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Abstract

We consider the model-checking problem of continuous-timeMarkov chains (CTMCs) with respect to Conditional Continuous
Stochastic Logic (CCSL). CCSL extends the logic CSL introduced in [1] with a conditional probabilistic operator, whichallows
us to express a richer class of properties for CTMCs. Based ona parameterized product construction, we propose an approximate
model checking algorithm with complexity analysis.

1. Introduction

CTMCs have received considerable attentions in network
performance analysis, model checking, and system biology.In
[1], Continuous Stochastic Logic (CSL) has been introduced,
that has been widely used to specify properties over CTMCs.

In the paper [1], Azizet al. focused on the decidability of
the model-checking of CSL. Later, Baieret al. [2] presented an
approximate model checking algorithmfor the case restricted
to binary until formulas. Recently, the approximate algorithm
has been extended to handle nested until formulas in [3]. The
main idea is to exploit the notion ofstratified CTMCs, which
are a subclass of CTMCs that have the nice feature allowing one
to obtain the desired probability using a sequence of transient
analysis. Then, the product of the CTMC and a deterministic
finite automaton (DFA) obtained from the nested until formula
is constructed, which is guaranteed to be stratified by construc-
tion. The product CTMC can then be analyzed efficiently, in a
similar manner as the approach in [2].

In this paper, we propose the conditional continuous s-
tochastic logic (CCSL), an extension of CSL with a condition-
al probabilistic operator. CCSL allows one to express a richer
class of properties, such as:

The probability is at least0.1, that the number of
proteins is more than5 and the gene becomes in-
active within time interval[10, 20), under the con-
dition that the proteins increasingly accumulated
from0 to k within the same time interval[10, 20).

Such property can be expressed as a state formula of the for-
m P≥0.1(3[10,20)f ∧ g | f1 U[10,20) f2 U[10,20) · · · fk)
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wheref, g, f1, . . . , fk are atomic propositions. We believe that
such conditional properties are an important extension because
of the important role of conditional probabilities in stochastic
models [4].

Essentially, the model checking for the conditional proba-
bilistic operator deals with binary conjunction of CCSL path
formulas, which is not allowed in the classical CSL, see [1, 2].
Thus, in this paper, we extend the logic CSL with binary con-
junction and disjunction operators for the path formulas.

We discuss how to compute the probability of a conjunctive
path formula, and then present an approximate model check-
ing algorithm, following the approach in [3]. First, a DFAAψ

is constructed for a CCSL path formulaψ. The next step is
to construct the DFAA∧

i
ψi for the conjunction from the au-

tomataAψi . The first challenging step is to construct the prod-
uct of the CTMC and the automatonA∧

i
ψi . A plain product

construction turns out to be insufficient: We have to pay spe-
cial attention to whether some conjuncts of the formula have
been satisfied. We propose a notion of parameterized product
construction. The probability is then computed on this product.
The size of the automaton could be exponential in the number of
binary operators in the path formulas, arising from the produc-
t construct, and the approximation calculation for the transient
probability is linear in the size of the product.

Related WorkThere is a rich literature on model checking tech-
niques for CTMCs, see [1, 2, 5, 6, 7, 8]. In [5, 6], deterministic
timed automata (DTA) are used for specifying path properties.
As discussed in [9], nested until CSL path formulas can be ex-
pressed in DTA as well, however with a much larger number
of states. Real-time is considered in [8], with exponentialcom-
plexity both in the size of the formula and in the time bound
appearing in it. In this paper, we extend CSL path formulas
by allowing conjunction and disjunction, then accordinglyex-
tend state formulas by introducing the conditional probabilistic
operator.

The conditional probabilistic operator is directly inspired by
the paper [10], in which the conditional probabilistic operator is
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introduced and analyzed for Markov decision processes (MDP).
Path formulas considered there are restricted binary path opera-
tors, and the challenge for MDPs is to study the scheduler class
guaranteeing the extreme (maximal or minimal) probabilities.

2. Preliminaries

In this section, we define some basic notions that will be
used later. For convenience, we fix a set of propositionsAP in
the sequel, ranged byf1, f2, . . ..

Definition 1. A labeled continuous-time Markov chain
(CTMC) is a tupleC = (S,R, L, α) whereS is a finite set
of states,α : S → [0, 1] is the initial distribution satisfying∑

s∈S α(s) = 1, R : S × S → R≥0 is a rate matrix, and
L : S → 2AP is a labeling function.

For A ⊆ S, defineR(s, A) :=
∑

s′∈AR(s, s′). We de-
note theexit rateof s by E(s) := R(s, S). A states is called
absorbingif E(s) = 0. If R(s, s′) > 0, we say there is a
transition froms to s′.

s0

f1, g1

s1

f2, f3, g1

s3

f3, g2

s4

g2

s2

g1

2

1

1
1 1

2

Figure 1:C = (S,R, L, α)

Consider the CTMC in
Fig. 1. If s1 is the cur-
rent state of the CTMC,
the probability that some
transition will be triggered
within time t is 1 − e−2t.
Furthermore, there is a
competition between the
transitions tos2 ands3: the
probability to take the transition tos2 is R(s1,s2)

E(s1)
·
(
1− e−2t

)
.

The labeling functionL assigns to each states a set of atomic
propositionsL(s) ⊆ AP which are true ins.

Transient probabilityStarting with distributionα of C, the
transient probability vector at timet, denoted byπC(α, t), is the
probability distribution over states at timet. If t = 0, we have
πC(α, 0)(s′) = α(s′). For t > 0, the transient probability [11]
is given by:πC(α, t) = πC(α, 0)eQt whereQ := R−diag(E)
is thegeneratormatrix anddiag(E) denotes the diagonal ma-
trix with diag(E)(s, s) = E(s).

Paths and probabilistic measuresA right continuous step func-
tion ρ : R≥0 → S is called astep function(or an infinite (sam-
ple) path), whereρ(t) stands for the state att. For a given step
functionρ andi ∈ N, we denote byρS [i] = si the state at the
(i + 1)-th step, and byρT [i] the time spent atρS [i], i.e., the
length of the step segment starting withρS [i]. Let PathC de-
note the set of all infinite paths, andPathC(s) denote the subset
of those paths starting froms.

Let I0, . . . , Ik−1 be nonempty intervals inR≥0. Thecylin-
der setCyl (s0, I0, s1, I1, . . . , sk−1, Ik−1, sk) is defined by:

{ρ ∈ PathC | ∀0 ≤ i ≤ k. ρS [i] = si∧∀0 ≤ i < k. ρT [i] ∈ Ii}.

Let F(PathC) denote the smallestσ-algebra onPathC con-
taining all cylinder sets. For initial distributionα : S →
[0, 1], a probability measure (denotedPrCα) on thisσ-algebra

is introduced as follows:PrCα is the unique measure that
satisfies: PrCα(Cyl (s)) equals α(s), and for k > 0,
PrCα(Cyl (s0, I0, . . . , Ik−1, sk)) equals

PrCα(Cyl (s0, I0, . . . , sk−1)) ·
R(sk−1,sk)
E(sk−1)

· η(Ik−1),

whereη(Ik−1) := e−E(sk−1) inf Ik−1 − e−E(sk−1) sup Ik−1 is the
probability to take a transition duringIk−1. If α(s) = 1 for
some states ∈ S, we sometimes simply writePrCs instead of
PrCα. We omit the superscriptC if it is clear from the context.

3. Conditional Continuous Stochastic Logic (CCSL)

This section is devoted to introducing a CCSL by extend-
ing the CSL introduced by Azizet al. [1] with a conditional
probabilistic operator. LetIi be a non-empty left-closed and
right-open interval onR≥0. Let⊲⊳ ∈ {<,≤,≥, >}, 0 ≤ p ≤ 1,
andK > 1. The syntax of CCSL is defined as:

Φ := f | ¬Φ | Φ ∧ Φ | P⊲⊳p(ϕ) | P⊲⊳p(ϕ | ϕ)

ϕ := ϕ ∧ ϕ | ϕ ∨ ϕ | Φ1 UI1 Φ2 UI2 · · ·ΦK

wheref ∈ AP is an atomic proposition. The syntax of CCSL
consists of state formulas and path formulas. We useΦ,Ψ and
their indexed versions for state formulas. The path formula
Φ1 UI1 Φ2 UI2 · · ·ΦK with K > 1 is referred to as theatomic
path formula. Obviously, each path formula can be expressed
into a disjunctive normal form(DNF) ϕ =

∨
i

∧
j ψ

ij where
ψij are atomic path formulas. We useψ for atomic path formu-
las andϕ for general path formulas in DNF.

Let C = (S,R, L, α) be a CTMC withs ∈ S. The seman-
tics of CCSL state formulas is standard:s |= true for all s ∈ S,
s |= a iff a ∈ L(s), s |= ¬Φ iff s 6|= Φ, s |= Φ ∧ Ψ iff s |= Φ
ands |= Ψ. For probabilistic formulas, we have:

s |=P⊲⊳p(ϕ) iff Prs({ρ ∈ Path | ρ |= ϕ}) ⊲⊳ p

s |=P⊲⊳p(ϕ1 | ϕ2) iff
Prs({ρ ∈ Path | ρ |= ϕ1 ∧ ϕ2})

Prs({ρ ∈ Path | ρ |= ϕ2})
⊲⊳ p

wherePrs({ρ ∈ Path | ρ |= ϕ}), orPrs(ϕ) for short, denotes
the probability measure of the set of all paths which start froms
and satisfyϕ. Similarly,Prs(ϕ1 | ϕ2) denotes the conditional
probability Prs(ϕ1∧ϕ2)

Prs(ϕ2)
under the premisePrs(ϕ2) 6= 0 4.

The semantics for the Boolean operators is standard, and
the semantics of the atomic path formula is given by [1, 3]:

ρ |= ϕ = Φ1 UI1 Φ2 UI2 · · ·ΦK iff there exist
real numbers0 ≤ t1 ≤ t2 ≤ · · · ≤ tK−1 such that
ρ(tK−1) |= ΦK , and for each integer0 < i < K
we have(ti ∈ Ii) ∧ (∀t′ ∈ [ti−1, ti). ρ(t

′) |= Φi),
wheret0 is defined to be0 for notational conve-
nience.

4If Prs(ϕ2) = 0 for some states, we say thatPrs(ϕ1 | ϕ2) is unde-
fined for the CTMCC. In the rest of the paper, we assume all the conditional
probability formulas are defined in the model checking algorithm. In fact, the
proposed techniques of the paper suffice to check whetherPrs(ϕ2) = 0.
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4. Model Checking Algorithm for CCSL

In this section, we present an algorithm for checking CCSL
properties. We first recall the DFA construction for the atomic
path formulaψ. Then, we extend the construction to the con-
junctive path formula by introducing the notion of aparameter-
ized product constructionfor the given CTMC and the conjunc-
tive path formula. This is the key for computing the probability
of the set of paths satisfying the conjunctive path formula.We
further show how to compute the probabilities of general path
formulas. Finally we describe an algorithm for model checking
CCSL and analyze its complexity.

In the rest of the paper, letψi = f i1 UIi1 f
i
2 UIi2 · · · f iKi with

i = 1, . . . , n ben special atomic path formulas. For simplicity,
as in [3, 9] we assume that i)aik ≤ ail andbik ≤ bil for any two
intervalsIik = [aik, b

i
k) andIil = [ail , b

i
l) with k < l; ii) all f ik ∈

AP are pairwise distinct fori = 1, . . . , n andk = 1, . . . ,Ki.
We will drop the supscript in casen = 1.

4.1. Formula Automata

In this subsection, we recall how to construct a DFA for∧n
i=1 ψ

i. Firstly, we consider the simple case whenn = 1. So,
the atomic path formulaψi describes the required order off i1-,
· · · , f iK-states.

Definition 2 (Atomic Path Formula Automaton [3]). The
atomic path formula automatonAψ = (Σ, Q, qin, δ, F ) is
defined as follows:

• Σ = 2{f1,...,fK}.

• Q = {q1, . . . , qK ,⊥} with qin = q1 and F =
{q1, . . . , qK}.

• For everya ∈ Σ, the transition relationδ is given by
δ(qK , a) = qK , δ(⊥, a) = ⊥, and for the restqi ∈ Q \
{qK ,⊥},

δ(qi, a) =

{
qj if j ≥ i ∧ fi, . . . , fj−1 /∈ a ∧ fj ∈ a
⊥ otherwise .

BothqK and⊥ are absorbing states, i.e., with only transitions
leading to themselves. The former state is referred to agood
absorbing state, the latter abadabsorbing state.

The words accepted byAψ are finite tracesw ∈ Σ∗, such
that they can be extended to a traceww′ ∈ Σω that satis-
fies the time-abstract (LTL) formula of the formf1 U (f2 U
(· · · (fK−1 U fK) · · · )).

Transitions inAψ go always from lower goal states to high-
er goal states. The good stateqK implies that any path travers-
ing qK satisfies the atomic path formulaψ under suitable timing
constraint; while the bad state⊥ implies that any path travers-
ing⊥ refutes the atomic path formulaψ.

Below we define the automaton for the conjunction of sever-
al atomic path formulas, which is essentially the product CTMC
construction.

Definition 3 (Conjunctive Path Formula Automaton). Let
ϕ =

∧n
i=1 ψ

i andAψi = (Σi, Qi, qiin, δ
i, F i) be the formula

automata forψi respectively fori = 1, . . . , n. Then the
conjunctive path formula automatonAϕ = (Σ, Q, qin, δ, F ) is
defined as follows:

• Σ = 2
⋃n
i=1

{fi1,...,f
i
Ki

},

• Q = Q1 × · · · ×Qn with qin = (q1in, . . . , q
n
in), andF =

F 1 × · · · × Fn.

• δ((q1k1 , . . . , q
n
kn
), a) = (δ1(q1k1 , a

1), . . . , δn(qnkn , a
n)),

whereai is the projection ofa ontoΣi.

The state(q1k1 , . . . , q
n
kn
) is good if all elementsqiki are

good; it is bad if at least one componentqiki is bad. Both good
and bad states are absorbing.

q11q
2
1 q11q

2
2

q12q
2
1 q12q

2
2

⊥
f1∧¬g1∧g2

¬f1∧f2∧g1
¬f1∧f2∧¬g1∧g2

¬f1∧f2

¬g1∧g2

¬f1∧¬f2∨¬g1∧¬g2

¬f1∧¬f2

¬g1∧¬g2

f1∧g1 f1

g1

Figure 2: The automatonAψ1∧ψ2

Example 1. In this
example we consider
the conjunctive path
automaton Aψ1∧ψ2

with ψ1 = f1 U f2
and ψ2 = g1 U g2.
The initial state
is (q11 , q

2
1), final

states are marked
with a double cir-
cle. The transition
labels indicate which
subsets ofAP are acceptable. For example, we have
δ((q11 , q

2
1), {f2, g1}) = (q12 , q

2
1), and(q12 , q

2
2) is good. The node

labeled with⊥ represents five bad absorbing states(⊥, q21),
(⊥, q22), (q

1
1 ,⊥), (q12 ,⊥) and (⊥,⊥). Transitions out of these

two kinds of absorbing states are omitted.

4.2. Product Construction
We have defined the conjunctive path formula automaton.

Following the approach in [3], the next step would be to
construct the product of the CTMC and the automaton. This
step turns out to be more involved. Thus we first start with an
example illustrating that the plain product doesnot work:

s0q
1
1q

2
1

f1, g1

s1q
1
2q

2
1

f2, f3, g1

s3q
1
3q

2
2

f3, g2

s2⊥q21

2

1

1

Figure 3:Cψ1∧ψ2

Example 2. Consider the CTMC
in Fig. 1, and the conjunctionψ1 ∧
ψ2 with two atomic path formu-
las ψ1 = f1 U[0,2) f2 U[2,3) f3
andψ2 = g1 U[1,3) g2. We con-
struct the product from the CTMC
and the automatonAψ1∧ψ2 in a s-
traightforward way: Its reachable
part is shown in Fig. 3. Notice that
there is a transition from the state(s1, q12 , q

2
1) to (s2,⊥, q21), s-

ince δ((q12 , q
2
1), L(s2)) = (δ1(q

1
2 , ∅), δ2(q

2
1 , {g1})) = (⊥, q21).

Let us explain why this plain product is not sufficient for our
purpose. The valid pathρ = s0, t0, s1, t1, s3, . . . (assuming
timing constraints are satisfied) is captured by this product,
but not those paths likeρ = s0, t0, s1, t1, s2, t2, s4, . . ., since
(s2,⊥, q21) is marked as a bad absorbing state.
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The information missing in the productCψ1∧ψ2 is whether
one of the atomic path formulasψ1 (or ψ2) is already satis-
fied, and the other still needs to be checked. This motivates the
definition of the parameterized product CTMC, in which the
parameter identifies such relevant information.

Definition 4 (Parameterized Product). Let C = (S,R, L, α)
be a CTMC andAϕ be the formula automaton forϕ =∧n
i=1 ψ

i. Let Λ be a subset of all atomic path formulasψi.

Then the parameterized product CTMCCΛ
ϕ = (Ŝ, R̂, L̂, α̂) is

defined as follows:

• Ŝ = S ×Q.

• The rate R̂((s, q), (s′, q′)) equals R(s, s′) if q =
(q1k1 , . . . , q

n
kn
) is not bad,q′ = (q1k′1

, . . . , qnk′n), and for
eachi = 1, · · · , n,

qik′
i
=

{
qiKi , if s′ |= f iKi andψi ∈ Λ,
δi(qiki , L(s

′) ∩ {f i1, . . . , f
i
Ki

}), otherwise.

All other elements of̂R are zero.

• The labeling function̂L(s, q) is defined in two steps:

1. If q = (q1k1 , . . . , q
n
kn
) is not bad,L̂(s, q) equals

L(s) ∩
⋃n
i=1{f

i
ki
, . . . , f iKi}; ∅ otherwise.

2. For i = 1, . . . , n, add the labelf iKi to those states
(s, q) with qiki = qiKi .

• The initial distributionα̂ : S ×Q→ [0, 1] is given by:

– α̂(s, q) equalsα(s) if for i = 1, . . . , n,

qiki =

{
qiKi , if s |= f iKi andψi ∈ Λ,
δi(qiin, L(s) ∩ {f i1, . . . , f

i
Ki

}), otherwise.

whereq = (q1k1 , . . . , q
n
kn
).

– All other elements of̂α(s, q) are zero.

In the product, each state is of the form(s, (. . . , qiki , . . . )),
in which qiki from the path formula automaton ofψi is relevant

s0q
1
1q

2
1

f1, g1

s1q
1
3q

2
1

f3, g1

s3q
1
3q

2
2

f3, g2

s4q
1
3q

2
2

f3, g2

s2q
1
3q

2
1

f3, g1

2

1

1

1
1

Figure 4: The productC{ψ1,ψ2}

ψ1∧ψ2

to the atomic propositions in
ψi that s satisfies. The pa-
rameterΛ is a set of path for-
mulas ψi. If a transition in
the product leads to a state
s′ which satisfiesfKi and Λ
containsψi, the corresponding
component of the state should
be marked with the good ab-
sorbing stateqiKi of Aψi , i.e,
(s′, (. . . , qiKi , . . . )). In what follows, we will show that the set
Λ plays an important role in keeping track of the path formulas
which have been satisfied during the probability computation.

Example 3. The productC∅
ψ1∧ψ2 is shown in Fig. 1. Since both

ψ1 and ψ2 can be satisfied during[2, 3), we need construct
C
{ψ1,ψ2}
ψ1∧ψ2 . Its reachable part is shown in Fig. 4. Note that the

previous state(s1, q12 , q
2
1) is now renamed to(s1, q13 , q

2
1) ac-

cording to the initial distribution. Now it is easy to see that
the pathρ = s0, t0, s1, t1, s2, t2, s4, . . . (assuming timing con-
straints are satisfied), which was recognized as a bad path
in Example. 2, is captured by the new parameterized product
CTMC during[2, 3).

4.3. Probability Computation

As in [3, 9], the product CTMCstratifiesthe original CTMC
in the sense that (time-abstract) bad paths will be uniformly
directed towards the bad states. This allows us to reduce the
computation by standard transient probability computation for
CTMCs, which will be discussed in this section.

We fix a conjunctive path formulaϕ =
∧n
i=1 ψ

i together
with a CTMC C = (S,R, L, α). Now we focus on how to
compute the probability of such a path formula starting from
an arbitrary initial distributionα in a forward way. We first
introduce some notation for convenience:

• For an intervalI and a positive numberh, letI⊖h denote
the set{t− h | t ∈ I ∧ t ≥ h}, and letψ ⊖ h denote the
formulaf1 UI1⊖h f2 UI2⊖h · · · fK .

• For1 ≤ i ≤ j ≤ K, definefi...j :=
∨j
k=i fk.

• For1 ≤ i < K, definef[i] := fi UIi fi+1 UIi+1
· · · fK .

• For a state formulaΦ, letC[Φ] be derived fromC by mak-
ing its states that satisfyΦ absorbing.

Definition 5 (Indicator Matrix). Given a state formulaΦ and
a subsetΛ of {ψi | i = 1, ..., n}, the indicator matrixIΛΦ is
defined by:

• If (s, (q1k1 , . . . , q
n
kn
)) |= Φ,

IΛΦ((s, (q
1
k1
, . . . , qnkn)), (s, (q

1
k′1
, . . . , qnk′n))) = 1, where

qik′
i

is qiKi if ψi ∈ Λ; qiki otherwise.

• All other entries ofIΛΦ are zero.

Now we show how to compute the probability
PrCα(

∧n
i=1 ψ

i) in a forward way.

Theorem 1 (Probability Computation). Given a conjunctive
path formulaϕ =

∧n
i=1 ψ

i and a CTMCC = (S,R, L, α)
equipped with the following notations:

• Let h be the least nonzero endpoint of all intervalsIik
occurring inϕ, and letΛ be the set{ψi | h > aiKi−1}.

• If h < maxni=1{b
i
Ki−1}, let h′ be the least endpoint of

all intervalsIik greater thanh, and letΛ′ be the set{ψi |
h′ > aiKi−1}.

• For i = 1, . . . , n, let ai0 = 0, bi0 = a11, aiKi = biKi−1,
biKi = ∞ andf iKi+1 = f iKi , and letki, li be the unique
indices such thatbiki−1 ≤ h < biki andaili−1 < h ≤ aili .

The probabilityPrCα(ϕ) = Pr
CΛ
ϕ

α̂
(ϕ) is computed as follows:

4



1. If h < maxni=1{b
i
Ki−1}, then

Pr
CΛ
ϕ

α̂ (ϕ) =πCΛ
ϕ [¬

∧
n
i=1 f

i
1...li

](α̂, h) · IΛ
′

∧
n
i=1

fi
ki...li

· Pr
CΛ′

ϕ

(·) (

n∧

i=1

f i[ki] ⊖ h) , (1)

wherePrC(·)(ϕ) stands for the vector(PrCs (ϕ))s∈S .

2. Otherwiseh = maxni=1{b
i
Ki−1}, then

Pr
CΛ
ϕ

α̂
(ϕ) = πCΛ

ϕ (α̂, h) · IΛ∧n
i=1

fi
Ki

· (1, . . . , 1)T . (2)

The proof is given in the appendix for completeness, which
follows the same idea as the proof in [9]. Intuitively, the compu-
tation is performed by traversing through the time intervals in a
forward way in the product CTMC. The time is partitioned into
finitely many intervals using endpoints appearing in the formu-
la. With the initial distributionα̂, we compute the probability
distribution of all states at the time pointh for the first interval
[0, h), which determines the parameterΛ. The indicator ma-
trix filters out all paths dissatisfyingϕ at the time pointh. The
parameterΛ′ is determined by the next interval[h, h′). We re-
cursively compute the probability distribution at the timepoint
h′, and repeat this until the last time point.

The parameterΛ will be repeatedly adjusted when we push
the time forward. We illustrate the theorem by computing
Prs0(ψ

1 ∧ ψ2) in the following example.

Example 4. Let ψ1 = f1 U[0,2) f2 U[2,3) f3 and ψ2 =
g1 U[1,3) g2. We computePrs0(ψ

1 ∧ ψ2) in three phases.
Initially, a21 = 1 and b11 = a12 = 2 are the first two

least nonzero endpoints, soh = 1 and h′ = 2. According-
ly, Λ = ∅ andΛ′ = {ψ2}. By Theorem 1,k1 = 1, l1 = 2,
k2 = 1 and l2 = 1, which means we should pick out the s-
tates satisfyingf1 ∨ f2 andg1 at time pointh. Then, we com-

puteπC∅

ψ1∧ψ2 [¬(f1∨f2∧g1)](α, h) — the probability distribution
at time pointh = 1 w.r.t. the product CTMC equipped with pa-
rameter∅ showed in Fig. 3. The indicator matrix has only two

nonzero entriesI{ψ
2}

f1...2∧g1...1
((s0, q

1
1 , q

2
1), (s0, q

1
1 , q

2
1)) = 1 and

I
{ψ2}
f1...2∧g1...1

((s1, q
1
2 , q

2
1), (s1, q

1
2 , q

2
1)) = 1. After this step, we

push forward the time, soψ1 andψ2 becomef1 U[0,1) f2 U[1,2)

f3 andg1 U[0,2) g2 respectively.
In the next phase,h = 1, h′ = 2, accordingly,Λ = {ψ2}

andΛ′ = {ψ1, ψ2}. Then, we compute the probability distribu-
tion ath = 1 w.r.t. the same CTMC in Fig. 3. At the next phase,
ψ1 andψ2 may be fully satisfied, we should relocate the state
(s1, q

1
2 , q

2
1) to (s1, q

1
3 , q

2
1), so the indicator matrix has only one

nonzero entryI{ψ
1,ψ2}

f2...2∧g1...2
((s1, q

1
2 , q

2
1), (s1, q

1
3 , q

2
1)) = 1. Now

the formulas becomef2 U[0,1) f3 andg1 U[0,1) g2.
In the last phase,h = max{b1K1−1, b

2
K2−1} = 1, Λ =

{ψ1, ψ2}, and we get to the end of the computation. Then,
we compute the probability distribution ath = 1 w.r.t. the
CTMC in Fig. 4. Now the indicator matrix has only two

nonzero entriesI{ψ
1,ψ2}

f3∧g2
((s3, q

1
3 , q

2
2), (s3, q

1
3 , q

2
2)) = 1 and

I
{ψ1,ψ2}
f3∧g2

((s4, q
1
3 , q

2
2), (s4, q

1
3 , q

2
2)) = 1.

The total computational results are

t 0 1 2 3
(s0, q

1
1 , q

2
1) 1 e−2 0 0

(s1, q
1
2 , q

2
1) 0 2e−2 0 0

(s1, q
1
3 , q

2
1) 0 0 4e−4 0

(s3, q
1
3 , q

2
2) 0 0 0 8

3e
−4 − 2e−5 − 2

3e
−7

(s4, q
1
3 , q

2
2) 0 0 0 4

3e
−4 − 2e−5 + 2

3e
−7

Therefore, we havePrs0(ψ
1∧ψ2) = 4e−4−4e−5 by collecting

all desired probabilities.

Corollary 1. Given a path formulaϕ =
∨m
i=1

∧
j ψ

ij in DNF

and a CTMCC, the probabilityPrCα(ϕ) can be computed by
inclusion-exclusion principle.

4.4. Model Checking Algorithm and its Complexity

Let C = (S,R, L, α) be a CTMC,s ∈ S, andΦ be a CCSL
state formula. The model checking problem is to check whether
s |= Φ. The standard algorithm to solve CTL-like model check-
ing problems recursively computes the sets of states satisfying
Ψ, denoted bySat(Ψ), for all state subformulasΨ of Φ. For
CCSL, the cases whereΨ is an atomic proposition, a negation
or a conjunction are standard as for CTL. The case whenΨ is a
(conditional) probabilistic formula is the challenging part. The
model checking algorithm forP⊲⊳p(ψ) has been discussed in
[1, 9], thus below we discuss the case ofPrs(ϕ | ψ).

Let Ψ = P⊲⊳p(ϕ | ψ) with ϕ = Φ1 UI1 Φ2 UI2 . . .Φk
andψ = Ψ1 UJ1

Ψ2 UJ2
. . .Ψl. By definition, checkingΨ

is equivalent to checking whetherPrs(ϕ | ψ)⊲⊳p, i.e., whether
the quotient ofPrs(ϕ ∧ ψ) andPrs(ψ) meets the bound⊲⊳p.
Now we focus on the conjunction part. Assume that the set-
s Sat(Φi) andSat(Ψj) have been calculated recursively. We
replaceΦ1, . . . ,Φk andΨ1, . . . ,Ψl by fresh (pairwise disjoint)
atomic propositionsf1, . . . , fk andg1, . . . , gl, and add the label
fi (resp.gj) to the states if s ∈ Sat(Φi) (resp.s ∈ Sat(Ψj)).
Thus, after applying Theorem 1 and Corollary 1 a finite number
of times,Prs(ϕ | ψ) is reduced to a product of transient prob-
abilities. We can now apply the results in [1] as follows: By
definition,Prs(ϕ | ψ) can be expressed as a quotient of finite
sum of the form

∑
k ηke

γk (with algebraicηk andγk). Aziz
et al. proved that it is decidable whether such an expression is
⊲⊳ p, for p ∈ Q, which implies directly the decidability of the
model checking problem of CCSL.

Finally we discuss the complexity of the approach for ap-
proximatingPrs(ϕ). The size of the product CTMC is ex-
actly the product of the sizes of the original CTMC and the
automaton obtained from the conjunctive path formula, i.e.
‖C‖ ·

∏
i ‖ψ

i‖. Then, the usual numerical algorithm can be
used to approximate the transient distributions, for instance vi-
a uniformization[11], or Runge-Kuttamethod, which is lin-
ear in the size of the product, the largest exit rate and the
largest finite time bounds. Hence, the complexity for com-
puting the probability of the conjunctive path formula is lin-
ear in the product of the sizes of the product CTMC and the
conjunctive path formula, i.e.O([

∑
i ‖ψ

i‖] · ‖C‖ · [
∏
i ‖ψ

i‖]).
Furthermore, the complexity for computing the probabilityof

5



the path formula in DNF as in Corollary 1 is bounded by
O([

∑
ij ‖ψ

ij‖] · ‖C‖ · [
∏
ij ‖ψ

ij‖]). It is also the worst case
complexity of our model checking algorithm.
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Appendix A. Proof of Theorem 1

The equationPrCα(ϕ) = Pr
CΛ
ϕ

α̂ (ϕ) can be proven by estab-
lishing mapping of the cylinder sets, similar as the proof in
[9] for atomic path formula. We provide the proof of Equa-
tion (1), by extending the proof in [9] for the parametrized prod-
uct CTMC. Fors′ ∈ Ŝ, define the eventZ(s′) := {σ | σ@h =
s′∧∀t ∈ [0, h).σ@t |=

∧n
i=1 f

i
1...li

}, whereσ@h stands for the
state of the pathσ at timeh. The following inclusion holds:

{σ | σ |= ϕ} ⊆
⋃

s′|=
∧
n
i=1

fi
ki...li

Z(s′),

Note this property holds for the product CTMC, but not for gen-
eral CTMCs. Intuitively, the deterministic automaton stratifies
the original CTMC in a way, such that those pathsσ with σ 6|= ϕ
will be directed to the bad absorbing state⊥. This is the crucial
property allowing us to perform a forward transient analysis.
The formal argument is done using the notion of stratification,
and we refer to [3, 9] for details.

Now we fix first α̂s as an initial distribution witĥαs = 1
ands |=

∧n
i=1 f

i
1...li

. By the law of total probability, we have

Pr
CΛ
ϕ
s (ϕ) =

∑

s′|=
∧
n
i=1

fi
ki...li

Pr
CΛ
ϕ
s (Z(s′)) · Pr

CΛ
ϕ
s (ϕ | Z(s′)) .

By definition ofZ(s′), we have

Pr
CΛ
ϕ
s (Z(s′)) = πCΛ

ϕ [¬(
∧n
i=1

fi1...li
)](s, h)(s′) .

Now letσ ∈ Z(s′) be a path.σ |= ϕ implies that at timeh, σ
has reached a state in a phase fromq1k1 , . . . , q

1
l1
, q2k2 , . . . , q

2
l2
,

. . . , qnkn , . . . , q
n
ln

. So the suffix path ofσ starting at time
h satisfies

∧n
i=1 f

i
[ki]

⊖ h. From the time pointh, the la-

belsf1
1...k1−1, f

2
1...k2−1, . . . , f

n
1...kn−1 have been irrelevant for

checking the formulaϕ. Thus we could reconstruct the product
CTMC with parameterΛ′ for the next phase and put forward
the formula. By the Markov property of CTMCs, we have

Pr
CΛ
ϕ
s (ϕ) =

∑
s′|=

∧
n
i=1 f

i
ki...li

πCΛ
ϕ [¬(

∧n
i=1

fi1...li
)](s, h)(s′)

·Pr
CΛ′

ϕ

s′ (
∧n
i=1 f

i
[ki]

⊖ h)

=
∑
s′∈S

πCΛ
ϕ [¬(

∧
n
i=1

fi1...li
)](s, h)(s′) · 1Λ′

s′|=
∧
n
i=1 f

i
ki...li

·Pr
CΛ′

ϕ

s′ (
∧n
i=1 f

i
[ki]

⊖ h) .

Hence Equation (1) holds byPr
CΛ
ϕ

α̂
(ϕ) =

∑
s∈Ŝ α̂(s)Pr

CΛ
ϕ
s (ϕ).

At last, we prove Equation (2). Fors′ ∈ Ŝ, define the event
Z(s′) := {σ | σ@h = s′ ∧ ∀t ∈ [0, h).σ@t |=

∧n
i=1 f

i
1...Ki

}.
Again, in the stratified product it can be shown that{σ | σ |=
ϕ} ⊆

⋃
s′|=

∧
n
i=1 f

i
Ki

Z(s′). Fix first α̂s as an initial distribu-

tion with α̂s = 1 ands |=
∧n
i=1 f

i
1...Ki

. By the law of total
probability, we have

Pr
CΛ
ϕ
s (ϕ) =

∑

s′|=
∧
n
i=1

fi
Ki

Pr
CΛ
ϕ
s (Z(s′)) · Pr

CΛ
ϕ
s (ϕ | Z(s′)) .

By definition of Z(s′), Pr
CΛ
ϕ
s (Z(s′)) = πCΛ

ϕ (s, h)(s′) holds.
Thus,

Pr
CΛ
ϕ
s (ϕ) =

∑

s′|=
∧
n
i=1

fi
Ki

πCΛ
ϕ (s, h)(s′) · Pr

CΛ
ϕ
s (ϕ | Z(s′)) .

Now letσ ∈ Z(s′). We consider the two following cases.

• If h = maxi{biKi−1} < ∞, thenσ |= ϕ implies that at
timeh, σ has reached a state labeled withf1

K1
, . . . , fnKn .

This state is good in the product CTMC. So

Pr
CΛ
ϕ
s (ϕ) =

∑

s′|=
∧
n
i=1

fi
Ki

πCΛ
ϕ (s, h)(s′) .

It requires that the probability on the states labeled with
f1
K1
, . . . , fnKn should be added. So

Pr
CΛ
ϕ
s (ϕ) =

∑

s′∈S

πCΛ
ϕ (s, h)(s′) · 1Λ

s′|=
∧
n
i=1

fi
Ki

· 1 .
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Equation (2) for general initial distribution̂α follows as
the step 2 of this proof.

• Otherwiseh = maxi{biKi−1} = ∞, then Pr
CΛ
ϕ
s (ϕ)

is the probability to reach the states labeled with
f1
K1
, f2
K2
, . . . , fnKn eventually. So we just need to pass

theh to∞ to obtain the probability. 2
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