
Towards a Failure Model of Software
Components

Ruzhen Dong1,2, Naijun Zhan3

1 Dipartmento di Informatica, Università di Pisa, Italy
2 UNU-IIST, Macau

ruzhen@iist.unu.edu
3 State Key Lab. of Computer Science, Institute of Software, CAS

znj@ios.ac.cn

Abstract. We present a failure model for describing sequences of ser-
vices that are provided and required, and services that may be blocked
by software components. For any automata-based model introduced in
our previous work, there is a corresponding failure model. We show that
the failure model is expressive enough to describe non-blockable proper-
ties defined in the automata-based models. Plugging operation of failure
models is given and proved to be consistent with plugging operation of
automata-based models. A kind of components, called coordinators, are
then introduced to coordinate behaviors of components, and coordina-
tion operation is presented too. An algorithm is developed to generate a
coordinator which can filter out sequences of provided service invocations
that may be blocked.

Keywords Component-based design, Interface theory, Denotational
semantics, Coordination, Composition

1 Introduction

Component-based software development was set to build large software systems
by using existing software components [30,24,14]. In order to facilitate a sound
development process across different teams of developers exploiting existing soft-
ware components, interface theories [1,7,16,6,29,20] should then define the basic
principles for composing several software components based on their interfaces,
as the concrete implementation of the components is invisible to its environment,
which are the components that it interacts with.

In our previous work [10,11,9], we developed automata-based models describ-
ing how a component interacts with the environment via providing and requiring
services. We assume run-to-completeness of provided service invocations, which
means that an invocation of a provided service either is not executed at all,
or has to be completed, cannot be interrupted by its environment during the
execution. The interface model is developed to guarantee that all sequences of
services specified should not be blocked. An algorithm that generates an interface
model, whose non-blockable behaviors are same as the considered component is
developed.

Two component automata synchronize on the shared events that are provided
by one and required by the other. In this paper, we present a plugging operation
that plugs a service provider(a component which doesn’t require any services)
into the other component. Plugging operation reflects the development process of
software systems in practice that primitive components that only provide services
are implemented first and then plugged into the components that require these
services. A refinement relation based on state simulation [25,7] is given in [11]
and it is suitable for substitution of interface models.

A failure model is presented in this paper, inspired by the failure-divergence
semantics [17,28]. The model explicitly illustrates the sequences of services that
are provided and required, and the services that are refused/blocked by the
components. The non-blockableness of sequences of service invocations, input-
determinism, and plugging operation are all defined in the domain of failure
models. Some primary results are presented in this paper, and our roadmap is
to prove that the failure model can serve as a complete and sound denotational
semantic model for component automata.

All the provided services specified in the interface can always be invoked
by any environment. In some context, certain sequences of services need to be
filtered out [4]. A coordinator is simple a deterministic labeled transition system,
which serve as a wrapper/adapter controlling the sequences of services that are
allowed to be called by the environment. The functionality of coordinators is
demonstrated clearly in the coordination operation. Coordinators can also be
used to filter out the possible blockable service invocations and an algorithm is
developed to produce an interface coordinator that filters out all the possible
blockable services and keeps all the non-blockable provided traces of the original
component.

Related work. The work is based on the rCOS unified model of compo-
nents [16,5,31,20,6] that define components in terms of their provided and re-
quired interface interaction behaviors, data model and local data functionality
(including those models in OO programming [15]). This paper focuses on sets of
services that are refused and proposes to develop a denotational semantic model
of components.

There are two main well known approaches to interface theories, the In-
put/Output(I/O) Automata [23,22] and the Interface Automata [7,1,8]. There
are also some works extending these with modalities [19,26,27,21] and compati-
bility checking [12,13,18]. The compatibility defined Interface Automata [7,1,8]
is in the optimistic way that two components are compatible if there exists an en-
vironment that can make the composition avoid the error state, which limits the
use of components as black-box units for building software components, while in
Input/Output(I/O) Automata [23,22], property input-enabled is required that
all input should be enabled at any state and compatibility is defined in the
pessimistic way that the composition should work for any environment, which
are not practical in reactive components where there are guards for service in-
vocations. The interface model we proposed is input-deterministic that all the
services provided by the interface can be called without being blocked if the

required services are satisfied. However, all of these are based on operational
semantics or game semantics of software components. In this paper, we try to
give a denotational description of software components, called failure model,
and get some primary results. The denotational model provides a new perspec-
tive of software components, an easier way for composition, and more intuitive
understanding of input-determinism.

Reo [2,3] is a well known channel-based coordination model and focus mainly
on how connectors are composed without considering specific components. In
this paper, we use labeled transition system, which is not new, as coordinator
to coordinate component models introduced in this paper. Components are con-
strained by coordinators for different uses which shows the flexibility of software
components.

Summary of contributions. The contributions of this paper are (1) a failure
model of components that exhibits sequences of non-blockable provided services
in a more intuitive way (2) a coordinator model that is used to coordinate
service invocations between components (3) coordination operation (4) an algo-
rithm producing a coordinator that filters out all the possible blockable service
invocations.

Outline of the paper. The rest of the paper is organized as follows. In Sect. 2,
we give a brief view of our previous work [10,11], that is, component automata,
component interface automata, and refinement relation. In Sect. 3, failure model
of components is presented, related definitions are given, and plugging operation
is given in the domain of failure models which are proved to be consistent with
the plugging operation between component automata. In Sect. 4, coordinators
are motivated and formally defined, coordination operation is given and the al-
gorithm producing a coordinator for the interface model is developed. In Sect. 5,
we conclude the paper and discuss future work.

2 Component Automata

In this part, we will give a brief description of the automata-based models of
software components introduced in [10,11]. A primitive component consists a
provided and required interface which describes the services provided and re-
quired by the component, respectively.

The automata-based models are operational structure of components, and in
this paper, we present a trace-based model, in which components are modeled
as sets of sequences of pairs of provided and required events(called traces), and
sets of provided events that are refused/blocked after given traces.

2.1 Preliminary Definitions

This part illustrates the notions that will be used through this paper. For any
w1, w2 ∈ L∗, the sequence concatenation of w1 and w2 is denoted as w1 ◦ w2

and extended to sets of sequences, that is, A ◦B is {w1 ◦w2 | w1 ∈ A, w2 ∈ B}
where A,B ⊆ L∗ are two sets of sequences of elements from L. Given a ∈ L, we
use w1 ◦ a as w1 ◦ 〈a〉. Given a sequence of sets of sequences 〈A1, . . . , Ak〉 with
k ≥ 0, we denote A1◦ · · · Ak as conc(〈A1, . . . , Ak〉). We use ε as notion of Empty
sequence 〈〉, that is, ε ◦ w = w ◦ ε = w. Given a sequence w, we use last(w) to
denote the last element of w.

Let ` be a pair (x, y), we denote π1(`) = x and π2(`) = y. Given any sequence
of pairs tr = 〈`1, . . . , `k〉 and a set of sequences of pairs T , it is naturally extended
that πi(tr) = 〈πi(`1), . . . , πi(`k)〉, πi(T) = {πi(tr) | tr ∈ T} where i ∈ {1, 2}.

Let tr ∈ A and Σ ⊆ L, tr�Σ is a sequence obtained by removing all the
elements that are not in Σ from tr . And we extend this to a set of sequences
T �Σ = {tr�Σ | tr ∈ T}. Similarly, tr �Σ is a sequence obtained by removing all
elements in Σ.

Given a sequence of pairs tr , tr�1P is a sequence obtained by removing the ele-
ments whose first entry is not in P . For a sequence of elements α = 〈a1, · · · , ak〉,
pair(α) = 〈(a1, {a1}), · · · , (ak, {ak})〉.

2.2 Component Automata

In this part, we present our automata-based model describing interaction be-
haviors of components [10,11,9]. Invocations to provided and required services
are modeled as provided and required events, respectively. Internal actions are
modeled as internal events. The invocation of a provided service or an internal
action will trigger invoking services provided by other components, so the label
on a transition step in the formal model consists a provided or internal event
and a set of sequences of required events.

Definition 1. A tuple C = (S, s0, f, P,R,A, δ) is called a component automa-
ton where

– S is a finite set of states, and s0 ∈ S is the initial state, f ∈ S is the error
state;

– P , R, and A are disjoint and finite sets of provided, required, and internal
events, respectively;

– δ ⊆ (S \ {f})×Σ(P,R,A)× (S ∪ {f}) is the transition relation, where the
set of labels is defined as Σ(P,R,A) = (P ∪A)× (2R∗ \ ∅).

Whenever there is (s, `, s′) ∈ δ with ` = (w, T), we simply write it as s w/T−−−→ s′

and call it a provided transition step if w ∈ P , otherwise internal transition step.
We call s a/T−−→ f a failure transition. We write s w/−−→ s′ for s w/{ε}−−−−→ s′. Compo-
nent automaton C is called closed, if all the transitions are of form s

w/{ε}−−−−→ s′,
otherwise, open. The internal events are prefixed with ; to differentiate them from
the provided events. τ is used to represent any internal event when it causes no
confusion. For a state s we use out(s) denote {w ∈ P ∪ A | ∃s′, w, T.s w/T−−−→ s′}

and out•(s) = out(s) ∩ P and out◦(s) = out(s) ∩ A. We write s
w/•−−→ s′ for

s
w/T−−−→ s′, when T is not essential. A state s is called stable, if out(s) = out•(s).
Formally, we have the following definitions and notations,

– a sequence of transitions s `1−→ s1· · ·
`k−→ s′ is called an execution sequence,

written as s `1,...,`k=====⇒ s′ (possible empty transition k = 0, in that case s = s′

and s ε==⇒ s), and 〈`1, . . . , `k〉 is called a trace from s to s′ and called a trace
of the component if s is the initial state,

– for a sequence sq over P ∪ A, we write s sq==⇒ s′ if there is a trace tr such
that s tr==⇒ s′ and π1(tr) = sq,

– a state s′ is internally reachable from state s, denoted by intR(s, s′), if there
exists s tr==⇒ s′ such that π1(tr) ∈ A∗; a set of internally reachable states from
state s is denoted as intR◦(s) = {s′ | intR(s, s′)}, and intR•(s) = {s′ stable |
s′ ∈ intR◦(s)}

– for a trace tr and a state s, target(tr , s) = {s′ | s tr==⇒ s′}, and target(tr) =
target(tr , s0),

– T (s) = {〈`1, . . . , `k〉 | ∃s′ • s
`1,...,`k=====⇒ s′}, and it is called the traces of s,

– T (s0) is the set of traces of the component automaton C, it is also denoted
by T (C),

– for a state s, the provided traces for s are given by

Tp(s) = {π1(tr)�P | tr ∈ T (s)},

– the set Tp(s0) is called the set of provided traces of C, and it is also written
as Tp(C).

2.3 Component Interface Automata

The model of component automata describes how a component interacts with
the environment by providing and requiring services. However, some transitions
or executions may be blocked due to non-determinism caused by required traces
or internal events. The transitions that may lead to the error state or live lock
states should also be forbidden. The non-blockable properties of provided events
and provided traces will be studied in this part.

The related definitions will be given formally in the following and more details
can be found in [10,11,9]. Without explicit stating, the definitions are given for
component C = (S, s0, f, P,R,A, δ).

We call a state s divergent if there exists a sequence of internal transitions
to s from s or s can transit to such kinds of states via a sequence of internal
transitions.

Definition 2 (divergent state).
A state s is divergent, if there exists sq with sq ∈ A+ such that s sq==⇒ s or there
exists s′,sq1 ∈ A+ and sq2 ∈ A+ such that s sq1==⇒ s′ and s′ sq2==⇒ s′.

Definition 3 (nonrefusal provided event).
For any s ∈ S, the set of nonrefusal provided events of s is

N (s) =
⋂

r∈intR•(s)

out•(r) \ {a | s sq==⇒ f}, sq�P = a.

Definition 4 (non-blockable traces).
A sequence of provided events 〈a1, · · · , ak〉 with k ≥ 0 is non-blockable at state
s, if ai ∈ N (s′) for any 1 ≤ i ≤ k and s′ such that s tr==⇒ s′ with π1(tr)�P =
〈a1, · · · , ai−1〉. A sequence of pairs tr is non-blockable at s, if π1(tr)�P is non-
blockable at s.

Tup(s) and Tu(s) are used to denote the set of all non-blockable provided traces
and non-blockable traces at state s, respectively. Tup(s) and Tu(s) are also writ-
ten as Tup(C) and Tu(C), respectively, when s is the initial state.

Definition 5 (input-determinism).
A component automaton C = (S, s0, f, P,R,A, δ) is input-deterministic if f is
not reachable from s0 and for any s0

tr1==⇒ s1 and s0
tr2==⇒ s2 with π1(tr1)�P =

π1(tr2)�P , implies N (s1) = N (s2).

The following theorem states that all the traces of an input-deterministic
component automaton are non-blockable.

Theorem 1. A component automaton C is input-deterministic iff Tp(C) =
Tup(C).

Hereafter, we simply call C component interface automaton(or interface au-
tomaton) if it is input-deterministic. The following algorithm(see in Algorithm 1),
given in [11], can construct an interface automaton I(C) for any given compo-
nent automaton C.

Theorem 2 (correctness of Algorithm 1). The following properties hold for
Algorithm 1, for any component automaton C:

1. The algorithm always terminates and the error state f is not reachable from
the initial state,

2. I(C) is an input deterministic automaton,
3. Tu(C) = Tu(I(C)).

2.4 Plugging Operation

Components interact with each other by service invocation that component au-
tomata synchronize on the events that are provided by one and required by the
other. The general composition operation is given in [11]. In this part, we focus
on the composition between open component automata and closed component
automata, called plugging.

Algorithm 1: Construction of Interface Automaton I(C)
Input: C = (S, s0, f, P,R,A, δ)
Output: I(C) = (SI , (Q0, s0), f, P,R,A, δI), where SI ⊆ 2S × S
1: if f ∈ intR◦(s0) then
2: exit with δI = ∅
3: end if
4: Initialization: SI := {(Q0, s0)} with Q0 = {s′ | s′ ∈ intR◦(s0)}; δI := ∅;
todo := {(Q0, s0)}; done := ∅

5: while todo 6= ∅ do
6: choose (Q, r) ∈ todo; todo := todo \ {(Q, r)}; done := done ∪ {(Q, r)}
7: for each a ∈

⋂
s∈Q

N (s) do

8: Q′ :=
⋃

s∈Q

{s′ | s tr==⇒ s′, π1(tr)�P = 〈a〉}

9: for each (r a/T−−→ r′) ∈ δ do
10: if (Q′, r′) /∈ (todo ∪ done) then
11: todo := todo ∪ {(Q′, r′)}
12: SI := SI ∪ {(Q′, r′)}
13: end if
14: δI := δI ∪ {(Q, r)

a/T−−→ (Q′, r′)}
15: end for
16: end for
17: for each r

w/T−−−→ r′ with r′ ∈ Q and w ∈ A do
18: δI := δI ∪ {(Q, r)

w/T−−−→ (Q, r′)}
19: end for
20: end while

Definition 6 (plugging).
Given a component automaton C1 = (S1, s

1
0, f1, P1, R1, A1, δ1) and a closed

component automaton C2 = (S2, s
2
0, f, P2, R2, A2, δ2), C2 is pluggable to C1 if

A1 ∩ (P2 ∪ A2) = ∅, A2 ∩ (P1 ∪R1) = ∅, P2 ⊆ R1, and R2 = ∅. The plugging is
C1 � C2 = (S, s0, f, P,R,A, δ) where

– S = (S1 \ f1)× (S2 \ f2) ∪ {f} where f is the error state of C,
– s0 = (s1

0, s
2
0),

– P = P1,
– R = R1 \ P2,
– A = A1 ∪A2,
– δ is given by the following rule: for any reachable state (s1, s2), s1

w/T−−−→ s′1

• (s1, s2) w/−−→ f if T �P2 * Tup(s2), otherwise,

• (s1, s2) w/T ′−−−→ (s′1, s′2) where

T ′ = {sq�R | sq ∈ T, s2
tr==⇒ s′2 and π1(tr)�P2 = sq�P2}.

Closed components can provide services without requiring services from the
other components. These are primitive components to support the incremental
development.

2.5 Refinement

Refinement is one of the key issues in component based development. It is mainly
for substitution at interface level. A refinement relation by state simulation tech-
nique [25] is given. The intuitive idea is that a state s′ simulates s, if at state
s′ more provided events are nonrefusal, less required traces are required and the
next states following the transitions keep the simulation relation, which is similar
to alternating simulation in [7]. We give a brief introduction of simulation and
refinement and more details and proofs of the theorems can be found in [11]

Definition 7 (simulation). A binary relation R over the set of states of a
component automaton is a simulation iff whenever s1Rs2:

– if s1
w/T−−−→ s′1 with w ∈ A ∪N (s1) \ F(s1) and f /∈ intR◦(s′1), there exists s′2

and T ′ such that s2
w/T ′−−−→ s′2 where T ′ ⊆ T and s′1Rs′2;

– for any transitions s2
w/T ′−−−→ s′2 with w ∈ A∪N (s1)\F(s1) and f /∈ intR◦(s′2),

then there exists s′1 and T such that s1
w/T−−−→ s′1 where T ′ ⊆ T and s′1Rs′2;

– F(s2) ⊆ F(s1);
– if s2

w/−−→ f with w ∈ A ∪ P1, then s1
w/−−→ f .

We say that s2 simulates s1, written s1 . s2, if (s1, s2) ∈ R. C2 refines C1,
written C1 valt C2, if there exists a simulation relation R such that s0

1Rs0
2 and

P1 ⊆ P2 and R2 ⊆ R1.

The following theorem shows that the trace inclusion properties.

Theorem 3. Given two component interface automata C1 and C2, if C1 valt
C2, then Tup(C1) ⊆ Tup(C2), and for any non-blockable provided trace pt ∈
Tp(C1), T 2

r (pt) ⊆ T 1
r (pt).

The following corollaries can be obtained from Theorem 5 in [11]

Corollary 1. Consider four component interface automata C1, C ′1, C2, and C ′2
that C2 and C ′2 are pluggable to C1 and C ′1, respectively, if C1 valt C ′1 and
C2 valt C ′2, then (C1 � C2) valt (C ′1 � C ′2).

3 Failure Model of Components

The automata-based component model gives the operational descriptions of com-
ponents. In this section, we propose to develop a denotational description of
components. The advantages of denotational models for components are easier
for compatibility checking , plugging, and refinement.

In this part, we will give a semantic model of component automata based on
traces and provided events that may be refused. The component automata aim
at showing interaction behaviors by providing and requiring services with the
environment in operational steps, while the failure model of components focus
on traces of the component and the set of provided events that may be refused.
The basic idea is inspired by the failure-divergence semantics in CSP [17].

Definition 8 (failures sets of component automata). Consider component
automaton C = (S, s0, f, P,R,A, δ), a failure of C is a pair (tr , X) of a trace
and a set of the events of such that there exists s0

tr==⇒ s and X = P \N (s). We
use F(C) to denote the set of failures of C.

We see that provided events which may lead to the error state or div states
are refused by the components. This is because the components we consider here
aim at providing non-blockable provided services.

3.1 Failure Model of Components

Definition 9 (failure model of components). A failure model of component
is M = (P,R,A,F)

– P , R, and A are sets of provided, required, and internal events, respectively,
– F ⊆ Σ(P,R,A)∗×P is the failure set where Σ(P,R,A) = (P ∪A)×(2R∗ \∅),

every element (tr , X) ∈ F is called a failure. The following conditions must
hold
• If (tr , X) ∈ F with X 6= P , there exists T , a ∈ P \ X, and X ′ that

(tr · tr ′ · a/T,X ′) ∈ F , where π1(tr ′) ∈ A∗
• If (tr · a/T,X) ∈ F , then there exists X ′ that (tr , X ′) ∈ F .

For component automaton C, the failure model is written JCKF = (P,R,A,F(C)).

Similarly, we give the definitions of traces, provided traces, and required
traces of failure model M . It can be shown that the set of traces T (M) and the
set of provided traces Tp(M) are given by

T (M) = {tr | ∃X • (tr , X) ∈ F}
Tp(M) = {π1(tr)�P | tr ∈ T (M)}

Analogy to the traces of open components defined in Sect. 2, for each provided
trace pt, there is an associated set of sequences of required events,

Tr(pt) =
⋃
{E1 · · ·Ek | ∃tr ∈ T (M) • π1(tr) = pt ∧ π2(tr) = E1 · · ·Ek}.

We also give the definition of input-determinism and non-blockableness in the
failure model.

Definition 10. A failure model M is input-deterministic if, for any (tr1, X1) ∈
F and (tr2, X2) ∈ F , π1(tr1)�P = π1(tr2)�P implies X1 = X2.

0

start

1

2

3

login/
; wifi/{unu1}

; wifi/{unu2}

read/{cserv}

print/{cprint · senddoc}

read/{cserv}

Fig. 1. Execution model of internet connection component Cic

Definition 11 (non-blockable traces). Let M be a failure model of compo-
nent, provided trace pt = 〈a0, · · · , ak〉 ∈ Tp(M) is non-blockable, if there does not
exist 0 ≤ i < k and failure (tr , X) that π1(tr)�P = 〈a0, · · · , ai〉 and ai+1 ∈ X.
The set of non-blockable provided traces of M is written Tup(M)

The following theorem states that the failure model of a component automa-
ton JCKF is consistent with component automaton C in the above definition.

Theorem 4. Let C be a component automaton and JCKF is the failure model
of C. So,

– T (C) = T (JCKF), Tp(C) = Tp(JCKF), Tup(C) = Tup(JCKF),
– C is input-deterministic iff JCKF is input-deterministic.

Example 1. As a demonstrating example, we consider a simple internet-connection
component presented in Fig. 1. It provides the services login, print, and read
available to the environment and there is an internal service ; wifi. The ser-
vices model the logging into the system, invocation of printing a document, an
email service, and automatically connecting the wifi, respectively. The compo-
nent calls the services unu1 , unu2 , cserv, cprint, and senddoc. The first three
of them model the searching for a wifi router nearby, connecting to the unu1
or unu2 wireless network, and connecting to an application server, respectively.
The cprint and senddoc are services that connect to the printer, sends the doc-
ument to print and start the printing job. The print service is only available for
the wifi network unu1 and read can be accessed at both networks.

In the component model of Fig. 1, the failures are (ε, {read, print}), (login/,
{login, print}), (〈login/, ;wifi/{unu1}〉, {login}),(〈login/, ;wifi/{unu2}〉,
{login, print})

3.2 Plugging Operation

In this part, we show how two failure models of software components are com-
posed by plugging.

Definition 12 (plugging).
Given failure models M1 = (P1, R1, A1,F1) and M2 = (P2, R2, A2,F2), M2 is
pluggable to M1 if A1∩ (P2∪A2) = ∅, A2∩ (P1∪R1) = ∅, P2 ⊆ R1, and R2 = ∅.
The plugging is M1 �̃M2 = (P,R,A,F) where

– P = P1,
– R = R1 \ P2,
– A = A1 ∪A2,
– (tr , X1 ∪X2) ∈ F , if
• (tr1, X1) ∈ F1, conc(π2(tr1))�P2 ⊆ Tup(M2), and tr = tr1 �P

2 ;
• X2 = {a | ∃X ′ • (tr1 · a/T,X ′) ∈ F1, conc(π2(tr1 · a/T) * Tup(M2)}

The following theorem shows the compositional properties of the failure mod-
els.

Theorem 5. Given component C1 and C2 that C2 is pluggable to C1, then
JC2KF is pluggable to JC1KF and JC1KF �̃JC2KF = JC1�C2KF .

3.3 Refinement

We propose a refinement in the failure models. The general idea is that a refined
model provide more non-blockable traces while require less required services,
and refuse more provided services that are blockable in the provided part.

Definition 13 (failure refinement).
Given two failure models M1 = (P1, R1, A1,F1) and M2 = (P2, R2, A2,F2), M2
is a refinement of M1, if

– P1 ⊆ P2, R2 ⊆ R1,
– Tup(M1) ⊆ Tup(M2),
– Given pt ∈ Tup(M1), for any (tr2, X2) ∈ F2, there exists (tr1, X1) ∈ F1

such that π1(tr1)�P1 = π1(tr2)�P2 = pt, conc(π2(tr2)) ⊆ conc(π2(tr1)), and
X1 ⊆ X2.

4 Coordination

The components we consider so far are the basic units for building software
systems. In some situations, however, certain services provided by components
need to be restricted due to security polices. In this section, we will introduce a
kind of components, called coordinator, to coordinate services of components.

0start 1

2

(i) eStore

select/

deliver/pay′/

0start 1

(ii) ePay

pay/

comfirm/{pay′}

00start

10

20

21

1101

(iii) eStore⊗ ePay

select/

deliver/

pay/

confirm/

pay/

deliver/

pay/ select/

Fig. 2. online shopping system

4.1 Coordinator

We use an online-shopping system shown in Fig. 2 to motivate the need of
coordinator.

Example 2. Consider an online marketplace system which provides a consumer-
to-consumer platform for retail stores. It consists stores and a payment com-
ponent trusted by both stores and clients. The store component, called eStore,
presented in Fig. 2(i). It provides services select, pay′, and deliver , which model
select items, pay the money to payment component, and deliver the paid items to
the clients, respectively. The payment component, called ePay shown in Fig. 2(ii)
provides services pay and confirm which model, receive money from the clients
and being confirmed by the client that the items are received. It requires service
pay′ that the component will transfer the money to the store. The composition
of eStore and ePay is in Fig. 2(iii).

In the above example, provided trace 〈select · deliver〉 is allowed, which means
that the store may not get paid even if it delivers the items bought by the
clients. So such online marketplace system is not fair to the store retailers. We
introduce a kind of components, called coordinator, to filter out services provided
by components that should not be allowed. A coordinator is modeled as a labeled
transitions system, the formal definition is given next.

Definition 14 (Coordinator). A coordinator F is modeled as a deterministic
labeled transition system (Q, q0, E, σ) where

0start 1

23

select

pay

deliver

confirm

Fig. 3. Coordinator F

– Q is the set of states with q0 ∈ Q as the initial state,
– E is the set of active events,
– σ is a set of transition.

Similarly, the set of traces of coordinator F , written as T (F), is {〈a0, a1, · · · , ak〉 |
q0

a0−→ · · · ak−→ qk+1}.

Example 3. In order to filter out the unexpected provided traces in Fig. 2(iii),
coordinator F shown in Fig. 3 is built.

4.2 Parallel Composition of Coordinators

Now we define the parallel composition of coordinators. Since coordinators only
show the sequences of services that are allowed, two coordinators do not com-
municate directly. Two coordinators are composable, if they do not have active
events in common. Thus, the parallel composition of two coordinators is simply
the interleaving execution of the actions of the individual coordinators.

Definition 15 (Parallel composition of coordinators). Given two coordi-
nators F1 = (Q1, q

1
0 , E1, δ1,) and F1 = (Q2, q

2
0 , E2, δ2,), if E1 ∩ E2 = ∅, the

parallel composition F1 ‖ F2 is (Q, q0, E, δ) where

– Q = Q1 ×Q2 and q0 = (q1
0 , q

2
0),

– E = E1 ∪ E2,
– δ is given by the rule: (q1, q2) a−→ (q′1, q′2) ∈ δ if either
• q1 = q′1 and q2

a−→ q′2 is a transition of F2,
• q2 = q′2 and q1

a−→ q′1 is a transition of F1

The following theorem shows that the traces of F1 ‖ F2 can be obtained from
the traces of F1 and F2.

Theorem 6. Given two composable coordinators F1 and F2, T (F1 ‖ F2) =
{sq ∈ E∗ | sq�E1 ∈ T (F1), sq�E2 ∈ T (F2)}.

0start 1

23

select/

pay/

deliver/

confirm/

Fig. 4. Coordination of (eStore⊗ ePay) n F

4.3 Coordination Operation

Components are coordinated in the way that all the sequences of services pro-
vided should also obey the constraint of the coordinators. The formal definition
is given below.

Definition 16 (Coordination).
Given a component automaton C = (S, s0, P,R,A, δ) and a coordinator F =
(Q, q0, E, σ) such that E ⊆ P , the coordination of C by F is:
C n F = (S′, s′0, P ′, R′, δ′) where

– S′ = S ×Q,
– s′0 = (s0, q0),
– P ′ = P
– R′ = R,
– δ′ is a set of transitions by the rule that, the reachable state is (s, q)
• s w/T−−−→ s′ and t w−→ t′, then (s, t) w/T−−−→ (s′, t′).
• s w/T−−−→ s′ with w /∈ E, then (s, t) w/T−−−→ (s′, t).

Theorem 7. The failures of C n F is F(C n F) = {(tr , D ∪ D′) | (tr , D) ∈
F(C), π1(tr)�E ∈ T (F), D′ = {d | π1(tr)�E · d /∈ T (F)}}

Example 4. Now, we can see how the component eStore⊗ePay shown in Fig. 2(iii)
is coordinated by coordinator in Fig. 3. The result is presented in Fig. 4.

4.4 Synthesis of A Interface Coordinator for Component Automata

In this part, we will show that given any component automaton C, there exits
a coordinator F that coordination of C by F is equivalent with the interface
model of C.

We now present a procedure in Algorithm 2 that, given a component automa-
ton, constructs a coordinator which only records non-blockable provided traces.
The basic idea is similar to the construction of a deterministic automaton from
a non-deterministic one, and the only difference is that in the algorithm only the
deterministic traces are kept.

Three key correctness properties of the algorithm are stated in the following
theorem.

Algorithm 2: Construction of Interface coordinator
Input: C = (S, s0, P,R,A, δ)
Output: G(C) = (Q, q0, E, σ)
1: Initialization: q0 = {s′ | s′ ∈ intR◦(s0)}, Q := {q0}, E := P, σ := ∅, todo := {q0}
2: while todo 6= ∅ do
3: choose one q ∈ todo and todo := todo \ {q}
4: for each a ∈

⋂
s∈q
N (s) do

5: let q′ be {s′ | s tr==⇒ s′, with s ∈ q, π1(tr)�P = a}
6: if q′ /∈ Q then
7: add q′ to Q and todo
8: end if
9: σ := σ ∪ {q a−→ q′}.

10: end for
11: end while

Theorem 8 (Correctness of Algorithm 2). Given any component automa-
ton C, the following properties hold for Algorithm 2.

– The algorithm always terminates.
– G(C) is deterministic.
– T (G(C)) = Tup(C).

Proof. The termination of the algorithm is obtained, because todo will eventually
be empty: the size of power set of state S is bounded, only fresh state is added
to todo, and for each iteration of the loop a state from todo is removed.

Assume that there exists q a−→ q1 and q
a−→ q1, then from Algorithm 2, we

q1 = q2 = {s′ | s tr==⇒ s′, with s ∈ q, π1(tr)�P = a}. So G(C) is deterministic.
We first prove that, for any non-blockable provided trace pt of C, there

exists q0
pt==⇒ q in G(C) with q = {s′ | s0

tr==⇒ s′, π1(tr)�P = pt} by induction
on the length of pt. The base case is obvious that q0 = {s′ | s′ ∈ intR◦(s0)}.
Consider non-blockable trace sq · a, so there exists q1 that q1 = {s′ | s0

tr==⇒
s′, π1(tr)�P = sq} and q0

sq==⇒ q1. Since sq · a is non-blockable, a ∈ N (s′) for s′ ∈
q1. From Loop(Line 4-10) in Algorithm 2, we see q′1 = {s′ | s tr==⇒ s′, with s ∈
q1, π1(tr)�P = a},so q0

sq·a===⇒ q′1 and q′1 = {s′ | s0
tr==⇒ s′, π1(tr)�P = sq · a} by

hypothesis induction. From above, we see Tup(C) ⊆ T (G(C)).
Next we prove that sq is non-blockable in C, for any q0

sq==⇒ q, and q =
{s′ | s0

tr==⇒ s′, π1(tr)�P = sq}. The base case follows that ε is non-blockable
in C. Consider q0

sq′·a===⇒ q2, then, there exists q0
sq′==⇒ q1 and q1

a−→ q2. By
hypothesis induction, q1 = {s′ | s0

tr==⇒ s′, π1(tr)�P = sq′} and sq′ is non-
blockable. sq′ · a is non-blockable, since a ∈ N (r) for any r ∈ q1. And q2 = {s′ |
s0

tr==⇒ s′, π1(tr)�P = sq′ · a}. From above, we see T (G(C)) ⊆ Tup(C).
So, T (G(C)) = Tup(C). ut

We can obtain the following corollary from Theorem 7 and Theorem 8.

0start a

(i) Coordinator G(Cic)

login
read

0,0

start

1,a

2,a

3,a

(ii) Cic n G(Cic)

login/{ε}

; wifi/{unu1}

; wifi/{unu2}

read/{cserv}

read/{cserv}

Fig. 5. Coordination of Component Cic by a synthesized coordinator

Corollary 2. Given a component automaton C, Tu(C) = T (C n G(C))

Example 5. The component automaton in Fig. 1 is not input-deterministic. A
coordinator shown in Fig. 5(i) is obtained by Algorithm 2. We use state a as
shorthand for {1, 2, 3}. The coordination of Cic n G(C) is given in Fig. 5(ii)

5 Conclusion and Future Work

We gave a brief view of our previous work on automata-based interface models of
software components. We proposed a denotational semantic model, called failure
model and showed that traces, non-blockablness, input-determinism, plugging
operations can also be defined on the failure models and proved to be consistent
with those in component automata.

Future work. There are several open problems left for future work. Firstly,
refinement relation based on failure models and the relation with the refinement
defined on component automata need further studied. Secondly, more general
composition operation instead of plugging needs to be given for failure models.
Thirdly, algebraic properties of composition such as associative, commutative,
distributive of coordination over composition are also important. The fourth
research direction is development of execution and interface models for compo-
nents with timing characteristics, which support timing, deadlock, and schedul-
ing analysis of applications in the presence of timed requirement.

Acknowledgments. This work has been supported by the Projects GAVES
and PEARL funded by Macau Science and Technology Development Fund and

grants from the Natural Science Foundation of China NSFC-61103013 and NSFC-
91118007. We thank Zhiming liu for his inspiring comments and discussions. We
also thank the anonymous reviewers for the feedback.

References

1. de Alfaro, L., Henzinger, T.: Interface theories for component-based design. In:
Henzinger, T., Kirsch, C. (eds.) Embedded Software, LNCS, vol. 2211, pp. 148–
165. Springer (2001)

2. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14, 329–366 (June 2004)

3. Arbab, F., Baier, C., Rutten, J., Sirjani, M.: Modeling component connectors in
reo by constraint automata: (extended abstract). Electronic Notes in Theoretical
Computer Science 97(0), 25 – 46 (2004)

4. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Trans. Program. Lang. Syst. 31(5), 19:1–19:61 (Jul 2009)

5. Chen, X., Liu, Z., Mencl, V.: Separation of concerns and consistent integration in
requirements modelling. In: SOFSEM (1). pp. 819–831 (2007)

6. Chen, Z., Liu, Z., Ravn, A.P., Stolz, V., Zhan, N.: Refinement and verification in
component-based model-driven design. Science of Computer Programming 74(4),
168 – 196 (2009), special Issue on the Grand Challenge

7. De Alfaro, L., Henzinger, T.: Interface automata. ACM SIGSOFT Software Engi-
neering Notes 26(5), 109–120 (2001)

8. De Alfaro, L., Henzinger, T.: Interface-based design. Engineering Theories of
Software-intensive Systems 195, 83–104 (2005)

9. Dong, R., Faber, J., Ke, W., Liu, Z.: rcos: Defining meanings of component-based
software architectures. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Unifying Theories
of Programming and Formal Engineering Methods, Lecture Notes in Computer
Science, vol. 8050, pp. 1–66. Springer Berlin Heidelberg (2013)

10. Dong, R., Faber, J., Liu, Z., Srba, J., Zhan, N., Zhu, J.: Unblockable compositions
of software components. In: Proceedings of the 15th ACM SIGSOFT symposium
on Component Based Software Engineering. pp. 103–108. CBSE ’12, ACM, New
York, NY, USA (2012)

11. Dong, R., Zhan, N., Zhao, L.: An interface model of software components. In:
Liu, Z., Woodcock, J., Zhu, H. (eds.) Theoretical Aspects of Computing Ð ICTAC
2013. Lecture Notes in Computer Science, vol. 8049, pp. 159–176. Springer Berlin
Heidelberg (2013)

12. Emmi, M., Giannakopoulou, D., Pasareanu, C.S.: Assume-guarantee verification
for interface automata. In: Cuéllar, J., Maibaum, T.S.E., Sere, K. (eds.) FM. LNCS,
vol. 5014, pp. 116–131. Springer (2008)

13. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Assumption generation for
software component verification. In: ASE. pp. 3–12. IEEE Computer Society (2002)

14. He, J., Li, X., Liu, Z.: Component-based software engineering. In: ICTAC. pp.
70–95 (2005)

15. He, J., Li, X., Liu, Z.: rcos: A refinement calculus of object systems. Theor. Comput.
Sci. 365(1-2), 109–142 (2006)

16. He, J., Li, X., Liu, Z.: A theory of reactive components. Electr. Notes Theor.
Comput. Sci. 160, 173–195 (2006)

17. Hoare, C.: Communicating sequential processes. Communications of the ACM
21(8), 666–677 (1978)

18. Larsen, K.G., Nyman, U., Wasowski, A.: Interface input/output automata. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM. LNCS, vol. 4085, pp. 82–97.
Springer (2006)

19. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and
product line theories. In: Nicola, R.D. (ed.) ESOP. LNCS, vol. 4421, pp. 64–79.
Springer (2007)

20. Liu, Z., Morisset, C., Stolz, V.: rCOS: Theory and tool for component-based model
driven development. In: Arbab, F., Sirjani, M. (eds.) FSEN. LNCS, vol. 5961, pp.
62–80. Springer (2009)

21. Lüttgen, G., Vogler, W.: Modal interface automata. In: Baeten, J., Ball, T., Boer,
F. (eds.) Theoretical Computer Science, LNCS, vol. 7604, pp. 265–279. Springer
Berlin Heidelberg (2012)

22. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: PODC. pp. 137–151 (1987)

23. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quar-
terly 2(3), 219–246 (1989)

24. Mcilroy, D.: Mass-produced Software Components. In: Buxton, J.M., Naur, P.,
Randell, B. (eds.) Proceedings of Software Engineering Concepts and Techniques.
pp. 138–155. NATO Science Committee (Jan 1969)

25. Milner, R.: Communication and concurrency. Prentice Hall International (UK)
Ltd., Hertfordshire, UK (1995)

26. Raclet, J., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
Modal interfaces: unifying interface automata and modal specifications. In: Pro-
ceedings of the seventh ACM international conference on Embedded software. pp.
87–96. ACM (2009)

27. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: A
modal interface theory for component-based design. Fundam. Inf. 108(1-2), 119–
149 (Jan 2011)

28. Roscoe, A.: The Theory and Practice of Concurrency. Prentice Hall (1998)
29. Sifakis, J.: A framework for component-based construction. In: Software Engineer-

ing and Formal Methods, 2005. SEFM 2005. Third IEEE International Conference
on. pp. 293–299. IEEE (2005)

30. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley (1997)

31. Zhan, N., Kang, E.Y., Liu, Z.: Component publications and compositions. In: UTP.
pp. 238–257 (2008)

	Towards a Failure Model of Software Components
	 Ruzhen Dong, Naijun Zhan
	1 Introduction
	2 Component Automata
	3 Failure Model of Components
	4 Coordination
	5 Conclusion and Future Work

