
Program Verification by Reduction to
Semi-Algebraic Systems Solving ?

Bican Xia1, Lu Yang2, and Naijun Zhan3 ??

1 LMAM & School of Mathematical Sciences, Peking University
2 Shanghai Key Lab. of Trustworthy Computing, East China Normal University
3 Lab. of Computer Science, Institute of Software, Chinese Academy of Sciences

Abstract. The discovery of invariants and ranking functions plays a
central role in program verification. In our previous work, we investi-
gated invariant generation and non-linear ranking function discovering
of polynomial programs by reduction to semi-algebraic systems solving.
In this paper we will first summarize our results on the two topics and
then show how to generalize the approach to discovering more expressive
invariants and ranking functions, and applying to more general programs.

keywords Program Verification, Ranking Functions, Invariants, Polynomial
Programs, Semi-Algebraic Systems, Quantifier Elimination

1 Introduction

The discovery of invariants and ranking functions plays a central role in pro-
gram verification, and is therefore thought as the most challenging problem of
program verification. In recent years, due to the advance of computer algebra,
various approaches to non-linear invariant generation and termination analysis of
polynomial programs have been established, based on computer algebra. These
approaches have widely been applied to program verification and made tremen-
dous success. However, almost each of these approaches has its limitations, e.g.
some of them are limited to linear (affine) systems, some of them suffers from
high complexity, some of them can only generate weak invariants or ranking
functions and so on.

In order to overcome the weakness of the well-established approaches, fol-
lowing the line of [14], by exploiting our results on solving semi-algebraic sys-
tems (SASs), we proposed more practical and efficient approaches to polynomial
invariant generation and ranking function discovering of polynomial programs
respectively in [5] and [4]. In this paper, we will first summarize the results re-
ported in [4, 5] and correct mistakes in Example 7 in [5]. Then we will extend
? This work is supported in part by NKBRPC-2002cb312200, NKBRPC-

2004CB318003, NSFC-60493200, NSFC-60721061, NSFC-60573007, NSFC-
90718041,and NSFC-60736017 and NKBRPC-2005CB321902.

?? The corresponding author: South Fourth Street, No. 4, Zhong Guan Cun, Beijing,
100080, P.R. China, znj@ios.ac.cn

the approach such that it can not only be applicable to more general classes of
programs and show how to synthesize more expressive invariants and ranking
functions. We will investigate to extend the approach to general multivariate
polynomial systems and even fractional polynomial systems. We also study to
extend the approach to synthesizing invariants that can be represented by a
general polynomial formula, even a fractional polynomial formula, and ranking
functions that could be either a polynomial or a fractional polynomial.

1.1 Related work

Up to now, most of well-established invariant generation methods either based
on abstract interpretation [10, 2, 18, 9], or on quantifier elimination [7, 14], or on
polynomial algebra [15, 16, 19–21].

The basic idea of the approaches based on abstract interpretation is to per-
form approximate symbolic execution of a program until an assertion is reached
that remain unchanged by further executions of the program. However, in order
to guarantee termination, the method introduces imprecision by the use of an ex-
trapolation operator called widening/narrowing. This operator often causes the
technique to produce weak invariants. Moreover, proposing widening/narrowing
operators with certain concerns of completeness is not easy and becomes a key
challenge for abstract interpretation based techniques [10, 2].

In contrast, [15, 16, 19–21] exploited the theory of polynomial algebra to dis-
cover invariants of polynomial programs. The technique of linear algebra to gen-
erate polynomial equations of bounded degree as invariants of programs with
affine assignments was applied in [15]. In [19, 20], it was first proved that the
set of polynomials serving as loop invariants has the algebraic structure of an
ideal, then was proposed an algorithm to obtain a finite base of the ideal by us-
ing fixpoint computation. Finally an algorithm by using Gröbner bases and the
elimination theory was given. The approach is theoretically sound and complete
in the sense that if there is an invariant of the loop that can be expressed as
a conjunction of polynomial equations, applying the approach is guaranteed to
generate it. A similar approach to finding polynomial equation invariants whose
form is priori determined (called templates) by using an extended Gröbner basis
algorithm over templates was presented in [21].

Compared with polynomial algebra based approaches that can only generate
invariants represented as polynomial equations, the approach from [7] can gener-
ate linear inequalities as invariants for linear programs, which based on Farkas’
Lemma and non-linear constraint solving. In [14], a very general approach for au-
tomatic generation of more expressive invariants was proposed, which is based
on the technique of quantifier elimination, and applied the approach to Pres-
burger Arithmetic and quantifier-free theory of conjunctively closed polynomial
equations. Theoretically speaking, the approach can also be applied to the the-
ory of real-closed fields, but it was pointed out in [14] that this is impractical in
reality because of the high complexity of quantifier elimination, which is at least
double exponential [12].

Following the line of [14], a very general and efficient approach to ranking
function discovery and invariance generation of linear and polynomial programs
was presented in [9]. However, the approach of [9] is incomplete in the sense
that, for some program that may have ranking functions and invariants of the
predefined form, applying the approach may not be able to find them, as La-
grangian relaxation and over-approximation of the positive semi-definiteness of
a polynomial are used.

Likewise, inspired by [14], by exploiting our results on solving semi-algebraic
systems (SASs), we proposed more practical and efficient approaches to polyno-
mial invariant generation and ranking function discovering of polynomial pro-
grams respectively in [5] and [4]. Comparing with other well-established invariant
generation methods, the advantages of the approach of [5] include: Can generate
more expressive invariants, which are represented as a semi-algebraic systems
consisting of polynomial equations, inequations and inequalities; Has lower com-
plexity, compared with the methods directly based on Gröbner Base or first-order
quantifier elimination. The complexity of the approach in [5] is singly exponen-
tial in the number of program variables plus doubly exponential in the number of
parameters approximately, while the latter with double exponential in the num-
ber of program variables and parameters; Still is complete, compared with the
approach of [9] in the sense that whenever there exist invariants of the predefined
form, our approach can indeed synthesize them.

On the other hand, compared to other well-established termination analysis
approaches, the advantages of [4] include: Firstly, it can be applied to non-linear
programs and discover non-linear ranking functions, whereas most of other well-
established can only be applicable to linear programs and synthesize linear rank-
ing functions, such as [11, 8, 17]; Secondly, the approach is complete compared
with [9] in the sense that if there exist ranking functions of the predefined tem-
plate, it can indeed discover them. But, our approach is just a sufficient method
for termination analysis, not a sufficient and necessary one like [22, 1] which fo-
cuses on a special subclass of linear programs; Furthermore, the complexity of
our approach is still very high comparing with the approaches of [9, 3].

1.2 Basic Notions

Let K[x1, ..., xn] be the ring of polynomials in n indeterminates, X = {x1, · · · , xn},
with coefficients in the field K. Let the order of the variables be x1 ≺ x2 ≺ · · · ≺ xn.
Then, the leading variable (or main variable) of a polynomial p is the variable
with the greatest index which indeed occurs in p. If the leading variable of a poly-
nomial p is xk, p can be collected w.r.t. its leading variable as p = cmxm

k + · · ·+ c0

where m is the degree of p w.r.t. xk and cis are polynomials in K[x1, ..., xk−1]. We
call cmxm

k the leading term of p w.r.t. xk and cm the leading coefficient. For
example, let p(x1, . . . , x5) = x5

2 + x4
3x

2
4 + (2x2 + x1)x

3
4. The leading variable, term

and coefficient of p(x1, . . . , x5) are x4, (2x2 + x1)x
3
4 and 2x2 + x1, respectively.

An atomic polynomial formula over K[x1, ..., xn] is of the form p(x1, . . . , xn) ¤ 0,
where ¤ ∈ {=, >,≥, 6=}. A polynomial formula is a boolean combination of atomic
polynomial formulae. We will denote by PF (K[x1, . . . , xn]) the set of polynomial

formulae over K[x1, ..., xn] and by CPF (K[x1, . . . , xn]) the set of conjunctive poly-
nomial formulae over K[x1, ..., xn], which only contain logical connective ∧, re-
spectively.

An atomic fractional polynomial formula over K[x1, ..., xn] is of the form
p(x1,...,xn)
q(x1,...,xn)

¤ 0, where p(x1, . . . , xn) 6= 0 is relative prime to q(x1, . . . , xn), both of
them are in K[x1, . . . , xn], and ¤ ∈ {=, >,≥, 6=}. A fractional polynomial formula is
a boolean combination of atomic fractional polynomial formulae. We will denote
by FPF (K[x1, . . . , xn]) the set of fractional polynomial formulae over K[x1, ..., xn].

It is easy to prove the following theorem that indicates FPF (K[x1, . . . , xn]) is
as expressive as PF (K[x1, . . . , xn]).

Theorem 1. i) PF (K[x1, . . . , xn]) ⊆ FPF (K[x1, . . . , xn]);
ii) For any φ ∈ FPF (K[x1, . . . , xn]), there exists φ′ ∈ PF (K[x1, . . . , xn]) such that

φ ⇔ φ′.

In what follows, we will use Q to stand for rationales and R for reals, and fix
K to be Q. In fact, all results discussed below can be applied to R.

In the following, the n indeterminates are divided into two groups: u =
(u1, ..., ut) and x = (x1, ..., xs), which are called parameters and variables, re-
spectively, and we sometimes use “,” to denote the conjunction of atomic for-
mulae for brevity.

Definition 1. A semi-algebraic system is a conjunctive polynomial formula of
the following form: 8

>><
>>:

p1(u,x) = 0, . . . , pr(u,x) = 0,
g1(u,x) ≥ 0, . . . , gk(u,x) ≥ 0,
gk+1(u,x) > 0, . . . , gl(u,x) > 0,
h1(u,x) 6= 0, . . . , hm(u,x) 6= 0,

(1)

where r > 0, l ≥ k ≥ 0, m ≥ 0 and all pi’s, gi’s and hi’s are in Q[u,x] \Q. An SAS
of the form (1) is called parametric if t 6= 0, abbreviated as PSAS, otherwise
constant, written as CSAS.

An SAS of the form (1) is usually denoted by a quadruple [P,G1,G2,H], where
P = [p1, ..., pr],G1 = [g1, ..., gk],G2 = [gk+1, ..., gl] and H = [h1, ..., hm].

For a CSAS S, interesting questions are how to compute the number of real
solutions of S, and if the number is finite, how to compute these real solutions.
For a PSAS, the interesting problem is so-called real solution classification, that
is to determine the condition on the parameters such that the system has the
prescribed number of distinct real solutions, possibly infinite.

2 DISCOVERER

Theories on how to classify real roots of PSASs and isolate real roots of CSASs
were developed in [26, 25, 24, 27]. The core of the theories is the generalized Com-
plete Discrimination System (CDS). A computer algebra tool named DISCOV-
ERER [23] has been developed in Maple to implement these theories. Comparing
with other well-known computer algebra tools like REDLOG [13] and QEPCAD
[6], DISCOVERER has two distinct features as follows.

Real Solution Classification of PSASs: For a PSAS T of the form (1) and an
argument N of the following three forms:

– a non-negative integer b;
– a range b..c, where b, c are non-negative integers and b < c;
– a range b.. +∞, where b is a non-negative integer,

DISCOVERER provides the functions tofind and Tofind, which determine the
conditions on u such that the number of the distinct real solutions of T equals
to N if N is an integer, otherwise falls in the scope N .

Real Solution Isolation of CSASs: For a CSAS T of the form (1) only with a
finite number of real solutions, DISCOVERER can determine the number of
distinct real solutions of T , say n, and find out n disjoint cubes with rational
vertices in each of which there is only one solution. In addition, the width of the
cubes can be less than any given positive real. The two functions are realized by
calling nearsolve and realzeros, respectively.

3 Invariants and Ranking Functions

We use transition systems to represent programs.

Definition 2. A transition system is a quintuple 〈V, L, T, `0, Θ〉, where V is a
set of program variables, L is a set of locations, and T is a set of transitions.
Each transition τ ∈ T is a quadruple 〈`1, `2, ρτ , θτ 〉, where `1 and `2 are the pre-
and post- locations of the transition, the transition relation ρτ is a first-order
formula over V ∪ V ′, and θτ is a first-order formula over V , which is the guard
of the transition. The location `0 is the initial location, and the initial condition
Θ is a first-order formula over V .

Only if θτ holds, the transition can take place. Here, we use V ′ (variables
with prime) to denote the next-state variables.

If all formulae of a transition system are from CPF (K[x1, . . . , xn]), the sys-
tem is also called semi-algebraic transition system (SATS). Similarly, a sys-
tem is called polynomial transition system (PTS) (resp. fractional polynomial
transition system (FPTS)), if all its formulae are in PF (K[x1, . . . , xn]) (resp.
FPF (K[x1, . . . , xn])).

According to Theorem 1, it is easy to see that

Theorem 2. For each fractional polynomial transition system, there is a poly-
nomial transition system such that the two transition systems are equivalent in
the sense that any property holds on one of them iff the property holds on the
other either.

A state is a valuation of the variables in V . The space of states is denoted by
Val(V). Without confusion we will use V to denote both the variable set and an
arbitrary state, and use F (V) to mean the (truth) value of function (formula) F

under the state V . The semantics of transition systems can be explained through
state transitions as usual.

We denote the transition τ = (l1, l2, ρτ , θτ) by l1
ρτ ,θτ→ l2, or simply by l1

τ→ l2. A
sequence of transitions l11

τ1→ l12, . . . , ln1
τn→ ln2 is called composable if li2 = l(i+1)1

for i = 1, . . . , n− 1, and written as l11
τ1→ l12(l21)

τ2→ · · · τn→ ln2. A composable se-
quence is a transition circle at l11, if l11 = ln2. For any composable sequence
l0

τ1→ l1
τ2→ · · · τn→ ln, it is easy to show that there is a transition of the form

l0
τ1;τ2;··· ;τn→ ln such that the composable sequence is equivalent to the transition,

where τ1; τ2 · · · ; τn, ρτ1;τ2;··· ;τn and θτ1;τ2;··· ;τn are the compositions of τ1, τ2, . . . , τn,
ρτ1 , . . . , ρτn and θτ1 , . . . , θτn , respectively. The composition of transition relations
is defined in the standard way, for example, x′ = x4 + 3; x′ = x2 + 2 is x′ = (x4 +
3)2+2; while the composition of transition guards have to be given as a conjunc-
tion of the guards, each of which takes into account the past state transitions. In
the above example, if the guard of the first transition is x + 7 = x5 and that of the
second is x4 = x + 3, then guard of the composition is x + 7 = x5 ∧ (x4 + 3)4 = (x4 + 3) + 3.

3.1 Invariants

Informally, an invariant of a program at a location is an assertion that holds on
any program state reaching the location. An invariant of a program can be seen
as a mapping to map each location to an assertion which has inductive property,
that is, initiation and consecution. Initiation means that the image of the map-
ping at the initial location holds on the loop entry; while consecution means that
for any transition the invariant at the pre-location together with the transition
relation and its guard implies the invariant at the post-location. In many cases,
people only consider an invariant at the initial location and do not care about
invariants at other locations. In this case, we can assume the invariants at other
locations are all true and therefore initiation and consecution mean that the
invariant holds on the loop entry, and is preserved by any transition circle at the
entry point.

Definition 3 (Invariant at a Location). Let P = 〈V, L, T , l0, Θ〉 be a transi-
tion system. An invariant at a location l ∈ L is a first-order formula φ over V

such that φ holds on all states that can be reached at location l.

Definition 4 (Invariant of a Program). An assertion map for a transition
system P = 〈V, L, T , l0, Θ〉 is a map associating each location of P with a first-
order formula. An assertion map η of P is said to be inductive iff the following
conditions hold:

Initiation: Θ(V0) |= η(l0).
Consecution: For each transition τ = 〈li, lj , ρτ , θτ 〉,

η(li)(V) ∧ ρτ (V, V ′) ∧ θτ (V) |= η(lj)(V ′).

It is well-known that if η is an inductive mapping of P , then η(l) is an invariant
of P at l. Therefore, an inductive mapping of P forms an invariant of P .

3.2 Ranking Functions

Definition 5 (Ranking Function). Assume P = 〈V, L, T , l0, Θ〉 is a transition
system. A ranking function is a function γ : V al(V) → R+ such that the following
conditions are satisfied:

Initiation: Θ(V0) |= γ(V0) ≥ 0.
Decreasing: There exists a constant C ∈ R+ such that C > 0 and for any tran-

sition circle l0
τ1→ l1

τ2→ · · · τn−1→ ln−1
τn→ l0 at l0,

ρτ1;τ2;··· ;τn(V, V ′) ∧ θτ1;τ2;··· ;τn(V) |= γ(V)− γ(V ′) ≥ C ∧ γ(V ′) ≥ 0.

Condition 1 says that the ranges of all the initial states satisfying the initial
condition under the ranking function is nonnegative; Condition 2 expresses the
fact that the value of the ranking function decreases by at least C as the pro-
gram moves back to the initial location along any transition circle, and is still
nonnegative.

In Definition 5, if γ is a polynomial, then it is called a polynomial ranking
function.

Remark 1. – According to Definition 5, for any transition system, if a ranking
function exists, then the system will not go through l0 infinitely often.

– Ranking functions can be seen as loop invariants at the entry point.

In the subsequent two sections, we will summarize the results of [5, 4], where
all formulae are in CPF (K[x1, . . . , xn]) and ranking functions are polynomial.

4 Generating Polynomial Invariants

Given an SATS S, the procedure of generating polynomial invariants with the
approach of [5] includes the following 4 steps:

1. Predefine Parametric Invariants Predefine a template of invariants at
each of the underlining locations, which is a PSAS. All of these predefined
PSASs form a parametric invariant of the program.

2. Derive PSASs from Initial Condition and Then Solve According to Def-
inition 4, we have Θ |= η(l0) which means that each real solution of Θ must
satisfy η(l0). In other words, Θ ∧ ¬η(l0) has no common real solutions. This
implies that for each atomic polynomial formula φ in η(l0), Θ ∧ ¬φ has no
real solutions. Note that η(l0) is the conjunction of a set of atomic polyno-
mial formulae and therefore Θ ∧ ¬φ is a PSAS according to the definition.
Thus, applying the tool DISCOVERER to the resulting PSAS Θ ∧ ¬φ, we
get a necessary and sufficient condition such that the derived PSAS has no
real solutions. The condition may contain the occurrences of some program
variables. In this case, the condition should hold for any instantiations of
these variables. Thus, by universally quantifying these variables (we usually
add a scope to each of these universally quantified variables according to the

program) and then applying QEPCAD, we can get a necessary and sufficient
condition only on the presumed parameters.
Repeatedly apply the procedure to each atomic polynomial formula of the
predefined invariant at l0 and then use the conjunction of all the resulting
conditions.

3. Derive PSASs from Consecutive Condition and Then Solve From Def-
inition 4, for each transition τ = 〈li, lj , ρτ , θτ 〉, η(li) ∧ ρτ ∧ θτ |= η(lj), so
η(li) ∧ ρτ ∧ θτ ∧ ¬η(lj) has no real solutions, which implies that for each atomic
polynomial formula φ in η(lj),

η(li) ∧ ρτ ∧ θτ ∧ ¬φ (2)

has no real solution. It is clear that (2) is a PSAS. By applying the tool
DISCOVERER, we obtain a necessary and sufficient condition on the pa-
rameters for (2) to have no real solution. Similarly to Step 2, we may need to
use quantifier elimination in order to get a necessary and sufficient condition
only on the presumed parameters.

4. Generate Invariants According to the results obtained from Steps 1, 2 and
3, we can get the final necessary and sufficient condition only on the parame-
ters of each of the invariant templates. If the condition is too complicated, we
can utilize the function of PCAD of DISCOVERER or QEPCAD to prove
if or not the condition is satisfied. If yes, the tool can produce the instantia-
tions of these parameters. Thus, we can get an invariant of the predetermined
form by replacing the parameters with the instantiations, respectively.

Note that the above procedure is complete in the sense that for any given
predefined parametric invariant, the procedure can always produce the corre-
sponding concrete invariant, if it exists. Therefore, we can also conclude that
our approach is also complete in the sense that once the given polynomial pro-
gram has a polynomial invariant, our approach can indeed find it theoretically,
because we can assume parametric invariants in program variables of different
degrees, and repeatedly apply the above procedure until we obtain a polynomial
invariant.

Remark 2. In Steps 2 and 3, we can also apply DISCOVERER for first-order
quantifier elimination in a special manner. We will illustrate this point by the
following example.

4.1 Example

In this subsection, we will illustrate the above procedure by revising Example
7 from [5] which contains some mistakes in the resulting conditions because of
incorrect use of the tools DISCOVERER and QEPCAD.

Example 1. The code of the program is on Fig.4 (a).

Integer (x, y) := (0, 0);

l0 : while x ≥ 0 ∧ y ≥ 0 do

(x, y) := (x + y2, y + 1);

end while

P = {
V = {x, y}
L = {l0}
T = {τ} }

where
τ = 〈l0, l0, x′ − x− y2 = 0∧

y′ − y − 1 = 0, x ≥ 0 ∧ y ≥ 0〉
(a) (b)

Fig.4

The corresponding SATS is on Fig.4 (b).
Firstly, we predefine a parametric invariant at l0 as

eq(x, y) = a1y
3 + a2y

2 + a3x− a4y = 0, (3)

ineq(x, y) = b1x + b2y
2 + b3y + b4 > 0 (4)

where a1, a2, a3, a4, b1, b2, b3, b4 are parameters. Therefore, η(l0) = (3) ∧ (4).
Secondly, according to Initiation of Definition 4, Θ |= η(l0) is equivalent to

neither of the following two PSASs having real solutions.

x = 0, y = 0, eq(x, y) 6= 0 (5)

x = 0, y = 0, ineq(x, y) ≤ 0 (6)

By calling tofind(([x, y], [], [], [eq(x, y)], [x, y], [a1, a2, a3, a4], 0) we get that (5) has
no real solutions iff true. While calling tofind([x, y], [−ineq(x, y)], [], [], [x, y], [b1, b2,

b3, b4], 0) we get that (6) has no real solutions iff b4 > 0.
Thirdly, consider Consecution w.r.t. the transition τ . We have

eq(x, y) = 0 ∧ x′ − x− y2 = 0 ∧ y′ − y − 1 = 0 |= eq(x′, y′) = 0 ∧ ineq(x′, y′) > 0. (7)

This means that the following two PSASs both have no real solutions.

eq(x, y) = 0 ∧ x′ − x− y2 = 0 ∧ y′ − y − 1 = 0 ∧ x ≥ 0 ∧ y ≥ 0 ∧ eq(x′, y′) 6= 0 (8)

ineq(x, y) > 0 ∧ x′ − x− y2 = 0 ∧ y′ − y − 1 = 0 ∧ x ≥ 0 ∧ y ≥ 0 ∧ ineq(x′, y′) ≤ 0 (9)

By calling tofind([x′ − x− y2, y′ − y − 1, eq(x, y)], [x, y], [], [eq(x′, y′)], [x′, y′, x],
[y, a1, a2, a3, a4], 0), we obtain that (8) has no real solutions if and only if

a3y
2 + 3a1y

2 + 2ya2 + 3a1y − a4 + a2 + a1 = 0 ∨ (10)

a3 = 0.4 (11)

Further by Basic Algebraic Theorem, (10) holds for all y iff

−a4 + a2 + a1 = 0 ∧ 3a1 + 2a2 = 0 ∧ a3 + 3a1 = 0, (12)

while (11) leads to a trivial result.
For (9), by calling tofind([x′−x−y2, y′−y−1], [−ineq(x′, y′), x, y], [ineq(x, y)], [],

4 This resulting condition on a1, a2, a3, a4 from Consecution is different from the one
given in [5], as there happened a mistake in calling tofind in [5]. But the final
condition in [5] is correct, same as here.

[x′, y′], [x, y, b1, b2, b3, b4], 0), we obtain that (9) has no real solutions iff

b4 + b3 + b2 + 2b2y + b3y + b2y
2 + b1x + b1y

2 > 0. (13)

Then, we have to perform quantifier elimination on (13) under the premise that
x ≥ 0, y ≥ 0, ineq(x, y) > 0. Here, we use DISCOVERER in a complicated way
5, and get the following sufficient and necessary condition6

b1 > 0 ∧ b4 > 0 ∧ b2 + b3 + b4 > 0 ∧ ((b2 ≥ 0 ∧ b2 + b3 ≥ 0) ∨
(b1 + b2 ≥ 0 ∧ 2b2 + b3 ≥ 0) ∨ d1 ≤ 0 ∨ d2 < 0 ∨ (f1 ≤ 0 ∧ f2 ≥ 0)) (14)

where

d1 = −4b1b3 − 4b1b2 + 4b2
2

d2 = −4b1b2 − 4b1b3 − 4b4b1 + b2
3 − 4b4b2

f1 = 2b4b
2
1 + 2b4b1b2 − 2b2

2b1 − 4b1b2b3 − b1b
2
3 + 2b3

2

f2 = b4
2 − 2b2

2b1b4 + b2
4b

2
1 − 4b4b1b3b2 − b2

2b
2
3 + 4b3

2b4 + b1b
3
3 + b1b2b

2
3

Remark 3. We also applied QEPCAD to the above formula and obtained a dif-
ferent formula, though equivalent formula.

It is easy to see that the invariant given in [5] is still an invariant of the
program with the predefined template, i.e.

−2y3 + 3y2 + 6x− y = 0,
x− y2 + 2y + 1 > 0

is an invariant of P , where

(a1, a2, a3, a4) = (−2, 3, 6, 1), (b1, b2, b3, b4) = (1,−1, 2, 1).

Furthermore,
−2y3 + 3y2 + 6x− y = 0,

4
3
x− y2 + 1

4
y + 3 > 0

is another invariant of P , where

(a1, a2, a3, a4) = (−2, 3, 6, 1), (b1, b2, b3, b4) = (
4

3
,−1,

1

4
, 3).

However, the latter invariant does not satisfy the formula (17) in [5].

5 The procedure is so involved, as we need to apply the tool multiple times, so we here
omit the detailed discussion.

6 The formula (17) in [5] is not correct because of a mistake when using QEPCAD.

5 Discovering Non-linear Ranking Functions

As we explained in Remark 1, a ranking function can be represented as a special
loop invariant of a loop at the entry point. Therefore, the above procedure still
works for non-linear ranking function discovering subject to appropriate mod-
ifications. Roughly speaking, The approach to discovering non-linear ranking
functions in [4] consists of the following 4 steps:

Step 1–Predefine a Ranking Function Template Predetermine a template
of ranking functions.

Step 2– Encode Initial Condition According to the initial condition of rank-
ing function, we have Θ |= γ ≥ 0 which means that each real solution of Θ

must satisfy γ ≥ 0. In other words, Θ ∧ γ < 0 has no real solution. It is easy to
see that Θ ∧ γ < 0 is a PSAS according to Definition 1. Therefore, by applying
DISCOVERER, we get a necessary and sufficient condition for the derived
PSAS to have no real solutions. The condition may contain the occurrences
of some program variables. In this case, the condition should hold for any in-
stantiations of the variables. Thus, by introducing universal quantifications
of these variables (we usually add a scope to each of the variables according
to different situations) and then applying QEPCAD or DISCOVERER, we
can get a necessary and sufficient condition in terms of the parameters only.

Step 3–Encode Decreasing Condition From Definition 5, there exists a pos-
itive constant C such that for any transition circle l0

τ1→ l1
τ2→ · · · τn→ l0,

ρτ1;τ2;··· ;τn ∧ θτ1;τ2;··· ;τn |= γ(V)− γ(V ′) ≥ C ∧ γ(V ′) ≥ 0, (15)

equivalent to

ρτ1;τ2;··· ;τn ∧ θτ1;τ2;··· ;τn ∧ γ(V ′) < 0, (16)

ρτ1;τ2;··· ;τn ∧ θτ1;τ2;··· ;τn ∧ γ(V)− γ(V ′) < C (17)

both have no real solutions. Obviously, (16) and (17) are PSASs according to
Definition 1. Thus, by applying DISCOVERER, we obtain some conditions
on the parameters. Subsequently, similarly to Step 2, we may need to use
QEPCAD or DISCOVERER to simplify the resulting condition in order to
get a necessary and sufficient condition in terms of the parameters only.

Step 4–Solve Final Constraints According to the results obtained from Steps
1, 2 and 3, we can get the final necessary and sufficient condition only on the
parameters of the ranking function template. Then, by utilizing DISCOV-
ERER or QEPCAD, prove if or not the condition is satisfied and produce
the instantiations of these parameters such that the condition holds. Thus,
we can get a ranking function of the predetermined form by replacing the
parameters with the instantiations, respectively.

Remark 4. Note that the above procedure is complete in the sense that for any
given template of ranking function, the procedure can always synthesize a rank-
ing function of the give template, if there indeed exist such ranking functions.

5.1 Discussions: Generating Invariants vs Discovering Ranking
Functions

We have shown how to reduce the discovery of invariants and ranking functions
to directly solving SASs by exploiting the inductive property of invariants and
ranking functions. Although invariants and ranking functions both have such a
property, the former is inductive w.r.t. a small step, i.e. each of single transitions
of the given loop in contrast that the latter is inductive w.r.t. a big step, that is
each of transition circle at the initial location of the loop. The difference entails
that the approach from [5] can be simply applied to single loop programs as
well as nested loop programs, without any change; but regarding the discovery
of ranking functions, we have to further develop the approach of [4] in order to
handle nested loop programs, although it works well for single loop programs.

6 Complexity Analysis

Assume given an SATS P = 〈V, L, T , l0, Θ〉, we obtain k distinct PSASs in order
to generate its polynomial invariants or ranking functions with the approach.
W.l.o.g., suppose each of these k PSASs has at most s polynomial equations,
and m inequations and inequalities. All polynomials are in n indeterminates
(i.e., variables and parameters) and of degrees at most d.

For a PSAS S, by CAD (cylindrical algebraic decomposition) based quanti-
fier elimination on S has complexity O((2d)2

2n+8
(s + m)2

n+6
) according to the

results of [12], which is double exponential w.r.t. n. Thus, the total cost is
O(k(2d)2

2n+8
(s + m)2

n+6
) for directly applying the technique of quantifier elimi-

nation to generate invariants and ranking functions of a program as advocated
by Kapur [14].

In contrast, the cost of our approach includes two parts: one is for applying
real solution classification to generate condition on the parameters possibly still
containing some program variables; the other is for applying first-order quanti-
fier elimination to produce condition only on the parameters (if necessary) and
further exploiting PCAD to obtain the instantiations of these parameters. Ac-
cording to the complexity analysis in [5], the cost for the first part is singly
exponential in n and doubly exponential in t, where t stands for the dimension
of the ideal generated by the s polynomial equations. The cost for the second
part is doubly exponential in t. So, compared to directly applying quantifier
elimination, our approach can dramatically reduce the complexity, in particular
when t is much less than n.

7 Beyond Semi-Algebraic Transition Systems

In this section, we will discuss how to generalize the above approach to more
general programs beyond SATSs.

Polynomial Transition Systems A PTS can be transformed into an equivalent
SATS by adding additional transitions. The basic idea is as follows: First, given
a PTS P , we rewrite all guards and transitions relations in disjunctive normal
form. Let P ′ be the resulting PTS; Second, if there is a transition of the form
τ = 〈i, j, ρτ , θ′τ ∨ θ

′′
τ 〉, then we replace τ by τ1 = 〈i, j, ρτ , θ′τ 〉 and τ2 = 〈i, j, ρτ , θ

′′
τ 〉;

if there is a transition of the form τ = 〈i, j, ρ′τ ∨ ρ
′′
τ , θτ 〉, then we replace τ by

τ1 = 〈i, j, ρ′τ , θτ 〉 and τ2 = 〈i, j, ρ′′τ , θτ 〉; Repeat the second step until all guards and
transition relations are conjunctive polynomial formulae. Finally, we obtain an
SATS that is equivalent to P .

The following theorem guarantees that we can reduce the problem of dis-
covery of invariants and ranking functions of a PTS to that of the resulting
SATS.

Theorem 3. Let P be a PTS, and P ′ be the resulting SATS from the above
procedure. Then, P and P ′ have the same invariants and ranking functions.

Fractional Polynomial Transition Systems According to Theorem 2 and the
above discussion, it is easy to see that the problems of invariant generation and
ranking function discovering for FPTSs can be reduced to those of SATSs too.

8 More Expressive Invariants and Ranking Functions

In this section, we will discuss how to extend the approach to synthesizing more
expressive invariants and ranking functions. According to the results of the above
section, for simplicity, here we only need to consider to extend the approach to
synthesize more expressive invariants and ranking functions of SATSs.

General Polynomial Formula as Invariant Given an SATS, we will extend the
approach presented in Section 4 in the following way: In first step, we allow to
predefine a template of invariant φ, which is a parametric polynomial formula
rather than a PSAS. Then, we rewrite the parametric polynomial formula into a
conjunctive normal form φ1 ∧ φ2 ∧ · · · ∧ φn, where each φi is a disjunction of some
atomic polynomial formulae. In the second step, according to Initiation, we have
Θ0 |=

Vn
i=1 φi. This means that Θ0 ∧

Wn
i=1 ¬φi has no real solutions. This entails

that for i = 1, · · · , n, Θ0 ∧ ¬φi has no real solutions. It is easy to see that Θ0 ∧ ¬φi

is a PSAS, therefore, Initiation case is reduced to solving SASs. Applying the
technique used in Section 4, we can obtain a condition on the parameters only. In
the third step, similarly to the above, we can show that Consecution can also be
reduced to solving SASs either, and therefore, we can get another condition on
the parameters. Finally, similarly to Section 4, we can instantiate the parameters
according to the resulting condition on them and generate invariants with the
predefined template.

Fractional Polynomial Formula as Invariant For this case, in the first step,
we predefine a template of invariant that is a parametric fractional polynomial
formula. According to Theorem 1, the parametric fractional polynomial formula

is equivalent to a parametric polynomial formula. So, the rest steps are reduced
to those of the above case.

Fractional Polynomial as Ranking Function By Theorem 1, similarly to the
previous discussion, it is quite easy to extend the approach of [4] to synthesize
a ranking function represented by a fractional polynomial.

9 Conclusions

In this paper, we first summarized our previous work on synthesizing polynomial
invariants and ranking functions reported in [4, 5] by reduction to solving SASs,
and redid Example 7 from [5] by correcting some mistakes. Then, we investi-
gated the issue to generalize the approach in two directions: one is applicable to
more general programs, beyond SATSs, to PTSs, even to FPTSs; the other is to
synthesize more expressive invariants and ranking functions.

How to further improve the efficiency of the approach is still a big challenge
as well as our main future work, since the complexity is still single exponential
w.r.t. the number of program variables, and doubly exponential w.r.t. the number
of parameters (at least). It is worth investigating how to further extend the
approach to handle more general programs with more complicated data. The
potential solution could be to integrate different decision procedures. Here, we
only focus on Tarski’s Algebra, so we can only deal with real variables.

Acknowledgements

We are so grateful to Prof. Chaochen Zhou and Yinhua Chen for their contribu-
tions to the previous joint work. We also thank Prof. Chaochen Zhou for many
fruitful discussions with him on this work and his valuable comments on the
draft of this paper. We thank Dr. Dimitar P. Guelev for his proof-reading and
comments to improve the presentation of this paper so much.

References

1. M. Braverman. Termination of integer linear programs. In Proc. CAV’06, LNCS
4144, pp. 372-385. 2006.

2. F. Besson, T. Jensen, and J.-P. Talpin. Polyhedral analysis of synchronous lan-
guages. In SAS’99, LNCS 1694, pp. 51-69, Springer-Verlag, 1999.

3. A. Bradley, Z. Manna and H. Sipma. Terminaition of polynomial programs. In
Proc. of VMCAI’05, LNCS

4. Y. Chen, B. Xia, L. Yang, N. Zhan and C. Zhou. Discovering non-linear ranking
functions by solving semi-algebraic systems. ICTAC’07, LNCS 4711, pp.34-49.

5. Y. Chen, B. Xia, L. Yang, and N. Zhan. Generating polynomial invariants with
DISCOVERER and QEPCAD. In Proc. of Formal Methods and Hybrid Real-Time
Systems’07 (the Festschrift Symposium for Dines Bjorner and Zhou Chaochen),
LNCS 4700, pp.67-82.

6. G. E., Collins and H. Hong. Partial cylindrical algebraic decomposition for quan-
tifier elimination. J. of Symbolic Computation, 12:299–328, 1991.

7. M. Colón, S. Sankaranarayanan and H.B. Sipma. Linear invariant generation using
non-linear constraint solving. In CAV’03, LNCS 2725, pp. 420–432, 2003.

8. M. Colón and H.B. Sipma. Synthesis of linear ranking functions. In TACAS’01,
LNCS 2031, pp. 67–81, 2001.

9. P. Cousot. Proving program invariance and termination by parametric abstrac-
tion, Langrangian Relaxation and semidefinite programming. In VMCAI’05, LNCS
3385, pp. 1-24. 2005.

10. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among the
variables of a program. In ACM POPL’78, pp. 84-97, 1978.

11. D. Dams, R. Gerth, and O. Grumberg. A heuristic for the automatic generation of
ranking functions. In Workshop on Advances in Verification (WAVe’00), pp. 1-8,
2000.

12. J. H., Davenport and J. Heintz. Real Elimination is Doubly Exponential. J. of
Symbolic Computation, 5:29–37, 1988.

13. A. Dolzman and T. Sturm. REDLOG: Computer algebra meets computer logic.
ACM SIGSAM Bulletin, 31(2):2–9.

14. D. Kapur. Automatically generating loop invariants using quantifier llimination.
In Proc. IMACS Intl. Conf. on Applications of Computer Algebra (ACA’04),
Beaumont, Texas, July 2004.

15. M. Müller-Olm and H. Seidl. Polynomial constants are decidable. 9th Static Anal-
ysis Symposium (SAS’02), LNCS 2477, pp. 4-19. 2002.

16. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear alge-
bra. ACM SIGPLAN Principles of Programming Languages, POPL’04, pp. 330-
341. 2004.

17. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear
ranking functions. In VMCAI’04, LNCS 2937, pp. 239–251, 2004.

18. E. Rodriguez-Carbonell and D. Kapur. An abstract interpretation approach for
automatic generation of polynomial invariants. In Proc. Static Analysis Symposium
(SAS’04), LNCS 3148, pp. 280-295. August 2004.

19. E. Rodriguez-Carbonell and D. Kapur. Automatic generation of polynomial loop
invariants: algebraic foundations. In. Proc. Intl. Symp on Symbolic and Algebraic
Computation (ISSAC’04). July 2004.

20. E. Rodriguez-Carbonell and D. Kapur. Generating all polynomial invariants in
simple loops. Journal of Symbolic Computation, 42:443-476. 2007.

21. S. Sankaranarayanan, H.B. Sipma, and Z. Manna. Non-linear loop invariant gen-
eration using Gröbner bases. In ACM POPL’04, pp. 318–329, 2004.

22. A. Tiwari. Termination of linear programs. In CAV’04, LNCS 3114, pp. 70–82,
2004.

23. B. Xia. DISCOVERER: A tool for solving semi-algebraic systems, Software Demo
at ISSAC 2007, Waterloo, July 30, 2007. Also: ACM SIGSAM Bulletin, 41(3):102–
103, Sept., 2007.

24. B. Xia and L. Yang. An algorithm for isolating the real solutions of semi-algebraic
systems. J. Symbolic Computation, 34:461–477, 2002.

25. L. Yang. Recent advances on determining the number of real roots of parametric
polynomials. J. Symbolic Computation, 28:225–242, 1999.

26. L. Yang, X. Hou and Z. Zeng. A complete discrimination system for polynomials.
Science in China (Ser. E), 39:628–646, 1996.

27. L. Yang and B. Xia. Real solution classifications of a class of parametric semi-
algebraic systems. In Proc. of Int’l Conf. on Algorithmic Algebra and Logic, pp.
281–289, 2005.

28. L. Yang, N. Zhan, B. Xia and C. Zhou. Program verification by using DISCOV-
ERER. In the Proc. VSTTE’05, LNCS 4171, pp.575-586.

