
Connecting Algebraic and Logical Descriptions of Concurrent Systems ∗

Naijun Zhan
Lab. of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

znj@ios.ac.cn

Abstract

Algebraical approach and logical approach are two dif-
ferent methodologies for designing concurrent systems.
In this paper, we show some connections between these
two approaches. On one hand, we relate a set of prim-
itives of process algebras which exactly corresponds to
the primitives of Basic Process Algebra (BPA for short)
to the connectives of modal and temporal logics like
Fixpoint Logic with Chop (FLC for short). Thus, we
can conclude that these logics could be used to compo-
sitionally develop complex systems in an algebra-like
way. On the other hand, given a context-free process
and an equivalence or preorder such as strong bisim-
ulation, we present a uniform method to construct the
characteristic formula of the process up to the relation
directly from its syntax. So, all reductions concerning
processes that are usually performed in an algebraical
framework can be done in a logical framework.

Keywords: Algebraical Approach, Logical Ap-
proach, Basic Process Algebra, Fixpoint Logic with
Chop, Characteristic Formula

1. Introduction

Algebraical approach and logical approach are
thought as two of the dominant methodologies for de-
veloping concurrent systems, which are completely dif-
ferent. In general, the former is compositional, that is, a
complex system is built by applying an algebraic oper-
ator defined in the underlining process algebra to some
existing subsystems. So, it is easy to find a connec-
tion between the structure of a system to be developed
and that of its specification or model. In algebraical
approach, specifications or models are usually repre-
sented as a process term. Therefore, algebraical ap-
proach is suitable for describing simulation properties
like synchronization, asynchronization, exclusion and
so on. But it is difficult to define global properties such
as fairness and liveness because it lacks of abstractness.

∗This work is supported in part by NSFC-60493200, NSFC-
60421001, NSFC-60573007 and NKBRPC-2002cb312200.

In contrast, using logical approach to develop a complex
system is from a global point of view, and therefore it
is appropriate for specifying global properties because
of its abstractness. However, it is hard to find a connec-
tion between the structure of a system to be developed
and that of its specification defined as a logical formula.
Thus, logical approach is not suitable for defining sim-
ulation properties.

It is a challenging problem on how to combine the
two approaches so that we can get the merits from both
of them and avoid their disadvantages in the combined
approach.

In fact, lots of attempts have been done in this direc-
tion. For example, [6, 12] directly introduced the non-
deterministic operator “+” into the modal µ-calculus
[8] like logics so that the resulted logics have compo-
sitionality; [2, 3] discussed the compositionality of lin-
ear temporal logic [15] by introducing the chop into
the logic, while [16] investigated some logic proper-
ties of the extension; [10, 11] studied the decomposition
problem of µ-calculus; [19] investigated the composi-
tionality of a fixpoint logic in assume-guarantee style.
[20] proved the definability of “+” in the modal µ-
calculus and therefore concluded that the modal logics
proposed in [6, 12] can be encoded into the modal µ-
calculus. Comparing with the previous work where all
the logics studied can only express regular properties,
[21] extended the result of [20] to Fixpoint Logic with
Chop (FLC) by showing the definability of “+” in the
logic. FLC was invented by Markus Müller-Olm [14],
which is an extension of the modal µ-calculus with the
chop operator, strictly more expressive than the modal
µ-calculus as non-regular properties can be defined in
FLC. A by-product of the compositionality of FLC is
that [21] presented an algorithm to construct the char-
acteristic formula of a context-free process up to strong
bisimulation directly from its syntax in contrast to the
previous work on deriving the characteristic formula of
a process up to some equivalence or preorder from its
semantics. For example, [7] gave a method to define
characteristic formulae for finite terms of CCS up to
observational congruence, [17] deepened the work by
presenting an approach to define characteristic formulae

for regular processes up to some preorders; moreover,
[14] gave a method to define the characteristic formula
for a context-free process up to some preorder based on
its rewriting system.

In this paper, we will extend the results of [21] by
investigating the compositionality of FLC under an ob-
servational semantics, which is a preorder and gener-
alization of observable equivalence of [13]. Similarly
to [21], we will first show the definability of “+” in
the observable FLC under the observational semantics
and then present algorithm to construct the characteris-
tic formula of a context-free process up to the preorder
directly from its syntax.

The rest of this paper is organized as follows: Sec-
tion 2 briefly reviews Basic Process Algebra with Dead-
lock and Termination [4] (BPAε

δ). In Section 3, FLC is
briefly reviewed and its observable version is defined.
Section 4 is devoted to showing the definability of “+”
in the observable FLC. In Section 5, we investigate a
connection between the constructors of BPAε

δ and the
connectives of FLC under the observational semantics.
In Section 6, we sketch how to construct a formula ΨP
for each process P ∈ BPAε

δ according to its syntax and
then show the formula obtained by eliminating “+” in
ΨP is the characteristic formula of P up to the preorder.
Finally, a brief conclusion is provided in Section 7.

2. Basic Process Algebra with Termination
and Deadlock

Let Act be a set of (atomic) observable actions,
ranged over a,b,c, · · · , and τ be an unobservable ac-
tion. We use Actτ to stand for Act ∪{τ}, ranged over
α,β , · · · . Let X = {x,y,z, ...} be a countable set of pro-
cess variables. Sequential process terms, written Ps,
are generated by the following grammar:

E ::= δ | ε | x | α | E1;E2 | E1 +E2 | rec x.E,

where α ∈ Actτ .
Intuitively, δ stands for a deadlocked process that

cannot execute any action and keeps idle for ever; ε
denotes a terminated process that cannot proceed, but
terminates at once; in isolation, x behaves like δ , which
is used to define recursive processes; “;” stands for se-
quential composition while “+” for non-deterministic
choice; rec x.E represents recursion and informally
means that the body E can be performed repeatedly.

In order to define an operational semantics for ex-
pressions of the form E1;E2, we need to define a spe-
cial predicate T over Ps to indicate if a given process
term is terminated or not1. Formally, T ⊂ Ps is the
least set which contains ε and is closed under the fol-

lowing rules: (i) if T (E1) and T (E2) then T (E1;E2)
and T (E1 +E2); (ii) if T (E) then T (rec x.E).

An occurrence of variable x ∈ X is called free in
term E iff it does not occur within a sub-term of the
form rec x.E ′, otherwise called bound. We will use
fn(E) to stand for all variables which have some free
occurrence in E, and bn(E) for all variables which
have some bound occurrence in E. Variable x ∈ X
is called guarded within term E iff every occurrence
of x is within a sub-term F where F is prefixed with
a subexpression F ′ via “;” such that ¬T (F ′). A term
E is called guarded iff all variables occurring in it are
guarded. The set of all closed and guarded terms of
Ps essentially corresponds to the basic process algebra
(BPA) with the terminated process ε and the deadlocked
process δ , denoted by BPAε

δ , ranged over by P,Q, · · · ,
where BPA is a fragment of ACP [4].

An operational semantics of Ps is given in the
standard Plotkin’s style, yielding a transition system
(Ps,→) with →⊆ Ps × Actτ ×Ps that is the least
relation derived from the rules in the Fig.1.

Act
α α→ ε

Rec E[rec x.E/x] α→ E ′

rec x.E α→ E ′

Seq-1 E1
α→ E ′1

E1;E2
α→ E ′1;E2

Seq-2 E2
α→ E ′2∧T (E1)

E1;E2
α→ E ′2

Nd E1
α→ E ′1

E1 +E2
α→ E ′1, E2 +E1

a→ E ′1

Fig.1. The Operational Semantics of Ps

Definition 1 A binary relation S ⊆ BPAε
δ ×BPAε

δ is
called a strong bisimulation if (P,Q) ∈S then

• T (P) iff T (Q);

• whenever P α→ P′ then, for some Q′,Q a→ Q′ and
(P′,Q′) ∈S for any α ∈ Actτ ;

• whenever Q α→ Q′ then, for some P′,P α→ P′ and
(P′,Q′) ∈S for any α ∈ Actτ .

Given two processes P,Q ∈ BPAε
δ , we say that

P and Q are strongly bisimilar, written P ∼ Q, if
(P,Q) ∈ S for some strong bisimulation S . We
can extend the definition of ∼ over Ps as: let

1As in [1], here we adopt the semantics of strict termination in
the sense that P + Q is terminated iff P and Q both are terminated.
This is because using termination to make choice is impractical, and
therefore is thought as not well-formed in many literatures, e.g. [5].

E1,E2 ∈ Ps and fn(E1) ∪ fn(E2) ⊆ {x1, · · · ,xn}, if
E1{P1/x1, · · · ,Pn/xn} ∼ E2{P1/x1, · · · ,Pn/xn} for any
P1, · · · ,Pn ∈ BPAε

δ , then E1 ∼ E2.
In order to define an observational semantics of Ps,

we need the following notations and definitions.
Given an action α ∈ Actτ , we use α̂ to denote α if

α ∈ Act, ε otherwise, where ε stands for empty action.
Moreover, ε→ denotes the identity relation over Ps, i.e.,
for any E ∈Ps, E ε→ E. We use α⇒ to stand for the se-
quence of transitions (τ→)∗· α→ ·(τ→)∗ and ε⇒ for (τ→)∗.
In what follows, E t→means that E

α1→E1
α2→E2 · · · αn→En

for some E1, · · · ,En, where t = α1 · · ·αn ∈ Act∗τ .
We say a term E is convergent, denoted by ↓ (E), if

and only if E cannot perform an infinite sequence of τ
actions, that is, formally, E 6τω→; otherwise, E is called
divergent, written ↑ (E). We say ↓τ (E) if ↓ (E), ↓a

(E) if ↓ (E), and for each E ′, E a⇒ E ′ implies ↓ (E ′),
where a ∈ Act. Also, we say a process term E is weak
terminated if ∀E ′.(E ε⇒ E ′∧E ′ 6 τ→)⇒ T (E ′), denoted
T(E).

Since we want to distinguish the behavior of dead-
locked, terminated and divergent processes, instead of
using the standard Milner’s observable bisimulation
[13], we use the following preorder adapted from [1],
which is a generalization of Milner’s observable bisim-
ulation, to describe the observational behavior of BPAε

δ .

Definition 2 Let ¹ be a binary relation over BPAε
δ

which satisfies that for each P,Q ∈ BPAε
δ , P¹ Q iff

• if ↓ (P), T(P) iff T(Q);

• whenever P α→ P′ then, for some Q′,Q α̂⇒ Q′ and
(P′ ¹ Q′);

• if ↓α (P), then

(a) ↓α (Q)

(b) whenever Q α→ Q′ then, for some P′,P α̂⇒
P′ and P′ ¹ Q′;

where α ∈ Actτ .

It is obvious that ¹ is a preorder. Denote ¹ ∩ ¹−1

by ≈.
It is well-known in process algebra that the above

preorder is not congruent, for example, a ¹ τ;a, but
a+b 6¹ τ;a+b. Also, from the above example, we see
that ≈ is a equivalent relation, but not congruent. How-
ever, following Milner [13], we have a standard way of
associating a precongruence with ¹. [1] proved the im-
plicit congruence associated with ¹ coincides with the
preorder defined below, denoted as ¹∗.

Definition 3 For each P,Q ∈ BPAε
δ , P¹∗ Q iff

• ∀a∈ Act, whenever P a→ P′ then, for some Q′,Q a⇒
Q′ and P′ ¹ Q′;

• if P τ→ P′, then

(a) ↓ (P′) implies, for some Q′, Q τ⇒ Q′ and
P′ ¹ Q′;

(b) ↑ (P′) implies, for some Q′, Q ε⇒ Q′ and
P′ ¹ Q′;

• if ↓α (P), then

(a) ↓α (Q)

(b) whenever Q α→ Q′ then, for some P′,P α̂⇒
P′ and P′ ¹ Q′;

• if ↓ (P), then T(P) iff T(Q);

where α ∈ Actτ .

[1] also proved that ¹∗ can be finitely axiomatized
and

Theorem 1 For any P,Q ∈ BPAε
δ , P¹ Q iff P¹∗ Q or

P¹∗ τ;Q or τ;P¹∗ Q.

It is easy to see that τ ¹ ε , but τ 6¹∗ ε . However,
τ ¹∗ τ;ε .

In what follows, we will use≈∗ to denote¹∗ ∩¹∗−1.
It is easy to see that ≈∗ is equivalent as well as congru-
ent.

3. Fixpoint Logic with Chop

FLC, due to Markus Müller-Olm [14], is an exten-
sion of the modal µ-calculus with the chop “;”. Intu-
itively, P |= φ ;ψ means that the behavior of P can be
partitioned into two successive parts such that the first
has the property φ and the second meets ψ . FLC can
express non-regular properties, and is therefore strictly
more powerful than the µ-calculus.

Let X ,Y,Z, · · · range over an infinite set Var of vari-
ables, tt and f f be propositional constants as usual, and√

another special propositional constant that is used to
indicate if or not a process is terminated. Formulae of
FLC are generated according to the following grammar:

φ ::= tt | f f | √ | τ | X | [α] | 〈α〉 | φ1∧φ2 | φ1∨φ2 |
φ1;φ2 | µX .φ | νX .φ

where X ∈ Var and α ∈ Actτ .
In what follows, we use α© to stand for 〈α〉 or [α],

p for tt, ff or
√

, and σ for ν or µ .

Some notations can be defined as in the modal µ-
calculus, for example free and bound occurrences of
variables, closed and open formulae etc. The two fix-
point operators µX and νX are treated as quantifiers.
We will use fn(φ) to stand for all variables which have
some free occurrence in φ and bn(φ) for all variables
that have some bound occurrence in φ . Denote by
cFL C the set of all closed formulae of FLC.

It is well-known that formulae of the modal µ-
calculus are interpreted as a predicate, i.e. a set of states.
However, we cannot interpret FLC in such a way be-
cause given a process P and a formula of the form φ ;ψ ,
we really do not know where and how to partition the
process into two successive parts such that the first sat-
isfies φ and the second meets ψ . Therefore, FLC is
interpreted in the second-order, that is, formulae are in-
terpreted as a monotonic predicate transformer which
is a monotonic function with the type 2BPAε

δ → 2BPAε
δ .

Here, we say that a predicate transformer f is mono-
tonic in the sense that for any given A1 ⊆A2 ⊆ BPAε

δ ,
f (A1) ⊆ f (A2)2. Thus, the chop ; is easily interpreted
as the functional composition. We use MPT to represent
all the monotonic predicate transformers over BPAε

δ .
The meaning of variables is given by a valuation ρ

with the type Var → MPT, that is, it assigns a mono-
tonic function from sets to sets to each variable in Var.
ρ[X ; f] agrees with ρ except for associating f with
X .

Definition 4 The meaning of a formula φ , under a val-
uation ρ , denoted by [[φ]]ρ , is inductively defined as fol-
lows:

[[tt]]ρ(A) = BPAε
δ

[[f f]]ρ(A) = /0
[[
√

]]ρ(A) = {P ∈ BPAε
δ |T (P)}

[[τ]]ρ(A) = A

[[X]]ρ(A) = ρ(X)(A)
[[[α]]]ρ(A) = {P ∈ BPAε

δ | ¬T (P)∧
∀P′ ∈ BPAε

δ .P α→ P′⇒ P′ ∈A }
[[〈α〉]]ρ(A) = {P ∈ BPAε

δ |
∃P′ ∈ BPAε

δ .P α→ P′∧P′ ∈A }
[[φ1∧φ2]]ρ(A) = [[φ1]]ρ(A)∩ [[φ2]]ρ(A)
[[φ1∨φ2]]ρ(A) = [[φ1]]ρ(A)∪ [[φ2]]ρ(A)

[[φ1;φ2]]ρ = [[φ1]]ρ · [[φ2]]ρ
[[µX .φ]]ρ = u{ f ∈MPTT | [[φ]]ρ[X; f] ⊆ f}
[[νX .φ]]ρ = t{ f ∈MPTT | [[φ]]ρ[X; f] ⊇ f}

2In fact, FLC can be interpreted more generally as in [14] over a
labeled transition system in which some states could not be context-
free process terms.

where A ⊆ BPAε
δ , and · stands for the composition op-

erator over functions.

Note that because ε and δ have different behavior
in the presence of ;, they should be distinguished in
FLC. To this end, we interpret [α] differently from in
[14]. According to our interpretation, P |= [α] only if
¬T (P), whereas in [14] it is always valid that P |= [α]
for any P ∈ Ps. Thus, it is easy to show that ε 6|=∧

α∈Actτ [α]; f f , while
∧

α∈Actτ [α]; f f is the characteris-
tic formula of δ up to ∼.

As the meaning of a closed formula φ is indepen-
dent of any environment, we sometimes write [[φ]] for
[[φ]]ρ , where ρ is an arbitrary environment. We also
abuse φ(A) to stand for [[φ]]ρ(A) if ρ is clear from the
context.

The set of processes satisfying a given closed for-
mula φ is φ(BPAε

δ). A process P is said to satisfy φ iff
P ∈ [[φ]]ρ(BPAε

δ) under some valuation ρ , denoted by
P |=ρ φ . If ρ is clear from the context, we directly write
P |= φ . φ ⇒ψ means that [[φ]]ρ(A)⊆ [[ψ]]ρ(A) for any
A ⊆ BPAε

δ and any ρ . φ ⇔ ψ means (φ ⇒ ψ)∧ (ψ ⇒
φ). The other notations can be defined in the standard
way.

[9] proved that each formula φ ∈ cFL C is an in-
variant of ∼. I.e.,

Theorem 2 Given P,Q ∈ BPAε
δ , P ∼ Q iff for any φ ∈

cFL C , P |= φ iff Q |= φ .

In order to investigate observable behavior of sys-
tems, [18] introduce observable modalities 〈〈〉〉 and [[]]
into HML (Hennessy-Milner Logic). Formally, the
meaning of 〈〈〉〉 is defined as

[[〈〈〉〉]]ρ(A) = {P | ∃P′.P ε⇒ P′∧P′ ∈A }.
Dually, the meaning of [[]] can be given. [18] pointed
out that in HML the two observable modalities are not
definable, whereas the two modalities are definable in
the modal µ-calculus. The following lemma will show
how to define the two observable modalities in FLC.

Lemma 1

(1) 〈〈〉〉 ⇔ τ ∨ (µX .〈τ〉;X ∨〈τ〉),
(2) [[]]⇔ τ ∧ (νX . [τ];X ∧ [τ])

Let 〈〈α〉〉=̂〈〈〉〉;〈α〉;〈〈〉〉 and [[α]] =̂ [[]]; [α]; [[]] for any
α ∈ Actτ . We call 〈〈α〉〉 and [[α]] weak diamond α and
weak box α , respectively. Now, let wFLC be the set of
formulae generated from the grammar of FLC except
that [α] and 〈α〉 are replaced by [[α]] and 〈〈α〉〉, respec-
tively. By wFL C denotes the set of the closed formu-
lae of wFLC. It is easy to see that wFL C is a proper
subset of cFL C .

Similar to [9], we can show that each ψ ∈ wFL C
is an invariant of ≈∗, i.e.

Theorem 3 Given P,Q ∈BPAε
δ , P≈∗ Q iff for any ψ ∈

wFL C , P |= ψ iff Q |= ψ .

4. Defining the Non-deterministic Choice
“+” in wFLC

Compositionality plays an important role in de-
signing reactive systems as it allows one to com-
pose/decompose a complex system from/to several sim-
pler components. Generally speaking, it is hard to de-
sign a complex system in a logical frame in a compo-
sitional way because it is difficult to find a connection
between the structure of a system to be developed and
that of its specification given by the logic. In order to
describe properties of non-deterministic programs with
logical approach in a compositional way, [6, 12] intro-
duced the non-deterministic choice “+” of process alge-
bras into modal logics, and established Synchronization
Tree Logic (STL) and Modal Process Logic, respec-
tively. Intuitively, P |= φ + ψ means that there exist P1
and P2 such that P∼ P1 +P2, P1 |= φ and P2 |= ψ .

[20] showed that the non-deterministic choice “+”
can be defined by disjunction and conjunction in the
modal µ-calculus. [21] extended the results of [20] to
FLC by showing that “+” is also definable in FLC.

In what follows, we first briefly review the basic idea
of [21] on how to derive “+” by conjunction and dis-
junction, and then prove that as far as wFLC is con-
cerned, “+” is also definable.

First step, as in [6, 12], is directly to introduce “+”
into FLC, written the extension as FLC+, formally de-
fined as:

φ ::= p | τ | X | α© | φ1∧φ2 | φ1∨φ2 | φ1;φ2 | φ1 +φ2 |
µX .φ | νX .φ

where X ∈ Var and α ∈ Actτ .
Given a valuation ρ , the meaning of φ +ψ is defined

as

[[φ1 +φ2]]ρ(A) = {P ∈ BPAε
δ | P∼ P1 +P2∧

P1 ∈ [[φ1]]ρ(A)∧P2 ∈ [[φ2]]ρ(A)} (1)

The other constructs are interpreted as in FLC.
In the following, we define what it means for a for-

mula to be a guard:

Definition 5 1. α© and p are guards;

2. if φ and ψ are guards, so are φ ∧ψ , φ ∨ψ and
φ +ψ;

3. if φ is a guard, so are φ ;ψ and σX .φ , where ψ is
any formula of FLC+ .

X is said to be guarded in φ if each occurrence of X
is within a subformula ψ that is a guard. If all variables
in fn(φ)∪bn(φ) are guarded, then φ is called guarded.
A formula φ is said to be strictly guarded if φ is guarded
and for any X ∈ fn(φ)∪ bn(φ), there does not exist a
subformula of the forms X +ψ , (X¯χ)+ψ , (X ;ϕ)+χ
or (X ;ϕ¯χ)+ψ , where ¯ ∈ {∨,∧}.

Intuitively, a variable X is said to be guarded means
that each occurrence of X is within the scope of a
modality α© or a propositional letter p.

Example 1 Formulae 〈a〉;X ;Y,νX .(〈a〉∨ 〈b〉);X ;(Y +
Z), ff ;X are guarded, but X ,〈a〉 ∧ X ,µX .(X + Y) ∨
[a],µX .(〈a〉;X ∨ 〈b〉); µY.(Y + 〈a〉) are not. 〈a〉;X ;Y
and f f ;X are strictly guarded, however, νX .(〈a〉 ∨
〈b〉);X ;(Y +Z) is not.

We will use LFLC+ to denote all formulae of
FLC+ that are closed and guarded, and LFLC for the
subset of cFL C in which all formulae are guarded.

Given a formula φ , the set of the atomic sub-
formulae at the end of φ , denoted by ESub(φ), is:
{φ} if φ = p,τ,X or α©; ESub(φ1)∪ESub(φ2) if φ =
φ1 op φ2 where op ∈ {∧,∨,+}; if φ = φ1;φ2 then if
τ 6∈ ESub(φ1) then ESub(φ2) else (ESub(φ2)\{τ}) ∪
ESub(φ1); ESub(φ ′) if φ = σX .φ ′. It is said that

√
only occurs at the end of φ if

√
can only be in ESub(φ)

as a sub-formula of φ .
Second step is to show that for any φ ∈LFLC+ , there

exists a formula φ ′ ∈LFLC such that φ ⇔ φ ′. This can
be obtained via the following three steps. The first is to
show that in some special cases “+” can be defined es-
sentially by conjunction and disjunction. Then, to prove
that the elimination of “+” in a strictly guarded formula
φ of FLC+ can be reduced to one of the above special
cases. Finally, to complete the proof by showing that for
any φ ∈LFLC+ there exists a strictly guarded formula
φ ′ ∈LFLC+ such that φ ⇔ φ ′. Details can be referred
to [21].

Thus, the definability of + in FLC can be represented
as the following theorem.

Theorem 4 For any φ ∈LFLC+ , there exists φ ′ ∈LFLC
such that φ ′⇔ φ .

In the definition of FLC+ , if we replace [α] and
〈α〉 with [[a]] and 〈〈a〉〉 respectively, then the resulted
logic will be written as wFLC+ . We use wFL C +

to stand for the set of closed formulae of wFLC+ . If
we replace [α] and 〈α〉 with [[a]] and 〈〈a〉〉, respectively
in Definition 5, we obtain the definition of guardness

for wFLC+ . Consequently, wLFLC stands for the sub-
set of wFL C in which all formulae are guarded, and
wLFLC+ for the subset of FL C + in which all formu-
lae are guarded.

Then, we can also claim that in wLFLC+ , “+” can be
eliminated, i.e.

Theorem 5 For any φ ∈ wLFLC+ , there exists φ ′ ∈
wLFLC such that φ ′⇔ φ .

Proof: We can prove this theorem with two approaches.
The first one is to show it similar to the proof of Theo-
rem 4. The other one is to prove it directly from Theo-
rem 4 and the definitions of [[a]] and 〈〈a〉〉. a

In what follows, we will use en(φ) to denote the re-
sulting formula by applying the above procedure to φ
by which + is eliminated.

5. Relating BPAε
δ to wFLC+

[21] showed a connection between BPAε
δ and LFLC+

under the strong bisimulation semantics, and exploited
the connection to construct the characteristic formula of
a process in BPAε

δ up to∼ syntactically. In this section,
we will show a similar connection between BPAε

δ and
wLFLC under the observable semantics, which will be
used to present an algorithm to derive the characteristic
formula of a context-free process up to¹∗ syntactically
in the next section.

Nondeterminism

From the semantics of FLC+ and Theorem 5, it is
clear that “+” of BPAε

δ corresponds to the derived oper-
ator “+” in wLFLC+ . That is,

Proposition 1 For any P,Q ∈ BPAε
δ and φ ,ψ ∈

wLFLC+ , if P |= φ and Q |= ψ then P+Q |= en(φ +ψ).

Sequential Composition

Similarly to [21], we can obtain a connection be-
tween the sequential composition “;” of BPAε

δ and the
chop “;” of wLFLC+ as follows.

Theorem 6 For any φ ,ψ ∈ wLFLC+ and any P,Q ∈
BPAε

δ , if
√

only occurs at the end of φ , P |= φ ;
√

and
Q |= ψ then P;Q |= φ{τ/

√};ψ .

Recursion

Here, we show how to relate rec x to νX and µX
similarly to [21]. To this end, we first employ a relation
called weak syntactical confirmation between processes

and formulae, with the type Ps ×wFLC+ 7→ {tt, ff},
denoted by |=wsc.

Definition 6 Given a formula φ , we associate a map
from 2Ps

to 2Ps
with it, denoted by φ̃ , constructed by

the following rules:

√̃
(E) =̂ {E ∈Ps | E ≈∗ ε}

t̃t(E) =̂ Ps

f̃f (E) =̂ /0
τ̃(E) =̂ E

X̃(E) =̂ {x;τn;E | E ∈ E ,0≤ n}
〈̃〈α〉〉(E) =̂ {E | ∃E ′ ∈ E .E α⇒ E ′}
[̃[α]](E) =̂ {E | ¬T(E)∧E is guarded ∧

∀E ′.E α⇒ E ′⇒ E ′ ∈ E }
φ̃1∧φ2(E) =̂ φ̃1(E)∩ φ̃2(E)

φ̃1∨φ2(E) =̂ φ̃1(E)∪ φ̃2(E)

φ̃1 +φ2(E) =̂ {E | ∃E1,E2.E = E1 +E2∧
E1 ∈ φ̃1(E)∧E2 ∈ φ̃2(E)}

φ̃1;φ2(E) =̂ φ̃1 · φ̃2(E)

σ̃X .φ(E) =̂ {(rec x.E1);E2 | E1 ∈ φ̃({ε})∧E2 ∈ E }

where α ∈ Actτ ,E ⊆Ps.
|=wsc (E,φ) = tt iff E ∈ φ̃({ε}); otherwise, |=wsc

(E,φ) = ff. In what follows, we denote |=wsc (E,φ) = tt
by E |=wsc φ and |=wsc (E,φ) = ff by E 6|=wsc φ .

Informally, P |=wsc φ means that P and φ have a sim-
ilar syntax in the sense that all occurrences of the τ ac-
tion in P are abstracted away. Comparing with the no-
tion of syntactical confirmation in [21], the clauses of√

, x, 〈〈a〉〉, and [[a]] are very different.

Example 2 Let E0 =̂recx.τ;x + τ , E1 =̂(τ;τ;a;x;x) +
d;τ , E2 =̂x;(b;τ + c);τ;y;τ and E3 =̂E0;a;b;c.
While, let φ0 =̂

√
, φ1 =̂〈〈a〉〉;X ;X, φ2 =̂X ;〈〈b〉〉;Y and

φ3 =̂ [[a]];〈〈b〉〉;〈〈c〉〉. According to the above definition,
it follows that E0 |=wsc φ0, E1 |=sc φ1, E2 |=sc φ2,
E3 |=sc φ3.

The following lemma indicates that |=wsc itself is
compositional as well.

Theorem 7 Let
√

only appear at the end of φ1, φ2 and
φ . Then,

i) if E1 |=wsc φ1 and E2 |=wsc φ2 then E1 + E2 |=wsc
φ1 +φ2;

ii) if E1 |=wsc φ1 and E2 |=wsc φ2 then E1;E2 |=wsc
φ1{τ/

√};φ2;

iii) if E |=wsc φ then rec x.E |=wsc σX .φ{τ/
√}.

Example 3 In Example 2, according to Theorem 7,
we obtain E1 + E2 |=wsc φ1 + φ2, E3;(E1 + E2) |=wsc
φ3;(φ1 + φ2) and rec x. rec y.E3;(E1 + E3) |=wsc
νX .νY.(φ3;(φ1 +φ2)).

Theorem 8 establishes a connection between |=wsc
and |=, so that rec x is related to νX and µX .

Theorem 8 For any P ∈ BPAε
δ φ ∈ wLFLC+ , if

√
only

occurs at the end of φ , φ 6⇔ f f and P |=wsc φ , then P |=
φ ;
√

.

6. Constructing Characteristic Formulae
for Context-free Processes Syntactically

Given a binary relation R over processes, which may
be an equivalence or a preorder, the characteristic for-
mula for a process P up to R is a formula φP such that
for any process Q, Q |= φP if and only if PRQ. [14] pre-
sented a method to derive the characteristic formula for
a context-free process up to strong bisimulation by solv-
ing the equation system induced by the rewrite system
of the process, while [21] investigated the issue from a
syntactical point of view, constructing the characteristic
formula directly from the syntax of the process. Here,
we will extend the method proposed in [21] to construct
the characteristic formula for a process of BPAε

δ up to
¹∗ also directly from its syntax.

Let [[↓]] = µX .τ ∧ [[τ]];X and 〈〈↑〉〉= νX .〈〈τ〉〉;X . The
former formula says that any process that meets the for-
mula must be convergent, that is, the process cannot
perform an infinite sequence of unobservable actions;
whereas the latter expresses that any process that has the
property may potentially perform an infinite sequence
of unobservable actions, i.e. divergent. The contrast in
meaning between [[]] and [[↓]] is the difference in their
fixpoints. It is clear that a divergent process has the
property [[]], but cannot have [[↓]].

In what follows, let us discuss how to characterize
the primitive constructs of BPAε

δ up to the preorder¹∗3.
So that the characteristic formula of a composite pro-

cess may be built from those of the primitives according
to its syntactical structure.

For simplicity,
∧

α∈Actτ−A [[α]]; f f will be abbreviated
as Φ−A from now on.

Firstly, we consider the characteristic formulae of
δ . It is obvious that for any process Q, if δ ¹∗ Q,
then Q should have the following properties: the first
is that Q cannot do any observable action; the second

3It is worth noting that characteristic formulae up to ¹∗ for these
primitive constructs like δ and ε are more complicated than the ones
up to ∼.

is that Q cannot perform infinite many unobservable ac-
tions; and the last is that Q cannot terminate. Thus, the
characteristic formula of δ up to ¹∗ can be defined as
Φ−{τ} ∧ [[↓]] (Φδ for short). Notice that if we see δ as
an abbreviation of recx.x, then δ |=wsc Φδ according to
Definition 6.

For any process Q with ε ¹∗ Q, it follows that on
one hand, it cannot execute any observable action; on
the other hand, it may perform a finite sequence of un-
observable actions, but any of such executions must ter-
minate. Therefore, ε can be characterized by Φ−{τ} ∧
[[]];〈〈〉〉;√, written as Φε . Note that Φε guarantees that
the process is convergent. Obviously, ε |=wsc Φε .

As for an action a ∈ Act, for any process Q with
a ¹∗ Q, then Q should have the properties: firstly, it
can only perform the action a and then evolves to ε;
secondly, it may perform any finite many unobservable
actions before and after executing a, but cannot diverge.
Thus, let Φα = Φ−{a,τ}∧ [[↓]]∧(〈〈α〉〉∧ [[α]]), then we can
define the characteristic formula of α as Φα ;

√
. It also

follows that α |=wsc Φα by Definition 6.
Similarly, as for τ , for any process Q with τ ¹∗ Q,

then Q should have the properties: firstly, it cannot per-
form any observable action; secondly, it at least per-
form one unobservable action, but can only perform
a finite sequence of unobservable actions and any of
such executions must terminate. If let Φτ = Φ−{τ}∧ [[↓
]]∧(〈〈τ〉〉∧ [[τ]]), then we can define the characteristic for-
mula of τ as Φτ ;

√
. It is easy to obtain that τ |=wsc Φτ

by Definition 6.
According to the definition of ¹∗, on one hand, if τ

appearing at the beginning of a process, it behaves like
an action in Act; on the other hand, if it follows an ac-
tion a via ;, it can be discarded according to P;τ ≈∗ P
where P is a process. In order to deal with such a
problem, we introduce a special propositional letter EL.
Then present a rule on how to eliminate EL in the de-
rived formula in the procedure all information concern-
ing the redundant τ actions will be discarded in order to
keep P;τ ≈∗ P.

Since the recursive operator may introduce diver-
gence, we define the characteristic formula according
to if or not it gives rise to divergence that can be de-
termined by checking the weak syntactical confirma-
tion between the resulted process term and 〈〈 ↑ 〉〉. It
is obvious that the characteristic formula for a diver-
gent processes Ω up to ¹∗ is tt because Ω¹∗ P for any
P ∈ BPAε

δ . On the other hand, it is well-known that if
a process E is divergent then E + F and F + E for any
process F will be divergent also. Therefore, the charac-
teristic formulae of E +F and F +E are tt as well if the
one of E is tt.

In a word, given a process term E ∈ Ps, we

use the following algorithm to associate a formula of
wFLC+ with EL with E according to its syntax.

Definition 7 Given a process term E ∈ Ps, we asso-
ciate with it a formula of wFLC+ , denoted by ΨE , con-
structed by the following rules:

Ψδ =̂ Φδ ,

Ψε =̂ Φε ,

Ψx =̂ X ,

Ψα =̂ Φα for α ∈ Actτ ,

ΨE1;E2 =̂ ΨE1{τ/
√};EL;ΨE2 ,

ΨE1+E2 =̂
{

tt if ΨE1 = tt or ΨE2 = tt
ΨE1 +ΨE2 otherwise,

Ψrec x.E =̂
{

tt if recx.E |=wsc 〈〈 ↑ 〉〉
νX .ΨE{τ/

√} otherwise

Regards Definition 7, we have

Lemma 2 1. For any E ∈ Ps,
√

only occurs at the
end of ΨE ;

2. For any E ∈ Ps, E |=wsc ΨE{τ/EL} and E |=wsc
ΨE{τ/EL};

√
;

3. For any P ∈ BPAε
δ , ΨP{τ/EL};

√∈ wLFLC+ .

In order to derive the characteristic formula of a pro-
cess P, we define a rule to eliminate EL as follows:

EL;φ =
{

EL if φ = EL, [[τ]] or 〈〈τ〉〉;
φ otherwise .

It is easy to see that by applying the rule to en(ΨP;
√

),
we can get a EL-free formula and denote by ϒP.

Similar to [21], we can show that ϒP is the charac-
teristic formula of P up to ¹∗ for each P ∈ BPAε

δ .

Theorem 9 For any P∈BPAε
δ , if Q |= ϒP then P¹∗ Q.

Remarks 1 In Theorem 9, the condition that P is
guarded is essential. Otherwise, the theorem is not true
any more. For instance, νX .(X +(〈〈a〉〉∧ [[a]][[↓]]∧
Φ−{a})) is equivalent to Ψrec x.(x+a), nevertheless,
(νX .(X + (〈〈a〉〉 ∧ [[a]]∧Φ−{a})));

√
is not the charac-

teristic formula of rec x.(x + a), since rex x.(x + b + a)
meets the formula, but rec x.(x+a) 6¹∗ rex x.(x+b+a).

Besides, utilizing the results of [1] that ¹∗ can be
finitely axiomatized, we can show that

Theorem 10 • For any P,Q ∈ BPAε
δ , if P¹∗ Q then

ϒQ ⇒ ϒP.

• For any P,Q ∈ BPAε
δ , if P≈∗ Q then ϒQ ⇔ ϒP.

According to our definition, it is easy to see that
the characteristic formulae of recx.τ;x is tt and there-
fore recx.τ;x ¹∗ Q for any Q ∈ BPAε

δ . Moreover,
the characteristic formula of recx.τ;x + τ is also tt as
recx.τ;x+ τ |=wsc 〈〈↑〉〉.

7. Concluding Remarks

In this paper, we extended the result of [21] by con-
sidering the compositionality of the observable FLC. To
the end, similarly to [21] we first proved the definabil-
ity of the non-deterministic choice “+” in the observ-
able FLC and then established a connection between
the observable FLC and BPAε

δ under the observational
semantics ¹. Furthermore, we also give an algorithm
on constructing characteristic formula of a context-free
process up to the preorder ¹∗ directly from its syntax.

The significance of this work on developing high
reliable software is obvious. By the work of this pa-
per and [21], some connections between algebraical ap-
proach and logical approach have been established. As
we know, BPAε

δ is the basis of process algebras, and
most of modal and temporal logics can be reduce to
FLC. Therefore, by relating the constructs of BPAε

δ to
the connectives of FLC, we can obtain the composition-
ality of modal logics. Thus developing a complex sys-
tem with modal logics can be done in process algebra-
like compositional manner. Compositionality is very
important in developing high reliable software for at
least the following reasons. Firstly, it allows modular
design and verification of complex systems so that the
complexity is tractable. Secondly, during re-designing
a verified system only the verification concerning the
modified parts should be re-done rather than verifying
the whole system from scratch. Thirdly, compositional-
ity makes it possible to partially specify a large system.
When designing a system or synthesizing a process, it is
possible to have undefined parts of a process and still to
be able to reason about it. For example, this technique
can be applied for revealing inconsistencies in the speci-
fication or proving that with the choices already taken in
the design no component supplied for the missing parts
will ever be able to make the overall system satisfy the
original specification. Finally, it can make possible the
reuse of verified components; their previous verification
can be used to show that they meet the requirements on
the components of a large system.

On the other hand, through constructing the char-
acteristic formulae up to different semantics, we can
reduce lots of verification problems in an algebraical
frame accordingly into a logical frame. In fact, many
of these problems cannot be well solved in algebraical
frame, but the corresponding problems in a logical

frame may be solvable. For instance, in algebraical
frame, verifying refinement (implementation) relation
between different abstract-level systems that is nor-
mally defined as a equivalence or preorder over pro-
cesses is impractical in general. However, by reducing
such a problem into a logical frame, we could utilize the
proof system and corresponding proof assistants of the
logic to handle the problem well.

References

[1] L. Aceto and M. Hennessy. Termination, deadlock, and
divergence. Journal of ACM, Vol. 39, No.1:147-187.
January, 1992.

[2] H. Barringer, R. Kuiper, A. Pnueli. Now you may com-
pose temporal logic specifications. In Proc. 16th STOC,
pp. 51-63. 1984.

[3] H. Barringer, R. Kuiper, A. Pnueli. A compositional
temporal approach to a CSP-like language. In Proc. IFIP
conference, The Role of Abstract Models in Information
Processing, pp. 207-227. 1985.

[4] J.A. Bergstra and J.W. Klop. Algebra of communica-
tion processes with abstraction. Theoretical Computer
Science, 37:77-121. 1985.

[5] R. Gorrieri and A. Rensink. Action refinement. Hand-
book of Process Algebra, Elsevier Science, 1047-1147.
2001.

[6] S. Graf and J. Sifakis. A logic for the description of
non-deterministic programs and their properties. Infor-
mation and Control, 68:254-270. 1986.

[7] S. Graf and J. Sifakis. A modal characterization of ob-
servational congruence on finite terms of CCS. Infor-
mation and Control, 68:125-145. 1986.

[8] D. Kozen. Results on the propositional mu-calculus.
Theoretical Computer Science, 27:333-354. 1983.

[9] M. Lange and C. Stirling. Model checking fixed point
logic with chop. FOSSACS’02, LNCS 2303, pp. 250-
263.

[10] K.G. Larsen and X.X. Liu. Compositionality through
an operational semantics of contexts. ICALP’90, LNCS
443.

[11] X.X. Liu. Specification and Decomposition in Concur-
rency. Ph.D. Thesis, Department of Mathematics and
Computer Science, Aalborg University Center, Demark,
1992.

[12] K.G. Larsen and B. Thomsen. A modal process logic.
LICS’88, pp.203-210. 1988.

[13] R. Milner. Communication and Concurrency. Prentice
Hall, 1989.

[14] M. Müller-Olm. A Modal Fixpoint Logic with Chop.
STACS’99, LNCS 1563, pp. 510-520.

[15] A. Pnueli. The temporal logic of programs. In the Proc.
of 18th STOC, pp:232-239. 1977.

[16] R. Rosner and A. Pnueli. A choppy logic. In the proc. of
LICS’86, pp.306-313. IEEE Computer Science Society,
1986.

[17] B. Steffen. Characteristic formulae, LNCS 372, pp.

723-732. Springer-Verlag, 1989.
[18] C. Stirling. Modal and Temporal Properties of Pro-

cesses, Spriner, 2001.
[19] M. Viswanathan and R. Viswanathan. Foundations for

circular compositional reasoning. ICALP’01, LNCS
2076, pp. 835-847, 2001.

[20] N. Zhan and M. Majster-Cederbaum. Deriving nondeter-
minism from conjunction and disjunction. FORTE’05,
LNCS 3731, pp. 351-365. 2005.

[21] N. Zhan and J. Wu. Compositionality of fixpoint logic
with chop. ICTAC’05, LNCS 3722, pp. 136-150. 2005.

