
Model Checking Linear Duration Invariants of
Networks of Automata ⋆

Miaomiao Zhang1, Zhiming Liu2, and Naijun Zhan3

1 School of Software Engineering, Tongji University, Shanghai, China
miaomiao@tongji.edu.cn

2 International Institute of Software Technology,
United Nations University, Macau, China

Z.Liu@iist.unu.edu
3 Lab. of Computer Science, Institute of Software, CAS, Beijing, China

znj@ios.ac.cn

Abstract. Linear duration invariants (LDIs) are important safety properties of
real-time systems. In this paper, we reduce the problem of verification of a net-
work of timed automata against an LDI to an equivalent problem of model check-
ing whether a failure state is never reached. Our approach isfirst to transform each
component automatonAi of the networkA to an automatonGi. The transforma-
tion helps us to record entry and exit to critical locations that appear in the LDI.
We then introduce an auxiliary checker automatonS and define a failure state to
verify the LDI on a given interval. Since a model checker checks exhaustively, a
failure of the checker automaton to find the failure state will prove that the LDI
holds.

1 Introduction

The invariants constructed from linear inequalities of integrated durations of system
states are important properties of real-time systems. For example, in a container un-
loading system, the required property has the form “for any observation interval that is
longer than 60 seconds, the idle time for a device is at most one twentieth of the time”.

This kind of properties are often specified bylinear duration invariants(LDIs) [13]
of the following form:

A ≤ ℓ ≤ B ⇒
∑

s∈S

cs
∫
s ≤M (1)

where
∫
s is the duration of a states,A,B, cs andM are real numbers. The duration

∫
s

of a states and the lengthℓ are mappings from time intervals to reals. For an observation
time interval[b, e],

∫
s defines the accumulated time for the presence of states over[b, e]

andℓ is the lengthe− b of the interval. An LDID simply says that for any observation
time interval[b, e], if the lengthℓ of the interval satisfies the constraintA ≤ ℓ ≤ B then

⋆ The work is partly supported by the projects NSFC-60603037,NSFC-90718014, NSFC-
60721061, NSFC-60573007, NSFC-90718041, NSFC-60736017,and HighQSoftD and HTTS
funded by Macao S&TD Fund.

the durations of the system states over that interval shouldsatisfy the linear constraint∑
s∈S cs

∫
s ≤M . We useΣ(D) to denote the sum of the durations

∑
s∈S cs

∫
s.

In this paper we consider the problem of automatic verification of a network of
timed automata against an LDI, where each automaton isclosedanddiagonal-free. To
address the issue, several algorithms have been proposed inthe literature e.g. [3, 10].
Different from the existing methods, in this paper, we develop a technique to reduce the
problem of verification of a network of timed automata against an LDI to an equivalent
problem of model checking whether a failure state cannot be reached. This will allow
us to use existing model checkers, such as UPPAAL, to check the LDI. Our approach
is first to transform each automatonAi of the networkA to an automatonGi. The
transformation helps us to record entry and exit to criticallocations that appear in the
LDI.

Then we introduce an auxiliary timed automatonS fromA and the LDI.S is used
to calculate the observation time and the sumΣ(D). In S we use a variablegc to record
observation time, and another variabled to calculate the durations of system states. To
approach the goal, the timed automatonS is constructed in different ways according
to whether the constantB in (1) is finite or not. Subsequently, we define a failure state
in S from the LDI D, and prove thatD is satisfied byA iff the failure state is never
reached.

The rest of the paper is organized as follows. Section 2 recalls some basic notions of
timed automaton and Duration Calculus. The main technical contribution is presented
in Section 3. We present algorithms on how to construct the transformed automataGi

from an LDI andAi, and the two kinds of automataS respectively corresponding to
the cases whenB is finite and whenB is infinite, and prove the main theorems. A case
study is given in Section 4 to illustrate our technique. Section 5 gives a comparison
between our approach and related work, discusses future work and concludes the paper.

2 Preliminaries

In this section, we introduce the notions that will be used later including the modelling
language of UPPAAL, and Linear Duration Invariants (LDIs) defined in DC.

2.1 The modelling language

We first recall the notion of timed automata given in [1, 2]. A timed automaton is a finite
state machine equipped with a set of clocks. We use a setX of real value variables
to represent the clocks and letΦ(X) be the set of clock constraints onX , which are
conjunctions of the formulas of the formx ≤ c or c ≤ x, wherex ∈ X and c ∈ N.
Formally,

Definition 1. A timed automatonA is a tupleA = (L, l0, Σ,X,E, I), where

– L is a finite set of locations,
– l0 ∈ L is the initial location,
– Σ is a finite set of actions, co-actions and the internalτ actions,
– X is a finite set of clocks,

– I is a mapping that assigns each locationl ∈ Lwith a clock constraintI(l) ∈ Φ(X)
called the invariant atl.

– E ⊆ L× Φ(X) ×Σ × 2X × L is a relation among locations, whose elements are
called edges and labeled with an action, a guard and a set of clocks to be reset.

Network of timed automataA set ofN timed automataAi = (Li, li0, Σi, Xi, Ei, Ii),
i = 1 . . .N , on the same sets of clocks and actions, are often composed into a network
A. A location for the networkA is a vectorl = (l1, . . . , li, . . . , lN) ∈ L1 × . . .× LN

with the invariantI(l) = ∧iIi(li).

Binary synchronisationChannels are declared aschan C. An edge labelled withC! is
synchronized with another labelled withC?. A synchronized pair is chosen nondeter-
ministically if several combinations are enabled.

Priorities on processesWe follow the definition of priority of processes given in UP-
PAAL [15]. Process priorities are specified on the system line, using the separator<
to define a higher priority for processes to its right. If an instance of a template set is
listed, all processes in the set will have the same priority.

The semantics of timed automata, networks of timed automata, channels are given
in [15] and the help file of the UPPAAL tool.

2.2 Duration calculus and linear duration invariants

Duration calculus DC [12] is a logic for reasoning about durations of states of real-
time systems. A comprehensive introduction to DC is given inthe monograph by Zhou
and Hansen [14]. In DC, a states is interpretedas a function from the time domainR+

to the boolean values1, 0, ands is 1 at timet if the system is in states and0 otherwise.
the duration of a states over the time interval[b, e] is defined as the integral

∫ e

b
s(t)dt,

which is exactly the accumulated present time ofs in the interval[b, e]. ℓ is used to
denote the length of considered interval, which is defined by

∫
1. We have the following

measure laws on durations4:

1. 0 ≤
∫
s ≤ ℓ

2.
∫
¬s= ℓ−

∫
s

3.
∫
s1 ∨ s2=

∫
s1 +

∫
s2 −

∫
s1 ∧ s2

We consider the set of DC models that corresponds to all the behaviors of the net-
work of timed automataA. A behaviorρ of A is of the form(S0, t0)(S1, t1) . . ., where
eachSi is called a state ofA which is a subset of the state variables ofA andtis are
incremental, i.e.ti ≤ ti+1 for anyi ∈ N. Each behaviour defines an interpretationI of
the DC formulas over the state variables ofA: for any state variables of A, Is(t) = 1
iff ∃i · (s ∈ Si ∧ t ∈ [ti, ti+1]). We also denote suchI by (s, t) wheres = (S0, S1, . . .)
andt = (t0, t1, . . .) are respectively the sequence of statesSi and the sequence of time

4 There are six axioms on durations (see [14]), but here we justlist some of them which are used
in this paper.

stampsti of ρ. Hence,(s, t, [b, e]) is a DC model representing an observation ofA in
the time interval[b, e]. We also call(s, t, [b, e]) anA-model of DC.

For a given network of timed automataA, we define the set ofA-models of DC
with integral observation intervals [11] as

MI(A) b= {σ | σ = (s, t, [b, e]) ∈ M(A) andb, e ∈ N, b ≤ e}

Linear duration invariantsA linear duration invariant(LDI) of a network of timed
automataA is a DC formulaD of the form

A ≤ ℓ ≤ B ⇒
X

s∈L

cs

R
s ≤ M

whereA,B, cs andM are real numbers.
An LDI D is evaluated in anA-model(I, [b, e]) to tt, denoted by(I, [b, e]) |= D,

iff A ≤ e− b ≤ B ⇒
∑

s∈L cs
∫ e

b
Is(t)dt ≤M holds.D is satisfied byA, denoted by

A |= D, if (I, [b, e]) |= D holds for allA-models(I, [b, e]). We useΣ(D) to denote
the the sum of the durations

∑
s∈L cs

∫
s.

Digitization of LDIs w.r.t. timed automatonHenzinger et al. [5] studied the question of
which real-time properties can be verified by considering system behaviours featuring
only integer durations. These results are applied to timed automata in [7], and it is shown
that an approach using digital clocks is applicable to the verification of closed, diagonal-
free timed automata. The digitization of duration calculushas also been studied in [6,
8, 9]. As to the digitization of an LDI, the following theoremhas been proved in [11],
whereA is closed and diagonal-free.

Theorem 1. M(A) |= D ⇔ MI(A) |= D.

Therefore only the set of integralA models of DC are studied in [11]. In the rest of
the paper, we also only consider modelσ = (s, t, [b, e]) ∈ MI(A) that represents an
observation of an integral behavior ofA (i.e behavior in which transitions take place
only at integer time) from an integer time point to an integertime point. So we will
restrictA to be an integer-time model.

3 Verification of LDIs

In this section, we present our technique to reduce the verification of the satisfaction of
an LDID by a network of timed automataA to checking the property whether a failure
state cannot be reached. In what follows, each automatonAi is referred to an integer-
time model. We start with the calculation of the duration of alocation of the composite
automaton of the network, i.e. a location vector.

3.1 Duration of a location vectorsj

Let A be a network ofN timed automataAi = (Li, li0, Σi, Xi, Ei, Ii), i = 1, . . . , N .
A location ofA is a vectorl = (l1, . . . , li . . . lN), whereli ∈ Li.

A location can be seen as a state variable. In the following, we require that each
state expressionsj of a duration term

∫
sj in the LDI D is constructed by using logical

connectives from the locationsli of the component automataAi. For example,l1 ∧ l2
asserts thatA is in a location whereA1 andA2 are respectively in locationl1 andl2.
We are particularly interested in those state expressionssj of the formla1

∧ . . . ∧ lak
,

where lai
∈ Lai

for {a1, . . . , ak} ⊆ {1, . . . , N}. We represent such a state expres-
sion by avector with free locationsf ∈ (L1 ∪ {×1}) × . . .× (LN ∪ {×N}), such that
f [ai] = lai

andf [b] = ×b for b ∈ {1, . . . , N} \ {a1, . . . , ak}. This defines the set of
vectors whosebth component×b can be any location ofAb.

Using the axioms in Subsection 2.2, it is easy to equivalently transform a general
LDI to an LDI in which all state expressions can be represented by either a full location
vectorA or a vector with free locations. Thus, in the rest of the paperwe only consider
LDIs of this form.

We call eachsj that appears in an LDI acritical location vector ofA and useK to
denote the number ofcritical location vectors in the LDI. A locationli of an automaton
Ai is calledp-critical location ofsj if li occurs insj as a non-free location andAi is a
critical automaton tosj . A locationli of an automatonAi is calledp-critical location
if it is a p-critical location of somesj . We useW to denote the number ofp-critical
locations.

Example 1.Consider the following LDI

cs1

∫
(l11, l22, l31) + cs2

∫
(×1,×2, l31) + cs3

∫
(×1, l21, l32) ≤M

Its critical location vectorsare respectivelys1 = (l11, l22, l31), s2 = (×1,×2, l31) and
s3 = (×1, l21, l32), while itsp-critical locationsarel11, l22, l31, l21 andl32. Obviously,
in this example,K = 3 andW = 5.

For acritical location vectorsj of A, with the elapse of one time unit,A stays insj

for one time unit if each automatonAi critical to sj stays in thep-critical location of
sj for one time unit. This one unit delay ofA in sj causes an increase ofcsj

to the sum
Σ(D) of the LDI.

Main technique With the above definitions, the main idea of the technique canbe
sketched as follows:

– Firstly, we construct a network of automataG from A andD to record the entry
and exit of thep-critical locations.

– As we need to check from any reachable state, whenever the antecedent of the LDI
is true implies that its conclusion holds, we introduceS to count the observation
time gc and the sums of the durations of thecritical location vectorsd from any
reachable state.

– Finally, we construct a failure state such thatA |= D if and only if this failure state
is never reached inS.

3.2 Transformation of the network of automata

The network of automataA is first transformed to another network of automata to record
the entry and exit of thep-critical locations. For this, we need to introduce a Boolean

arrayactive with sizeW to indicate whether thep-critical locations are entered. The
indexk of this array denotes the(k + 1)th p-critical location in the LDI. Initially the
value ofactive[k] is 0. It is set to 1 when the(k + 1)th p-critical location is entered,
and set to 0 when this location is exited.

We transform each automatonAi to an automatonGi. Gi is similar toAi except that
for the entry and exit of eachp-critical location, the value ofactive is updated by1 and
0 respectively. Note here if the initial location ofAi is the(k + 1)th p-critical location,
then an additional urgent location is introduced inGi to set the value ofactive[k] to
1. We callG = (G1, ‖ . . . , ‖ GN) constructed by this procedure thenetwork of trans-
formed automataof A for D.

Example 2.Fig.1 gives a case of the transformation fromA1 toG1, wherel0 is the first
p-critical location andl2 is the thirdp-critical location. An additional urgent location
is introduced to set the value ofactive[0] to 1.

l2

l1l0

(a)

l2

l1l0active[0]=1

active[2]=0

active[2]=1

active[0]=0

(b)

Fig. 1. Transformation fromA1 toG1 a)A1 b) G1

3.3 Construction of the auxiliary automatonS

In order to check whether the LDI is satisfied, we check for anypath from a reachable
state that the sum of the durations of thecritical location vectorsdoes not exceedM
within the time interval[A,B]. For this, we build an auxiliary automatonS, where the
following variables are introduced and initialized to0.

– gc is a local variable inS to record the length of an observation interval fromsr in
a path ofG, and

– x is a local clock variable inS to record the elapse of one time unit, and
– d is a local variable inS to record the sum of the durations of thecritical location

vectors, i.e. the valueΣ(D).

In the construction ofS, to bound the value ofd and gc, we need to use different
methods dependent on the constantB in an LDI is finite or infinite. For the update of
variablegc, we introduceB + 1-normalization whenB is finite andA-normalization
whenB is infinite. HereA is the other constant in the antecedent of the LDI.

Definition 2. (B + 1-normalization)

normB+1(gc) =

gc + 1, if gc ≤ B

B + 1, if gc > B

The intuitive intention is thatgc records the length of the current observation inter-
val, and the LDID is satisfied trivially when it exceeds the constantB in the antecedent
of D. Hence, we do not need to record all the values ofgc that are bigger thanB. It is
sufficient to recordB + 1 when the length of the observation time exceedsB.

Definition 3. (A-normalization)

normA(gc) =

gc + 1, if gc < A

A, if gc ≥ A

Intuitively, theA normalization is dual to theB-normalization. With this normalization,
for checking LDID whengc equalsA, we only need to check whether there exists a
path along which the value ofΣ(D) is bigger thanM .

In both cases (whenB is finite andB is infinite), we require that the processS has
higher priority than any other process. This is declared bysystem G1, . . . ,GN < S,
which means that at a given time-point, a transition inGi is enabled only if all transitions
of S are disabled.

p0

x<=1

p1

x<=1

x==1
accum(),
x=0

x==1
x=0

x==1
x=0

Fig. 2. Auxiliary automatonS

When B is finite Fig. 2 shows the automatonS whenB is finite. There are two loca-
tionsp0 andp1 and initially S stays inp0. The trick thatS will nondeterministically
stay inp0 for any number of time units before moving top1 ensures thatgc andd will
start to count from any reachable state ofA.

In locationp1 of S, with the elapse of one time unit, the values ofgc andd are
updated. These are implemented by the functionaccum() given in Fig 3, where we still
usesj to denote acritical location vector andK to denote the number ofcritical loca-
tion vectors. Inaccum(), the first assignment assignsgc the value ofgc+ 1 if gc ≤ B

and the valueB + 1 otherwise, i.e. it is the implementation of theB + 1 normalization.
Note that with one time unit elapsed,A may not stay in any of thecritical location

vectors or may stay in severalcritical location vectors during the time unit. Therefore,
functionaccum() uses a “for” loop the latter case so that the update ofd is correct. By
the definitions of Subsection 3.1, checking if the duration of a critical location vector

sj is 1 over the one time unit interval is equivalent to checking if the duration of each
p-critical location of this vector is1. The following theorem is used to decide if the
duration of ap-critical location is1.

Theorem 2. LetG be the network of transformed automata ofA andS be the auxiliary
automaton ofA defined above. With one time unit elapsed when function accum() is
executed, for thekth p-critical locationl, if active[k − 1] = 1 then the duration ofl is
1 over this one time unit interval, otherwise the duration ofl is 0.

Proof. Since each automatonAi we consider is an integer-time model, each discrete
transition of the transformed automatonGi is therefore taken at integer time point. As
observed fromS, in locationp1 functionaccum() is enabled each one time unit. By the
declaration of process priority:system G1, . . . ,GN < S, we have that any transition
that is enabled to exit or enter ap-critical location must be executed after the execution
of accum().

Let l be thekth p-critical location ofGi. Let τ1 be the transition that enters the
p-critical location l with the assignmentactive[k − 1] = 1 and τ2 be the transition
that exits locationl with the assignmentactive[k − 1] = 0. In locationp1, consider
the one time unit intervalII = [S.x = 0,S.x = 1], wherex is the local clock inS.
At time pointS.x = 1, functionaccum() is executed before any other enabled transi-
tion to check the duration ofl over the intervalII. To do this, it checks the value of
active[k − 1].

– Whenactive[k − 1] = 1, suppose the duration ofl is not 1 over the intervalII,
that is, it is either0 or lies in the interval(0, 1). In the former case, it implies that at
the time pointS.x = 1, τ1 is taken beforeaccum(), which violates the assumption
of process priority. In the latter case, it means that the time point that the action
τ1 takes place lies in the intervalII ′ = (S.x = 0,S.x = 1). This also contradicts
the fact thatGi is an integer-time model. Therefore, whenactive[k − 1] = 1, the
duration ofl is 1 overII.

– Whenactive[k − 1] = 0, suppose the duration ofl is not0 over the intervalII, that
is, it is either 1 or lies in the interval(0, 1). If it is 1, then it must be the case that
Gi stays inl for one time unit andτ2 is executed beforeaccum(). This also violates
the assumption of process priority. If the duration ofl is in the interval(0, 1), then
the time pointτ2 takes place lies in the intervalII ′ = (S.x = 0,S.x = 1). However
this kind of transition is not allowed inGi. So whenactive[k − 1] = 1, the duration
of l is 0 overII.

We conclude the proof. ⊓⊔

The above theorem allows the calculation of the duration of acritical location vector
in terms of the information of entry or exit of itsp-critical locations. Obviously, if the
duration of acritical location vectorsj is 1 over one time unit interval, the value ofd is
increased by the value of the coefficient of this vector, i.e,csj

. So the construction ofS
correctly records the durations of thecritical location vectors from any reachable state
of A. In addition, all the variables introduced are bounded. This is because by assigning
0 to d whengc > B, the value of variabled is finite, alsogc is bounded byB + 1.

void accum()
{ gc = (gc ≤ B?gc + 1 : B + 1)

for (j = 1, j ≤ K, j + +)
{ if eachp-critical location ofsj is entered

d = (gc ≤ B?d + csj
: 0)

}
}

Fig. 3. Functionaccum() whenB is finite

The corresponding failure state The failure stateF is A ≤ gc ≤ B ∧ d > M . We
checkF cannot be reached inS. This property can be expressed in CTL [4] as

ψ1 =̂ A[] not F (2)

We callF thefailure stateof D for A.

Lemma 1. Let D be an LDI of the network of timed automataA, G the network of
transformed automata ofA for D, S the auxiliary automaton ofA for D, G ‖ S the
parallel composition ofG andS, P(G ‖ S) the set of all paths ofG ‖ S andψ1 the
failure state property. Then there exists a pathρg ∈ P(G ‖ S) such thatρg 6|= ψ1 iff
there exists a pathρ ∈ P(A) such thatρ 6|= D.

Proof. From the construction procedure forG andS, there is an obvious correspon-
dence between a pathρ of A and a pathρg of G ‖ S starting from the initial locations,
that represents an observation of the system in the two models. Letℓ(ρ) be the length
of ρ, which represents the time of the observation, andlast(ρg) be the last node ofρg.

1. Whenℓ(ρ) ≤ B, the value ofgc at last(ρg) equalsℓ(ρ), and the value ofd at
last(ρg) is the value of the sumΣ(D).

2. Whenℓ(ρ) > B, the value ofgc at last(ρg) isB + 1.

Consequently, the lemma follows immediately from the definition of the satisfaction
relations|= for LDIs and the definition of the failure state. ⊓⊔

Theorem 3. LetF be the failure state ofD for A. WhenB is finite,A |= D if and only
if stateF is never reached inG ‖ S.

Construction exampleFig. 4 and Fig.5 give a case of the construction of the network
of transformed automataG from A and the correspondent automatonS. The LDI is of
the form:

A ≤ ℓ ≤ B ⇒ cs1

∫
(lj , lm) + cs2

∫
(×1, ln) ≤M

Thecritical location vectors ares1 = (lj , lm) ands2 = (×1, ln). The firstp-critical
location islj , the secondp-critical location islm and the thirdp-critical location isln.

lj

A = A1||A2

G = G1||G2

x = 0,
li

x == 5

x ≤ 4

A1 :
A2 :

G1 : G2 :

x ≤ 5

x == 4
x = 0,

ln
x = 0,

lm

x == 1

x ≤ 1

x == 2
x = 0,

lj

x = 0

li

x == 5

x ≤ 4

x ≤ 1

x == 4
x = 0

ln
x = 0

lm

x == 1

x == 2
x = 0

x ≤ 1 x ≤ 2

active[0] = 0

active[0] = 1

active[1] = 1

active[1] = 0,

active[2] = 1

active[2] = 0

x ≤ 2

U

x ≤ 5

x == 1
x = 0

x == 1

x ≤ 1

x == 1
x = 0,

accum()

S :

x = 0

Fig. 4. Case example of the network of transformed automataG andS whenB is finite

void accum()
{

gc = (gc ≤ B?gc + 1 : B + 1)
if active[0] × active[1] == 1

d = (gc ≤ B?d + cs1
: 0)

if active[2] == 1
d = (gc ≤ B?d + cs2

: 0)
}

Fig. 5.Functionaccum() of S

When B is infinite In terms of the automatonS constructed in the previous subsec-
tion, gc can increase infinitely andd can take an arbitrary value ifB is infinite. The
above theorem does not apply anymore. To bound the value ofgc we will use “A-
normalization” introduced before. Now we introduce a number to bound the value of
d.

Definition 4. A critical location vectorsp in A is saidpositiveif csp
> 0. LetL+ be

the set of all positive critical location vectors inA, li the ith p-critical location of a
positive critical vectorsp and u(li) the maximum time units thatAi stays inli. We
defineu(sp) = min{u(l1), . . . , u(li), . . . , u(lN)}, and callQ =

∑
sp∈L+

(csp
× u(sp))

the maximum increment ofA.

Note thatu(sp) is themaximumtime thatA stays insp because of the clock synchro-
nization. This value is used in the calculation ofQ, andQ is used to detect if a path
of A contains apositive loopthat takes non-zero time. If there is nopositive loopin a
path ofA, the value ofd along that path can increase at mostQ. In other words, if the
value ofd along a path increases more thanQ, then there must be a positive loop in the
path. It is in general difficult to calculate the actual valueof u(sp) as it requires all the
u(li)’s. So usually we calculate a value that is bigger thanu(sp) and assign it tou(sp)
when calculatingQ.

ExampleSuppose for the case shown in Fig. 4,cs1
> 0 andcs2

> 0. Then we can let
Q = 4 × cs1

+ 2 × cs2
.

The auxiliary automatonS+ is similar to the one shown in Fig.2 except that the
updates of the value ofgc andd are different. In other words, the functionaccum()
is different. For anycritical location vectorsj , we make the variabled bounded by
updating it in different ways depending on whether the coefficientcsj

of
∫
sj in Σ(D)

is negative or not.

1. The update ofgc is done by theA-normalization.
2. For the accumulation ofd,

– if sj has a non-negative coefficientcsj
,

d = (gc ≥ A ∧ d > M?M + 1 : d+ csj
).

– if sj has a negative coefficientcsj
,

d = (gc ≥ A ∧ d < M −Q?d : d+ csj
)

Whencsj
is non-negative, ifgc ≥ A andd > M , by settingd toM + 1, the value

of d is finite. Moreover, whengc ≥ A, gc remains asA, sogc is a bounded variable.
Since the states that satisfygc ≥ A ∧ d = M + 1 imply G ‖ S+ 6|= D, it is obvious that
the update does not change the verification result.

If csj
is negative, the value update ofd is d = (gc ≥ A ∧ d < M −Q?d : d+ csi

).
It is not hard to see why we setd to d + csi

if ¬(gc ≥ A ∧ d < M − Q): we have to
evaluate the value ofd precisely when we do not have enough information for verifying
if D is satisfied.

Now we prove that ifgc ≥ A ∧ d < M − Q, the value ofd remaining unchanged
does not change the checking result of the LDI. To do so, we define another graphS•

that is the same asS+ except that ifgc ≥ A ∧ d < M − Q the assignment ford is
d = d+ csj

in functionaccum().
Similar to the case whenB is finite, we define thefailure stateF ′: gc ≥ A ∧ d > M .

Still we use CTL to express thatF ′ is never reached.

ψ2 =̂ A[] not F ′ (3)

Lemma 2. Let P(G ‖ S+) be the set of pathes ofG ‖ S+. There exists a pathρ ∈
P(G ‖ S+) such thatρ 6|= ψ2 if and only if there exists a pathρ′ ∈ P(G ‖ S•) such
thatρ′ 6|= ψ2.

Proof. Notice that the topological structure ofS+ andS• are the same. Each path
ρ = s+0 , . . . , s

+
m in G ‖ S+ corresponds to exactly one pathρ• = s•0, . . . , s

•

m in G• ‖ S.
Let s+i ands•i be any two corresponding nodes respectively inρ andρ•. Then the value
of gc at vertexs+i is the same as the value of that at vertexs•i . Due to the different
updates ofd in ρ andρ• for the negative coefficient of a vertex, we know that at vertex
s+i , the value ofd is bigger than or equal to the value ofd ats•i . Hence, if a pathρ′ = ρ•

in G ‖ S• does not satisfyψ2, then its corresponding pathρ in G ‖ S+ does not satisfy
ψ2.

To prove the other direction, letρ in G ‖ S+ be such thatρ 6|= ψ2 andρ starts
from the initial location. Ifρ• 6|= ψ2, we are done. Otherwise, we need to show that
there will be a “positive cycle” inρ, i.e. there is a cycle such that going along the
cycle will increase the value ofd properly by at least1. We now give the illustration
for the caseρ 6|= ψ2 ∧ ρ• |= ψ2. This case denotes that the values ofd on ρ and
on ρ• are different and there should be a first nodes+j alongρ where the condition
gc ≥ A ∧ d < M −Q ∧ csj

< 0 holds. Thus, froms+j , the value ofd is increased by
at leastQ+ 1 to makeρ 6|= ψ2.

From the definition ofQ, in ρ there must be a “positive cycle” along whichd will
be increased by at least1. From the correspondence relation betweenρ andρ•, ρ• must
also have a positive cycleC. Thusρ′ is formed by increasing the number of repetition
of the cycleC in ρ•, such thatρ′ 6|= ψ2. ⊓⊔

Therefore we conclude thatd is a bounded integer variable. We now have another
main theorem.

Theorem 4. WhenB is infinite,A |= D if and only stateF ′ cannot be reached in
G ‖ S+.

4 Case Study

We now use a simplified automated container system to illustrate our techniques. We
assume there are infinite number of containers to be transported from a ship to a yard.
One quay crane (QC) and two track cars (TC) are used to unload these containers. As
to a container in the ship, the QC first transports it to an idleTC, then the TC delivers
it to the yard. It takes 5 time units for a QC to move down and pick up a container, then
it will wait until one of the TCs is idle. If either of the TCs isidle, the QC spends 3

time units unloading the container to the idle TC, and 10 timeunits to get back to its
initial position to handle the next container. Once a TC receives a container, it needs 15
time units to finish the delivery to the yard. Since the QC is a heavy equipment, it is
expected that the utilization of the QC is higher. We thus have the requirement that the
accumulated time of the QC waiting for an idle TC is at most onetwentieth of the time
in any interval.

V4
x<=10

V3

x<=3

V2V1

x<=5

idle[1]==1
down[1]!
x=0

idle[0]==1
down[0]!
x=0

x==10
x=0

x==5
x=0

x==3
x=0

(a)

U3

x<=15

U2

x<=3

U1

x==15
idle[id]=1 x==3

x=0

down[id]?
x=0, idle[id]=0

(b)

Fig. 6. Automated container system: (a) QC automaton (b)TC automaton

The automata QC and TC are shown in Fig 6. V2 is the location at which QC
waits for an idle TC. The boolean variableidle[i] is used to indicate whether TC[i]
is idle (it takes value 1 when idle) or not with an initial value 1. The urgent channel
down[i] ensures that if the QC is at location V2, and as soon as TC[i] is idle, then the
container unloading is done immediately. The whole system isA =QC‖ TC[0]‖ TC[1].
The above requirement can be easily specified by the following DC formula:

ℓ > 0 ⇒
R
(V 2,×2,×3) ≤ 0.05ℓ (4)

The above formula can be easily transformed to the followingLDI:

D : ℓ > 0 ⇒ 19
R

(V 2,×2,×3) −
R

(×1,×2,×3) ≤ 0 (5)

Thecritical location vector iss1 = (V 2,×2,×3) andQ = 2000. We also declaresystem
QC0,TC0,TC1< S. Following the techniques in Section 3, the transformed QC,the
auxiliary automatonS and the functionaccum() are given in Fig.7 and Fig.8.

The failure state is specified asC : A[] not d > 0. We checked whether the failure
state is never reached with UPPAAL and gotG ‖ S |= C. Therefore, we haveA |= D.
If the unloading time from a TC to the yard is changed to a big value, e.g, 35,C does
not hold any more and UPPAAL can generate a counter-example.

This case can also be extended to a more complicated system with more QCs and
TCs. However, the transformed automata andS does not change if the LDI remains
unchanged.

5 Conclusion

This paper studies the problem of automatic verification of atimed automaton against
an LDI. To solve this problem, several algorithms have been proposed in the literature

V4x<=10 V3x<=3

V2V1

x<=5

idle[1]==1
down[1]!
x=0,
active[0]=0

idle[0]==1
down[0]!
x=0,
active[0]=0

x==10
x=0

x==5
x=0,
active[0]=1

x==3
x=0

(a)
p0

x<=1

p1

x<=1

x==1
x=0,
accum()

x==1
x=0

x==1
x=0

(b)

Fig. 7. Automated container system: (a) Transformed QC automaton (b)S automaton

void accum()
{ gc = (gc < A?gc + 1 : A)

if active[0] == 1
d = (gc ≥ A ∧ d > M?M + 1 : d + 19)

d = (gc ≥ A ∧ d < M − Q?d : d − 1)
}

Fig. 8. Functionaccum()

[3, 10]. For improving the complexity the algorithm proposed in [11] is restricted to the
class of the so-calleddigitalized properties. However, these model checking algorithms
can only apply to one automaton, and cannot deal with the casewhenB is infinite
in an efficient way. In addition, there is no available tool tosupport these algorithms.
Recently some works have been done [17–19] for developing model checking tools for
Duration Calculus. However, to our knowledge, compared with the model checkers of
other temporal logics, the tools are still not widely applicable in industrial fields.

In [16], we give an algorithm to reduce model checking an LDI to model checking
a CTL formula. The basic idea of that algorithm is: Instead ofchecking an automaton
A against the LDI directly, we first construct an untimed modelH from A and the
LDI, and then construct a CTL formulaφ from the LDI and then use a popular model
checker, such as UPPAAL or SPIN, to check ifH |= φ. This technique is simple and
works well for one automaton. However, in order to apply the approach to real-time
systems modelled as a network of automata with a common set ofclocks and actions,
we have to construct a composite automaton of the network explicitly. Obviously, it is
not always feasible to manually construct such a composite automaton because of the
high complexity and mistakes may be inevitable.

To avoid the construction of composite automata, in this paper, we have presented a
different approach to this problem. We first construct a network of automataG to record
the entry end exit of thep-critical locations. The construction of eachGi is very similar
to the automatonAi itself, and is simpler than the transformed modelH proposed in
[16]. As we need to check from any reachable state, when the antecedent of the LDI is
true, whether or not the consequent is true, we then introduceS to count the observation
timegc and the sum of the durations of the critical locationsd from any reachable state.

The trick thatS can stay in the initial state for arbitrary time units ensures thatS starts
the calculation ofgc andd from any reachable state ofG. Also, the introduction ofS is
convenient for the user to simplify the specification. Without this, more extra variables
and channels need to be introduced in the transformed network G and more complex
expression of temporal logic needs to be defined. Finally, wedefine a failure state such
thatA |= D if and only if this failure state is never reached inS. Such checking can be
done by some popular model checkers like UPPAAL.

In our future work, we will implement a tool that integrates the construction ofS
andG. This tool is able to transform axml file that has been constructed in UPPAAL
to describe the original automataA to two xml files that describe respectively trans-
formedS andG. Then UPPAAL uses these two files as the input to do the checking.
In this way, the checking of an LDI can be done without manually constructing the
transformed automata. These will help to make Duration Calculus more applicable in
practical applications.

The other direction of the future work is to apply the technique and tool to schedula-
bility analysis and scheduler synthesis. There have been other approaches to formalising
real-time scheduling, for instance, in [20] TLA is used to specify a system and analyze
the schedulability of the system by proving that the system and the scheduler satisfy
the given scheduling constraint. Using the Duration Calculus, Zhou Chaochen et al for-
malized a well-established scheduler EDF [22] and defined the semantics of scheduled
programs [21]. We believe that these techniques will be useful in our future work on
real-time scheduling analysis and synthesis, based on model checking DC properties.

Acknowledgment We are grateful to Anders P. Ravn for his comments on how to
improve the presentation, and in particular for his suggestion on the algorithm of the
calculation of the sum of the durations that simplified the algorithm in an earlier version
of the paper. Without his help, this paper would not have become its present form.

References

1. R. Alur and D.L. Dill. A Theory of Timed Automata.Theoretical Computer Science.
126(2): 183-235. 1994.

2. R. Alur. Timed Automata. InProc. CAV’99, LNCS 1633, pp. 8-22. 1999.
3. V. A. Braberman and Dang Van Hung. On Checking Timed Automata for Linear Duration

Invariants. InProc. RTSS’98, pp. 264-273. IEEE Computer Society Press. 1998.
4. E. A. Emerson and J. Y. Halpern. “Sometimes” and “Not Never” Revisited: On Branching

versus Linear Time Temporal Logic.Journal of the ACM33(1): pp. 151-178. 1986.
5. T. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? InProc. ICALP’92,

LNCS 623, pp. 545-558. 1992.
6. G. Chakravorty and P. K. Pandya. Digitizing Interval Duration Logic. In Proc. CAV’03,

LNCS 2725, pp:167-179. 2003.
7. D. Bosnacki. Digitization of timed automata. InProc. FMICS’99, pp 283-302. 1999.
8. Dang Van Hung and Phan Hong Giang. Sampling Semantics of Duration Calculus.In

FTRTFT 1996, LNCS 1135, pp 188-207. 1996.
9. M. Franzle. Model-checking dense-time Duration Calculus. Formal Asp. Comput. 16(2),

pp 121-139. 2004.

10. X. Li and Dang Van Hung. Checking Linear Duration Invariants by Linear Programming.
In Proc. ASIAN’96, LNCS 1179, pp. 321-332. 1996.

11. Pham Hong Thai and Dang Van Hung. Verifying Linear Duration Constraints of Timed
Automata. InProc. ICTAC 2004, LNCS 3407, pp.295-309. 2004.

12. Zhou Chaochen, C.A.R. Hoare and A. P. Ravn. A calculus of durations. Information
Processing Letters, 40(5):269–276. 1991.

13. C. Zhou, J. Zhang, L. Yang and X. Li. Linear Duration Invariants. InFTRTFT 1994, LNCS
863, pp. 86-109. 1994.

14. C. Zhou and M. R. Hansen.Duration Calculus. A Formal Approach to Real-Time Systems.
2004.

15. G. Behrmann, A. David and K.G. Larsen. A tutorial on Uppaal. In Proc. SFM-RT’04,
LNCS 3185, pp. 200-236. 2004.

16. M. Zhang, Dang Van Hung and Z. Liu. Verification of Linear Duration Invariants by Model
Checking CTL Properties. InProc. ICTAC 2008, LNCS 5160, pp. 395-410. Springer, Hei-
delberg (2008).

17. P. K. Pandya. Interval Duration Logic: Expressiveness and Decidability. ENTCS 65(6).
2002.

18. R. Meyer, J. Faber and A. Rybalchenko. Model Checking Duration Calculus: A Practical
Approach. InProc. ICTAC 2006, LNCS 4281, pp.332-346. 2006.

19. M. Fränzle and M. R.Hansen. Deciding an Interval Logic with Accumulated Durations. In
Proc. TACAS 2007, LNCS 4424, pp. 201-215. 2007.

20. Z. Liu and M. Joseph. Specification and Verification of Fault-Tolerance, Timing, and
Scheduling.ACM Trans. Program. Lang. Syst. 21(1): 46-89. 1999.

21. C. Zhou, M. R. Hansen, A. P. Ravn and H. Rischel. Duration Specifications for Shared
Processors. InProc. FTRTFT’92, LNCS 571, pp. 21-32. 1991.

22. Y. Zheng and C. Zhou. A Formal Proof of the Deadline DrivenScheduler. InProc. FTRTFT
1994, LNCS 863, pp.756-775. 1994.

