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Abstract. Hybrid systems are integrations of discrete computation and
continuous physical evolution. To guarantee the correctness of hybrid sys-
tems, formal techniques on modelling and verification of hybrid systems
have been proposed. Hybrid CSP (HCSP) is an extension of CSP with dif-
ferential equations and some forms of interruptions for modelling hybrid
systems, and Hybrid Hoare logic (HHL) is an extension of Hoare logic for
specifying and verifying hybrid systems that are modelled using HCSP.
In this paper, we report an improved HHL prover, which is an interactive
theorem prover based on Isabelle/HOL for verifying HCSP models. Com-
pared with the prototypical release in [22], the new HHL prover realises
the proof system of HHL as a shallow embedding in Isabelle/HOL, rather
than deep embedding in [22]. In order to contrast the new HHL prover in
shallow embedding and the old one in deep embedding, we demonstrate
the use of both variants on the safety verification of a lunar lander case
study.

1 Introduction

Hybrid systems are fusions of discrete dynamic systems and continuous dynamic
systems, many of which are safety-critical, e.g., transportation, healthcare, space-
crafts, etc. In order to ensure the correct functioning of hybrid systems, formal
techniques on modelling and verification have been proposed. Among them, the
most popular model is hybrid automata [2,10], with the subsequent temporal
logic based specification languages and model checkers [1,8,13]. However, due to
the undecidable reachability problem of hybrid systems, various abstractions or
(numeric) approximations for hybrid automata are required [3,4]. This leads to
incomplete coverage of the system dynamics or loss of precision of proof results.

Alternatively, the deductive approach has been proposed, which verifies sys-
tems by proofs rather than state space exploration in model checking. This
approach asks for a formal modelling language with (de-)compositionality and
meanwhile a specification logic for verifying the corresponding models. Following
this research line, we extended Hoare Logic to hybrid systems and established
Hybrid Hoare Logic (HHL) [11]. In HHL, a hybrid system is modeled by Hybrid
CSP (HCSP) process. HCSP is a formal modeling language for hybrid systems,
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due to He, Zhou et al. [9,21], which is an extension of CSP by introducing dif-
ferential equations for representing continuous evolution. HCSP inherits from
CSP the compositional process algebra constructs including communication-
based synchronization and concurrency, thus it is expressive enough for describ-
ing distributed components and the interactions between them. Moreover, it
extends CSP with several forms of interrupts to continuous evolution for realiz-
ing communication-based discrete control. To capture both discrete and contin-
uous behavior of HCSP, the assertion languages of HHL include two parts: one
is first-order logic (FOL), used for specifying properties of discrete processes,
and the other is a subset of Duration Calculus (DC) [19,20], called history for-
mulas, for specifying the execution history for continuous processes. A proof
system for HHL was provided in [11]. In particular, the notion of differential
invariant [12,14] is used to characterize the behavior of differential equations.

In [22], a prototypical implementation for HHL verification framework in
proof assistant Isabelle/HOL, called HHL prover, was reported. In the HHL
prover of [22], HHL was realised in a deep embedding style, i.e., the asser-
tion languages of HHL including FOL and DC are defined as new datatypes
of Isabelle/HOL. Since then, the HHL prover has been successfully applied to
the verification of some real-world hybrid systems, e.g., Chinese train control
systems [23,24] and the GNC control program of a lunar lander [18].

The disadvantage of the prototypical HHL prover is very obvious: due to the
deep embedding of the HHL assertions, the proof of FOL and DC formulas needs
to be conducted by the user completely, to apply the deductive rules for FOL
and DC manually, thus the proof effort is very high. The main contribution of
this paper is to implement the proof system for HHL in shadow embedding 1. In
addition, to demonstrate the efficiency of the improved HHL prover, we apply
the prover in both embeddings to the safety verification of the slow descent
guidance control program of a lunar lander, which is a closed-loop dynamic
system composed of a physical plant and an embedded control program. We
make a comparison between the proof results obtained from both embeddings,
which indicates that the shallow embedding has better performance than the
deep embedding.

Related Work. There are some tools on formal modelling and verification of
hybrid systems. The tool d/dt [5] provides reachability analysis and safety verifi-
cation of hybrid systems with linear continuous dynamics and uncertain bounded
input. iSAT-ODE [7] is a numerical SMT solver based on interval arithmetic that
can conduct bounded model checking for hybrid systems. Flow* [6] computes
over-approximations of the reachable sets of continuous dynamical and hybrid
systems in a bounded time. However, due to the undecidable reachability prob-
lem of hybrid systems, the above tools based on model checking are incomplete.
Based on the alternative deductive approach, the theorem prover KeYmaera [15]
is proposed to verify hybrid systems specified using differential dynamic logic.
1 The HHL prover in both embeddings, plus the corresponding models and proofs

related to the case study, can be found at https://github.com/wangslyl/hhlprover.
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Compared to our work, it supports a simple set of hybrid constructs that do not
cover communications and parallel composition.

Organization. The rest of the paper is organized as follows: Sects. 2 and 3 intro-
duce briefly the proof assistant Isabelle/HOL, and the modelling language HCSP
and its specification logic HHL, respectively; Sects. 4 and 5 present the HHL
prover in shallow and deep embeddings respectively; Sect. 6 presents the lunar
lander case study; and Sect. 7 concludes the paper.

2 Isabelle/HOL

In this section, we give a brief introduction of Isabelle/HOL, based on which
the modelling and verification framework of hybrid systems is mechanized.
Isabelle/HOL is a proof assistant for Higher-Order Logic (HOL). It supports
functional modeling of systems by providing datatypes, functions, terms and for-
mulas; and meanwhile, it enables proof of properties by construction by providing
a set of built-in inference rules and proof tactics. Except for basic types such as
bool , nat, etc., Isabelle/HOL provides the way to define a recursive datatype, for
instance, a list of elements of type ’a can be defined by ’a list:

datatype ’a list = Nil | Cons ’a ’a list

where Nil, referring to the empty list, and Cons, adding an element to the front of
a list, are the two constructors respectively. A type can also be constructed from
existing ones by using types, e.g. types nlist = nat list. With the existence
of types, functions are used to describe the relations between values of different
types. A recursive function can be defined with respect to the constructors for
the involved datatypes, e.g., the function len returns the length of a list:

primrec len :: ’a list ⇒ nat where
len Nil = 0 |
len Cons x xs = 1 + len xs

Non-recursive functions can be defined with the definition command, and more
general cases for both recursive and non-recursive functions can be defined by
means of fun. By applying functions to arguments, terms are formed, and in
particular, a special class of terms with type bool are formulas. The compound
formulas can be formed by applying logical connectives, such as ∧, ¬, ∀, etc.

Isabelle can prove facts directly based on induction and simplications.
Besides, it supports more complicated verification by applying HOL inference
rules for classical reasoning, e.g. the introduction or elimination rules for con-
junction ∧ or disjunction ∨, etc. It provides a set of methods to automate clas-
sical reasoning, such as blast, auto, arith and so on. Isabelle also includes some
high-level proof tactics. In particular, the tool sledgehammer is a certified inte-
gration of third-party automated theorem provers and SMT solvers including
Alt-Ergo, Z3, CVC3, and so on, and nitpick is a counterexample generator. For
HHL prover in shallow embedding, all the proof obligations are reduced to HOL
formulas at the end, for which sledgehammer can be used to search the proofs
automatically.
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3 Hybrid CSP

This section will give a brief introduction of Hybrid CSP (HCSP) and the spec-
ification logic Hybrid Hoare Logic for reasoning about HCSP processes. They
constitute the theoretical basis on the modelling language and the safety logic
of HHL prover.

3.1 Syntax

Hybrid CSP [9,21] is an extension of CSP by introducing differential equations
for representing continuous evolution and several forms of interruptions to con-
tinuous evolution. The syntax of a subset of HCSP is given as follows:

P ::= skip | x := e | ch?x | ch!e | P ;Q | B → P | P � Q | P ∗

| 〈ṡ = e&B〉 | 〈ṡ = e&B〉 � �i∈I(ioi → Qi)
S ::= P | S‖S

where P,Q,Qi, S are HCSP processes, x and s stand for process variables, ch for
channel name, ioi for a communication event (either input ch?x or output ch!e),
B and e for Boolean and arithmetic expressions, and I for a non-empty set of
indices of communications, respectively. A whole HCSP model S is defined as
a sequential process or a parallel composition of several sequential processes at
the top level.

The intuitive meaning of the individual constructs is explained as follows:

– skip, x := e are defined as usual.
– The input ch?x receives a value along channel ch and assigns it to x, and

output ch!e sends the value of e along ch. A communication takes place as
soon as both the sending party (i.e. ch!) and the receiving party (i.e. ch?) are
ready, and may cause one side to wait.

– The sequential composition P ;Q behaves as P first, and if it terminates, as
Q afterwards.

– The conditional B → P behaves as P if B is true, otherwise it terminates
immediately.

– The internal choice P �Q behaves as either P or Q, and the non-deterministic
choice is made by the system itself.

– The repetition P ∗ executes P for some finite number of times.
– 〈ṡ = e&B〉 is the continuous evolution statement, where s represents a vector

of real variables and ṡ the first-order derivative of s. It forces s to evolve
continuously according to the differential equation ṡ = e as long as B, which
defines the domain of s, holds, and terminates when B turns false. 〈ṡ = e&B〉
is a boundary interruption.

– The communication interruption 〈ṡ = e&B〉 � �i∈I(ioi → Qi) behaves like the
continuous 〈ṡ = e&B〉, except that it is preempted as soon as one of the
communications ioi takes place, and then is followed by the respective Qi.

– S1‖S2 behaves as if S1 and S2 run independently except that all communica-
tions along the common channels connecting S1 and S2 are to be synchronized.
S1 and S2 in parallel can neither share variables, nor input or output channels.
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Some commonly used constructs of HCSP in [9,21] are derivable from the
above syntax, e.g.,

wait d =̂ t := 0; 〈ṫ = 1&t < d〉
〈ṡ = e&B〉 �d Q =̂ t := 0; 〈ṡ = e ∧ ṫ = 1&t < d ∧ B〉; t ≥ d → Q

Especially the timeout 〈ṡ = e&B〉 �d Q executes according to the continuous
evolution 〈ṡ = e&B〉 for the first d time units, and Q afterwards.

Example 1. The following presents a simple HCSP description of a continuously
evolving plant with discrete control:

〈ẋ = f(x, u)〉 � sensor!x → actuator?u)∗‖(wait d; sensor?s; actuator!Comp(s))∗

The plant evolves according to the dynamics ẋ = f(x, u) that depends on a
control parameter u. Every d time units, the controller samples the state of the
plant x via channel sensor , and computes the new control parameter by Comp,
and sends it back to the plant for the next cycle via channel actuator .

3.2 Operational Semantics

Let Real be the set of reals. A state, ranging over σ, σ′, is a function that assigns
a value to each variable. For simplicity, given a state σ and an expression e, we
also use σ(e) to return the value of e under σ. A flow, ranging over h, h′, is
a function that assigns a state to each real time point in Real. Each transition
relation has the form (P, now, h) a−→ (P ′, now′, h′), where P, P ′ are processes, a is
an event, now, now′ are real time, and h, h′ are flows, respectively. It represents
that, starting from the initial time now with the initial flow h (notice that the
initial state is exactly h(now)), P performs event a and evolves to P ′ at time
now′ with the flow h′. The events a here can be a discrete internal event, like
skip, assignment, evaluation of Boolean conditions, etc., or a communication
event, or a time delay. For the sake of embedding in HHL prover, we define the
flows h, h′ to be total on the whole real domain. For the above transition, by
confining flow h′ on the interval [now, now′], we can obtain the execution history
from P to P ′.

For page limit, we only present the semantics of continuous evolution here.2

Given an initial flow h and initial time now, assume S(t) is a solution of ṡ = e
defined over [0, d] for some duration d > 0, satisfying that S(0) = h(now)(s).
We define flow h〈now, d, S〉 same to h except that for all t ∈ (now, now + d],
h〈now, d, S〉(t) = h(t)[s → S(t − now)], i.e., the value of s is overriden by
the solution S(t) over the execution interval (now, now + d]. The semantics of
continuous evolution is then defined by the following rules:
2 The full version of both the operational semantics of HCSP and the specification

logic HHL to be introduced next can be found at [17].
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∀t ∈ [0, d).h〈now, d, S〉(now + t)(B) = true

(〈ṡ = e&B〉, now, h) d−→ (〈ṡ = e&B〉, now + d, h〈now, d, S〉)
h(now)(B) = false or

(h(now)(B) = true ∧ ∀t ∈ (0, d).h〈now, d, S〉(now + t)(B) = false)
(〈ṡ = e&B〉, now, h) τ−→ (skip, now, h)

The first rule indicates that, it evolves for d time units according to ṡ = e
if B evaluates to true within period [now, now + d) (the right end exclusive).
Otherwise, indicated by the second rule, the continuous evolution terminates at
now if B evaluates to false at now, or if B evaluates to false at a positive open
interval right to now (depending on whether B is open or close).

The transition closure (P0, now0, h0)
a1···ak−−−−→ (Pk, nowk, hk) for some k > 0

is defined, iff there exists a sequence of transitions

(P0, now0, h0)
a1−→ (P1, now1, h1), · · · , (Pk−1, nowk−1, hk−1)

ak−→ (Pk, nowk, hk)

When Pk = skip, we call the sequence of the transitions a complete execution
of P0, and for simplicity write it as (P0, now0, h0) � (nowk, hk) by omitting the
labels and the terminating process skip.

3.3 Hybrid Hoare Logic

In order to verify HCSP, Hybrid Hoare Logic (HHL) [11] is defined. As an exten-
sion of Hoare logic to hybrid systems, it considers both discrete and continuous
properties, that correspond to an isolated time point and a time interval resp.

History Formulas. In order to describe the interval-related properties, we
introduce history formulas, that are defined by duration calculus (DC) [19,20].
DC is a first-order interval-based real-time logic with one binary modality known
as chop �, but is extended with a special structure of temporal variable, i.e. state
durations. We define history formulas HF by the following subset of DC:

HF ::= � ◦ T | S� | HF1
�HF2 | ¬HF | HF1 ∨ HF2

where � is a temporal variable denoting the length of the considered interval,
◦ ∈ {<,=} is a relation, T a non-negative real, and S a first-order state formula
over process variables. HF can be interpreted over flows and intervals. Let the
judgement h, [a, b] |= HF represent that HF holds under h and [a, b], then we
have

h, [a, b] |= � ◦ T iff (b − a) ◦ T h, [a, b] |= S� iff b > a ∧ ∫ b

a
h(t)(S) = b − a

h, [a, b] |= HF1
�HF2 iff ∃c.a ≤ c ≤ b ∧ h, [a, c] |= HF1 ∧ h, [c, b] |= HF2

As defined above, � indicates the length of the considered interval. S� asserts
that the duration of state S on interval [a, b] is b − a, i.e. S holds almost every-
where in the considered non-point interval. Thus, based on S�, an invariant
property related to an interval can be specified. Later, we will write S�< as an
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abbreviation for S� ∨ � = 0 to include the point case. Lastly, HF�
1 HF2 asserts

that the interval can be divided into two sub-intervals such that HF1 holds for
the first and HF2 for the second. The first-order connectives ¬ and ∨ can be
explained as usual.

Specification and Inference Rules. The specification for a sequential HCSP
process P takes the form {Pre}P{Post; HF}, where the pre-/post-condition Pre
and Post, defined by first-order logic (FOL), specify properties of variables that
hold at the beginning and termination of the execution of P respectively, and
the history formula HF , specifies properties of variables that hold throughout
the execution interval of P . The effect of discrete processes will be specified by
the pre-/post-conditions, but not recorded in the history. The specification for a
parallel process P1‖P2 is then defined by assigning to each sequential component
of it the respective pre-/post-conditions and the history formula, shown as below:

{Pre1, P re2}P1‖P2{Post1, Post2;HF1,HF2}

In HHL, HCSP constructs are axiomatized by a set of axioms and inference rules,
which constitutes a basis for implementing the verification condition generator
for verifying HCSP specifications in HHL prover. We will give a more detailed
explanation of HHL in next section.

4 HHL Prover: Shallow Embedding

HHL prover aims to verify whether a HCSP process conforms to a HHL specifi-
cation in a machine-checkable way. The implementation of HHL prover requires
to embed the whole HHL verification framework in Isabelle/HOL. There are
two different ways for the embedding: shallow or deep. The shallow embedding
defines the assertions of HHL (i.e. FOL and DC formulas) by HOL predicates on
process states or flows, while in deep embedding, it defines the assertions as new
datatypes. In this section, we will present HHL prover in shallow embedding in
detail, and in next section the prover in deep embedding.

4.1 HCSP

In both embeddings, we start from encoding the bottom construct, i.e. expres-
sions, that are represented as a datatype exp3:

datatype exp = Con Val | RVar string | SVar string | BVar string
| exp [+] exp | exp [−] exp | exp [∗] exp | exp [/] exp

An expression can be a constant Con v, where v is of type Val for representing
constants, e.g. Con Real n; a variable, that can be RVar x, SVar x and BVar x

3 To distinguish from HOL, we wrap the arithmetic operators and FOL connectives
with [], and DC connectives with [[]] outside. For example, ∧, [∧], [[∧]] are HOL,
FOL and DC conjunctions respectively.
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for real, string, and boolean variables, respectively; an arithmetic expression
constructed from arithmetic operators.

Based on exp, we represent HCSP processes by a datatype proc. Each con-
struct of HCSP defined in Sect. 3 is encoded as a corresponding constructor in
datatype proc. For examples, B → P is encoded as IF B P; the continuous evolu-
tion 〈ṡ = e&B〉 is encoded as <s:e&&Inv&b>, with the addition of the differential
invariant Inv of the differential equation ṡ = e for the purpose of verification;
for the same reason, the repetition P ∗ is encoded as P∗&&Inv, where the loop
invariant Inv is annotated. The invariants are unknown beforehand and will be
solved in the proof process by calling an external invariant generator from HHL
prover.

To encode the semantics of HCSP, we first define two types, state and flow,
to model states and flows respectively. Then, given a process P of type proc,
time now, now’ of type real , and h, h’ of typeflow, the inductive function
semB P now h now’ h’ returns true iff (P, now, h) � (now′, h′) is a complete
execution of P .

4.2 Assertion Languages

Two types of assertion logics are used in defining the specifications of HHL: FOL
and DC. The FOL formulas are defined as predicates on states,

type synonym fform = state ⇒bool

We can then write arbitrary Isabelle functions from state to bool to describe
states. Especially, the FOL constructs can be derived as syntax flavours, like,

definition [True] :: fform where
[True] ≡ λ s. True

definition fImp :: fform ⇒fform ⇒ fform ( infixl ‘‘[ →]’’ 65) where
p [→] q ≡λ s. p s → q s

The DC formulas are represented as predicates on flows and intervals,

type synonym dform = flow ⇒real ⇒real ⇒bool

The history formulas presented in Sect. 3 can be defined correspondingly,

definition elE :: real ⇒ dform where
elE T ≡ λ h n m. (m−n) = T
definition almost :: fform ⇒ dform where
almost p ≡ λ h n m. (m>n) ∧ (∀a≥n. ∀ b≤m. a < b → (∃t. t>a ∧ t<b ∧ p(h(t))))
definition chop :: dform ⇒dform ⇒dform (‘‘ [ˆ] ’’ 80) where
H [ˆ] M ≡ λ h n m. (∃ nm. (nm ≥ n ∧ nm ≤ m ∧ H h n nm ∧ M h nm m))
definition dAnd :: dform ⇒dform ⇒dform (‘‘[[& ]]’’ 79) where
P [[&]] Q ≡ λ h n m. P h n m ∧ Q h n m

elE T implements � = T ; almost p implements p�, i.e. the duration of p is
m − n under flow h and interval [n,m] satisfying m > n, iff for any positive
open interval inside [n,m], there always exists a point in it such that P is held;
H [^] M implements H�M .
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As a consequence, the formulas can be interpreted directly,
(s |= p) ≡ p s, and (h, [n, m] |= H) ≡ H h n m. Moreover, the proof of FOL and
DC formulas is reduced to the proof of HOL formulas, which is supported by the
built-in proof tactics of Isabelle/HOL. We have proved some of the lemmas for DC
stated in [19] in Isabelle/HOL, e.g.,

True ⇔ � ≥ 0 S��S� ⇔ S� HF�� = 0 ⇔ HF
S1� ⇒ S2� if S1 ⇒ S2 is valid in FOL

4.3 Specification and Inference Rules

With the definitions of HCSP and the assertion languages, we implement a
function ValidS to represent a valid specification,

definition ValidS :: fform ⇒ proc ⇒ fform ⇒ dform ⇒ bool (‘‘{ } { ; }’’)
where ValidS p c q H ≡ ∀ now h now’ h’ .semB c now h now’ h’→ h(now) |= p

→ (h’(now’) |= q ∧ h’, [now, now’] |= H)

stating that, {p} c {q;H} is valid, iff starting from flow h and time now, if c
terminates with flow h’ and time now’, then the precondition p holds under h

and now implies the postcondition q and the history formula H hold under h’ and
now’. Below we list some of the lemmas that correspond to the valid inference
rules of HHL.

Assignment. Lemma AssignRRule presents the rule for assignment to a real vari-
able, which indicates that {p} (RVar x := f) {q; H} holds, if p implies the weak-
est precondition substF ([(RVar x, f)], q) and H is implied by the strongest
history formula elE 0.

lemma AssignRRule: (∀ s. (p [→]substF ([(RVar x, f)], q)) s) ∧
(∀ h now now’. (elE 0 [[→]] H) h now now’)

⇒ {p} RVar x := f {q; H}
Here substF ([(RVar x, f)], q) is defined in the semantic level, i.e. after sub-
stituting f for RVar x, q holds,

substF ([(RVar x, f )] , q) ≡ λ s. q (λv. if v=(x, R) then evalE f s else s v))

in which evalE f s returns the value of f under state s.

Continuous Evolution. Lemma ContinuousRule states the rule for continuous
evolutio. Function cl(·) extends the domain defined by the corresponding formula
to include the boundary, e.g. cl (x > 2) = x ≥ 2.

lemma ContinuousRule :∀ s.((p [→] Inv) [∧]
(exeFlow <v:E&&Inv&b> Inv [→] Inv) [∧] (Inv [∧] cl([¬]b) [→] q)) s

⇒ ∀ h now now’. ((elE 0[[∨]] almost (Inv [&] b)) [[→]] H) h now now’
⇒ {p} <v:E&&Inv&b> {q; H}
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Consider the hypothesis, the FOL formula in the first two lines indicates that
Inv is indeed a sufficiently strong invariant, i.e. it is satisfied by the initial state,
preserved by the execution of the continuous evolution, and strong enough to
guarantee the postcondition; the DC formula in the third line indicates that
the evolution terminates immediately (specified by elE 0), or otherwise, if the
evolution takes more than zero time, then the invariant Inv and the domain b

hold almost everywhere throughout the whole execution. The lemma is proved
valid, as a consequence, the proof of the specification for the continuous evolution
is reduced to an equivalent differential invariant generation problem: if the Inv

exists such that it satisfies the conditions in the hypothesis, then the original
specification is proved. HHL prover will call an external invariant generator to
solve the invariant generation problem.

Sequential Composition. As shown by Lemma SequentialRule, the postcondition
of P; Q (i.e. q) is equivalent to the one of Q, and the history formula (i.e. M) is
implied by the concatenation of the ones of P and Q. By recursively applying
the inference rules of HHL, the two sub-specifications corresponding to P and Q

can be transformed eventually to logical formulas. Notice that the intermediate
formulas consisting of the postcondition of P (i.e. w), the history formula of P (i.e.
H), and the hisotry formula of Q (i.e. G), are not contained in the final specification
for P; Q. As a result, we need to instantiate these formulas when applying this
rule in the proof process.

lemma SequentialRule : {p} P {w; H} ⇒{w} Q {q; G} ⇒
∀ h m n. (H [ˆ] G [[→]] M) h m n ⇒{p} P; Q {q; M}

Communication and Parallel Composition. HHL [11] is not compositional with
respect to parallel composition, due to the communications between processes
and the complex interactions between discrete computation and continuous evo-
lution. The HHL classifies parallel composition into three cases, which are spec-
ified by the following three rules respectively.

lemma Parallel1Rule : chanset P = {} ∧ chanset Q = {} ⇒{pp} P {qp; Hp}
⇒ {pq} Q {qq; Hq} ⇒{pp, pq} P||Q {qp, qq; Hp, Hq}

Lemma Parallel1Rule says that, when there is no communication event in both
P and Q, the specification of P‖Q can be copied from the ones of P and Q accord-
ingly.

lemma CommunicationRule : {px, py} (P || Q) {qx, qy; Hx, Hy}
⇒ ∀ s. ((qx [→] substF ([(RVar x, e)], rx)) [∧] (qy [→] ry)) s
⇒ ∀ h n m. ((Hx[ˆ](elE 0 [[|]] almost qx) [[→]] Gx)
[[∧]] (Hy[ˆ](elE 0 [[|]]almost qy) [[→]] Gy)) h n m

⇒{px, py} P;Cm (ch??RVar x)||Q; Cm (ch!!e) {rx, ry; Gx, Gy}
where Cm ch??RVar x and Cm ch!!e implement ch?x and ch!e in HCSP respec-
tively. Lemma CommunicationRule defines the case when a communication follows,
no matter whether P or Q contains communication events or not. For such case,
we need to synchronize the execution time till the occurrence of ch??RVar x and
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ch!!e. For example, indicated by line 3, if P terminates before Q, then the input
event needs to wait till Q terminates, and during the waiting time, the postcon-
dition of P, i.e. qx, always holds. Notice that elE 0 is included for the case when
P and Q terminate simultaneously. As soon as both parties of the communication
are ready, the communication completes like an assignment assigning e to real
variable RVar x (indicated by line 2).

lemma Parallel2Rule : {pp, pq} P||Q {qp, qq; Hp, Hq} ⇒
chanset P = {} ∧ chanset Q = {} ∧ chanset U = {} ∧ chanset V = {}

⇒ {qp} U {qu; Hu} ⇒{qq} V {qv; Hv}
⇒ {pp, pq} P; U||Q; V {qu, qv; Hp [ˆ] Hu, Hq [ˆ] Hv}

Lemma Parallel2Rule defines the remaining case when processes containing no
communication event follow, provided that P and Q contain communications (the
contrary case when P and Q do not contain communications can be reduced to the
first rule). Indicated by this rule, the parallel composition is equal to executing
U and V immediately from the terminating states of P and Q respectively.

Repetition. As shown by Lemma RepetitionRule, Inv is a loop invariant for P∗:
the precondition p implies Inv, Inv gurantees the postcondition q, and Inv is
preserved by one round execution of P (line 1); and H is idempotent with respect
to chop (line 2). The final specification for P∗ is reduced to an invariant generation
problem, similar to continuous evolution.

lemma RepetitionRule: ∀ s. ((p [→] Inv) [∧] (Inv [→] q)) s ⇒{Inv} P {Inv; H}
⇒ ∀h n m. (H[ˆ]H [[→]] H) h n m ⇒{p} P∗&&Inv {q; H}

The general rules that are applicable for all HCSP constructs, like the con-
sequene rule, the case analysis rule, and so on, can be defined as in traditional
Hoare Logic. Here we will not list them all.

At the end, all the lemmas corresponding to the inference rules of HHL
together constitute a verification condition generator of HHL prover for proving
HCSP specifications. The proof is performed according to the following process:
first, by applying the lemmas of HHL, a HCSP specification is transformed step
by step to a set of HOL formulas, i.e. verification conditions; and then, by
applying proof tactics and rules of HOL, the validity of verification conditions,
that is equivalent to the correctness of the original HCSP specification, is proved.

However, when the specification to be proved contains unknown differen-
tial invariants or loop invariants, some verification conditions related to the
invariants cannot be proved using HOL rules. In order to solve invariant-related
constraints, we have implemented an invariant generator based on the tech-
niques proposed in [12]. By defining an oracle inv_oracle in Isabelle/HOL to
call the external invariant generator, HHL prover is able to prove the remaining
invariant-related verification conditions. By now, the modelling and verification
in HHL prover is completed.
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5 HHL Prover: Deep Embedding

Different from the shallow embedding, the deep embedding defines the DC and
FOL formulas by new datatypes and the meanings of them by the corresponding
deductive rules. We present HHL prover in the deep embedding next.

5.1 Assertion Languages

FOL. The deep embedding of FOL includes the definitions of the syntax and
the deductive system. FOL formulas are constructed from expressions by using
relational operators for atomic cases, and inductively from sub-formulas by using
logical connectives for the compound cases. In syntax, the formulas can be rep-
resented by the following datatype fform:

datatype fform = [False] | exp [=] exp | exp [<] exp
| [¬] fform | fform [∨] fform | [∀] string fform

The other logical connectives including [∧], [→], and [∃] can be derived as tra-
ditional. As seen from type exp, a string may correspond to three different vari-
ables, depending on the actual type construct (that can be RVar, SVar, or BVar).
For quantified formula [∀]string fform, we assume by default that the name rep-
resented by a string s corresponds to the real variable occurring in fform, i.e.
RVar s. Thus, we only consider the quantification over real variables here, but
this restriction can be loosen by considering quantified variables of the other two
types (i.e. string and bool) without any essential difficulty.

The semantics of FOL formulas is defined by induction on the constructs.
Given a state s and a formula p of type fform, function evalF(s, p) is defined to
return the truth value of p under state s. We then have s |= p iff evalF (s, p).

We define the deductive system for fform in sequent calculus style. The
Isabelle library includes the pre-defined theory LK0 for a sequent calculus system
of classical FOL with equation. For instances, the following two axioms define
the introduction/elimination rules for conjunction in sequent calculus style:

conjR: [| $H� $E, P, $F; $H� $E, Q, $ |] ⇒$H� $E, P [&] Q, $F
conjL: $H, P, Q, $G �$E ⇒$H, P [&] Q, $G �$E

where we represent a sequence of FOL formulas by putting a $ symbol before a
capital letter, e.g. $H. We define the sequent calculus for fform (denoted by DLK0)
based on LK0 directly, but LK0 is not complete because it does not include the rules
for the arithmetic formulas for reals in fform, e.g. the arithmetic laws. In order
to solve this problem, we combine deep embedding of defining explicit formulas
in syntax and shallow embedding of applying the arithmetic proof tactics of
Isabelle. The main step is to define an equivalent conversion between the validity
of formulas of fform and HOL formulas, formT (f :,: fform)⇔�f, where the
recursive function formT transforms a formula of type fform to a corresponding
HOL formula. For instance, to prove the commutative law of [*], we first apply
formT to the corresponding formula,
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formT (RVar x [∗] Rvar y [=] RVar y [∗] Rvar x)
= (rvar (x) ∗ rvar (y) = rvar (y) ∗ rvar (x))

where rvar is a constant function that maps a real variable expression to a real
value. The HOL formula obtained after the conversion can be proved automati-
cally by applying auto directly.

As shown above, when we prove a fform formula involving arithmetic, we
will convert it equivalently to a HOL formula and then prove the HOL formula
instead. However, to prove a fform formula without arithmetic occurring in it,
two options are provided to users: applying FOL rules defined in DLK0, or con-
verting the formula to HOL and applying HOL rules.

DC. To embed DC in deep style, we first define a datatype dexp to represent
temporal expressions:

datatype dexp = � | DR real | dexp [[+]] dexp | dexp [[−]] dexp | dexp [[∗]] dexp

dexp defines expressions that are interval-dependent, including the only temporal
variable � for representing the length of the considered interval, real constants,
and arithmetic expressions. Then the datatype dform encodes the history formu-
las HF:

datatype dform = [[True]] | dexp[[=]]dexp | dexp[[<]]dexp
| almost fform | dform[ˆ]dform [[¬]]dform | dform[[∨]]dform

The semantics of the history formulas is defined by induction on the con-
structs. Given a flow f, a timed interval [c, d], and a temporal expression
te, function ievalE(f, te, c, d) is defined to evaluate te under flow f and
interval [c, d]; and based on this function, given a history formula H, function
ievalF(f, H, c, d) is defined to return the truth value of H under flow f and
interval [c, d]. Below show some examples:

ievalE( f, �, c, d) = d−c
ievalF ( f, almost S, c, d) = (c<d ∧ ∀ i, j. c≤ i < j ≤ d →

∃t. i < t < j → evalF (f(t), S))
ievalF ( f, H1[ˆ]H2, c, d) = ∃ k.c<=k ∧ k<=d ∧ ievalF (f, H1, c, k)

∧ ievalF (f, H2, k, d)

We then have h, [n, m] |= H iff ievalF (h, H, n, m).
To establish the sequent calculus style deductive system for dform, we first

define the deductive system for the first-order connectives of dform, that is similar
to the one built for fform above; then for �, [^] and almost, we transform the
deductive system of DC from [19] to sequent calculus style. For instance, the
axiom S��S� ↔ S� is encoded by the following rules:

AlR : $H � (almost S[ˆ]almost S), $E ⇒ $H � almost S, $E
AlL : $H, (almost S[ˆ]almost S) � $E ⇒ $H, almost S � $E

where $H, $E represent arbitrary sequences of logical formulas of type dform.
Other rules can be encoded similarly.
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Inference Rules. We list the rule for assignment as an illustration. Because of
the deep embedding of the assertions, the effect of assignment is expressed at
the level of fform formulas by variable substitution. This is one main difference
of using deep embedding from shallow embedding. For defining variable substi-
tution, we implement a map as a list of pairs (exp * exp) list, and define two
recursive functions: given a map r and an expression e, function substE(r, e)

substitutes expressions occurring in e according to the map r; based on the
definition of substE, given a formula p of type fform, function substF(r, p) sub-
stitutes expressions occurring in p according to the map r. Below we have the
lemma for assignment e:=f:
lemma AssignRRule:
� p [→]substF ([(RVar x, f)], q); �elE 0 [[→]] H ⇒{p} RVar x :=f {q; H}
Other rules can be defined similarly. As we can see in deep embedding, the HHL
specification is transformed into a set of explicit FOL and DC formulas, which
can be proved by applying the corresponding deductive systems we have built.

Discussion. The general strengths and weakness of both embeddings can be
found at [16], and here we will not list them again. We will make more specific
comparison between the two embeddings in the case study section.

In both embeddings, the proof in HHL prover cannot be automated due to the
following reasons: first, the intermediate assertions occurring in SequentialRule,
CommunicationRule, etc, need to be instantiated in the proof process by the
user manually; second, the constraints related to unknown differential invariants
and loop invariants need to be gathered manually so that they are solved by the
external invariant generator as a whole; finally, in shallow embedding, because
of the limitation of SMT solvers, the HOL verification conditions containing
quantifiers usually cannot be proved automatically; while in deep embedding,
the FOL and DC verification conditions are proved by applying their deductive
rules manually.

But on the contrary, compared to other automated provers, HHL prover is
capable of modelling and verifying more complex hybrid systems, because of the
expressiveness of both HCSP and HHL.

6 A Case Study

We demonstrate the use of HHL prover on proving the safety of the slow descent
guidance control program of a lunar lander, which provides a specific sampled-
data control system composed of the physical plant and the control program.

6.1 Description of the Control Program

The lunar lander’s dynamics is mathematically represented by
⎧

⎨

⎩

ṙ = v
v̇ = Fc

m − gM
ṁ = − Fc

Isp1

, where (1)
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– r, v and m denote the altitude relative to lunar surface, vertical velocity, and
mass of the lunar lander, respectively;

– Fc is the thrust imposed on the lander, which is a constant in each sampling
period of length 0.128 s;

– gM = 1.622 m/s2 is the magnitude of the gravitational acceleration on the
moon;

– Isp is the specific impulse of the lander’s thrust engine. When Fc lies in
[1500, 3000], Isp = 2548N·s/kg, and when Fc lies in (3000, 5000], Isp =
2842N·s/kg. Thus the lander’s dynamics comprises two different forms depend-
ing on the values of Isp.

The sample time of the guidance control program is fixed as 0.128s. In every
period, the guidance program gets the values of the altitude r and the velocity
v via the sensor, and then updates mass m, calculates acceleration aIC, and
calculates thrust Fc in sequence. Especially, Fc is calculated according to

Fc := −0.01 · (Fc − m · gM ) − 0.6 · (v − vslw) · m + m · gM (2)

where Fc on the right is the thrust of last period, and m is the updated mass in
this period. The new thrust Fc will then be used for the next sampling cycle.

The safety property we want to prove for the guidance program is

(SP) |v − vslw | ≤ ε, where ε = 0.05 m/s is the tolerance of fluctuation of v
around the target vslw = −2 m/s.

6.2 Verification in HHL Prover

First, we construct the HCSP model for the control program manually, denoted
by LL, which is

definition P :: proc where
LL ≡ PC Init; PD Init; t:=(Con Real 0);(PC Difff; t:=(Con Real 0); PD Rep)∗

where PC_Init and PD_Init are initialization procedures for the continuous
dynamics and the guidance program respectively; PC_Diff models the contin-
uous dynamics given by (1) within a period of 0.128s; PD_Rep calculates thrust
Fc according to (2) for the next sampling cycle; variable t denotes the elapsed
time in each sampling cycle. Hence, process LL is initialized at the beginning
by PC_Init and PD_Init, and behaves as a repetition of dynamics PC_Diff and
computation PD_Rep afterwards.

Proof Result. By applying HHL prover (either in shallow or deep embedding),
we have proved the following specification for process LL:

lemma goal: {fTrue} LL {safeProp; (elE 0 [[|]] almost safeProp)}
where safeProp of type fform encodes the safety property (SP). Lemma goal

indicates that, starting from any state, the control program satisfies the safety
property almost everywhere during the whole execution.
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Comparison in Different Approaches. In both embeddings, the proof for lemma
goal is composed of a sequence of rule applications of Isabelle/HOL. But the
length of the proof in shallow embedding is about one half of the one in deep
embedding. In detail,

– For shallow embedding, the rules applied mainly comprise of two kinds: the
inference rules of HHL and the rules for unfolding the HOL predicates of
FOL and DC formulas. Fortunately, many of the rules applied are found by
the built-in tool sledgehammer of Isabelle/HOL automatically. This alleviates
users’ proof burden to a big extent.

– For deep embedding, the rules applied also comprise of two kinds: the deduc-
tive rules of FOL and DC. The verification conditions generated (in the form
of FOL and DC) have a much smaller size than the ones (in the form of HOL)
in shallow embedding, because they are not unfolded. But meanwhile, they
need to be conducted by the user completely, to apply the deductive rules of
both logic manually.

7 Conclusion

HHL prover can be used for verifying hybrid systems, that combine discrete
computation, continuous dynamics, communications, and parallel composition,
etc. As an interactive theorem prover, it formalizes HCSP for modelling hybrid
systems and realises the Hybrid Hoare Logic (HHL) for verifying safety of HCSP
models in Isabelle/HOL. The old HHL prover implemented HHL in deep embed-
ding, but with great proof burden. This paper presents an improved HHL prover
that implements HHL in shallow embedding. In addition, to compare the two
different embedding styles, we demonstrated the use of both variants on a real-
life example, i.e. the slow descent control program of a lunar lander. It can be
seen from the proof results that the shallow embedding has better performance
in the proof size and automation than deep embedding.
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