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Abstract. We develop an approach of action refinement for concurrent
systems with not only the notation of real-time but also with causal
ambiguity, which often exists in real application areas. The systems
are modeled in terms of a timed extension of event structures with
causal ambiguity. Under a certain partial order semantics, the behavior
of the refined system can be inferred compositionally from the
behavior of the original system and from the behavior of the systems used
to refine actions with explicitly represented start points. A variant of a
linear-time equivalence termed pomset trace equivalence and a variant
of a branching-time equivalence termed history preserving bisimulation
equivalence based on the partial order semantics are both congruences
under the refinement. The refinement operation behaves thus well and
meets the commonly expected properties.

Keywords: Concurrency, action refinement, causal ambiguity, timed
event structure with causal ambiguity.

1 Introduction

We consider the design of concurrent systems in the framework of approaches
where the basic building blocks are actions. Refinement of actions is a core
concept in the methodology of hierarchical design for concurrent systems, real-
time or not. It amounts to introducing a mechanism for transforming high
level actions into lower level processes until the implementation level is reached
[6, 8, 16].

Refinement of actions for concurrent systems without time constraints has
been thoroughly studied in the literature [6, 7, 8]. For real-time concurrent
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systems it has been discussed recently by us in [4, 15, 16]. In all the previous
work, the system models adopted are always under the constraint of unambigu-
ous causality. That is, if an event has happened there must not exist ambiguity
in deciding which are the causes of the event. However, causal ambiguity often
exists in real application areas. Prominent examples are e.g. the design of
distributed systems [20], the design and analysis of speed-independent circuits
[23], and the specification of business processes like workflow management
systems [21].

In this paper, we investigate how to carry out refinement of actions in concur-
rent systems with the notions of not only real-time but also causal ambiguity,
and analyse its characteristic properties. The main practical benefit from our
work is that hierarchical specification of such systems is then made possible,
furthering thus the work of [4, 6, 15, 16].

The functional framework of systems is modeled in terms of event struc-
tures with causal ambiguity [13, 14], and the approach proposed in [1, 9, 10, 11,
12] to tackling time is taken, where a method to deal with urgent interaction
can be incorporated. This approach is very powerful. We are unaware of
any other proposal to incorporate time and timeout in a causality based
setting.

Let us look at a running example to concretely motivate our paper.
Figure 1 (a) shows a timed industrial inspection system observing faults, and
Figure 1 (b) is a timed system used to implement action inspect in a more
detailed level. They are both represented in timed event structures with causal
ambiguity.
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Fig. 1. Two timed systems with causal ambiguity

Solid dots stand for events, performing the action by which they are labeled,
open dots represent timeout events, arrows from sets of events to events denote
causality relations and are usually called bundles, and dashed lines denote con-
flict relations on the events. Two events that are in conflict cannot appear in a
single system run.

Events and bundles are labeled with intervals (sets of non-negative reals).
The intuitive interpretation of an interval associated to an event is that the
time at which this event begins to happen is located in this interval, whereas
an interval associated to a bundle has the meaning that the transition delay
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from the end of the causal event to the start of the result event is located in this
interval. A timeout event restricts the happening time of the events in conflict
with it.

It is unknown which exactly causes inform when both inspect and record
occur. So causal ambiguity of inform exists in the timed system of Figure 1 (a).
Similarly, causal ambiguity of alarm exists in the timed system of Figure 1 (b).

The following questions arise. How can action inspect in the timed system of
Figure 1 (a) be refined by the timed system of Figure 1 (b)? How does the newly
derived timed system, when obtained, behave?

The previous approach of action refinement [6, 7, 8] works for the untimed
case when causal ambiguity exists [22]. However, this approach no longer applies
to timed systems because the property of timeout events is violated, as shown
in e.g. [4, 15], and therefore do not provide answers to the questions. To solve
this, we present in this paper a new approach. Its characteristic properties are
also analyzed. We consider two common problems of interest, the correctness
and congruence problems.

The paper is arranged as follows. Section 2 introduces the system model timed
event structures with causal ambiguity, describes partial order semantics for
their behavior, and defines equivalence notions based on the semantics. Section
3 presents the approach of action refinement in the framework of this model.
The correctness and the congruence results are given in Section 4. Section 5
concludes the paper.

2 System Model

We use event structures with causal ambiguity [3, 9, 13, 14] as the system model,
and take the way of [1, 9, 10, 11, 12, 15, 16] to include time.

Assume a given set Obs of observable actions ranged over by a, b, c, . . . , and
an invisible internal action τ (τ �∈ Obs). Action

√
(
√ �∈ Obs∪{τ}) indicates the

successful termination of a process. Act = Obs ∪ {τ,
√}. Unlike [1, 9, 10, 11, 12],

actions are viewed here as compound happenings having durations in order to
have a clean notion of action refinement. Let function k : Act → R

+ with k(τ) =
k(

√
) = 0 assign durations to actions. Here, R

+ = [0,∞), the set of non-negative
reals, denotes the domain of time. Note that action durations defined through
the function k embody the intrinsic meaning of actions, and the treatment
of the function k as a component of a system model may result in conceptual
confusion.

2.1 Timed Event Structures with Causal Ambiguity

A timed event structure with causal ambiguity (taes for short) E is a tuple
(E, �,�, l,D,R,U) with
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E, a set of events;
� ⊆ E × E, the irreflexive and symmetric conflict relation;
� ⊆ 2E × E, the bundle relation;
l : E −→ Act, the action-labeling function;
D : E → 2R

+
, the event delay function;

R : �→ 2R
+
, the bundle delay function; and

U ⊆ {e ∈ E | l(e) = τ}, the set of urgent events,
such that for any X ⊆ E, events e ∈ U and e′ ∈ E,
(1) (X � e) ∧ (e�e′) ⇒ (X � e′) ∨ (X�e′), and
(2) ∃t ∈ R

+ : (D(e) ⊆ {t}) ∨ (∃Y � e : (R(Y, e) ⊆ {t})).

Here 2• denotes the power-set function, and (X�e′) stands for (∀e ∈ X : e�e′).
The first constraint specifies a property of timeouts that are modeled by

urgent events. The second constraint ensures that timeouts are enabled at a
single time instant only. Notice that crucial for a taes is that for each bundle
X � e, opposite to classical event structures without causal ambiguity, the events
in X are not required to be in pairwise conflict as usual. Causal ambiguity thus
exists in the system behavior, i.e., if an event e occurs, there are alternative
causes for this event.

A taes is depicted as the example shown in the introduction, where event
names and delays [0,∞) are usually omitted.

Example 2.1.1 Figure 1 (a) and (b) are two taes’s. In the sequel, we abbreviate
receive = a, inspect = b, record = c, inform = d, fault1 = b1, fault2 = b2,
fault3 = b3, alarm = b4. A timeout event is labeled with action τ since it is
internal. Moreover, we assume k(a) = 2, k(b) = 6, k(c) = 6, k(d) = 3 and
k(b1) = k(b2) = k(b3) = k(b4) = 1.

By init(E) we denote the set of initial events of E , and exit(E) its set of
successful termination events, i.e.,

init(E) = {e ∈ E | ¬(∃X ⊆ E : X � e)}, exit(E) = {e ∈ E | l(e) =
√}.

We denote by TAES the set of taes’s. E = (E, �,�, l, D,R,U), possibly sub-
scripted and/or primed, stands for a member of this set. When necessary, we
also use EE , �E , �E , lE , DE , RE and UE to represent the components of E .

2.2 Partial Order Semantics

We first consider the functional behavior of a taes, then take the time aspect
into account and define their semantics, taking care of both the functional and
timing issues.

Functional Behavior. Let Φ = e1, · · · , em be a sequence of events (of E), where
ei and ej are distinct whenever i �= j. E(Φ) = {e1, · · · , em}. Assume Φi−1 =
e1, · · · , ei−1 is the (i − 1)-th prefix of Φ (1 ≤ i ≤ m).
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In a run of a system, any two events that occur should not be in conflict, and
if an event occurs in a run its causal predecessors should have occurred before.
Let

en(Φi−1) = { e ∈ E \ E(Φi−1) | (∀ej ∈ E(Φi−1) : e � �ej)∧
(∀X � e : X ∩ E(Φi−1) �= ∅)}.

en(Φi−1) is then the set of events enabled after Φi−1. If ei ∈ en(Φi−1) for all
1 � i � m, then C = E(Φ) is called a frame configuration of E .

The event sequence Φ in the definition of frame configurations is usually
called a trace of E . Traces describe actually the possible functional runs of a
taes, whereas the frame configuration is the underlying event set of it. Frame
configuration C is usually said to be obtained from trace Φ. By C(E) we denote
the set of all the frame configurations of E .

A frame configuration C of E successfully terminates if there exists e ∈ C
such that l(e) =

√
. E is called well-labeled if for each C ∈ C(E), C ∩ exit(E) is

empty or a singleton.
When causal ambiguity exists, as argued in [14], frame configurations or

traces do not sufficiently describe the system behavior, and partial ordered sets
are used to represent the causal relations between the events that occurred so
far in a system run.

For ei, ej ∈ E, by ej �→ ei we mean that ej is a causal predecessor of ei, i.e.,
there exits an X ⊆ E such that ej ∈ X and X � ei. Let C ∈ C(E), and �→ |C
denotes the restriction of �→ to C, namely �→ |C =�→ ∩(C × C).

Let �→C be a subset of �→ |C , such that ∗�→C is a partial order on C. Here,
as usual ∗�→C represents the relation on C by the elements of �→C as generators,
namely its reflexive and transitive closure. P = 〈C,

∗�→C〉 is called a poset of E .
The cause of event e ∈ C (in this poset) is defined as Ae = {e′ ∈ C | e′ �→C e}.
The elements of Ae constitute indeed all the direct predecessors of e in this
poset, namely the events that cause e to happen. A maximal event in a poset P
is defined as an event e ∈ C, satisfying that there does not exist an event e′ ∈ C
with e �→C e′.

Taking Time into Account. If event ej causes event ei in a system run of E , and
two time instants tj and ti ∈ R

+ are associated to events ej and ei respectively
(tj ≤ ti), then ej and ei start at time points tj and ti, and tj and ti are required
to be in the time instant sets labeled to ej and ei, respectively. ti −(tj +k(l(ej)))
is then the transition delay from the end of ej to the start of ei. It is required
to be in the time instant set attached to the corresponding bundle. Bearing this
in mind, we see that if an event e is enabled by its cause Ae in a poset P then

TP (e) = D(e) ∩
⋂

ej∈Ae∧X�e,ej∈X

(tj + k(l(ej)) + R(X, e))

consists of all the potential time instants at which event e may start to happen.
Here, for t ∈ R

+ and T ⊆ R
+, t ± T denotes the set {t ± ti | ti ∈ T} ∩ R

+

respectively. T ± t is defined in a similar way, and we say t ≤ T if t is not greater
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than any element of T . Furthermore, the fact that event ei occurs implies also
that the starting time of ei must not be greater than the time at which e0 may
occur, where e0 is an urgent event in conflict with ei and enabled by ej .We define
TP (e) = D(e) if Ae = ∅.

Formally, we assume hereafter that event sequence Φ = e1, · · · , em is a trace of
E , from which a frame configuration C is obtained. For event e ∈ C, all bundles
pointing to e in E are given by X1 � e, · · · , Xn � e. Furthermore, P = 〈C,

∗�→C〉 is
a poset. Let TP = T 〈C,

∗�→C〉 associate with each event e ∈ C in poset 〈C,
∗�→C〉

a time instant t ∈ R
+, and let time(C, e) denote the time instant associated to

event e in TP .
TP = T 〈C,

∗�→C〉 is called a timed poset of E , if for all e ∈ C and e0 ∈ U the
following conditions hold:

(1) time(C, e) ∈ TP (e);
(2) time(C, e) ≤ TP (e0) if e, e0 ∈ en(Φi−1) for all 1 ≤ i ≤ m and e�e0.

The first condition requires that the time at which e is enabled to happen
cannot be smaller than the execution time of its causal events. The second con-
dition ensures that an event in conflict with a timeout should not occur later
than the timeout.

A non-empty timed poset TP is often graphically denoted, where only the
generators of ∗�→C , i.e. the elements of �→C , together with the time instants asso-
ciated with the events are depicted explicitly. That is, if ej �→C ei is one of the
elements of �→C , then an arrow from (ej , time(C, ej)) towards (ei, time(C, ei))
is drawn.

Let Maxt(E) consist of all the time instants at which a successful termination
run of the system finishes. That is,
Maxt(E) = {t ∈ R

+ | there is a timed poset T 〈C, �→C〉 of E and an event
e ∈ C with l(e) =

√
and t = time(C, e)}.

The Semantics. Motivated by a large variety of applications, partial order se-
mantics for taes’s is defined on the basis of different viewpoints on the causality
in a frame configuration. We only present here the definition of timed lib-posets
(timed liberal posets). For the similar details of timed bsat-posets (timed bundle
satisfaction posets), timed min-posets (timed minimal posets), timed early-posets
and timed late-posets, as well as their relationships, the reader may consult [14].

A timed poset T 〈C,
∗�→C〉 of E is said to be a timed lib-poset, if for all e ∈ C

the cause Ae of e meets the conditions below:

(1) Each e′ ∈ Ae occurs before e in Φ;
(2) Xi ∩ Ae �= ∅ for all i ∈ {1, . . . , n}.

Timed lib-posets model the least restrictive notion of causality. It says that
each set of events from bundles pointing to event e that satisfies all bundles is a
cause of e.
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From now on, we assume x ∈ {lib, bsat, min, early, late}, and by TPx(E) we
denote the set of all timed x-posets of E .

2.3 Equivalence Notions

For concurrency models such as timed event structures with causal ambiguity,
the possible executions of systems may be represented as partially ordered multi-
sets of actions (pomsets). Based on this consideration, a linear-time equivalence
similar to pomset trace equivalence [2] is defined. A branching-time equivalence
similar to history preserving bisimulation equivalence [19] can be defined as well
to further record where choices are made, and the idea is to relate two events
only if they have the same causal history.

For x ∈ {lib, bsat, min, early, late} and i = 1, 2, let TPi = T 〈Ci,
∗�→iCi〉 be

timed x-posets of taes Ei, where Ci ∈ C(Ei), and �→iCi⊆�→i |Ci
. Moreover, let

li|Ci
denote the restriction of li on Ci, namely li|Ci(e) = li(e) for e ∈ Ci.

TP1 and TP2 are said to be isomorphic, if they differ only in the event names,
while the associated time instants, the action labels, the causality relations of
events as well as the urgency of events in the two timed x-posets remain the
same. Formally, TP1 and TP2 are isomorphic, denoted TP1 ≈ TP2, if there
exists a bijection h : C1 −→ C2 such that for arbitrary e, e′ ∈ C1,

(1) l1|C1(e) = l2|C2(h(e));
(2) e �→1C1 e′ iff h(e) �→2C2 h(e′);
(3) time(C1, e) = time(C2, h(e));
(4) e ∈ U1 iff h(e) ∈ U2.

By TPx(E1) ≈ TPx(E2) we mean that E1 and E2 have isomorphic timed x-
posets. That is, for any TP1 ∈ TPx(E1) [TP2 ∈ TPx(E2)] there exists TP2 ∈
TPx(E2) [resp. TP1 ∈ TPx(E1)] such that TP1 ≈ TP2.

Two taes’s E1 and E2 are said to be x-pomset trace equivalent, denoted E1 ∼=px

E2, if TPx(E1) ≈ TPx(E2).
Let TP = T 〈C,

∗�→C〉 and TP ′ = T 〈C ′, ∗�→C′〉 be two timed x-posets of taes
E , where C, C ′ ∈ C(E), and �→C and �→C′ are subsets of �→ |C and �→ |C′ ,
respectively. For action a ∈ Act, t ∈ R

+, we say TP
a,t−→ TP ′ (or

a,t−→i when
necessary) if C ′ \ C = {e} with l(e) = a and time(C ′, e) = t.

A relation H ⊆ TPx(E1)×TPx(E2)×2E1×E2 is called an x-history preserving
bisimulation between E1 and E2, if (∅, ∅, ∅) ∈ H, and when (TP1, TP2, h) ∈ H
then

(1) h is an isomorphism between TP1 and TP2,
(2) TP1

a,t−→1 TP ′
1 ⇒ ∃TP ′

2, h
′ :

TP2
a,t−→2 TP ′

2, (TP ′
1, TP ′

2, h
′) ∈ H and h′|C1 = h,

(3) TP2
a,t−→2 TP ′

2 ⇒ ∃TP ′
1, h

′ :
TP1

a,t−→1 TP ′
1, (TP ′

1, TP ′
2, h

′) ∈ H and h′|C1 = h.



456 M. Majster-Cederbaum et al.

Here h′|C1 denotes the restriction of h′ on C1. h is an isomorphism between
TP1 and TP2 if it is the bijection in the definition that TP1 and TP2 are iso-
morphic.

Two taes’s E1 and E2 are said to be x-history preserving bisimulation equiv-
alent, denoted E1 ∼=bx E2, if there exists an x-history preserving bisimulation
between E1 and E2.

x-pomset trace equivalence is coarser than x-history preserving bisimulation
equivalence for any x ∈ {lib, bsat, min, early, late}. We refer the reader to [6] for
this in the non-ambiguous case.

3 Refinement of Actions

We follow the methodology to treat refinement of actions as an operator. Before
refining a given taes, we have first to modify the taes’s that are used to implement
actions.

3.1 Introducing Start-Events

Every system has a start point, which is usually supposed to be performing the
internal silent action at time instant zero. Here, in the taes used to refine an
action we introduce a new event to explicitly represent this point.

Let r(E) be the taes obtained by adding to taes E a new event e0 as well as
new bundles from e0 to all the events of E , and transferring all the absolute time
attachments of events to relative time attachments of the corresponding newly
introduced bundles, where e0 is labeled with the internal action τ and associated
with time instant 0, imitating the start point of system, which is executing the
internal silent action at time instant 0. Formally,

r(E) = (E ∪ {e0}, �, �→r, l ∪ {(e0, τ)},Dr,Rr,U), where e0 �∈ E, and

�→r= �→ ∪ ({{e0}} × E),
Dr = {(e0, {0})} ∪ (E × {R

+}),
Rr = R ∪ {(({e0}, e),D(e)) | e ∈ E}.

We call r(E) the rooted taes associated with E . The newly introduced event
e0, denoted by or(E), is called the start-event of E or r(E).

Example 3.1.1 Let Eb be the taes of Figure 1(b) of Example 2.1.1. Then r(Eb)
is the taes of Figure 2.

3.2 Refining a Taes

Let Act0 be a subset of Act that contains τ and
√

, representing the set of actions
which need not or cannot be refined. Function f : Act\Act0 −→ TAES is called



Refinement of Actions for Real-Time Concurrent Systems 457

a refinement function, if for any action a ∈ Act \ Act0 it satisfies the following
conditions:

(1) f(a) is well-labeled;
(2) Maxt(f(a)) = {k(a)}.

f(a) is called a refinement of action a.

b1

b2

b3

b4

(0,3]

(0,4]
{2}

[1,2]

{6}

[0,1]

(0,3]

(0,3]

{6}

τ b4

τ
{0}

[0,1]

Fig. 2. The rooted taes associated with Figure 1(b)

Example 3.2.1 Assume Act \ Act0 = {b}, and Eb the taes of Figure 1(b) of
Example 2.1.1. Then f(b) = Eb is a refinement of action b.

Throughout the paper, we use f to denote a refinement function. The current
question is how this refinement function can be applied to a given taes to obtain
a refined one. Our basic idea, as illustrated in Figure 3, is that an action say a
is replaced by r(f(a)) in the original taes. For simplicity, we use in the following
rfl(e) and rf(a) to abbreviate r(f(l(e))) and r(f(a)), respectively.

Fig. 3. Illustration of refining a taes

Definition The refinement of taes E is defined as
f(E) = (Ef , �f ,�f , lf ,Df ,Rf ,Uf ), where

• Event set
Ef = {(e, e′) | (e ∈ E) ∧ (l(e) �∈ Act0)∧

(e′ ∈ Erfl(e))} ∪ {(e, e) | (e ∈ E) ∧ (l(e) ∈ Act0)},



458 M. Majster-Cederbaum et al.

• Conflict relation
for (e1, e2), (e′

1, e
′
2) ∈ Ef , (e1, e2)�f (e′

1, e
′
2) iff

if e1 = e′
1 then e2�rfl(e1)e

′
2,

if e1 �= e′
1 then

if e2 = e1 and e′
2 = e′

1 then e1�e
′
1,

if e2 �= e1 and e′
2 = e′

1 then e1�e
′
1 and e2 = orfl(e1),

if e2 = e1 and e′
2 �= e′

1 then e1�e
′
1 and e′

2 = orfl(e′
1),

if e2 �= e1 and e′
2 �= e′

1 then e1�e
′
1, e2 = orfl(e1) and e′

2 ∈ {orfl(e′
1)}∪

exit(rfl(e′
1)) or e2 ∈ {orfl(e1)} ∪ exit(rfl(e1)) and e′

2 = orfl(e′
1),

• Bundle relation
for X ⊆ Ef and (e1, e2) ∈ Ef , X �f (e1, e2) iff
if e2 �= e1 and e2 ∈ Erfl(e1) \ {orfl(e1)} then π1(X) = {e1} and

π2(X) �rfl(e1) e2,
if e2 �= e1 and e2 = orfl(e1) or e2 = e1 then π1(X) � e1 and

π2(X) = ∪e∈π1(X),l(e) �∈Act0exit(rfl(e)) ∪ (∪e∈π1(X),l(e)∈Act0){e},

• Action labeling function
for (e1, e2) ∈ Ef if e2 �= e1 then

if e2 �∈ exit(rfl(e1)) then lf (e1, e2) = lrfl(e1)(e2),
if e2 ∈ exit(rfl(e1)) then lf (e1, e2) = τ ,

if e2 = e1 then lf (e1, e2) = l(e1),

• Event delay function
for (e1, e2) ∈ Ef if e1 = e2 then Df (e1, e2) = D(e1),
if e1 �= e2 then

if e2 = orfl(e1) then Df (e1, e2) = D(e1),
if e2 �= orfl(e1) then Df (e1, e2) = R

+,

• Bundle delay function
for X ⊆ Ef and (e1, e2) ∈ Ef , if X �f (e1, e2) then
if e2 �= e1, e2 ∈ Erfl(e1) \ {orfl(e1)} and π1(X) = {e1} then

Rf (X, (e1, e2)) = Rrfl(e1)(π2(X), e2),
if e2 �= e1 and e2 = orfl(e1) then Rf (X, (e1, e2)) = R(π1(X), e1),
if e2 = e1 then Rf (X, (e1, e2)) = R(π1(X), e1),

• Urgent events
for (e, e′) ∈ Ef , (e, e′) ∈ Uf iff e ∈ U or e′ ∈ Urfl(e) if e′ �= e.

Here, π1(X) = {e | (e, e′) ∈ X}, and π2(X) = {e′ | (e, e′) ∈ X}.

Example 3.2.2 Suppose that E is the taes of Figure 1(a) of Example 2.1.1. Let
Act \ Act0 = {b}, and f(b) the refinement of action b defined in Example 3.2.1
(Figure 1(b)). Then rf(b) is the taes of Figure 2 of Example 3.1.1, and the
refinement f(E) of E is the taes of Figure 4.
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f(E) satisfies the definition of taes’s. From this fact, the following theorem
follows.

b 1

b 2

b 3

b 4
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c

(0,3)

[2,12]

[3,12]

{6}

(0,15]

[1,3]

(0,16]

τ

d

τ

τ

[0,1]

Fig. 4. The refinement of Figure 1(a)

Theorem 3.2.1 Let E ∈ TAES, and f a refinement function. Then f(E) ∈
TAES.

4 Correctness and Congruence Results

We show that our operation of action refinement is correct and furthermore, the
equivalences defined in the preceding section are congruences under the refine-
ment.

Assume again x ∈ {lib, bsat, min, early, late}. Let TPf = T 〈Cf , ∗�→fCf
〉 be a

timed x-poset of f(E), where Cf is a frame configuration of f(E), and �→fCf
⊆�→f

|Cf
. Let

π1(TPf ) = T 〈π1(Cf ), ∗�→π1(Cf )〉, where
π1(Cf ) = {e ∈ E | (e, ej) ∈ Cf},
∀e ∈ π1(Cf ), time(π1(Cf ), e) =

if l(e) ∈ Act0 then time(Cf , (e, e)) else time(Cf , (e, orfl(e))),
�→π1(Cf )⊆ E × E : e �→π1(Cf ) e′ iff ∃(e, e1) �→fCf

(e′, e′
1).

Moreover, for event e ∈ π1(Cf ) with l(e) �∈ Act0, let

πe(TPf ) = T 〈πe(Cf ), ∗�→πe(Cf )〉, where
πe(Cf ) = {ej ∈ Erfl(e) | (e, ej) ∈ Cf},
∀ej ∈ πe(Cf ), time(πe(Cf ), ej) = time(Cf , (e, ej)) − time(Cf , (e, orfl(e))),
�→πe(Cf )⊆ Erfl(e) × Erfl(e) : e1 �→πe(Cf ) e2 iff (e, e1) �→fCf

(e, e2).

π1(TPf ) is the projection of timed x-poset TPf on taes E , and πe(TPf )
the projection of TPf on taes rfl(e). We have then the following Lemma 4.1,
which indicates that the projection of TPf on E is a timed x-poset of E , and the
projection of TPf on rfl(e) is a timed x-poset of rfl(e).
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Lemma 4.1 (1) πe(TPf ) ∈ TPx(rfl(e)); (2) π1(TPf ) ∈ TPx(E).

We have also the following simple Lemma 4.2, which demonstrates that
πe(TPf ) successfully terminates if e is causally necessary for some other events.
Notice that a timed x-poset is said to successfully terminate, if the frame con-
figuration on which this timed x-poset is based successfully terminates.

Lemma 4.2 If e ∈ π1(Cf ), l(e) �∈ Act0 and e is not maximal in π1(TPf ), then
πe(TPf ) successfully terminates.

Now, we suppose TP = T 〈C,
∗�→C〉 is a timed x-poset of E , where C ∈

C(E), and �→C⊆�→ |C . Furthermore, e ∈ C with l(e) �∈ Act0, and TPe =
T 〈Ce,

∗�→rfl(e)Ce
〉 a timed x-poset of rfl(e), where Ce ∈ C(rfl(e)), �→rfl(e)Ce

⊆
�→rfl(e) |Ce

, and Ce successfully terminates if e is not maximal in C. Let

f(TP, �eTPe) = T 〈f(C,∪eCe),
∗�→ff(C,∪eCe)〉, where

f(C,∪eCe) = { (e, ej) | e ∈ C, if l(e) ∈ Act0 then ej = e else ej ∈ Ce},
∀(e, ej) ∈ f(C,∪eCe), time(f(C,∪eCe), (e, ej)) =

if l(e) ∈ Act0 then time(C, e) else time(Ce, ej) + time(C, e),
for (e1, e

′
1), (e2, e

′
2) ∈ Ef × Ef , (e1, e

′
1) �→ff(C,∪eCe) (e2, e

′
2) iff

e1 �→C e2, and either e′
1 = e1 and e′

2 = e2, or
if e′

1 �= e1 and e′
2 = e2 then e′

1 ∈ exit(rfl(e1)),
if e′

1 = e1 and e′
2 �= e2 then e′

2 = orfl(e2),
if e′

1 �= e1 and e′
2 �= e2 then

if e1 = e2 then e′
1 �→rfl(e1)Ce1

e′
2,

if e1 �= e2 then e′
1 ∈ exit(rfl(e1)) and e′

2 = orfl(e2).

We call it a refinement of TP . By f(TPx(E)) we represent the set of all
refinements of timed x-posets of taes E . We have then Lemma 4.3, which states
that a refinement of a timed x-poset of taes E is a timed x-poset of the refined
taes f(E).

Lemma 4.3 f(TP, �eTPe) ∈ TPx(f(E)) for x ∈ {lib, bsat, min, early, late}.

From Lemmas 4.1, 4.2 and 4.3, the following two theorems follow.

Theorem 4.1 Suppose that E is a taes, and f a refinement function. Then
TPx(f(E)) = f(TPx(E)) for x ∈ {lib, bsat, min, early, late}.

This theorem indicates that timed x-posets of the refined taes f(E) can be
obtained by replacing event e with e �∈ Act0 in timed x-posets of the original
taes E by timed x-posets of taes rfl(e) used to refine action l(e). The behav-
ior of the refined taes can thus be inferred compositionally from the behav-
ior of the original taes and from the behavior of those used to substitute ac-
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tions, where the system starts are explicitly represented. The refinement keeps
correct.

Theorem 4.2 Let E1 and E2 be two taes’s, and f1 and f2 two refinement
functions. If E1 ∼=eq E2, and for any a ∈ Act \ Act0, f1(a) ∼=eq f2(a), then
f1(E1) ∼=eq f2(E2), where eq ∈ {px, bx} and x ∈ {lib, bsat, min, early, late}.

This theorem shows that x-pomset trace and x-history preserving bisimula-
tion equivalences are both congruences under the refinement. Our refinement
notion is therefore well-defined under these equivalences.

5 Concluding Remarks

In this paper, we developed an approach of action refinement for real-time con-
current systems with causal ambiguity, where timed event structures with causal
ambiguity are used as the system model. Furthermore, the following correct-
ness and congruence results were certified under a certain partial order seman-
tics:

– The behavior of the refined system can be inferred compositionally from
the behavior of the original system and from the behavior of the systems
used to refine actions, where new events are introduced to model the system
starts.

– The variants of pomset trace and history preserving bisimulation
equivalences are both congruences under the refinement.

We adopt again in this paper the basic refinement methodology proposed
by us in [4, 5, 15, 16, 17]. We believe that the methodology for the probabilis-
tic and stochastic cases proposed in [5, 17] applies to the corresponding cases
when causal ambiguity exists. This is in fact our immediate future work. We
also want to define a suitable process algebra to specify taes’s, develop an ap-
proach of action refinement at this language level, and try to make the syntactic
refinement and the semantic refinement presented in this paper conform to each
other.
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