
Formal Verification of Simulink/Stateflow
Diagrams

Liang Zou1, Naijun Zhan1, Shuling Wang1(B), and Martin Fränzle2

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

wangsl@ios.ac.cn
2 Department of Computing Science, C. V. Ossietzky Universität Oldenburg,

Oldenburg, Germany

Abstract. Simulink is an industrial de-facto standard for building exe-
cutable models of control systems and their environments. Stateflow is
a toolbox used to model reactive systems via hierarchical statecharts
within a Simulink model, extending Simulink’s scope to event-driven
and hybrid forms of embedded control. In safety-critical control systems,
exhaustive coverage of system dynamics by formal verification would
be desirable, being based on a formal semantics of combined Simulink/
Stateflow graphical models. In our previous work, we addressed the prob-
lem of formal verification of pure Simulink diagrams via an encoding into
HCSP, a formal modelling language encoding hybrid system dynamics by
means of an extension of CSP. In this paper, we extend the approach to
cover Simulink models containing Stateflow components also. The trans-
formation from Simulink/Stateflow to HCSP is fully automatic, and the
formal verification of the encoding is supported by a Hybrid Hoare Logic
(HHL) prover based on Isabelle/HOL. We demonstrate our approach by
a real world case study originating from the Chinese High-speed Train
Control System (CTCS-3).

Keywords: Simulink/Stateflow · Formal verification · Hybrid CSP ·
Hybrid Hoare Logic

1 Introduction

Simulink [1] is an environment for the model-based analysis and design of signal-
processing systems. Being based on a large palette of individually simple function
blocks and their composition by continuous-time synchronous data-flow, it offers
an intuitive graphical modeling language reminiscent of circuit diagrams and
thus appealing to the practicing engineer. Stateflow [2] is a toolbox adding facil-
ities for modeling and simulating reactive systems by means of hierarchical state-
charts, extending Simulink’s scope to event-driven and hybrid forms of embedded
control. Modeling, analysis, and design using Simulink/Stateflow have become
a de-facto standard in the embedded systems industry, as the circuit analogy of
Simulink and the hierarchy mechanisms of Stateflow, which include sequential
c© Springer International Publishing Switzerland 2015
B. Finkbeiner et al. (Eds.): ATVA 2015, LNCS 9364, pp. 464–481, 2015.
DOI: 10.1007/978-3-319-24953-7 33



Formal Verification of Simulink/Stateflow Diagrams 465

and concurrent state composition, help to comprehend the massively concur-
rent mixed-signal dynamics arising from the multiple data paths and state-rich
reactive components present in modern embedded control systems.

System analysis and design validation within Simulink/Stateflow are based
on numerical simulation, rendering it prone to incomplete coverage of open sys-
tems and possible unsoundness of analysis results due to numerical error. There
are various partial remedies to this problem: Statistical model checking (SMC,
cf. e.g. [6]) tries to save the virtues of simulation-based analysis, namely low
computational complexity and moderate constraints on the shape of models,
while addressing the coverage problem through a rigorous statistical interpreta-
tion of simulation results. Yet being a simulation-based procedure that employs
the standard simulators, it still is subject to the soundness issue of numerical
simulation. Set-based numerical simulation computing enclosures of system tra-
jectories, as pioneered already in the sixties [14], could in principle resolve this
problem, but variants handling non-smooth derivatives [16], as omnipresent in
Simulink/Stateflow models, do not scale to the system sizes encountered in indus-
trial models. The same applies to state-exploratory methods either computing
(an overapproximation of) the reachable state space or (semi-)deciding a sym-
bolic reachability criterion. These require to translate the Simulink model into
the input language of a formal verification tool for hybrid discrete-continuous
systems, be it an automaton-based language [3] or a symbolic description [9],
and employ the corresponding verification engines. These engines pursue an
exhaustive search of the state space, thus providing certificates which cover all
input stimuli possible in an open system, and do increasingly apply verified
arithmetic, rendering them resistant against numerical error. Fully automatic
analysis of Simulink/Stateflow models is, however, hampered by Simulink’s mod-
eling paradigm of connecting numerous concurrently executing small blocks via
continuous-time synchronous dataflow, yielding tightly coupled, fine-granular
concurrency in the translated models, which is detrimental to state-exploratory
analysis.

In this paper, we do therefore investigate the translation of Simulink/Stateflow
into a process calculus with its richer set of composition primitives. We present
an encoding of the semantics in terms of HCSP [11], a formal modelling language
encoding hybrid system dynamics by means of an extension of CSP [10], thus pro-
viding the formal basis for an automatic translation from Simulink/Stateflow to
HCSP. As analysis of HCSP models is supported by an interactive Hybrid Hoare
Logic (HHL) prover based on Isabelle/HOL, this provides a gateway to mecha-
nized verification, which we demonstrate on a real world case study originating
from the Chinese High-speed Train Control System. This research extends our
previous work [23] addressing Simulink only.

Related Work. There has been a range of work on translating Simulink into mod-
elling formalisms supported by analysis and verification tools. Tripakis
et al. [19] present an algorithm for translating discrete-time Simulink models
to Lustre, a synchronous language featuring a formal semantics and a number
of tools for validation and analysis. Cavalcanti et al. [4] put forth a semantics



466 L. Zou et al.

for discrete-time Simulink diagrams using Circus, a combination of Z and CSP.
Meenakshi et al. [12] propose an algorithm translating a Simulink subset into
the input language of the finite-state model checker NuSMV. Chen et al. [5]
present a translation of Simulink models to the real-time specification language
Timed Interval Calculus (TIC), which can accommodate continuous Simulink
diagrams directly, and they validate TIC models using an interactive theorem
prover. Their translation is confined to continuous blocks whose outputs can be
represented explicitly by a closed-form mathematical relation on their inputs.
In contrast, our previous work [23] can handle all continuous blocks by using
the notions of differential equations and invariants in the HCSP encodings, and
the use of a process calculus based language facilitates compositionality in both
construction and verification.

Beyond the pure Simulink models considered in the above approaches, mod-
els comprising reactive components triggered by and affecting Simulink’s dataflow
have also been studied recently. Hamon et al. [7] propose an operational semantics
of Stateflow, which serves as a foundation for developing tools for formal analysis
of Stateflow designs. Scaife et al. [17] translate a subset of Stateflow into Lustre
for formal analysis. Tiwari [18] defines a formal semantics of Simulink/Stateflow
using guarded pushdown automata, in which continuous dynamical systems mod-
eled by Simulink are discretized, and he discusses how to verify a guarded sequence
via type checking, model checking and theorem proving. Agrawal et al. [3] pro-
pose a method to translate Simulink/Stateflow models into hybrid automata using
graph flattening, and the target models represented by hybrid automata can then
be formally analyzed and verified by model checkers for hybrid systems. Their
approach induces certain limitations, both for the discrete-continuous interfaces
in Simulink/Stateflow models, where the output signals of Stateflow blocks are
required to be Boolean and to immediately connect to the selector input of an ana-
log switch block, and for the forms of continuous dynamics, as most model check-
ers for hybrid systems support only very restricted differential equations. Miller
et al. [13] propose a method to translate discrete Simulink/Stateflow models into
Lustre for formal analysis. In our approach, we relax these constraints and con-
sider how to define a formal semantics for the combination of Simulink/Stateflow
in general, including advanced features like early return logic, history junction,
nontermination of Stateflow. We gain this flexibility by resorting to interactive
theorem proving rather than automatic model checking for discharging the proof
obligations.

2 Simulink/Stateflow and Hybrid CSP

In this section, we briefly introduce the source language Simulink/Stateflow,
the target language Hybrid CSP (HCSP), the specification language Hybrid
Hoare Logic and its prover. We expand only on the most relevant features of
Simulink/Stateflow, and the reader is referred to [1,2] for more details.



Formal Verification of Simulink/Stateflow Diagrams 467

2.1 Simulink

A Simulink model contains a set of blocks, subsystems, and wires, where blocks
and subsystems cooperate by data-flow through the connecting wires. An ele-
mentary block receives input signals and computes output signals according to
user-defined parameters altering its functionality. One typical parameter is sam-
ple time, which defines how frequently the computation is performed. Blocks
are classified into two types: continuous blocks with sample time 0, and discrete
blocks with positive sample time. Blocks and subsystems in a model receive
inputs and compute outputs in parallel.

Figure 1 gives a Simulink model of train movement, comprising four blocks,
including continuous integrator blocks v and p and discrete blocks c and acc.
Block v outputs the velocity of the train by integrating acceleration acc over time;
similarly, p outputs the distance of the train computed by timewise integration
of velocity v, and acc computes acceleration from the constant provided by c
and distance p.

v

1
s

p

1
s

c

1000

acc

Fig. 1. A simple control system

A

C
du: s=s+1

/h=0;m=0
[s>=59]{m=m+1}

2

[m>=60]/h=h+1;m=0

1

/s=0

Fig. 2. A timer

2.2 Stateflow

As a toolbox integrated into Simulink, Stateflow offers the modeling capabilities
of statecharts for reactive systems. It can be used to construct Simulink blocks,
fed with Simulink inputs and producing Simulink outputs. A Stateflow diagram
has a hierarchical structure, which can be an AND diagram, for which states
are arranged in parallel and all of them become active whenever the diagram
is activated; or an OR diagram, for which states are connected with transitions
and only one of them can be active. In the following, we will explain the main
ingredients of Stateflow.

Alphabet: The alphabet of a Stateflow diagram consists of a finite set of events
and variables. An event can be an input or output of the diagram, or may
be local to it. A variable may also be set as input, output, or local, and
moreover, it can be associated with an initial value if necessary.

States: States can be hierarchical, containing another Stateflow diagram. Because
of hierarchy, transitions originating from a state are classified into two types
depending on whether or not their target states are inside the same state:



468 L. Zou et al.

ingoing and outgoing transitions. All transitions are ordered by a strict prior-
ity such that there is no non-determinism in transition selection. A state may
be associated with three optional types of actions: An entry action executed
when the state is activated; a during action executed when no transition is
enabled; and an exit action executed imemdaitely before a transition leaves
the state. The actions of Stateflow may be either assignments, or emissions
of events, etc.

States in an AND diagram are assigned priorities and their actions are
actually executed in sequential order according to that priority.

Transitions: A transition is a connection between states. In Stateflow, it may
be a complex transition network, consisting of several transitions joined by
junctions. Default transitions with no source states or source junctions are
allowed for OR diagrams, and they are used to select the active state when
the OR diagram is activated. Each transition is of the form E[C]{cAct}/tAct,
where E is an event, C is the guard condition, cAct the condition action, and
tAct the action. All these components are optional. cAct will be executed
immediately when event E is triggered and condition C holds, while tAct
will is put in a queue first and executed after the corresponding transition is
taken.

These syntactic components form the basis of the follwing execution semantics.

Initialization: Initially, the whole system is activated: for an AND diagram,
all the parallel states are activated according to the priority order; while
for an OR diagram, one of the states is activated by performing the default
transition.

Broadcasting and Executing Transition: Each Stateflow diagram is acti-
vated at sample times periodically or by trigger events, depending on the
diagram’s settings. For the second case, as soon as one of the trigger event
arrives, called current event, it will be broadcasted through the whole dia-
gram. For an AND diagram, the event will be broadcasted sequentially to the
parallel states inside the diagram according to the priority order; while for an
OR diagram, it will find the active state of the diagram and be broadcasted
to it. It will then check the outgoing transitions of the current active state
according to the priority order, and if there is one valid transition that is able
to reach a state, the transition will be taken; otherwise, check the ingoing
transitions in the same way. If there is neither an outgoing nor an ingoing
valid transition enabled, the during action of the state will be executed, and
then the event is broadcasted recursively to the sub-diagram inside the state.

The transition might connect states at different levels in the hierarchical
diagram. When a transition connecting two states is taken, it will first find
the common ancestor of the source and target states, i.e. the nearest state
that contains both of them inside, then perform the following steps: exit from
the source state (including its sub-diagram) step by step and at each step
execute the exit action of the corresponding state and set it to be inactive,
and then enter step by step to the target state (including its sub-diagram),
and at each step, set the corresponding state to be active and execute the
corresponding entry action.



Formal Verification of Simulink/Stateflow Diagrams 469

Figure 2 gives an example of Stateflow. States A and C are activated initially,
with variables h, m, and s being set to 0. A has a transition network to itself,
enabled when s equals to 59. Once the network is enabled, the outgoing transition
is executed, and thus m is increased by 1; then it will execute transition 1 due
to its higher priority, increasing h by 1 and resetting m to 0 if m equals to 60.
If transition 1 is not enabled, 2 is taken.

The combination of Simulink and Stateflow is exemplified by the two exam-
ples in Figs. 1 and 2. In order to implement the block acc in Fig. 1, we revise the
Stateflow diagram in Fig. 2 as follows: We add a condition action [True]{acc =
1000/p + m/100} to transition 2 of the Stateflow diagram, updating the train’s
acceleration every minute to become 1000/p + m/100. We then replace blocks
acc and c by the modified diagram.

2.3 Hybrid CSP (HCSP)

HCSP [8,20,21] is a formal language for describing hybrid systems. It is an
extension of Hoare’s Communicating Sequential Processes (CSP) by timing con-
structs, interrupts, and differential equations modelling continuous evolution.
Data exchange among processes is confined to instantaneous synchronous com-
munication, avoiding shared variables as present in Simulink. For a comprehen-
sive introduction to HCSP refer to [20].

The syntax of HCSP is given as follows:

P : := skip | x := e | ch?x | ch!e | P ;Q | B → P | P � Q | X
| µX.P | 〈F(ṡ, s) = 0&B〉 | 〈F(ṡ, s) = 0&B〉 � �i∈I(ioi → Qi)

S: := P | S‖S
Here, ioi stands for a communication event, i.e., ch?x or ch!e, P,Q,Qi for
HCSP processes, x and s for variables, X for process variables, and ch for
channel names. B and e are Boolean and arithmetic expressions. The intended
meaning of the individual constructs is as follows:

– skip, x := e (assignment), ch?x (input), ch!e (output), X, P ;Q (sequential
composition), B → P (conditional statement), P�Q (internal choice), µX.P
(recursion) and P‖Q (parallel composition) are understood as in CSP.

– 〈F(ṡ, s) = 0&B〉 is the continuous evolution statement, where s represents
a vector of real variables and ṡ their derivatives. It forces s to continuously
evolve according to the differential equation F(s, ṡ) = 0 as long as condition
B holds, and terminates immediately when B turns false.

– 〈F(ṡ, s) = 0&B〉 � �i∈I(ioi → Qi) behaves like 〈F(ṡ, s) = 0&B〉, except that
the continuous evolution is preempted as soon as one of the communications
ioi occurs, then being followed by the respective Qi. If the continuous evo-
lution terminates before any preemption then the overall process terminates
directly.



470 L. Zou et al.

2.4 Hybrid Hoare Logic (HHL)

In [11], we have extended Hoare Logic to hybrid systems by adding history
formulas to describe continuous properties that hold throughout the whole exe-
cution of HCSP processes. The history formulas are defined within Duration
Calculus (DC), which is an extension of Interval Temporal Logic (ITL) [15] for
specifying and reasoning about real-time systems. In HHL, each specification for
a sequential process P takes the form {Pre}P {Post;HF}, where Pre, Post are
traditional pre-/post-conditions on variables expressed in first-order logic, and
HF is a history formula in DC recording the execution history of P , includ-
ing real-time and continuous properties. The specification for a parallel process
is then obtained by assigning to each sequential component an HHL condition
{Pre1, P re2}P1‖P2 {Post1, Post2;HF 1,HF 2}. Each HCSP construct is axiom-
atized within HHL by a set of axioms and inference rules. A more comprehensive
explanation of HHL can be found at [11,20]. For tool support, we have imple-
mented an interactive theorem prover for HHL based on Isabelle/HOL [20,22].
The tool can be downloaded from https://github.com/submission/Sim2HCSP.

3 From Simulink/Stateflow to HCSP

In previous work [23], we have translated a subset of Simulink into HCSP
processes and then applied the HHL prover to the target processes for formal
verification. In this section, we will first discuss the translation of Stateflow mod-
els into HCSP and then show how this translation can be integrated with our
previous work, so that we get a translation from Simulink/Stateflow graphical
models into HCSP. We first consider each of the main ingredients of Stateflow,
including transition networks, broadcasting, states etc., and then provide a gen-
eral template for translating a Stateflow diagram.

3.1 Transition Networks

For translating a transition, two main issues should be considered: first, a transi-
tion network may consist of several transitions joined by junctions, thus we need
to traverse the transition network to find each valid transition path; second, a
transition may have super-structure, i.e. the source and target states can be at
different levels, so an appropriate ordered sequence of exit and entry actions has
to be executed upo transitioning.

Algorithm 1 presents the main recursive algorithm for translating a transition
network with source state S and triggering event E to a HCSP process. The
boolean variable done indicates whether a valid transition that connects S and a
destination state has been executed in current transition network. TTN adopts
depth-first search. In order to deal with possible loops in a transition network
N , we introduce a process variable PJ for each junction J in N , and Pset to
store the process equation corresponding to PJ defined by recursively calling
TTN starting from J . target and cPath represent current location and current

https://github.com/submission/Sim2HCSP


Formal Verification of Simulink/Stateflow Diagrams 471

Algorithm 1. Translating Transition Networks (TTN(S,E, done))
Require: A source state S, a triggering event E, and a boolean variable done
Ensure: A HCSP process proc representing the transition network starting from S

and a set of HCSP processes Pset that assist the definition of proc
Vars cPath, target, proc = “ACTLOC = ACT”, Pset = ∅;

1: for (cPath = 1; cPath ≤ S.tSize; cPath = cPath + 1) do
2: t = S.getTrans(cPath); target = t.getTarget();
3: proc = proc � “(E == t.getEvent() & t.getCond() & ¬done) →

(t.getCAction();ACT := (ACTLOC ; t.getTAction());”;
4: if target.isState() then
5: Find common father for states S, target, and all junctions along the interme-

diate path;
6: proc = proc � “Pexit;ACT;Pentry; done := True);”;
7: else
8: if ¬Pset.contains(Ptarget) then
9: Pset.put(Ptarget,TTN(target, E, done));

10: end if
11: proc = proc � Ptarget� “);”;
12: end if
13: end for

transition being traversed respectively. ACT is a process variable to accumulate
the transition actions that have been traversed.

proc is a string that represents the constructed HCSP process, which is put
within double quotes in the algorithm. Operator � is used to concatenate two
strings. At the beginning, proc is initialized by “ACT := skip; ”, then it is
extended by concatenating the process constructed by calling TTN (S,E, done).
Finally, by solving equations in Pset, each occurrence of PJ in proc can be
replaced by the corresponding solution.

We explain Algorithm1 now. It starts by initializing ACTLOC by ACT , and
Pset by ∅. The for loop then translates the transitions of S according to their
order:

1. line 2 gets the transition according to the path number cPath, assigns it to
t, and stores its target in target;

2. at line 3, if the event of t is same as E, the condition of t is satisfied, and
done is False, then the condition action is taken, meanwhile the transition
action is put in ACT . Whenever the previous branch of current source state
or junction failed, the corresponding accumulated actions in ACT will be
discarded by recovering ACT to the value stored in ACTLOC at the first
entry of this source state or junction. Note that ACT plays the role of a stack
here.

3. at lines 4–6, if target is a state (rather than a junction), indicating that a
valid transition is found, then find the common father of S, target, and all
junctions along the intermediate path, exit from S step by step (by process
Pexit), execute the transition actions ACT that are accumulated for S, enter
to target step by step (by Pentry), and set done to be True, meaning that



472 L. Zou et al.

no further transition is needed, and proc is closed in this loop with right a
bracket.

4. otherwise (line 8–11), if target is a junction, not traversed yet (i.e., not in
Pset), then call TTN to get the definition of Ptarget ( i.e. the HCSP process
constructed from TTN(target, E, done)) and store definition equation in
Pset, finally Ptarget and a right bracket is added at the end of proc.

5. at line 12, the current iteration of the for loop completes, and the next
iteration will start to consider the next transition of S.

Notice that for some transitions, the triggering event (or condition) may not
exist. For such case, the guard E = t.getEvent() (or t.getCond()) in line 3
will set to True. Since the number of junctions is finite, TTN is called finitely
often. Hence, Algorithm 1 terminates for any finite transition networks, no mat-
ter whether it contains loop or not.

Example 1. Figure 3 presents an example of a transition network with a loop.
By applying the algorithm, we obtain the process listed below the statechart. In
the process, we set a state S to active or inactive by assigning the corresponding
Boolean variable aS to 1 or 0 respectively.

S0 J1 J2 S1

{a1}
/a2

{a3}/a4

[b1]{a5}

proc = ACT := skip;ACTS0 = ACT; ¬done → (a1;PJ1)

The definition ofPJ1 can be obtained by solving the equations in Pset:

PJ1 = ACTJ1 = ACT; ¬done → (ACT := (ACTJ1 ; a2);PJ2)

PJ2 = ACTJ2 = ACT; ((b1 ∧ ¬done) → (a5; aS0 := 0;ACT; aS1 := 1; done := True));

¬done → (a3;ACT := (ACTJ2 ; a4);PJ1)

Fig. 3. A transition network with a circle

3.2 Broadcasting and Monitor Process

When an event is broadcasted, an OR diagram will broadcast the event to its
active state, while an AND diagram will broadcast the event to each of its sub-
diagrams according to the priority order. During broadcasting, a new local event
may be emitted inside some sub-diagram, interrupting the current execution
due to the local event. After the completion of processing the local event, the
interrupted execution will be resumed.

We define a monitor process M in terms of HCSP to coordinate the execution
of broadcasted events. The constant n stands for the number of parallel states
of the current diagram, E for the current event, num for the sub-diagram to



Formal Verification of Simulink/Stateflow Diagrams 473

which current event is broadcasted. EL and NL are two stacks respectively to
store the broadcasted events and the corresponding sub-diagrams to which these
events are broadcasted.

M =̂ num := 0; (Mmain)
∗

Mmain =̂ (num == 0) → (Ptri;CHin?iVar;num := 1;EL := [ ];NL := [ ];
push(EL, E);push(NL, 1));

(num == 1) → (BC1!E;VOut1!sv[](BR1?E;push(EL, E);push(NL, 1);num := 1)
[](BO1?;VIn1?sv;num := num + 1;pop(NL);push(NL,num));

· · ·
(num == n) → (BCn!E;VOutn!sv[](BRn?E;push(EL, E);push(NL, 1);num := 1)

[](BOn?;VInn?sv;num := num + 1;pop(NL); push(NL,num));
num == n + 1 → (pop(EL);pop(NL); isEmpty(EL) → (num := 0;CHout!oVar);

¬isEmpty(EL) → (E := top(EL);num := top(NL))))

As shown above, M initializes num to 0, and then repeats Mmain, which
specifies how to trigger current diagram by current event as follows:

num=0: The monitor waits for a triggering event E from outside first, modelled
by Ptri, then receives the input data on iV ar. Afterwards updates num to be
1, initializes both EL and NL to be empty, and then pushes E to stack EL
and 1 to stack NL indicating the first sub-diagram to be triggered by E.

1 ≤ num ≤ n: The monitor broadcasts current event to the num-th sub-diagram
with the following three options:
1. either it broadcasts current event along channel BCnum to the num-th

sub-diagram and sends the shared data along channel VOutnum to it also;
2. or it receives a local event from the num-th sub-diagram along channel

BRnum, which will interrupt the broadcasting of current event, then the
local event will be broadcasted immediately to the first sub-diagram;

3. or it receives an acknowledgment from the num-th sub-diagram along
channel BOnum to indicate that the broadcasting of E has been com-
pleted and at the same time receives the new shared data along VInnum.
Afterwards, it will broadcast the event to the (num + 1)-th sub-diagram
if it exists.

num = n + 1: This indicates that the broadcasting of the current event has
been finished. Consequently, the event and the corresponding sub-diagram
are removed from the respective stack. If the resulting EL is empty, which
indicates that the broadcast on current event E has completed, then sets
num to become 0, outputs variable oVar, and waits for another triggering
event from outside of the diagram. Otherwise, there still is some interrupted
broadcast, and for such case, it will retrieve the previous event and its cor-
responding sub-diagram by reading the new top values from EL and NL and
resume the interrupted broadcast event.

Note that if a diagram is triggered by sample time, then Ptri is simply defined
as a wait statement of HCSP, i.e. wait T for sample time T .



474 L. Zou et al.

3.3 Stateflow Diagrams

Finally, a Stateflow diagram can be defined as a process template D, which is a
parallel composition of the monitor process M and the parallel states S1, · · · ,Sn

of the diagram. Especially, when the diagram is an OR diagram, n will be 1,
and the only state S1 corresponds to the virtual state that contains the diagram,
which has no (entry/during/exit) action nor transitions associated to it.

Si first initializes the local variables of the state and activates the state
by executing the entry action, defined by Pinit and Pentry respectively; then it
is triggered whenever an event E is emitted by the monitor. and performs the
following actions: first, initializes done to False indicating that no valid transition
has been executed yet, and searches for a valid transition by calling Algorithm1;
if done is still false, then executes the during action dur and all of its sub-
diagrams. Note that for an OR diagram, the execution of the virtual state is
essentially to execute the sub-diagram directly. Finally, the monitor is notified
about completion of the broadcasting and outputs the shared data.

Likewise, each sub-diagram (represented by Pdiag) may be AND or OR dia-
gram. Different from an outermost AND diagram, for simplicity, we define an
AND sub-diagram in terms of a sequential composition of its parallel states. This
is reasonable because there is no true concurrency in Stateflow and the parallel
states are actually executed in sequence according to their priorities. The OR
diagram is encoded as a sequential composition of the connecting states, guarded
by a condition aSi

== 1 indicating that the i-th state is active.
Note that in the above, TTN returns an HCSP process corresponding to

both outgoing and ingoing transitions of Si. Local events may be emitted during
executing transition or state actions. In such a case, the current execution of the
diagram needs to be interrupted for broadcasting the local event, and will be
resumed after processing the broadcast is completed. For modeling this kind of
preemption, we use general recursion of the form µX.(P1;X;P2), X referring to
the place where the local event is emitted.

D =̂ M‖S1‖ · · · ‖Sn,

Si =̂ Pinit;Pentry; (BCi?E;VOuti?svi; Sdu;BOi!; VIni!svi)
∗,

Sdu =̂ done = False;TTN(Si, E, done); ¬done → (dur;Pdiag),

Pdiag =̂ Pand | Por, Pand =̂ S1du ; · · · ; Smdu ,

Por =̂ (aS1 == 1 → S1du); · · · ; (aSk == 1 → Skdu).

3.4 Handling Advanced Features of Stateflow

In this section, we discuss how to handle special features of Stateflow in the trans-
lation, including early return logic, history junctiona, nontermination, and so on.
As discussed above, a Stateflow digram is translated into D =̂ M‖S1‖ · · · ‖Sn.
In the following discussion, we only consider how to revise the translation of
Si accordingly in order to address these advanced features, as the coordinated
processes stay the same.



Formal Verification of Simulink/Stateflow Diagrams 475

Early return logic prevents execution of an interrupt from returning to the
interrupted action, thus discarding the rest of the execution of the interrupted
action. E.g., in Fig. 4, activity in A1 is interrupted by broadcasting the local event
e, which results in the control shifting to B. Thus, A1 becomes inactive. After the
execution of B, the control will be shifted to A rather than A1, discarding A2.

We use the example in Fig. 4 to demonstrate how to deal with early return
logic in our setting. By using activity control variables aA, aA1, aA2 and aB , we
revise the translation for the example diagram as follows:1

S1 = aA := 0; aB := 0; aA := 1; aA1 := 1;

µX. (BC1?E1; done1 := False; (aA == 1) → ((¬done1 ∧ E1 == e) → (

(aA1 == 1) → aA1 := 0; (aA2 == 1) → aA2 := 0; aA := 0; aB := 1; done1 := True);

(¬done1) → ((aA1 == 1) → ((¬done1) → (BR1!e;X; (aA1 == 1) → (

aA1 := 0; aA2 := 1; done1 := True))); (aA2 == 1) → skip));

(aB == 1) → skip;BO1!)

Fig. 4. Early return logic Fig. 5. Nontermination

A history junction memoizes control flow in an OR diagram for later reac-
tivation. With a history junction in an OR diagram, the state marked by the
default transition is only relevant for the first activation. Upon subsequent acti-
vation, control on te OR diagram returns to where the diagram was last left.
To translate a history junction, we revise the definition of Pentry: We introduce
a variable history to record the active state interrupted in the previous execu-
tion, and initialize it to the state pointed to by the default transition. Pentry is
implemented simply by setting the active state to history.

Nontermination of Stateflow transitions is difficult to formalize and often not
considered, like in [19]. Consider Fig. 5, where the statechart will exhibit non-
termination whenever process S1 receives an event e. In our approach, nonter-
mination can easily be coped with. Regarding Fig. 5, we can translate it into an
HCSP process as:

S1 = aA := 0; aB := 0; aA := 1;

µX. (BC1?E1; done1 := False; (aA == 1) → ((¬done1 ∧ E1 == e) → (BR1!e;X;

(aA == 1) → (aA := 0; aB := 1; done1 := True))); (aB == 1) → skip;BO1!)

1 Please note that the example is an OR-diagram.



476 L. Zou et al.

3.5 Combination of Simulink and Stateflow

Given a Simulink/Stateflow model, its Stateflow parts are translated into sepa-
rate processes by the above algorithms. These processes are put in parallel with
the processes obtained from the Simulink part, together forming the complete
model of the system. The Simulink and Stateflow diagrams in parallel transmit
data or events via channels. The communications between them are categorized
into the following cases:

– As defined in Sect. 3.2, the input (and output) variables from (and to) Simulink
will be transmitted through the monitor process to (and from) Stateflow;

– The input events from Simulink will be passed via the monitor to Stateflow;
– as defined in Sect. 3.3, the output events (i.e. the ones occurring in S1, · · · ,Sn

in the Stateflow diagram) will be sent directly to the Simulink processes;
– the input/output variables and events inside Simulink part are handled as in

our previous work [23].

3.6 Implementation

We had already implemented a tool S2H translating Simulink diagrams into
HCSP processes as part of our previous work [23]. We have now extended S2H
to support the translation of Stateflow diagrams, and we have named the new
tool Sim2HCSP. For each Stateflow diagram, it generates three files that corre-
spond to the definitions of variables, processes, and assertions respectively. To
use Sim2HCSP, the user has to install the Java Runtime Environment and has to
set two environment variables to point to the paths of Isabelle and HHL prover,
respectively.

4 Case Study: Revisiting the Combined Scenario
of CTCS-3

In our previous work [23], we modeled a combined operational scenario of Chi-
nese Train Control System level 3 (CTCS-3) as a pure Simulink model, in which
all the control behaviors of Radio Block Center (RBC), Train Control Center
(TCC), Driver and so on are abstracted away as assumptions, as it is impossi-
ble to model such event-driven control behavior using Simulink. In this paper,
we will revisit this example by modeling the event-driven control behaviour as
Stateflow diagrams, and therefore give a complete Simulink/Stateflow model of
this scenario by dropping the assumptions. In addition, we formally prove the
Simulink/Stateflow model against the System Requiement Specification (SRS)
by HHL Prover.

According to the SRS, a train needs to apply for movement authority (MA)
from RBC under CTCS-3 or TCC under the backup system CTCS-2. If it suc-
ceeds, the train gets permission to move within the geometric extent of its MA.
An MA is composed of a sequence of segments, each of which is associated with
two kinds of speed limits v1 > v2, respectively for emergency brake intervention



Formal Verification of Simulink/Stateflow Diagrams 477

and service brake intervention, the end point e of the segment, and the operating
mode mode of the segment.

Given an MA, as shown in Fig. 6, the static speed profile (solid line) is the
region formed by the two speed limits, i.e., v ≤ seg.v1 and v ≤ seg.v2, where seg
represents the current segment the train is running on; while the dynamic speed
profile (dotted line) is calculated according to v2 + 2b s ≤ next(seg).v2i + 2b seg.e
for i = 1, 2, where b represents the train’s maximum deceleration and next(seg)
the next segment ahead of the train. At any time, the train must move within the
static and dynamic speed profiles. For simplicity, in our modeling, we assume
that each MA contains 3 segments, and whenever there is only one segment left,
the train must apply for another MA extension.

The combined scenario is shown in Fig. 7: the train has got the MA till x3;
the control system is CTCS-2 before x2, while CTCS-3 after x2; and meanwhile,
the moving mode is Full Supervision (FS) before x2, while Calling On (CO) after
x2. So, in this scenario, the level transition and mode conversion will occur at
x2 simultaneously. By SRS, the train starts to apply for level transition from
RBC at location ST . If RBC approves the request, the train will start the
level upgrade from x1, and when it reaches x2, its control system is upgraded to
CTCS-3, and the level transition completes. It should be noticed that, when the
train moves between x1 and x2, it will be co-supervised by CTCS-2 and CTCS-
3, thus it must follow the speed profiles of both control systems. In addition,
under CTCS-3, a train is required to fully stop before starting a CO segment,
and ask for the confirmation of the driver in order to enter the CO segment. As
a result, both the speed limits at x2, the starting point of a CO segment, will be
0 initially. Under CTCS-2, in contrast, the train will convert the mode to CO
directly at x2.

4.1 Modeling in Simulink/Stateflow

The top-level view of the Simulink model for the combined scenario is shown in
Fig. 8. It consists of two sub-systems: the plant sub-system models the movement
of the train by using the differential equation ṡ = v and v̇ = a, with input a
from the control sub-system; the control sub-system reads s and v from the plant
periodically (every 0.125 s in our setting), based on which it computes the new
acceleration a and sends it back to the plant; they together constitute a closed
loop.

s1 s2 s3

v1
v2

s

v

0

Fig. 6. Static and dynamic speed profiles

ST x1 x2 x3

MAFS CO

TCC RBC

CTCS-2 CTCS-3

Fig. 7. Level and mode transition



478 L. Zou et al.

plant

a

s1

v1

control

s

v
a

Fig. 8. The top-level view of Simulink model Fig. 9. The result of simulation

Train 1l2a

l3l2

RBC 2 Driver 4TCC 3

[i==2 & s>=x1] [s>x2]

[s>e32]/mode3=mode33;FB22();   MAA3

4 [s>e22]/mode2=mode23;FB22();   MAA2
3MAA2c{FMA2();FB22()}

2 [fv>=vr1]/a=C_b

1
MAA3c{FMA3();FB22()}

1
[fv>=vr2]/a=C_a

2
{FB22()}

5
/a=C_A

3

[mode32==1 & v321==0]/FB3();CONFR

2[s>e32]/mode3=mode33;   MAA3
4
CONF{v321=45;v322=40;FB3()}
1

MAA3c{FMA3();FB3()}

3

[fv>=vr1]/a=C_b

1
{FB3()}

5
[fv>=vr2]/a=C_a
2

/a=C_A
3

[i==0 & s>200]/i=1;FB2();LUA
2[s>e22]/mode2=mode23;FB2();MAA2

4
LU/i=2;FB2()

1

[fv>=vr1]/a=C_b
1

MAA2c{FMA2();FB2()}
3

[fv>=vr2]/a=C_a
2

{FB2()}
5 /a=C_A

3

LUA/LU
1

MAA3/MAA3c
2

CONFR/CONFMAA2/MAA2c

Fig. 10. The control model in Stateflow

The control sub-system is modeled as a Stateflow model, shown in Fig. 10. It
is an AND diagram with four parallel states modeling the four components (i.e.
Train, RBC, TCC, and Driver) involved in the scenario. A set of events, vari-
ables, and functions are introduced, for which we assume a naming convention
that the first and second numbers always refer to the level and the MA segment
on which the train is moving, resp., and the third to the type of speed limits,
if existent. E.g., e22 represents the end of the second segment at level 2 (i.e.
location x2), etc. The Train state, featuring highest priority 1, contains three
sub-states: l2 corresponding to the cases when the train is under CTCS-2, l3 to
the case when the train is under CTCS-3, and l2a the case when the train is
co-supervised by CTCS-2 and CTCS-3. By performing the default transition, l2
becomes active first, and will check the following transitions in sequence:

– The outgoing transition goes to l2a, and becomes enabled when the train reaches
x1 and gets permission from RBC to start level transition (i.e., i == 2);



Formal Verification of Simulink/Stateflow Diagrams 479

– The ingoing transitions 1 and 2 represent the application for level transition
from RBC. Obviously 2 will be enabled first, when the train is approaching
ST . It starts to apply level transition by setting i to 1 and sending LUA to
RBC. Accordingly, RBC will be triggered and then approve the request by
emitting LU back. As a result, transition 1 in l2 will be enabled and then
set i to 2. This will enable the outgoing transition to l2a. The action FB2()
models the supervision of CTCS-2.

– The transitions 3 and 4 represent the application for MA extension from
TCC. Transition 4 will be enabled first, when the train reaches e22, and it
will first update the mode to CO and then start to apply MA extension by
sending MAA2 to TCC. Accordingly, TCC will be triggered and then agree
on the request by emitting MAA2C back. As a result, transition 3 in l2 will
happen and extend the MA correspondingly. FMA2 models MA extension
under CTCS-2.

– The transition 5 represents the supervision of CTCS-2 and is always enabled.
– When reaching the junction, there are three outgoing transitions, which by

comparison with the speed limits vr1 and vr2, update the acceleration a cor-
respondingly. Here C b, C a and C A represent the maximum deceleration, a
random deceleration, and a random acceleration respectively.

As the train moves, the outgoing transition of l2 will be taken, and state l2a
will become active. l2a has one outgoing transition targeting l3, which is enabled
when the train reaches beyond x2. l2a has a similar structure to l2, except that
it is not involved in the level transition, but enriched with transitions 1 and 4
representing the application for MA extension from RBC in the co-supervised
area. l3 also has a similar structure to l2, except that it will ask for confirmation
of mode conversion from the driver, via transitions 1 and 2.

Results. The simulation result is shown in Fig. 9, which indicates that the train
will stop at location x2 (thus state l3 is never reachable). Applying the tool
Sim2HCSP to translate the Simulink/Stateflow model, it generates seven files,
corresponding to the variable, processes, and assertion definitions of the Simulink
and Stateflow models resp., and the goal to be verified. Together, they contain
1351 lines of code in total. We use P to denote the resulting HCSP model for
the combined scenario. Using HHL prover, we prove the following goal for P as
a theorem (T stands for True):

lemma goal :"{T,T,T,T,T,T} P {plant_s_1<=64000, T,T,T,T,T;
(l = 0) | (high (plant_s_1<=64000)), T,T,T,T,T}"

Obviously, the postcondition together with the history formula indicate that the
train never moves across location x2, i.e., 64000 here.

All the files related to the case study including the translation and formal
interactive proof can be found at https://github.com/submission/Sim2HCSP.

https://github.com/submission/Sim2HCSP


480 L. Zou et al.

5 Conclusion and Future Work

The combination of Simulink and Stateflow provides a seamless integration of
hierarchical and parallel state machines into a control-oriented block-diagram
formalism involving both discrete and continuous behaviors. Extending our pre-
vious work on translating pure Simulink models into the hybrid-state process cal-
culus HCSP, this paper presents the translation of Simulink/Stateflow to HCSP.
Based on this translation, full formal verification of Simulink/Stateflow diagrams
can be achieved using the Isabell/HOL-based interactive verifier HHL Prover.
We demonstrate our approach on the case study of a combined scenario from
the Chinese Train Control System CTCS-3. In comparison to our previous work,
more complex discrete control is involved, and as a consequence more complex
interactions between the controllers and continuous plant are covered by the
proof certificate obtained.

Acknowledgements. This paper is supported partly by “973 Program” under grant
No. 2014CB340701, by NSFC under grants 91118007 and 91418204, by CDZ project
CAP (GZ 1023), by the CAS/SAFEA International Partnership Program for Creative
Research Teams, and by Deutsche Forschungsgemeinschaft as part of the Transregional
Collaborative Research Center SFB/TR 14 AVACS.

References

1. Simulink User’s Guide (2013). http://www.mathworks.com/help/pdf doc/
simulink/sl using.pdf

2. Stateflow User’s Guide (2013). http://www.mathworks.com/help/pdf doc/
stateflow/sf ug.pdf

3. Agrawal, A., Simon, G., Karsai, G.: Semantic translation of Simulink/Stateflow
models to hybrid automata using graph transformations. Int. Workshop Graph
Transform. Visual Model. Tech. 109, 43–56 (2004)

4. Cavalcanti, A., Clayton, P., O’Halloran, C.: Control law diagrams in circus. In:
Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp.
253–268. Springer, Heidelberg (2005)

5. Chen, C., Dong, J.S., Sun, J.: A formal framework for modeling and validating
Simulink diagrams. Formal Asp. Comput. 21(5), 451–483 (2009)

6. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems. In:
Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 1–12. Springer,
Heidelberg (2011)

7. Hamon, G., Rushby, J.: An operational semantics for Stateflow. Int. J. Softw. Tools
Technol. Transf. 9(5), 447–456 (2007)

8. He, J.: From CSP to hybrid systems. In: A Classical Mind, Essays in Honour of
C.A.R. Hoare, pp. 171–189. Prentice Hall International (UK) Ltd (1994)

9. Herde, C., Eggers, A., Fränzle, M., Teige, T.: Analysis of hybrid systems using
HySAT. In: ICONS 2008, pp. 196–201 (2008)

10. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Intl, Upper
Saddle River (1985)

http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
http://www.mathworks.com/help/pdf_doc/stateflow/sf_ug.pdf
http://www.mathworks.com/help/pdf_doc/stateflow/sf_ug.pdf


Formal Verification of Simulink/Stateflow Diagrams 481

11. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for
hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 1–15. Springer,
Heidelberg (2010)

12. Meenakshi, B., Bhatnagar, A., Roy, S.: Tool for translating simulink models into
input language of a model checker. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006.
LNCS, vol. 4260, pp. 606–620. Springer, Heidelberg (2006)

13. Miller, S.P., Whalen, M.W., Cofer, D.D.: Software model checking takes off. Com-
mun. ACM 53(2), 58–64 (2010)

14. Moore, R.E.: Interval Analysis. Prentice Hall, Upper Saddle River (1966)
15. Moszkowski, B., Manna, Z.: Reasoning in interval temporal logic. In: Engeler, E.

(ed.) Logic of Programs 1979. LNCS, vol. 125. Springer, Heidelberg (1981)
16. Rauh, A., Sibert, C., Aschemann, H.: Verified simulation and optimization of dyn-

imc systems with friction and hysteresis. In: Proceedings of ENOC 2011 (2011)
17. Scaife, N., Sofronis, C., Caspi, P., Tripakis, S., Maraninchi, F.: Defining and trans-

lating a “safe” subset of Simulink/Stateflow into Lustre. In: EMSOFT 2004, pp.
259–268 (2004)

18. Tiwari, A.: Formal semantics and analysis methods for Simulink/Stateflow models.
Technical report, SRI International (2002)

19. Tripakis, S., Sofronis, C., Caspi, P., Curic, A.: Translating discrete-time Simulink
to Lustre. ACM Trans. Embedded Comput. Syst. 4(4), 779–818 (2005)

20. Zhan, N., Wang, S., Zhao, H.: Formal modelling, analysis and verification of hybrid
systems. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Unifying Theories of Program-
ming and Formal Engineering Methods. LNCS, vol. 8050, pp. 207–281. Springer,
Heidelberg (2013)

21. Zhou, C., Wang, J., Ravn, A.P.: A formal description of hybrid systems. In: Alur,
R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 511–530.
Springer, Heidelberg (1996)

22. Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Y.: Verifying chinese
train control system under a combined scenario by theorem proving. In: Cohen,
E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 262–280. Springer,
Heidelberg (2014)

23. Zou, L., Zhan, N., Wang, S., Fränzle, M., Qin, S.: Verifying simulink diagrams via
a hybrid Hoare Logic prover. In: EMSOFT 2013 (2013)


	Formal Verification of Simulink/Stateflow Diagrams
	1 Introduction
	2 Simulink/Stateflow and Hybrid CSP 
	2.1 Simulink
	2.2 Stateflow
	2.3 Hybrid CSP (HCSP)
	2.4 Hybrid Hoare Logic (HHL)

	3 From Simulink/Stateflow to HCSP
	3.1 Transition Networks
	3.2 Broadcasting and Monitor Process
	3.3 Stateflow Diagrams
	3.4 Handling Advanced Features of Stateflow
	3.5 Combination of Simulink and Stateflow
	3.6 Implementation

	4 Case Study: Revisiting the Combined Scenario of CTCS-3
	4.1 Modeling in Simulink/Stateflow

	5 Conclusion and Future Work
	References


