19] M. A. B. Sassi, R. Testylier, T. Dang, and A. Girard. Reachability
analysis of polynomial systems using linear programming relaxations.
In ATVA, pages 137–151. Springer, 2012.

[20] S. Summers and J. Lygeros. Verification of discrete time stochastic hy-
brid systems: A stochastic reach-avoid decision problem. Automatica,
46(12):1951–1961, 2010.

[21] C. J. Tomlin, J. Lygeros, and S. S. Sastry. A game theoretic approach
to controller design for hybrid systems. Proceedings of the IEEE,
88(7):949–970, 2000.

[22] B. Xue, M. Fränzle, and N. Zhan. Inner-approximating reachable
sets for polynomial systems with time-varying uncertainties. IEEE
Transactions on Automatic Control, 65(4):1468–1483, 2020.

[23] B. Xue, Q. Wang, N. Zhan, and M. Fränzle. Robust invariant sets
generation for state-constrained perturbed polynomial systems. In
HSCC’19, pages 128–137, 2019.

[24] B. Xue and N. Zhan. Robust invariant sets computation for switched
discrete-time polynomial systems. arXiv preprint arXiv:1811.11454,
2018.

873

Authorized licensed use limited to: Institute of Software. Downloaded on January 26,2021 at 02:44:11 UTC from IEEE Xplore. Restrictions apply.

		2021-01-09T13:14:36-0500
	Preflight Ticket Signature

