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Reach-avoid Analysis for Polynomial Stochastic
Differential Equations
Bai Xue1,2, Naijun Zhan1,2, Martin Fränzle3

Abstract— In this paper we propose a novel semi-definite pro-
gramming approach that solves reach-avoid problems over open
(i.e., not bounded a priori) time horizons for dynamical sys-
tems modeled by polynomial stochastic differential equations. The
reach-avoid problem in this paper is a probabilistic guarantee: we
approximate from the inner a p-reach-avoid set, i.e., the set of initial
states guaranteeing with probability larger than p that the system
eventually enters a given target set while remaining inside a spec-
ified safe set till the target hit. Our approach begins with the con-
struction of a bounded value function, whose strict p super-level
set is equal to the p-reach-avoid set. This value function is then
reduced to a twice continuously differentiable solution to a system
of equations. The system of equations facilitates the construction
of a semi-definite program using sum-of-squares decomposition
for multivariate polynomials and thus the transformation of non-
convex reach-avoid problems into a convex optimization problem.
We would like to point out that our approach can straightforwardly
be specialized to address classical safety verification by, a.o.,
stochastic barrier certificate methods and reach-avoid analysis for
ordinary differential equations. In addition, several examples are
provided to demonstrate theoretical and algorithmic developments
of the proposed method.

Index Terms— Stochastic Differential Equations, Reach-avoid
Analysis, Inner Approximation, Semi-definite Programming.

I. INTRODUCTION

Reach-avoid analysis combines the construction of safety and
specific progress guarantees for dynamical systems, as it addresses
guarantees for both the eventual reach of desirable states and
avoidance of unsafe states. It is employed in diverse engineering
applications including collision avoidance [16] and motion planning
[13]. Algorithmic methods for computing reach-avoid guarantees
have consequently been widely studied, e.g. in [9], [17], [30]. In the
qualitative setting, reach-avoid analysis generally attempts to deter-
mine a set of initial states driving the system to a desirable target set
with certainty over either finite time horizons (i.e., given a fixed upper
bound on the first hitting time) or open time horizons (i.e., unknown
upper bound on the first hitting time) while reliably avoiding a set
of unsafe states before hitting the target set. As stochastic processes
are central to many phenomena in physics, engineering, biology and
other disciplines [4], [22], when considering stochastic systems, i.e.,
dynamical systems involving stochastic processes, solving the reach-
avoid problem qualitatively in a non-stochastic manner usually gives
pessimistic answers, since in general resultant bounds on the values
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of stochastic inputs will be overly conservative. It indeed is natural
to formulate and solve probabilistic variants of reach-avoid problems.
The notion of p-reach-avoid reachability used herein reflects this
probabilistic perspective. It requires identifying the set of initial states
that guarantee with probability being larger than p that the dynamical
system reaches a given target set safely.

In this paper we investigate the p-reach-avoid problem for systems
modeled by polynomial stochastic differential equations (SDEs) and
the focus is on the computation of inner-approximations of the exact
p-reach-avoid set over open time horizons. The p-reach-avoid set is
the set of initial states guaranteeing with probability being larger
than p an eventual hit of a desirable target set while staying inside a
designated safe set prior to hitting the target. The inner-approximation
problem is reduced to a semi-definite programming problem in our
approach. The construction of the semi-definite program originates
from a value function whose strict p super-level set equals the p-
reach-avoid set. The particular value function is defined based on
an appropriately stopped variant of the dynamical process under
investigation, and is shown to be the unique twice continuously dif-
ferentiable solution to an effectively constructed system of equations
(if it admits twice continuously differentiable solutions). Based on
the obtained system of equations, we further construct a system
of inequalities and encode them into semi-definite constraints using
the sum of-squares decomposition for multivariate polynomials. This
system of constraints finally results in a semi-definite program whose
solution under-approximates the exact p-reach-avoid set. The perfor-
mance of the proposed approach is illustrated by several examples.

The main contributions of this work are summarized below.
1) An innovative system of equations is proposed for character-

izing the exact p-reach-avoid set over open time horizons for
systems modelled by SDEs. The system of equations plays a
fundamental role in our methodology, since it explains the ori-
gins of the constructed convex program for inner-approximating
the p-reach-avoid set. Besides, the proposed equations can
also be used to construct a set of constraints for addressing
the classical safety verification problem of SDEs that can be
solved with stochastic barrier certificate methods in [23], as
commented in Remark 4.

2) A novel convex programming based approach is proposed
for inner-approximating the p-reach-avoid set over open time
horizons, which solves the complicated non-convex reachability
problem arising in dynamical systems and control theory by
solving a single convex program.

Related Work

Stochastic barrier certificates are known for studying probabilis-
tic specifications of SDEs in existing literature. In [23] a typical
supermartingale was employed as a stochastic barrier certificate fol-
lowed by computational conditions derived from Doob’s martingale
inequality [8]. It provides an upper bound on the probability of
reaching a set of unsafe states for a stochastic system starting from
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a set of legal initial state. Recently, via removing the requirement
of reaching target sets, the stochastic barrier certificate-based method
was extended to cater for upper-bounding the probability of leaving
a finite region of state space over a given finite time by leveraging
a relaxed formulation termed c-martingale for locally stable systems
in [28], and further extended to the problem of controller synthesis
for ensuring that unsafe probability is below a threshold in [25]. The
differences between the present work and these works are twofold.
One is that the set of permissible initial states is synthesized from
the system dynamics and the desired reach-avoid property rather than
analysing a given state set. The other one is that a lower bound on
the probability of reaching a specified, considered to be desirable, set
of target states is computed in the present work. The method in the
present work can nevertheless straightforwardly be modified to also
cover extended computation of an upper bound on the probability, as
pointed out in Remark 4.

The other method to studying the reach-avoid problem involves
establishing a connection with certain partial differential equations.
One is the classical Dirichlet methods which encode the probability of
hitting the target set safely into a Dirichlet problem [7]. Compared to
this method, our proposed equation offers a relaxation of assumptions
on hitting time and does not require that the expected time of hitting
the target set is finite. For details, please refer to Remark 1. Another
method is the Hamilton-Jacobi reachability one. Hamilton-Jacobi
reachability method addresses reach-avoid problems by exploiting the
link to optimal control through viscosity solutions of Hamilton-Jacobi
equations. It extends the use of Hamilton-Jacobi equations, which are
widely used in optimal control theory, to perform reachability analysis
over both finite time horizons [3] and open time horizons [10].
However, grid-based numeric approaches, e.g., the level set method
in [18], are traditionally used to solve these equations, rendering
the Hamilton-Jacobi reachability method computationally infeasible
for even moderate sized systems. Furthermore, such methods cannot
guarantee that the computed result is an outer- or inner-approximation
of the reach-avoid set. In [2] the reach-avoid problem was reduced to
a problem of solving semi-continuous solutions to some variational
inequalities. The lack of continuous solutions is an obstacle to solving
these inequalities. In contrast, we propose an innovative system
of partial differential equations, which is different from existing
Hamilton-Jacobi equations, to characterize reach-avoid sets of SDEs.
It facilitates the construction of semi-definite programs, which can
be efficiently solved by interior-point methods in polynomial time,
for computing guaranteed inner-approximations of reach-avoid sets.

Recently, a moment-based method, which is also a convex pro-
gramming based method, was proposed for studying reach-avoid
problems over finite time horizons for SDEs in [26], and a semi-
definite programming method derived from Feynman-Kac formula
was proposed for analysing avoid problems (without the requirement
of reaching target sets) over finite time horizons in [14] that is
algebraically over- and under-approximating the staying probability
in a given safety area. Different from the above two methods, our
method in this paper addresses the reach-avoid problem over open
time horizons rather than finite time horizons.

The structure of this paper is as follows: Section II introduces
stochastic systems and reach-avoid problems of interest. After detail-
ing the derivation of the system of equations for characterizing the
p-reach-avoid set in Subsection III-A, we introduce our semi-definite
programming method for inner-approximating the p-reach-avoid set
in Subsection III-B. In Section IV we demonstrate the performance
of our approach on several examples and finally provide conclusions
as well as future work in Section V.

II. PRELIMINARIES

We start our exposition by formally presenting polynomial SDEs
and p-reach-avoid sets of interest. Beforehand we introduce basic
notions used throughout this paper: R≥0 stands for the set of
nonnegative reals and R for the set of real numbers. For a set ∆,
∆c, ∆ and ∂∆ denote the complement, the closure and the boundary
of the set ∆, respectively.

∧
and

∨
denote the logical operation of

conjunction and disjunction, respectively. R[·] denotes the ring of
polynomials in variables given by the argument. Vectors are denoted
by boldface letters.

∑
[x] is used to represent the set of sum-of-

squares polynomials over variables x, i.e.,

∑
[x] = {p ∈ R[x] | p =

k′∑
i=1

q2i , qi ∈ R[x], i = 1, . . . , k′}.

Let (Ω,F ,P) be a probability space [20], where Ω is the sample
space, F ⊆ 2Ω is a σ-algebra on Ω, and P : F → [0, 1]
is a probability measure on the measurable space (Ω,F). A ran-
dom variable X defined on the probability space (Ω,F ,P) is an
F−measurable function X : Ω → Rn; its expectation (w.r.t. P)
is denoted by E[X]. The support set for a real-valued function
f(·) : ∆ → R is the closure of the subset of ∆, where f is
non-zero, i.e., suppf = {x ∈ ∆ | f(x) ̸= 0}. A continuous-time
stochastic process is a parameterized collection of random variables
{X(t,w), t ∈ T} where the parameter space T can be either the
halfline R≥0 or an interval [a, b]. Note that for each t ∈ T fixed we
have a random variable X(t, ·) : Ω → Rn. On the other hand, fixing
w ∈ Ω we can consider the function X(·,w) : T → Rn, which is
called a path of the stochastic process. A collection {Ft | t ≥ 0} of
σ−algebra of sets in F is a filtration if Ft ⊆ Ft+s for t, s ∈ R≥0

(Intuitively, Ft carries the information known to an observer at time
t.). A random variable τ : Ω → R≥0 is called a stopping time w.r.t.
some filtration {Ft | t ≥ 0} of F if {τ ≤ t} ∈ Ft for all t ≥ 0.
Note that a constant time is always a stopping time.

We consider stochastic systems modeled by time-homogeneous
SDEs of the form

dX(t,w) = b(X(t,w))dt+ σ(X(t,w))dW (t,w), t ≥ 0, (1)

where X(·, ·) : T × Ω → Rn is an n-dimensional continuous-time
stochastic process, W (·, ·) : T × Ω → Rm is an m-dimensional
Wiener process (standard Brownian motion), the mapping b(·) :
Rn → Rn is a vector-valued polynomial (i.e., each of its components
is a polynomial), and σ(·) : Rn → Rn×m is a matrix-valued
polynomial, i.e., each of its components is a polynomial.

Since each component of both b(x) and σ(x) is polynomial over
x, satisfying locally Lipschitz conditions, then given an initial state
x0 ∈ Rn, an SDE of the form (1) has a unique (maximal local) strong
solution over some time interval [0, Tx0(w)) for w ∈ Ω [Lemma
2.2, [27]], where Tx0(w) is a positive real value. We denote it as
Xx0(·,w) : [0, Tx0(w))× Ω → Rn, which satisfies the stochastic
integral equation

Xx0(t,w) = x0 +

∫ t

0
b(Xx0(s,w))ds

+

∫ t

0
σ(Xx0(s,w))dW (s,w)

for t ∈ [0, Tx0(w)).
The infinitesimal generator underlying system (1) is presented in

Definition 1.
Definition 1: [20] Let Xx(t,w) be a time-homogeneous Itô dif-

fusion given by SDE (1) with initial state x ∈ Rn. The infinitesimal
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generator A of Xx(t,w) is defined by

Af(x) = lim
t→0

E[f(Xx(t,w))]− f(x)

t

=
∑
i

bi(x)
∂f(x)

∂xi
+

1

2

∑
i,j

(σσ⊤)ij(x)
∂2f(x)

∂xi∂xj
.

(2)

for any f ∈ C2(Rn), where C2(Rn) denotes the set of twice
continuously differentiable functions.

As a stochastic generalization of the Newton-Leibniz axiom,
Dynkin’s formula gives the expected value of any suitably smooth
function of an Itô diffusion at a stopping time.

Theorem 1 (Dynkin’s formula, [20]): Let Xx(t,w) be a time-
homogeneous Itô diffusion given by SDE (1) with the initial state
x ∈ Rn. Suppose τ is a stopping time with E[τ ] < ∞, and
f ∈ C2(Rn) with compact support. Then

E[f(Xx(τ,w))] = f(x) + E[

∫ τ

0
Af(Xx(s,w))ds]. (3)

In Theorem 1, if we consider a twice continuously differentiable
function f defined on a bounded set B ⊆ Rn, i.e., f(x) ∈ C2(B),
f can be any twice continuously differentiable function f ∈ C2(B)
without the assumption of compact support. In this case, the support
of f is of course, compact, since the support of f is always closed
and bounded.

Now, we define the p-reach-avoid set, which is a set of initial
states such that the stochastic system (1) starting from it will touch a
compact target set T in finite time while staying within a bounded and
open safe set X preceding the target first hitting time with probability
being larger than p ∈ [0, 1), where

T = {x ∈ Rn | g(x) ≤ 1} and X = {x ∈ Rn | h0(x) < 0} (4)

with g(x), h0(x) ∈ R[x] and T ⊆ X .
Definition 2 (p-Reach-Avoid Set): The p-reach-avoid set RAp is

the set of initial states such that every trajectory of the stochastic
system (1) originating in it will enter the target set T at some time
t ∈ R≥0 while staying inside the safe set X over the time horizon
[0, t] with probability being larger than p ∈ [0, 1), i.e.,

RAp =

x ∈ X

∣∣∣∣∣∣
P
(
∃t ∈ R≥0.

[
Xx(t,w) ∈ T

∧
∀τ ∈ [0, t].Xx(τ,w) ∈ X

])
> p

 .

An inner-approximation is a subset of the set RAp.

III. INNER-APPROXIMATING p-REACH-AVOID SETS

In this section we present our semi-definite programming based
approach for inner-approximating the p-reach-avoid set RAp. The
semi-definite program is constructed via relaxing a system of equa-
tions, whose twice continuously differentiable solution is equal to a
bounded value function with its strict p super-level set being equal
to the p-reach-avoid set RAp.

A. Characterization of p-Reach-Avoid Sets

In this subsection we introduce a system of elliptic partial differ-
ential equations for characterizing the p-reach-avoid set.

The derivation of such equations begins with a value function,
which is defined by a new stochastic process {X̂x0(t,w), t ∈
R≥0} for x0 ∈ X , which is a stopped process corresponding to
{Xx0(t,w), t ∈ [0, Tx0(w))} and the set X \ T , i.e.,

X̂x0(t,w) =

{
Xx0(t,w), if t < τx0(w),

Xx0(τx0(w),w), if t ≥ τx0(w),
(5)

where τx0(w) = inf{t | Xx0(t,w) ∈ ∂X
∨

Xx0(t,w) ∈ T } is
the first time of exit of Xx0(t,w) from the open set X \ T . It is
worth remarking here that if the path Xx0(t,w) escapes to infinity in
finite time, it must touch the boundary of the bounded safe set X and
thus τx0(w) ≤ Tx0(w). The stopped process X̂x0(t,w) inherits
the right continuity and strong Markovian property of Xx0(t,w).
Moreover, the infinitesimal generator corresponding to X̂x0(t,w) is
identical to the one corresponding to Xx0(t,w) on the set X \ T ,
and is equal to zero outside of the set X \ T [11]. That is, for
v(x) ∈ C2(Rn),

Av(x) =
∑
i

bi(x)
∂v(x)

∂xi
+

1

2

∑
i,j

(σσ⊤)ij(x)
∂2v(x)

∂xi∂xj

for x ∈ X \ T and Av(x) = 0 for x ∈ ∂X ∪ T . This will be
implicitly assumed throughout this paper.

We observe that the set X is an invariant set for the stochastic
process X̂x0(t,w) with x0 ∈ X .

Proposition 1: If x0 ∈ X and w ∈ Ω, then X̂x0(t,w) ∈ X for
t ∈ R≥0.

The proof of Proposition 1 is shown in Appendix. From the proof
of Proposition 1, we conclude that all sample paths of the stochastic
process {X̂x0(t,w), t ∈ R≥0} for x0 ∈ X can be divided into the
following three disjoint groups:

1) paths entering T in finite time.
2) paths entering ∂X in finite time;
3) paths staying inside X \ T for all time.

Given x ∈ X , let τ̂xT (w) be the first hitting time of the target set
T for the path X̂x(t,w) : R≥0 → Rn, i.e.,

τ̂xT (w) = inf{t ∈ R≥0 | X̂x(t,w) ∈ T }.

Below we show that the p-reach-avoid set RAp is equal to the set of
initial states such that the first hitting time of the target set T for the
stochastic process {X̂x0(t,w), t ∈ R≥0} is less than infinity with
probability being larger than p.

Lemma 1: RAp = {x ∈ X | P(τ̂xT (w) < ∞) > p}, where RAp

is the p-reach-avoid set in Definition 2.
Proof: The proof is shown in Appendix.

Now, we present the bounded value function V (x) : X → R,
which can be regarded as an ergodic occupation measure or ‘long-
run average’ (e.g., [1]) and whose strict p super-level set, i.e., {x ∈
X | V (x) > p}, is equal to the p-reach-avoid set RAp, as shown in
Lemma 2.

V (x) := lim
t→∞

µ([0, t]× T | x)
t

, (6)

where µ([0, t]×T | x) = E[
∫ t
0 1T (X̂x(τ,w))dτ ] is an occupation

measure [1], 1X (·) : T → {0, 1} represents the indicator function
of the set T , i.e.,

1T (x) :=

{
1, if x ∈ T ,

0, if x /∈ T .

Based on occupation measures, [6] investigated the exit time problem
of polynomial SDEs using the so-called Lasserre or moment sum
of squares hierarchy [12]. Since 0 ≤ 1T (x) ≤ 1 over Rn,
0 ≤ V (x) ≤ 1 for x ∈ X and thus V (x) is bounded over X .
It is worth remarking here that limt→∞

µ([0,t]×T |x)
t exists, since

limt→∞
µ([0,t]×T |x)

t = supt∈R≥0
E[1T (X̂x(τ,w))], which can

also be justified by Proposition 6 in [2].
Lemma 2: RAp = {x ∈ X | V (x) > p}, where V (·) : X →

[0, 1] is the value function in (6).
Proof: The proof is shown in Appendix.
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Lemma 3: If x0 ∈ X , then

lim
t→∞

P(X̂x0(t,w) ∈ T ) = P(τ̂x0
T (w) < ∞).

Proof: The proof is shown in Appendix.
From Lemma 2 we conclude that the exact p-reach-avoid set can be

obtained if the value function V (x) in (6) is computed. However, it is
challenging, even impossible to compute it directly since it involves
the knowledge of analytical solutions to SDE (1), which cannot be
gained generally, especially for nonlinear systems. In order to address
this issue, we go further and show that it is the uniquely twice
continuously differentiable solution to a system of elliptic partial
differential equations (e.g., [5]) if such a solution exists, as formulated
in Theorem 2 below. It is worth noting here that the derived system
of equations is different from Hamilton-Jacobi equations in [10] or
the variational inequalities in [2].

Theorem 2: If there exist v(x) ∈ C2(X ) and u(x) ∈ C2(X ) such
that for x ∈ X ,

Av(x) = 0, (7)

v(x) = 1T (x) +Au(x), (8)

then v(x) = V (x), ∀x ∈ X and thus RAp = {x ∈ X | v(x) > p},
where V (·) : X → R is the value function in (6).

Proof: The proof is shown in Appendix.
Remark 1: Let’s present another result related to the reach proba-

bility of leaving the set X \T through T . This result can be obtained
via Proposition 7.2 in [7].

Let v be a solution of the Dirichlet problem in the open, bounded
domain X \ T :

Av(x) = 0, in X \ T ,

v(x) = 1, in T ,

v(x) = 0, in ∂X ,

(9)

and let τ̂x(w) = inf{t ≥ 0 | X̂x(t,w) ∈ ∂T ∪ ∂X}. If

E[τ̂x(w)] < ∞, ∀x ∈ X \ T , (10)

then we have v(x) = E[1∂T (X̂x(τ̂x(w),w))],x ∈ X\T , which is
the probability of leaving X \T through T for the process X̂x(t,w).

Under the condition that E[τ̂x(w)] < ∞, ∀x ∈ X \ T , which
implies that P(τ̂x(w) < ∞) = 1, ∀x ∈ X \ T , we have v(x) =
V (x), ∀x ∈ X \T and thus {x ∈ X | v(x) > p} = RAp. However,
when there exists x0 ∈ X such that E[τ̂x0(w)] = ∞, we cannot
obtain that v(x0) = V (x0). Consequently, {x ∈ X | v(x) > p} =
RAp may not hold. {x ∈ X | v(x) > p} may include states such
that system (1) starting from them will stay inside X \ T for all the
time with probability being larger than p, but will reach T in finite
time with probability being smaller than or equal to p.

In contrast, when relating equations (7) and (8) to the set RAp,
Theorem 2 does not impose E[τ̂x(w)] < ∞,∀x ∈ X \ T . Thus,
Theorem 2 applies to the case with E[τ̂x(w)] = ∞ and thus is more
general. Let’s further compare equations (7) and (8) with (9). We first
reformulate (7) and (8) in the following equivalent form

Av(x) = 0, in X \ T ,

v(x) = 1, in T ,

v(x) = 0, in ∂X ,

v(x) = Au(x), in X \ T .

(11)

It is easy to find that equations (7) and (8) have an additional con-
straint v(x) = Au(x), in X \T , comparing with (9). If E[τ̂x(w)] <
∞, ∀x ∈ X \T , this constraint is redundant and can be removed, thus

turning equations (11) into (9). In this case, according to Dynkin’s
formula in Theorem 1, u(x) can take

u(x) = E[u(X̂x(τ̂x(w),w)))−
∫ τ̂x(w)

0
v(X̂x(s,w)))ds].

Otherwise, this constraint cannot be removed and its existence ensures
that {x ∈ X ∈ v(x) > p} = RAp. ■

From Theorem 2 we have that if we obtain a twice continuously
differentiable solution (v(x), u(x)) to equations (7) and (8) the exact
p-reach-avoid set RAp = {x ∈ X | v(x) > p} can be gained.
However, due to the existence of the indicator function 1T (x) in
(8), we have limx→x0,x/∈T v(x) = Au(x0), which is not equal to
v(x0) = 1+Au(x0), where x0 ∈ ∂T , thus the system of equations
(7) and (8) does not admit twice continuously differentiable solutions
(v(x),u(x)) generally. Let’s take an extreme case: b(x) = 0 for
x ∈ Rn and σ(x) = 0 for x ∈ Rn. We obtain that if v(x) is
a solution to the system of equations (7) and (8), then v(x) = 1
for x ∈ T and v(x) = 0 for x ∈ X \ T , which implies v(x) /∈
C2(X ). Despite all this, equations (7) and (8) play a fundamental role
in our method for inner-approximating the p-reach-avoid set. In the
subsequent subsection we will relax the equations (7) and (8) into a
system of inequalities for inner-approximating the p-reach-avoid set
and solve it efficiently using a semi-definite programming method.

B. Semi-definite Programming Implementation
In this subsection a semi-definite programming method is presented

for inner-approximating the p-reach-avoid set RAp. First, we show
that an inner-approximation could be obtained via solving a system
of inequalities, which is derived from Eq. (7) and (8).

Corollary 1: If there exist functions v(x) ∈ C2(X ) and u(x) ∈
C2(X ) such that for x ∈ X ,

Av(x) ≥ 0, (12)

1T (x) +Au(x) ≥ v(x), (13)

then {x ∈ X | v(x) > p} ⊆ RAp is an inner-approximation of the
p-reach-avoid set RAp.

Proof: The proof is shown in Appendix.
Remark 2: Although the equations (7) and (8) do not admit

twice continuously differentiable solutions in general, the system of
inequalities (12) and (13) does. The pair that v(x) ≡ 0 and u(x) ≡ 0
for x ∈ X satisfies the system of inequalities (12) and (13). ■

Corollary 1 expresses that an inner-approximation of the p-reach-
avoid set RAp is provided by a solution v(x) ∈ C2(X ) to constraints
(12) and (13). Below we present a convex programming method for
solving constraints (12) and (13).

The equivalent constraints without indicator functions of con-
straints (12) and (13) are formulated below:[

Av(x) ≥ 0, ∀x ∈ X \ T
]∧[

− v(x) + 1T (x) +Au(x) ≥ 0,∀x ∈ X
]
,

(14)

which is further equivalent to

Av(x) ≥ 0,∀x ∈ X \ T ,

− v(x) +Au(x) ≥ 0,∀x ∈ X \ T ,

− v(x) ≥ 0,∀x ∈ ∂X ,

1− v(x) ≥ 0, ∀x ∈ T .

(15)

If functions v(x) and u(x) in (15) are further restricted to
polynomial functions over x ∈ Rn, we can encode the system of
inequalities (15) in the form of sum-of-squares constraints, finally
resulting in a semi-definite program (16) for inner-approximating the
p-reach-avoid set RAp.
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max c · ŵ
s.t.

Av(x) + s0(x)h0(x) + s1(x)(1− g(x)) ∈
∑

[x],

− v(x) +Au(x) + s2(x)h0(x)

+ s3(x)(1− g(x)) ∈
∑

[x],

− v(x) + p(x)h0(x) ∈
∑

[x],

1− v(x) + s4(x)(g(x)− 1) ∈
∑

[x],

(16)

where c · ŵ =
∫
X v(x)dx, ŵ is the constant vector computed by

integrating the monomials in v(x) ∈ R[x] over X , c is the vector
composed of unknown coffecients in v(x) ∈ R[x]; u(x), p(x) ∈
R[x] and si(x) ∈

∑
[x], i = 0, . . . , 4.

Theorem 3: Let (v(x), u(x)) be a solution to the semi-definite
program (16), then {x ∈ X | v(x) > p} is an inner-approximation
of the p-reach-avoid set RAp.

Proof: The proof is shown in Appendix.
Remark 3: If σ(x) ≡ 0 for x ∈ Rn in SDE (1), SDE (1) is finally

reduced to ODE (17):

dx(t)

dt
= b(x(t)),x(0) = x0, (17)

whose solution is denoted by Xx0(·) : T → Rn with initial state
Xx0(0) = x0. In this case, if there exists functions v(x) ∈ C1(X )
and u(x) ∈ C1(X ) satisfying (15), then {x ∈ X | v(x) > 0} ⊆ RA,
where RA is the reach-avoid set over open time horizons, i.e.,

RA =

{
x0 ∈ Rn

∣∣∣∣∣ ∃t ∈ R≥0.
[
Xx0(t) ∈ T

∧
∀τ ∈ [0, t].Xx0(τ) ∈ X

]} . (18)

The conclusion can be obtained by following the proof of Corollary 1
with small modifications. A brief explanation is given herein. Taking
x0 ∈ {x ∈ X | v(x) > 0} and following the proof of Corollary 1
by removing the expectation operators, we obtain

v(x0) ≤ lim
t→∞

∫ t
0 1T (X̂x0(τ))dτ

t

+ lim
t→∞

u(X̂x0(t))− u(x0)

t
, (Corresponding to (25))

where X̂x0(t) = Xx0(t) for t ≤ τ̂
x0
T and X̂x0(t) = Xx0(τ̂

x0
T )

for t ≥ τ̂
x0
T with τ̂

x0
T = inf{t | Xx0(t) ∈ ∂X

∨
Xx0(t) ∈ T }.

Since limt→∞
u(X̂x0 (t))−u(x0)

t = 0 and v(x0) > 0, x0 ∈ RA
holds. Thus, {x ∈ X | v(x) > 0} ⊆ RA.

Another proof can be found in Proposition 5 in [31]. ■
Remark 4: When the target set T is an unsafe set and an initial

set INI ⊂ X is given, a set of constraints can also be constructed for
addressing the classical safety verification problem of SDE (1) as in
[23] via relaxing the equations (7) and (8). That is, we can compute
a probability p such that for x0 ∈ INI,

P
(
∃t ∈ R≥0.

[
Xx0(t,w) ∈ T

∧
∀τ ∈ [0, t].Xx0(τ,w) ∈ X

])
≤ p.

This method is orthogonal to stochastic barrier-certificate methods
from [23], since our method is derived from the equations (7) and (8)
rather than Doob’s martingale inequality as in [23]. We will compare
them in the future work.

SDP (16)
Ex. dv du ds dp T
1 8 8 8 8 1.78
2 16 16 16 16 3.78
3 20 20 20 20 8.27

TABLE I
PARAMETERS OF OUR IMPLEMENTATIONS ON (16) FOR EXAMPLES

1∼3. dv , du AND dp : DEGREE OF POLYNOMIALS v(x), u(x) AND

p(x) IN (16), RESPECTIVELY; ds : DEGREE OF POLYNOMIALS si IN (16),
RESPECTIVELY, i = 0, . . . , 4; T : COMPUTATION TIME (SECONDS).

Corollary 2: If there exist functions v(x) ∈ C2(X ) and u(x) ∈
C2(X ) such that for x ∈ X ,

−Av(x) ≥ 0, (19)

v(x) ≥ 1T (x) +Au(x), (20)

then {x ∈ X | v(x) ≤ p} ⊆ RA′
p is an inner-approximation of the

p-reach-avoid set RA′
p, where

RA′
p =

x ∈ X

∣∣∣∣∣∣
P
(
∃t ∈ R≥0.[X

x(t,w) ∈ T
∧

∀τ ∈ [0, t].Xx(τ,w) ∈ X ]
)
≤ p

 .

Proof: The conclusion can be obtained by following the
arguments for Corollary 1.

Obviously, if there exists p ∈ [0, 1) such that INI ⊆ {x ∈ X |
v(x) ≤ p}, where v(x) satisfies Corollary 2, then

P
(
∃t ∈ R≥0.

[
Xx0(t,w) ∈ T

∧
∀τ ∈ [0, t].Xx0(τ,w) ∈ X

])
≤ p

holds for x0 ∈ INI.
According to Corollary 1, the safety verification problem can be

encoded into the problem of solving the following constraints:

v(x) ≤ p,∀x ∈ INI,

v(x) ≥ 1, ∀x ∈ T ,

v(x) ≥ Au(x),∀x ∈ X \ T ,

Av(x) ≤ 0, ∀x ∈ X .

(21)

Comparing the set of constraints (21) and constraints (26)-(29) in
[23], the main difference between them lies in that the former uses
v(x) ≥ Au(x), ∀x ∈ X \ T rather than v(x) ≥ 0,∀x ∈ X . Thus,
the set of constraints (21) is more expressive than constraints (26)-
(29) in [23], which is a special instance of the set of constraints (21)
with u(x) ≡ 0 for x ∈ X . ■

IV. EXAMPLES

In this section we demonstrate on several examples the perfor-
mance of our approach exploiting semi-definite programming. All
computations solving (16) were performed on an i7-7500U 2.70GHz
CPU with 32GB RAM running Windows 10, where the sum-of-
squares module of YALMIP [15] was used to transform the sum-
of-squares optimization problem (16) into a semi-definite program
and the solver Mosek [19] was used to solve the resulting semi-
definite program. The parameters controlling the performance of our
semi-definite programming approach are presented in Table I.

Example 1 (Population growth): Consider the stochastic dynami-
cal system

dX(t, w) = b(X(t, w))dt+ σ(X(t, w))dW (t, w),

with b(X(t, w)) = −X(t, w) and σ(X(t, w)) =
√
2
2 X(t, w), which

is a stochastic model of population dynamics subject to random
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Fig. 1. An illustration of inner-approximating the reach-avoid set RAp

for Example 1. (Red curve denotes level sets of v(x) computed by
solving (16). The set of states between the two dashed blue lines is an
inner-approximation of the 0.9-reach-avoid set. The set of green states
is the 0.9-reach-avoid set estimated via Monte-Carlo methods.)

Fig. 2. An illustration of inner-approximating the reach-avoid set RAp

for Example 1. (Red curve denotes level sets of v(x) computed by
solving (16). The set of states between the two dashed blue lines is an
inner-approximation of the 0.5-reach-avoid set. The set of green states
is the 0.5-reach-avoid set estimated via Monte-Carlo methods.)

fluctuations that can be attributed to extraneous or chance factors
such as the weather, location, and the general environment.

Suppose that the safe set is X = {x ∈ R | x2 − 1 < 0} and the
target set is T = {x ∈ R | 100x2 ≤ 1}.

The computed inner-approximations of 0.9- and 0.5-reach-avoid
sets are respectively illustrated in Fig. 1 and 2, which also shows the
computed function v(x) via solving the semi-definite program (16).
For gauging the quality of the computed inner-approximations, the
0.9- and 0.5-reach-avoid sets estimated via Monto-Carlo methods are
also respectively presented in Fig. 1 and 2 for comparisons.

Example 2 (Harmonic oscillator): Consider a two-dimensional
harmonic oscillator with noisy damping,

dX1(t, w) = ζX2(t, w)dt,

dX2(t, w) = (−ζX1(t, w)− kX2(t, w))dt

− σX2(t, w)dW (t, w),

with ζ = 1, k = 7 and σ = 2.
Suppose that the safe set and the target set are X = {(x1, x2)⊤ ∈

R2 | x21+x22−1 < 0} and T = {(x1, x2)⊤ ∈ R2 | 10x21+10x22 ≤
1}, respectively.

The computed value function v(x1, x2) via solving the semi-
definite program (16) is shown in Fig. 3 and the corresponding
computed 0.5- and 0.9-reach-avoid sets are illustrated in Fig. 4. Two
trajectories starting from (0.8, 0.0)⊤ and (−0.9, 0.0)⊤ respectively
are also illustrated in Fig. 4. Also, we use the Monte-Carlo simulation
method to assess the quality of computed inner-approximations,
which is demonstrated in Fig. 5.

Example 3: As a model for the horizontal slow drift motions of
a moored floating platform or ship responding to incoming irregular
waves John Grue introduced the equation,

ẍt + a0ẋt + ω2xt = (T0 − α0ẋt)ηWt

where Wt is 1-dimensional white noise, a0, w, T0, α0 and η are

Fig. 3. An illustration of the computed v(x1, x2) for Example 2.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x1

x2

Fig. 4. An illustration of computed inner-approximations for Example
2. (Black and green curves denote the boundaries of safe set X and
target set T , respectively. Red and blue curves denote the boundaries
of computed inner-approximations of the 0.9- and 0.5-reach-avoid sets,
respectively.)

constants, which can be reduced to the following SDE

dX1(t, w) = X2(t, w)dt

dX2(t, w) = (−ω2X1(t, w)− a0X2(t, w))dt

+ (−α0X2(t, w) + T0)ηdW (t, w),

where ω = a0 = α0 = η = T0 = 1.
Suppose that the safe set and the target set are X = {(x1, x2)⊤ ∈

R2 | x21+x22− 1 < 0} and T = {(x1, x2)⊤ ∈ R2 | 4(x1− 0.2)2+
4(x2 − 0.2)2 ≤ 1}, respectively.

The computed function v(x1, x2) via solving the semi-definite
program (16) is shown in Fig. 6 and the computed 0.1- and 0.5-reach-
avoid sets are illustrated in Fig. 7. Three trajectories starting from
(−0.5, 0.0)⊤, (−0.1,−0.5)⊤ and (0.1, 0.9)⊤ respectively are also
illustrated in Fig. 7. Also, we use the Monte-Carlo simulation method
to assess the conservativeness of computed inner-approximations,
which is demonstrated in Fig. 8.

The proposed semi-definite programming method reduces the chal-
lenging (non-convex) problem of inner-approximating reach-avoid
sets for polynomial SDEs into a convex optimization problem, which
could be solved efficiently via interior point methods in polynomial
time. In practice, computational cost can become prohibitive as either
the dimension of SDEs or the polynomial degree of v(x) and/or u(x)
increases, at least with the standard approach to the sum-of-squares

Fig. 5. An illustration of the quality of computed inner-approximations of
the reach-avoid set RAp for Example 2. (Red and blue curves denote
the boundaries of computed inner-approximations of the 0.9- and 0.5-
reach-avoid sets, respectively. Gray region denotes the 0.9/0.5-reach-
avoid set estimated via the Monte-Carlo simulation method.)
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Fig. 6. An illustration of the computed v(x1, x2) for Example 3.
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Fig. 7. An illustration of inner-approximating the reach-avoid set RAp

for Example 3. (Black and green curves denote the boundaries of safe
set X and target set T , respectively. Red and blue curves denote the
boundaries of the computed 0.5- and 0.1-reach-avoid sets, respectively.)

optimization wherein generic semi-definite programs are solved by
second-order symmetric interior-point algorithms. Large problems
may be tackled using specialized nonsymmetric interior-point [21]
or first order algorithms [32].

V. CONCLUSION

We have exposed and proved a correct algorithm based on semi-
definite programming facilitating inner-approximations of p-reach-
avoid sets of systems modeled by polynomial SDEs over open
time horizons. As the p-reach-avoid set is the set of initial states
forcing the system, with sufficient probability being larger than p,
to eventually reach a desired target set while satisfying certain legal
state constraints till the first hit time, it is of immediate interest in the
design of reliable systems. The benchmark examples exposed in the
previous section give an idea of the design or analysis obligations that
can be answered by computation of safe, i.e., inner approximations
of p-reach-avoid sets. They also demonstrate the performance of the
proposed approach.
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APPENDIX

The proof of Proposition 1:
Proof: Clearly, if x0 ∈ T ∪ ∂X , we have

X̂x0(t,w) ∈ T ∪ ∂X , ∀t ∈ R≥0.

If x0 ∈ X \ T , one of the following three cases hold:
1) there exists t ∈ R≥0 such that[

∀τ ∈ [0, t).X̂x0(τ,w) ∈ X \ T ]
∧

[∀τ ∈ [t,∞).X̂x0(t,w) ∈ T
]
;

2) there exists t ∈ R≥0 such that[
∀τ ∈ [0, t).X̂x0(τ,w) ∈ X \ T ]

∧
[∀τ ∈ [t,∞).X̂x0(t,w) ∈ ∂X

]
;

3) X̂x0(t,w) ∈ X \ T for t ∈ R≥0 holds.
Therefore, the conclusion holds.

The proof of Lemma 1:
Proof: According to Proposition 5 in [2], we have P(τ̂xT (w) <

∞) = P(∃t ∈ R≥0.X̂
x(t, w) ∈ T ). According to the re-

lationship between stochastic processes {X̂x(t,w), t ∈ [0,∞)}
and {Xx(t,w), t ∈ [0, Tx(w))}, we have that P(∃t ∈
R≥0.X̂

x(t, w) ∈ T ) = P
(
∃t ∈ R≥0.

[
Xx(t,w) ∈ T

∧
∀τ ∈

[0, t].Xx(τ,w) ∈ X
])

. Therefore, RAp = {x ∈ X | P(τ̂xT (w) <

∞) > p}.
The proof of Lemma 2:

Proof: According to Lemma 1, we just need to prove that
V (x) = P(τ̂xT (w) < ∞).

For t ∈ R≥0, according to Fubini’s theorem [24], we have

E[
∫ t
0 1T (X̂x(τ,w))dτ ]

t
=

∫ t
0 P(X̂x(τ,w) ∈ T )dτ

t
.

Therefore, V (x) = limt→∞

∫ t
0 P(X̂x(τ,w)∈T )dτ

t . According to
Lemma 3 shown below, we have limt→∞ P(X̂x(t,w) ∈ T ) =
P(τ̂xT (w) < ∞). As a consequence, V (x) = P(τ̂xT (w) < ∞).

Thus, RAp = {x ∈ X | V (x) > p} from Lemma 1.
The proof of Lemma 3:

Proof: According to Corollary 1 in [29] stating that P(∃t ∈
R≥0.X̂

x0(t,w) ∈ T ) = limt→∞ P (X̂x0(t,w) ∈ T ), and
Proposition 5 in [2] stating that P(τ̂x0

T (w) < ∞) = P(∃t ∈
R≥0.X̂

x0(t,w) ∈ T ), we have the conclusion.
The proof of Theorem 2:

Proof: Let x ∈ X . According to Proposition 1, we have that
X̂x(t,w) ∈ X for t ∈ R≥0 and w ∈ Ω.

From Eq. (7) and Theorem 1, together with the fact that any
constant time t ∈ R≥0 is a stopping time with E[t] < ∞, we have

v(x) = E[v(X̂x(t,w))],∀t ∈ R≥0. (22)

From Eq. (8), we have that for t ∈ R≥0,

v(X̂x(t,w)) = 1T (X̂x(t,w)) +Au(X̂x(t,w)). (23)

From Eq. (23), we have that for t ∈ R≥0,

E[

∫ t

0
v(X̂x(s,w))ds] = E[

∫ t

0
1T (X̂x(s,w))ds]

+ E[

∫ t

0
Au(X̂x(s,w))ds]

and further according to Fubini’s theorem [24],∫ t

0
E[v(X̂x(s,w))]ds = E[

∫ t

0
1T (X̂x(s,w))ds]

+ E[

∫ t

0
Au(X̂x(s,w))ds].

Consequently,

v(x) =
E[

∫ t
0 1T (X̂x(s,w))ds]

t

+
E[u(X̂x(t,w))]− u(x)

t
, ∀t ∈ R≥0.

Since u(x) is continuously differentiable over X , it is bounded over

x ∈ X . Consequently, v(x) = limt→∞
E[

∫ t
0 1T (X̂x(s,w))ds]

t and
thus v(x) = V (x), implying further that RAp = {x ∈ X | v(x) >
p} from Lemma 2.

The proof of Corollary 1:
Proof: According to Proposition 1,

X̂x(τ,w) ∈ X , ∀τ ∈ R≥0,∀w ∈ Ω,

if x ∈ X .
Let x0 ∈ {x ∈ X | v(x) > p}. From constraint (12), we have

v(x0) ≤ E[v(X̂x0(t,w))],∀t ∈ R≥0. (24)

Also, constraint (13) indicates that

v(X̂x0(t,w)) ≤ 1T (X̂x0(t,w)) +Au(X̂x0(t,w))

holds for t ∈ R≥0 and w ∈ Ω. Thus, we have that for t ∈ R≥0,

E[

∫ t

0
v(X̂x0(τ,w))dτ ] ≤ E[

∫ t

0
1T (X̂x0(τ,w))dτ ]

+ E[

∫ t

0
Au(X̂x0(τ,w))dτ ]

and thus∫ t

0
E[v(X̂x0(τ,w))]dτ

≤ E[

∫ t

0
1T (X̂x0(τ,w))dτ ] + E[u(X̂x0(t,w))]− u(x0).

Combining with (24) we further have that for t ∈ R≥0,

v(x0) ≤
E[

∫ t
0 1T (X̂x0(τ,w))dτ ]

t
+

E[u(X̂x0(t,w))]− u(x0)

t
,

and thus

v(x0) ≤ lim
t→∞

E[
∫ t
0 1T (X̂x0(τ,w))dτ ]

t
(= V (x0))

+ lim
t→∞

E[u(X̂x0(t,w))]− u(x0)

t
.

(25)

Since limt→∞
E[u(X̂x0 (t,w))]−u(x0)

t = 0, we have p <
v(x0) ≤ V (x0). Also, since constraint (13) indicates that v(x) ≤ 0
for x ∈ X \ X , x0 ∈ X holds. Consequently, {x ∈ X | v(x) >
p} ⊆ RAp.

The proof of Theorem 3:
Proof: Since v(x) satisfies constrains in (16) and ∂X ⊆ {x ∈

Rn | h0(x) = 0}, we have v(x) satisfies (15). Thus, {x ∈ X |
v(x) > p} ⊆ RAp holds from Corollary 1.
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