
Combining Hierarchical Specification
with Hierarchical Implementation

Naijun Zhan

Lehrstuhl für Praktische Informatik II
Fakultät für Mathematik und Informatik

Mannheim Universität
D7,27, 68163 Mannheim, Deutschland

zhan@pi2.informatik.uni-mannheim.de

Abstract. Action refinement is a practical hierarchical method to ease
the design of large reactive systems. Relating hierarchical specification
to hierarchical implementation is an effective method to decrease the
complexity of the verification of these systems. In our previous work
[15], this issue has been investigated in the simple case of the refinement
of an action by a finite process.
In this paper, on the one hand, we extend our previous results by consid-
ering the issue in general, i.e., refining an abstract action by an arbitrary
process; on the other hand, we exploit different techniques such that our
method is easier to be followed and applied in practice.

Keywords: Action refinement, modal logic, specification, verification,
reactive system.

1 Introduction

Generally speaking, it is not easy, even impossible to capture a complex system
at the beginning. The hierarchical development method is one of the practical and
effective methods for designing large systems by specifying and implementing a
system at different levels of abstraction. In process algebraic settings, action re-
finement [8] is such a kind of methods. We are here interested in the question
how verification can be incorporated in the hierarchical development. In particu-
lar, we investigate how action refinement can be incorporated into a specification
logic in such a way that it mimics the refinement in the process algebra. In the
literature, some first attempts to solve this problem are given, for example in
[10,13,14].

The main results obtained in [10,13,14] are as follows: Given an abstract
specification φ in some logic, say the modal µ-calculus, and a model P of a
complex system, and a refinement Q for a primitive a in P , where Q is a finite
process, build P [a � Q] and φ[a � Q] as the refinements of the model P and
the specification φ respectively. [10] and [13,14] deal with P [a � Q] in different
way, but all define φ[a � Q] by replacing 〈a〉 and [a] in φ by some formulae of
the forms 〈a1〉〈a2〉 . . . 〈an〉 and [a1][a2] . . . [an] respectively, where a1a2 . . . an is

V.A. Saraswat (Ed.): ASIAN 2003, LNCS 2896, pp. 110–124, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Combining Hierarchical Specification with Hierarchical Implementation 111

a run of Q. Then they prove that P |= φ iff P [a � Q] |= φ[a � Q] under some
syntactical conditions.

In the above approaches, the refinements of the specification and the model
are explicitly built on the structure of Q. This restricts the refinement step in
two ways: firstly, there are some desired properties of the refined system that
cannot be deduced in the setting of [10,13,14]. For example, let P = a; b + a; c,
φ = 〈a〉, Q = a′; (c′; b′; d′ + c′; b′). It’s obvious that P |= φ and Q |= 〈a′〉[c′]〈b′〉.
It is expected that P [a � Q] |= 〈a′〉[c′]〈b′〉. But it cannot be derived using the
approaches of [10,13,14]; secondly, the refinement step is restricted to one choice
of Q for refining an action a, which appears both in the refined process and the
refined specification explicitly.

In contrast to this, in [15] we proposed a general approach on how to con-
struct a low-level specification by refining the higher-level specification. But as
in [10,13,14], we also only considered the simple case to refine an abstract action
by a finite process. The basic idea is to define a refinement mapping Ω which
maps the high-level specification φ and the property ψ of the refinement Q of
an abstract action a to a lower-level specification by substituting ψ for 〈a〉 and
[a] in φ. Since ψ can be any property that holds in Q, we can get the expected
specification if φ and ψ are appropriate. For example, in the above example,
we can get Ω(φ, 〈a′〉[c′]〈b′〉, a) = 〈a′〉[c′]〈b′〉 which is exactly what we expect.
However, Q can only be any finite process, which implies that ψ is essentially
equivalent to a formula without fixpoint operators.

But, in many applications, an action has to be refined by a process with
potentially infinite behaviour. For example, in the programming, we can look
the interface of a procedure as an abstract action and its body as its refinement.
In an abstract level, we only need to use the interface instead of the procedure,
but it is necessary to substitute the body for the interface when the procedure
is considered in a lower level. In many cases, we need to implement a procedure
with possibly infinite behaviour in order to meet the given requirements. For
instance, in the example of a salesman [15] (It can be found in Section 4), if we
know that the job of the salesman in London every day is repeatedly to meet
some of his customers in his office or contact some of them by phone, the action
“work” in the top-most specification should be refined by the above concrete
procedure in the lower-level specification. However, it is obvious that such a job
can not be done using our previous approach.

So, in order to have more applications, we extend our previous work by
refining an abstract action by an arbitrary process in this paper. To this end,
we adopt FLC as specification language.

FLC is due to Müller-Olm [16], and is an extension of the µ-calculus by
introducing the chop operator “;”. FLC is strictly more expressive than the µ-
calculus because the former can define non-regular properties [16], whereas the
latter can only express regular properties [7,9]. The model-checking of FLC was
addressed in [11,12]. For technical reasons, here we augment FLC by introducing
a special propositional constant

√
to indicate if a process is terminated and re-

interpret [a] appropriately.

112 Naijun Zhan

As discussed in [15], a sound refinement mapping should keep the type of
properties to be refined, i.e. an existential property should be refined to an
existential property and similarly for the other properties. In order to define a
refinement mapping that can preserves the type of the property to be refined,
as in [15], the property for the refinement Q will be partitioned into two sub-
formulae: an universal formula and an existential formula. The former will be
used to substitute for [a] and the latter for 〈a〉 in φ. Such partition is justified by
the result proved in [4] that every property can be represented as the conjunction
of a safety property and a liveness property in branching models. Besides, we
require that ψ is only relevant to full executions of Q. If so, a refinement mapping
that keeps the type of the property to be refined can be defined like in [15].
Furthermore, we can prove the following theorem:

Theorem. (Refinement Theorem) If some syntactical conditions hold, P |=
φ and Q |= ψ;

√
then P [a � Q] |= Ω(φ, ψ, a).

The above theorem supports ‘a priori’ verification in the following sense: In
the development process we start with P |= φ and either refine P and obtain
automatically a (relevant) formula that is satisfied by P [a � Q]; or, we refine φ
using Ω(φ, ψ, a) and obtain automatically a refined process P [a � Q] that sat-
isfies the refined specification. Of course such refinement steps may be iterated.

To achieve the intended result, we need to assume that action refinement for
models is atomic. Our main aim in this work is to establish a correspondence
between hierarchical implementation and hierarchical specification of a complex
system. But if we allow that the refining process can be interleaved with others
problems will arise. E.g. (a ‖{} b)[a � a1; a2] means the parallel executions of a
and b in which a is refined by a1; a2. It’s obvious that a ‖{} b satisfies 〈a〉, and
a1; a2 satisfies 〈a1〉; (〈a2〉 ∧ [b]; false) which means that a1; a2 first performs a1,
then a2 but cannot perform b. We expect that a ‖{} bmeets 〈a1〉; (〈a2〉∧[b]; false)
after refining a by a1; a2. This is not true in the case of non-atomic action
refinement since b can be performed between the execution of a1 and a2. But it
is valid if we assume that action refinement is atomic [5,6]. So, in the sequel, we
discuss action refinement for models under the assumption of atomicity.

Besides, we will exploit different techniques such that all the results proved
in this paper are represented in a simpler way and easier to be used in practice.

The remainder of this paper is organized as follows: A modeling language is
defined in Section 2; Section 3 briefly reviews FLC; A refinement mapping for
specifications is given in Section 4; The correspondence between the hierarchical
specification and the hierarchical implementation of a complex system is shown
in Section 5; Finally, a brief conclusion is provided in Section 6.

2 Modeling Language – A TCSP-like Process Algebra

2.1 Syntax

As in [14], we use a TCSP-like process algebra in combination with an action
refinement operator as modeling language. Let Act be an infinite set of (atomic)
actions, ranged over by a, b, c, . . ., and A be a subset of Act. Let X be a set of

Combining Hierarchical Specification with Hierarchical Implementation 113

process variables, ranged over by x, y, z, The language of processes, denoted
by P and ranged over P,Q, . . ., is generated by the following grammar:
Definition 1.

P ::= δ | nil | a | x | P ;Q | P +Q | P ‖A Q | rec x.P | P [a � Q]

where a ∈ Act, x ∈ X , and P,Q ∈ P.
An occurrence of a process variable x ∈ X is called bound in a process term P

iff it does occur within a sub-term of the form rec x.P ′, otherwise called free. A
process expression P is called closed iff all occurrences of each variable occurring
in it are bound, otherwise it is called open. We will use fn(P) to stand for the
variables that have some free occurrence in P , bn(P) for the variables that have
some bound occurrence in P . When we say a process P is terminated, it means
that P does nothing except for terminating (see Definition 2). A variable x ∈ X
is called guarded within a term P iff every occurrence of x is within a sub-term
Q where Q lies in a subexpression Q∗;Q such that Q∗ is not terminated. A term
P is called guarded iff all variables occurring in it are guarded. Sometimes, we
abuse Act(P) to stand for the set of actions which occur in P .

For technical reasons, as in [8], we require the following well-formedness con-
ditions on P:

(i) None of operands of + is a terminated process;
(ii) All process terms are guarded;
(iii) The refinement of an action can not be a terminated process. As discussed,

e.g. in [17], refining an action by a terminated process is not only counter-
intuitive but also technically difficult.

Intuitively, P [a � Q] means that the system replaces the execution of an
action a by the execution of the subsystem Q every time when the subsystem P
performs a. This operator provides a mechanism to hierarchically design reactive
systems. The other expressions of P can be conceived as usual ones. The formal
interpretation of P will be provided in the next section.

2.2 Operational Semantics

Here we define an operational semantics for P employing transition systems. The
meaning of the constructs of the language can be interpreted in the standard
way except for the refinement operator. In order to guarantee the atomicity of
the refinement, the basic idea is to define a transition system for the process
that may be refined, then replace all transitions labelled with the action to be
refined by the transition system for the refinement.

Similar to [8], the above idea can be implemented by introducing an auxiliary
operator ∗ to indicate that a process prefixed with it is the remainder of some
process, which has the highest precedence and must be performed completely.
The state language, denoted by P∗, ranged over by s, . . ., is given by:

s ::= nil | δ | a | x | ∗s | s; s | P +Q | s ‖A s | s[a � Q] | rec x.P

where a ∈ Act, x ∈ X , P,Q ∈ P.

114 Naijun Zhan

According to the above definition, it is clear that P is a proper subset of P∗,
i.e. P ⊂ P∗.

In order to define the semantics of P∗, we need the following definition.

Definition 2. Let
√

and ab be the minimal relations on P∗ which satisfy the
following rules, respectively:

√
(nil)

√
(s)√
(∗s)√

(rec x.s)√
(s[a � Q])

√
(s1) ∧ √

(s2)√
(s1 ‖A s2)√
(s1; s2)

where Q ∈ P

√
(s)

ab(s) ab(a)
ab(x)

ab(s1) ∧ ab(s2)
ab(s1; s2)

ab(s1 + s2)
ab(s1 ‖A s2)

ab(s)
ab(rec x.s)

ab(s[a � Q])
where Q ∈ P

Definition of
√

Definition of ab

Note that in the above definition,
√

(s) means that s is terminated, whereas
ab(s) means that s is either in P, or terminated. A state s is called abstract if
ab(s), otherwise, called concrete.

Besides complying with the three well-formedness conditions for P, P∗ also
follows the below well-formedness condition:

(iv) At least one of the operands of ‖A is abstract.
An operational semantics of P∗ is given by the following transition rules:

Act a
a→ nil Nd P

a→ s
P +Q

a→ s and Q+ P
a→ s

Seq-1 s1
a→ s′

1

s1; s2
a→ s′

1; s2
Seq-2

√
(s1) and s2

a→ s′
2

s1; s2
a→ s′

2

Ref-1 s
b→ s′

s[a � Q] b→ s′[a � Q]
a
= b Ref-2 s

a→ s′ and Q a′
→ s1

s[a � Q] a′
→ (∗s1); s′[a � Q]

Rec P [rec x.P/x] a→ s

rec x.P
a→ s

Star s
a→ s′

∗s a→ ∗s′

A-Syn s1
a→ s′

1

s1 ‖A s2
a→ s′

1 ‖A s2 and s2 ‖A s1
a→ s2 ‖A s′

1
a /∈ A ∧ ab(s2)

Syn s1
a→ s′

1 and s2
a→ s′

2

s1 ‖A s2
a→ s′

1 ‖A s′
2 and s2 ‖A s1

a→ s′
2 ‖A s′

1
a ∈ A ∧ ab(s1) ∧ ab(s2)

We’d like to comment on some special rules as follows: The rule Nd says
that only two processes in P can be performed nondeterministically, the other
cases are impossible by the definition of P∗. The rule Ref-2 states that the
residual s1 of Q is non-interruptible. The rule Star says that ∗s behaves like s,
but the reached state is still concrete (if not properly terminated). The rule A-
Syn gives priority to the concrete component. At any time, if a concrete process
is in parallel with an abstract process, the latter has to remain idle till the
former finishes the executing. Observe that there is no way to reach a state
where both components are concrete, starting from an initial abstract state (in
fact, such a state would not be well-formed). Moreover, if both components are
abstract, the rule allows any of them to proceed first. The rule Syn states that

Combining Hierarchical Specification with Hierarchical Implementation 115

only two abstract processes can communicate each other. The communication
between a concrete process and another process may destroy the atomicity of
the refinement. In fact, it is impossible to reach a state where a concrete process
synchronizes with another process from an initial abstract state. The other rules
can be conceived as usual. The above rules guarantee that the execution of the
refinement Q is not only to be non-interruptible, but also to be either executed
completely, or not at all.

In the following, we investigate the notion of strong bisimulation on P∗.

Definition 3. – A binary symmetric relation R over the closed terms of P∗

is a strong bisimulation if for any (s1, s2) ∈ R
• √

(s1) iff
√

(s2); and
• for any a ∈ Act, s1

a→ s′
1, there exists s′

2 s.t. s2
a→ s′

2 and (s′
1, s

′
2) ∈ R.

– s1 and s2 are strong bisimilar, denoted by s1 ∼ s2, if and only if there exists
a strong bisimulation R such that (s1, s2) ∈ R.

– Let E,F ∈ P∗ and fn(E) ∪ fn(F) ⊆ {x1, . . . , xn}. Then E ∼ F iff for any
closed terms s1, . . . , sn, E{s1/x1, . . . , sn/xn} ∼ F{s1/x1, . . . , sn/xn}.
According to the above semantics, it is easy to show that

Lemma 1. For any closed term s ∈ P∗, s ∼ ∗s.
Because a concrete process has a priority in parallel with an abstract process,

∼ is not preserved by ‖A. For example, a1; a2 ∼ a[a � a1; a2], but (a1; a2) ‖{}
b
∼ a[a � a1; a2] ‖{} b. However, once we strengthen Definition 3 by adding the
following condition:

• ab(s1) iff ab(s2),
then the resulting largest bisimulation, denoted by ∼ab, is a congruence relation
over P∗. Besides, obviously, ∼ab is a proper subset of ∼. That is,

Theorem 1. ∼ab is a congruence over P∗ and ∼ab⊂∼.

Convention: From now on, we use P,Q, . . . to stand for processes in P∗.

3 Fixpoint Logic with Chop (FLC)

FLC is an extension of the modal µ-calculus by introducing the chop operator
“;”, which can express non-regular properties [16]. It is therefore strictly more
powerful than the µ-calculus, since [7,9] proved that only regular properties can
be defined in the µ-calculus. For our purpose, we modify FLC [16] slightly.

Let X,Y, Z, . . . range over an infinite set Var of variables, true and false
be two propositional constants as usual, and

√
be another one that is used to

indicate if a process is terminated.
The formulae of FLC are generated according to the following grammar:

φ ::= true | false | √ | τ | X | [a] | 〈a〉 | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1;φ2

| µX.φ | νX.φ

where X ∈ V ar and a ∈ Act1.
1 In [16], τ is called term.

116 Naijun Zhan

In the sequel, we use a to stand for 〈a〉 or [a], p for true, false or
√

, and σ
for ν or µ, Act(φ) for all actions that occur in φ.

As in the modal µ-calculus, the two fixpoint operators µX and νX bind
the respective variable X and we will apply the usual terminology of free and
bound occurrences of a variable in a formula, closed and open formulae etc. fn(φ)
denotes the variables that have some free occurrence in φ and bf(φ) stands for
the variables that have some bound occurrence in φ. X is said guarded in φ if
each occurrence of X is in a sub-formula φ preceded with a or p. If all variables
in φ are guarded, then φ is called guarded.

FLC is interpreted over a given labelled transition system T = (S, A,→),
where S ⊆ P∗, A ⊆ Act, and →⊆ S × A × S. A formula is interpreted as a
monotonic predicate transformer, which is simply a mapping f : 2S → 2S that
is monotonic w.r.t. the inclusion ordering on 2S . We use MPTT to represent
all these monotonic predicate transformers over S. MPTT, together with the
inclusion ordering defined by

f ⊆ f ′ iff f(A) ⊆ f ′(A) for all A ⊆ S,

forms a complete lattice. We denote the join and meet operators by � and �.
By Tarski-Knaster Theorem, the least and greatest fixed points of monotonic
functions: (2S → 2S) → (2S → 2S) exist. They are used to interpret fixed point
formulae of FLC.

The meaning of true and false are interpreted in the standard way, i.e.
by S and ∅ respectively. The meaning of

√
is to map any subset of S to the

subset of S which consists of all terminated processes in S. Therefore, a process
P meets

√
iff

√
(P). τ is interpreted as an identity. Because nil and δ have

different behaviour in the presence of ;, they should be distinguished by FLC.
To this end, [a] is interpreted as a function that maps a set of processes A to the
set in which each process is not terminated and any of the a-successors of the
process must be in A. This is different from its original interpretation in [16].
Therefore, according to our interpretation, P |= [a] only if ¬√

(P). Whereas in
[16], it is always valid that P |= [a] for any P ∈ P∗. So, it is easy to show that
nil
|= ∧

a∈Act[a]; false, while
∧

a∈Act[a]; false is the characteristic formula of δ.
The meaning of variables is given by an environment ρ : var → (2S → 2S) that
assigns variables to monotonic functions of sets to sets. ρ[X � f] agrees with ρ
except for associating f with X.

Definition 4. Formally, given a labelled transition system T = (S, A,→), the
meaning of a formula φ, denoted by Cρ

T (φ), is inductively defined as follows:

Cρ
T (true)(A) = S

Cρ
T (false)(A) = ∅

Cρ
T (

√
)(A) = {P | P ∈ S ∧ √

(P)}
Cρ

T (τ)(A) = A
Cρ

T (X) = ρ(X)
Cρ

T ([a])(A) = {P | ¬√
(P) ∧ ∀P ′ : P a→ P ′ ⇒ P ′ ∈ A}

Combining Hierarchical Specification with Hierarchical Implementation 117

Cρ
T (〈a〉)(A) = {P | ∃P ′ : P a→ P ′ ∧ P ′ ∈ A}

Cρ
T (φ1 ∧ φ2)(A) = Cρ

T (φ1)(A) ∩ Cρ
T (φ2)(A)

Cρ
T (φ1 ∨ φ2)(A) = Cρ

T (φ1)(A) ∪ Cρ
T (φ2)(A)

Cρ
T (φ1;φ2) = Cρ

T (φ1) · Cρ
T (φ2)

Cρ
T (µX.φ) = �{f ∈ MPTT | Cρ[X�f]

T (φ) ⊆ f}
Cρ

T (νX.φ) = �{f ∈ MPTT | Cρ[X�f]
T (φ) ⊇ f}

where A ⊆ S, and · stands for the composition operator over functions.

A process P is said to satisfy φ iff P ∈ Cρ
T (φ)(S) for some environment ρ,

denoted by P |= φ. φ ⇒ ψ means that Cρ
T (φ)(A) ⊆ Cρ

T (ψ)(A) for any T and
A ⊂ S and any ρ. φ ⇔ ψ means (φ ⇒ ψ) ∧ (ψ ⇒ φ). The other notations can
be defined in a standard way.
Convention: In the sequel, we assume the binding precedence among the op-
erators of the logic as follows: “; ” > “ ∨ ” = “ ∧ ” > “νX.” = “µX.” > “ ⇒ ” =
“ ⇔ ”.

Many properties of FLC have been shown in [16], e.g., FLC is strictly more
expressive than the µ-calculus since context-free processes can be characterized
by it; FLC is decidable for finite-state processes, undecidable for context-free
processes; the satisfiability and validity of FLC are undecidable; FLC does not
enjoy the finite-model property and so on.

[11] proved that FLC has the tree model property2, i.e.,

Theorem 2. Given P,Q ∈ P∗, and P ∼ Q, then for any closed φ, P |= φ iff
Q |= φ.

Given a formula φ, we define its beginning atomic sub-formulae, denoted by
FSub(φ), as:

FSub(φ) =̂

{φ} if φ = p,X, a or τ
FSub(φ1) ∪ FSub(φ2) if φ = φ1 ∧ φ2 or φ = φ1 ∨ φ2

FSub(φ1) if φ = φ1;φ2 and φ1
⇔ τ

FSub(φ2) if φ = φ1;φ2 and φ1 ⇔ τ

FSub(φ1) if φ = σX.φ1

Symmetrically, we define its ending atomic sub-formulae, denoted by ESub(φ),
as:

ESub(φ) =̂

{φ} if φ = p,X, a or τ
ESub(φ1) ∪ ESub(φ2) if φ = φ1 ∧ φ2 or φ = φ1 ∨ φ2

ESub(φ1) if φ = φ1;φ2 and φ2 ⇔ τ

ESub(φ2) if φ = φ1;φ2 and φ2
⇔ τ

ESub(φ1) if φ = σX.φ1

Example 1. FSub(〈a〉; 〈b〉 ∧ [c]; 〈e〉; [f]) = {〈a〉, [c]}, whereas ESub(〈a〉; 〈b〉 ∧
[c]; 〈e〉; [f]) = {〈b〉, [f]}. �
2 The proof for the tree model property of FLC in [11] still works in our case.

118 Naijun Zhan

When we say that
√

only occurs at the end of φ it means that
√

can only be
in ESub(φ) as a sub-formula of φ and can not appear elsewhere in the formula.

Definition 5. A formula φ is called existential formula if for any a ∈ Act, [a]
∈
FSub(φ). We use EF to stand for the set of existential formulae. Dually, a
formula φ is called universal formula if for any a ∈ Act, 〈a〉
∈ FSub(φ). We use
UF to stand for the set of universal formulae. For technical reasons, we stipulate
that τ
∈ UF . A formula φ is called a property formula if φ ⇔ φ1 ∧ φ2, where
φ1 ∈ EF and φ2 ∈ UF . The set of property formulae is denoted by PF .

For EF and UF , we have

Theorem 3. EF and UF are closed under all operators of the logic. I.e., φ opϕ∈
EF(UF) and σX.φ ∈ EF(UF) if φ, ϕ ∈ EF(UF), for any φ and ϕ, where
op ∈ {∨,∧, ; }.

4 Towards Hierarchical Specification

As the complexity of reactive system designs becomes overwhelming very quickly,
methods which allow to develop designs in a hierarchical fashion must be sup-
ported by the design formalisms employed. Such methods allow to develop a
design at different levels of abstraction thereby making the development proce-
dure more transparent and thus tractable: Most likely, a developer first divides
the intended (complex) design into various “sub-designs” to capture the ab-
stract overall structure of the complete design. Subsequently, the sub-designs
will be developed by enriching them step by step with details. This is the design
technique usually encountered in practice, see e.g. in [18]. In process algebraic
settings, action refinement as introduced in Section 2 supports the hierarchical
design.

In [15], we investigated the issue how to provide such a technique in a logical
framework. To this end, a refinement mapping is defined by substituting the
property of the refinement of an abstract action a for the modalities 〈a〉 and [a]
in a high-level specification and producing a lower-level specification. However,
in [15], we only consider the case when all specifications are represented by
some formulae in the subset NF of FLC called normal form formulae, which
essentially correspond to the µ-calculus with τ , and the properties of refinements
by some formulae without fixpoint operator in the subset. This is because in
[15] we concentrated on the simple case to refine an abstract action by a finite
process. Here, we consider the issue in general, i.e., refining an abstract action
by any process. To this end, we adopt FLC itself as specification language,
instead of NF . This is because after refining a formula in NF with a property
for a recursive process, the resulting formula may not be in NF any more. For
example, suppose that 〈a〉φ ∈ NF and a is refined by a process with the property
νX.〈a′〉X∧〈c′〉. By our definition, the refined specification is (νX.〈a′〉X∧〈c′〉)φ.
It is easy to prove that there exists no ϕ ∈ NF such that ϕ is equivalent to the
specification.

Combining Hierarchical Specification with Hierarchical Implementation 119

In a logical framework, actions are addressed as modalities and descriptions
of systems are represented by formulae. In most of modal logics, there are two
kinds of modalities, i.e. 〈a〉 and [a] which are used to express existential and uni-
versal properties respectively. As discussed in [15], a refinement mapping should
be property-preserving, i.e. an existential property should be refined to an exis-
tential property and similarly for the other properties. Otherwise, the mapping
is meaningless since it’s impossible to establish a correspondence between action
refinement for models and action refinement for specifications. For example,
P =̂a; b + a; c |= 〈a〉; 〈b〉, a1; a2 |= [a1]; 〈a2〉, but P [a � a1; a2]
|= ([a1]; 〈a2〉); 〈b〉,
since in the high-level specification, 〈a〉; 〈b〉 is an existential property, however
its refinement becomes a universal property.

To ensure that the mapping is property-preserving, we partition the prop-
erty ψ of the refinement of a into two parts: an existential property ψ1 and an
universal property ψ2 i.e. ψ ∈ PF . [a] will be replaced by ψ2, and 〈a〉 will be
replaced by ψ1. This is justified by the result shown in [4] that any property can
be presented as the intersection of a liveness property and a safety property in
branching temporal logics. So, PF is powerful enough to define the properties
of reactive systems.

Therefore, we define the refinement mapping as follows:

Definition 6. Suppose φ is a high-level specification, a is an abstract action
to be refined, and ψ=̂ψ1 ∧ ψ2 ∈ PF is the description of the refinement of a,
where ψ1 ∈ EF and ψ2 ∈ UF . We define the refinement mapping, denoted by
Ω(φ, ψ, a), as follows:

Ω(φ, ψ, a) =̂ φ{ψ1{τ/
√}/〈a〉, ψ2{τ/

√}/[a]},

where φ{ψ/χ} means to substitute ψ for each occurrence of χ in φ, with χ ∈
{X,√, 〈a〉, [a]}.

According to the above definition, it is easy to get the following results.

Lemma 2. Suppose X does not occur in ψ. Then

Ω(φ1{φ2/X}, ψ, a) ⇔ Ω(φ1, ψ, a){Ω(φ2, ψ, a)/X}.

Lemma 3. (1) If φ ⇔ φ′ then Ω(φ, ψ, a) ⇔ Ω(φ′, ψ, a);
(2) If ψ ⇔ ψ′ and

√
only occurs at the ends of ψ and ψ′, then Ω(φ, ψ, a) ⇔

Ω(φ, ψ′, a).

Theorem 4 (Applicability). If φ ∈ FLC and ψ ∈ PF , then Ω(φ, ψ, a) ∈
FLC; If φ, ψ ∈ PF , then Ω(φ, ψ, a) ∈ PF .

Here, we further study the example of a salesman that is firstly presented in
[6] and has been investigated in [15] to demonstrate how to employ our approach
to hierarchically specify a complex systems.

Example 2. Suppose that a salesman has to go by car from his office in Paris to
another office in London and work there for some time, and then has to go back
to Paris repeatedly. He takes a hovercraft to cross the Channel.

120 Naijun Zhan

So, the top-most specification of the system can be represented as follows:

φ =̂ νX.

(
〈leave Paris〉; [fr thr Channel]; 〈arrive in London〉; 〈work〉;

〈leave London〉; [gb thr Channel]; 〈arrive in Paris〉;X

)

,

where the actions “work” and “x thr Channel” will be refined subsequently.
The job of the salesman in London is to contact repeatedly some of his

customers by phone, or to meet some of them in his office to discuss something.
Therefore, we can refine the action “work” by a process that meets the following
property:

ψ1 =̂ νX.(〈contact Customers〉 ∨ 〈meet Customers〉);X ∧ 〈finish Work〉.

Meanwhile, we can describe “x thr Channel” in more detail. There are two
platforms lying on the two sides of the Channel respectively that take charge
of the hovercraft. At the beginning, one of them loads the salesman’s car, then
arranges the hovercraft to depart. Then the hovercraft crosses through the Chan-
nel. After the hovercraft arrives at the opposite side, the other platform unloads
the car. Hence, “x thr Channel” can be enriched as follows:

ψx=̂[x load]; [x departure]; 〈cross Channel〉; 〈x arrival〉; 〈x unload〉 ∧ true.

Furthermore, we can refine “x departure” by a process with the property

ψ2=̂[finish loading]; 〈engine on〉; 〈bye bye〉 ∧ true,

where finish loading signals the end of loading, and cross Channel by a process
with the property

ψ3 =̂ true ∧ 〈sit down〉;
(νX.(〈newspaper〉 ∨ 〈tea〉 ∨ 〈coffee〉); X ∧ 〈keep idle〉); 〈stand up〉.

So, the specification for the final system can be represented by

Ω(Ω(φ,Ω(Ω(ψx, ψ2, x departure), ψ3, cross Channel), x thr Channel), ψ1,work),

where x ∈ {fr, gb}, and if x = fr then x = gb else x = fr.
It is obvious that we can not refine “work” and “cross Channel” by some

processes that satisfy ψ1 and ψ3 respectively in [15] because on the one hand,
the resulting specification is no longer in NF ; on the other hand, “work” and
“cross Channel” both are needed to be refined by some processes with possibly
infinite behaviour. �

5 Relating Hierarchical Specification
to Hierarchical Implementation of a Large System

In this section, we establish a correspondence presented by the Refinement The-
orem below between hierarchical specification and hierarchical implementation

Combining Hierarchical Specification with Hierarchical Implementation 121

of a complex system. It states that if Q |= ψ;
√

, P |= φ and some syntactical
conditions hold, then P [a � Q] |= Ω(φ, ψ, a). This result supports ‘a priori’
verification. In the development process we start with P |= φ and either refine P
and obtain automatically a (relevant) formula that is satisfied by P [a � Q]. Or,
we refine φ using Ω(φ, ψ, a) and obtain automatically a refined process P [a � Q]
that satisfies the refined specification. Of course such refinement steps may be
iterated.

In order to ensure the Refinement Theorem is valid, the following syntactical
conditions are necessary:

Above of all, it is required that (Act(P) ∪ Act(φ)) ∩ (Act(Q) ∪ Act(ψ)) = ∅,
because of the following considerations:

(i) As far as action refinement for models is concerned, no deadlock will be
introduced or destroyed;

(ii) no unsatisfaction between P [a � Q] and Ω(φ, ψ, a) will be caused because
φ involves Q. For instance, let P =̂a; b, φ=̂[a]; 〈b〉 ∧ [c]; 〈d〉, Q=̂c; e and
ψ=̂[c]; 〈e〉. It is obvious that P |= φ and Q |= ψ;

√
, but P [a � Q]
|=

Ω(φ, ψ, a);
(iii) Symmetrically, no unsatisfaction between P [a � Q] and Ω(φ, ψ, a) will

be caused because ψ involves P . For example, let P =̂a; b+ b; a, φ=̂[a]; 〈b〉,
Q=̂c; e and ψ=̂[c]; 〈e〉 ∧ [b]; 〈d〉. It is obvious that P |= φ and Q |= ψ;

√
,

but P [a � Q]
|= Ω(φ, ψ, a).

It is clear that this condition can guarantee the above three requirements.
Besides, it’s possible that ψ only describes partial executions of Q, so the

refined specification may not be satisfied by the refined system. For example,
it’s obvious that a; b + a; c |= 〈a〉; 〈b〉 and a1; a2 |= 〈a1〉, but (a; b + a; c)[a �

a1; a2]
|= 〈a1〉; 〈b〉. In order to solve such a problem, we require that ψ describes
full executions of Q, i.e., Q |= ψ;

√
. Normally, we only consider to refine an

abstract action a by a normed process Q, i.e., for any derivative Q′ of Q, Q′ may
terminate in finite steps. If so, for any given Q and ψ ∈ PF with Q |= ψ, the
above requirement can be satisfied by constructing ϕ as ψ; (µX.(

∨
a∈Act 〈a〉);X∨

τ) instead of ψ. It is clear that ϕ ∈ PF , P |= ψ iff P |= ϕ for each P ∈ P∗, and
Q |= ϕ;

√
. Therefore, in most cases, the above constraint does not give rise to

any restriction to the applications of the theorem.
Finally, it is possible that

√
as a sub-formula of ψ makes the sub-formulae

following it with ; no sense during calculating the meaning of ψ, but the sub-
formulae play a nontrivial role during interpreting Ω(φ, ψ, a). E.g. a′;nil |=
〈a′〉; √; [a′]; 〈b′〉 and a; a; c |= 〈a〉; 〈a〉; 〈c〉, but

(a; a; c)[a � a′;nil]
|= (〈a′〉; τ ; [a′]; 〈b′〉); (〈a′〉; τ ; [a′]; 〈b′〉); 〈c〉.

So, we require that
√

only can appear at the end of ψ as a sub-formula. In
fact, such a requirement is reasonable because all formulae can be transformed
to such kind of forms equivalently because p;φ ⇔ p.

Now, we can represent our Refinement Theorem as follows:

122 Naijun Zhan

Theorem 5 (Refinement Theorem).
If (Act(P) ∪ Act(φ)) ∩ (Act(ψ) ∪ Act(Q)) = ∅, Q |= ψ;

√
and P |= φ, then

P [a � Q] |= Ω(φ, ψ, a), where ψ ∈ PF and
√

only occurs at the end of ψ.

In order to demonstrate how to apply the Refinement Theorem to verify a
complex system hierarchically, we continue Example 2.

Example 3. As explained in Example 2, at the top level, we can implement the
system as:

Sys =̂ fr Channel ‖{fr thr Channel} Salesman ‖{gb thr Channel} gb Channel.

Where x Channel=̂rec y.x thr Channel; y, and

Salesman =̂ rec x.leave Paris; fr thr Channel; arrive in London;
work; leave London; gb thr Channel; arrive in Paris;x.

It’s obvious that Sys |= φ.
Then, we can refine “work” by Subsys1 which is defined by

Subsys1 =̂ rec x.((contact Customers + meet Customers);x+ finish Work).

It’s obvious that Subsys1 |= ψ1;
√

.
Then, “x thr Channel” can be implemented by
Subsysx=̂x load||{x load}Channel,

where Channel =̂ fr Platform ‖{fr arrival,fr departure} Hovercraft
‖{gb arrival,gb departure} gb Platform,

where Hovercraft =̂ fr departure;cross Channel; gb arrival +
gb departure;cross Channel; fr arrival,

x Platform =̂ x load;x departure + x arrival;x unload.
It’s easy to show that Subsysx |= ψx;

√
.

Furthermore, we can refine “x departure” by Subsys2 and “cross Channel”
by Subsys3, where,

Subsys2 =̂finish loading; engine on; bye bye,
Subsys3 =̂sit down; recx.([(coffee + tea)||{}newspaper];x+keep idle); stand up.

Certainly, Subsys2 |= ψ2;
√

and Subsys3 |= ψ3;
√

.
The final system is obtained as:

Sys [work � Subsys1,

x thr Channel � Subsysx[
x departure � Subsys2,
cross Channel � Subsys3

]],

where x ∈ {fr, gb}.
According to the Refinement Theorem, the final system satisfies the final

specification. �

Combining Hierarchical Specification with Hierarchical Implementation 123

6 Concluding Remarks

In this paper, we extend our previous work on combining hierarchical specifica-
tion with hierarchical implementation of a complex system by allowing to refine
an abstract action by an arbitrary process. Technically, we also greatly simplify
our previous work such that our method can be more easily applied in practice.
Furthermore, we also establish a correspondence between hierarchical specifi-
cation and hierarchical implementation that supports ‘a priori’ verification in
system design.

Similar results are shown in [10,14], but in their approaches, a refined specifi-
cation is obtained from the original specification and the refinement Q, where Q
is a finite process. Therefore, besides sharing the restriction of our previous work
[15], certain interesting expected properties of the refined system cannot be de-
rived using their approaches. What’s more, we can show that their approaches
can be seen as a special case of our method from a specification-constructing
point of view. [2] discussed composing, refining specifications of reactive sys-
tems as some sound rules of a logic. [1] considered the problem given a low-level
specification and a higher-level specification, how to construct a mapping from
the former to the latter in order to guarantee the former implements the latter.
Our refinement mapping Ω maps the abstract specification to the lower-level
specification, i.e. we go the converse direction.

In our framework, composing specifications also can be dealt with, for exam-
ple, supposing P |= φ;

√
, and

√
only occurs at the end of φ and Q |= ψ, we can

get a composite specification like φ{τ/√};ψ for the combined system P ;Q.
In this paper, we use the standard interleaving setting, so we only consider

the case of atomic action refinement for models because the standard bisimu-
lation notion is not preserved by non-atomic action refinement in this setting.
In fact, we believe our approach may be applied to the case of non-atomic ac-
tion refinement, too, if an appropriate logic which is interpreted over some true
concurrent settings such as event-structures is available. But it is still an open
question how to establish such kind of logics.

Acknowledgements

The author wants to thank Prof. Mila Majster-Cederbaum and Harald Fecher,
who joined the previous work for many fruitful discussions related to the topic. In
particular, the author thanks Prof. Mila Majster-Cederbaum for going through
the whole paper and for some critical comments on it which improve the pre-
sentation of this paper too much. The author also thanks Dr. Wu Jinzhao and
some anonymous referees for their useful comments on this paper.

References

1. M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical
Computer Science, 82:253-284, 1991.

124 Naijun Zhan

2. M. Abadi and G. Plotkin. A logical view of composition and refinement. Theoretical
Computer Science, 114:3-30, 1993.

3. L. Aceto and M. Hennessy. Termination, deadlock, and divergence. Journal of
ACM, Vol. 39, No.1:147-187. January, 1992.

4. A. Bouajjani, J.C. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis. Safety for
branching time semantics. ICALP’91, LNCS 510, pp. 76-92.

5. G. Boudol. Atomic actions. Bull. European Assoc. The. Comp. Sci. 38:136-144.
6. P. Degano and R. Gorrieri, Atomic Refinement in Process Description Languages.

TR 17-91 HP Pisa Center, 1991.
7. E.A. Emerson and C.S. Jutla. Tree automata, µ-calculus, and determinacy. In

proc. of 33rd IEEE Symp. on Found. of Comp. Sci., pp.368-377, 1991.
8. R. Gorrieri and A. Rensink. Action refinement. Handbook of Process Algebra,

Elsevier Science, 1047-1147. 2001.
9. D. Janin and I. Walukiewicz. On the expressive completeness of the propositional

µ-calculus with respect to monadic second order logic. CONCUR’96, LNCS 1119,
pp.263-277.

10. M. Huhn. Action refinement and properties inheritance in systems of sequential
agents. CONCUR’96, LNCS 1119, pp. 639-654.

11. M. Lange and C. Stirling. Model checking fixed point logic with chop. FOS-
SACS’02, LNCS 2303, pp. 250-263.

12. M. Lange. Local model checking games for fixed point logic with chop. CON-
CUR’02, LNCS 2421, pp. 240-254.

13. M. Majster-Cederbaum and F. Salger. Correctness by construction: towards ver-
ification in hierarchical system development. SPIN’00, LNCS 1885, pp. 163-180.

14. M. Majster-Cederbaum and F. Salger. Towards the hierarchical verification of
reactive systems. To appear in Theoretical Computer Science.

15. M. Majster-Cederbaum, N. Zhan and H. Fecher. Action refinement from a logical
point view. VMCAI’03, LNCS 2575, pp.253-267.

16. M. Müller-Olm. A Modal Fixpoint Logic with Chop. STACS’99, LNCS 1563, pp.
510-520.

17. A. Rensink. Models and Methods for Action Refinement. PhD thesis, University
of Twente, Enschede, Netherlands, Aug. 1993.

18. J. Sifakis. Research directions for concurrency. ACM Computing Surveys, 28(4):55.
1996.

	1 Introduction
	2 Modeling Language -- A TCSP-like Process Algebra
	2.1 Syntax
	2.2 Operational Semantics

	3 Fixpoint Logic with Chop (FLC)
	4 Towards Hierarchical Specification
	5 Relating Hierarchical Specification to Hierarchical Implementation of a Large System
	6 Concluding Remarks
	References

