
Invariant-Based Verification and Synthesis for
Hybrid Systems

Naijun Zhan

State Key Lab. of Comp. Sci., Institute of Software, Chinese Academy of Sciences

Summer School on Symbolic Computation

Nanning, Jul.16-22, 2017

1 / 120

Background

Outline

1 Background

2 Talk1: Preliminaries
Polynomials and Polynomial Ideals
First-order Theory of Reals
Continuous Dynamical Systems
Hybrid Automata

3 Talk2: Computing Invariants for Hybrid Systems
Generating Continuous Invariants in Simple Case
Generating Continuous Invariants in General Case
Generating Semi-algebraic Global Invariants
Abstraction of Elementary Hybrid Systems by Variable Transformation
An Industrial Case Study: Soft Landing

4 Talk3: Controller Synthesis
Controller Synthesis with Safety
Controller Synthesis with Safety and Optimality
An Industrial Case Study: The Oil Pump Control Problem

5 Conclusions

2 / 120

Background

Hybrid systems
Hybrid systems exhibit combinations of discrete jumps and continuous
evolution.

Examples

2011.7.23 Wenzhou Train
Crash Accident

2016.3.26 Japanese Space
Center ASTRO-H

3 / 120

Background

Hybrid systems
Hybrid systems exhibit combinations of discrete jumps and continuous
evolution.

Examples

2011.7.23 Wenzhou Train
Crash Accident

2016.3.26 Japanese Space
Center ASTRO-H

3 / 120

Background

Issues of hybrid systems

Modelling:
To establish a model for the system to be developed with precise
mathematical semantics
Have to consider: concurrency, deterministic vs nondeterministic,
continuous vs discrete, communication, static vs dynamic
(mobility, adaptability), qualitative vs quantitative
(predicability), real-time, . . .

Simulation:
To obtain a possible execution of the model upto a finite time horizon
using numerical methods
Well accepted in industrial practice

Verification:
Using mathematical approach to prove if a model satisfies the desired
properties (specification)
Main methods include: model-checking, theorem proving,
abstract interpretation

4 / 120

Background

Issues of hybrid systems

Modelling:
To establish a model for the system to be developed with precise
mathematical semantics
Have to consider: concurrency, deterministic vs nondeterministic,
continuous vs discrete, communication, static vs dynamic
(mobility, adaptability), qualitative vs quantitative
(predicability), real-time, . . .

Simulation:
To obtain a possible execution of the model upto a finite time horizon
using numerical methods
Well accepted in industrial practice

Verification:
Using mathematical approach to prove if a model satisfies the desired
properties (specification)
Main methods include: model-checking, theorem proving,
abstract interpretation

4 / 120

Background

Issues of hybrid systems

Modelling:
To establish a model for the system to be developed with precise
mathematical semantics
Have to consider: concurrency, deterministic vs nondeterministic,
continuous vs discrete, communication, static vs dynamic
(mobility, adaptability), qualitative vs quantitative
(predicability), real-time, . . .

Simulation:
To obtain a possible execution of the model upto a finite time horizon
using numerical methods
Well accepted in industrial practice

Verification:
Using mathematical approach to prove if a model satisfies the desired
properties (specification)
Main methods include: model-checking, theorem proving,
abstract interpretation

4 / 120

Background

Issues of hybrid systems

Modelling:
To establish a model for the system to be developed with precise
mathematical semantics
Have to consider: concurrency, deterministic vs nondeterministic,
continuous vs discrete, communication, static vs dynamic
(mobility, adaptability), qualitative vs quantitative
(predicability), real-time, . . .

Simulation:
To obtain a possible execution of the model upto a finite time horizon
using numerical methods
Well accepted in industrial practice

Verification:
Using mathematical approach to prove if a model satisfies the desired
properties (specification)
Main methods include: model-checking, theorem proving,
abstract interpretation

4 / 120

Background

Issues of hybrid systems

Modelling:
To establish a model for the system to be developed with precise
mathematical semantics
Have to consider: concurrency, deterministic vs nondeterministic,
continuous vs discrete, communication, static vs dynamic
(mobility, adaptability), qualitative vs quantitative
(predicability), real-time, . . .

Simulation:
To obtain a possible execution of the model upto a finite time horizon
using numerical methods
Well accepted in industrial practice

Verification:
Using mathematical approach to prove if a model satisfies the desired
properties (specification)
Main methods include: model-checking, theorem proving,
abstract interpretation

4 / 120

Background

Issues of hybrid systems

Modelling:
To establish a model for the system to be developed with precise
mathematical semantics
Have to consider: concurrency, deterministic vs nondeterministic,
continuous vs discrete, communication, static vs dynamic
(mobility, adaptability), qualitative vs quantitative
(predicability), real-time, . . .

Simulation:
To obtain a possible execution of the model upto a finite time horizon
using numerical methods
Well accepted in industrial practice

Verification:
Using mathematical approach to prove if a model satisfies the desired
properties (specification)
Main methods include: model-checking, theorem proving,
abstract interpretation

4 / 120

Background

Issues of hybrid systems

Modelling:
To establish a model for the system to be developed with precise
mathematical semantics
Have to consider: concurrency, deterministic vs nondeterministic,
continuous vs discrete, communication, static vs dynamic
(mobility, adaptability), qualitative vs quantitative
(predicability), real-time, . . .

Simulation:
To obtain a possible execution of the model upto a finite time horizon
using numerical methods
Well accepted in industrial practice

Verification:
Using mathematical approach to prove if a model satisfies the desired
properties (specification)
Main methods include: model-checking, theorem proving,
abstract interpretation

4 / 120

Background

Issues of hybrid systems

Modelling:
To establish a model for the system to be developed with precise
mathematical semantics
Have to consider: concurrency, deterministic vs nondeterministic,
continuous vs discrete, communication, static vs dynamic
(mobility, adaptability), qualitative vs quantitative
(predicability), real-time, . . .

Simulation:
To obtain a possible execution of the model upto a finite time horizon
using numerical methods
Well accepted in industrial practice

Verification:
Using mathematical approach to prove if a model satisfies the desired
properties (specification)
Main methods include: model-checking, theorem proving,
abstract interpretation

4 / 120

Background

Issues of hybrid systems

Modelling:
To establish a model for the system to be developed with precise
mathematical semantics
Have to consider: concurrency, deterministic vs nondeterministic,
continuous vs discrete, communication, static vs dynamic
(mobility, adaptability), qualitative vs quantitative
(predicability), real-time, . . .

Simulation:
To obtain a possible execution of the model upto a finite time horizon
using numerical methods
Well accepted in industrial practice

Verification:
Using mathematical approach to prove if a model satisfies the desired
properties (specification)
Main methods include: model-checking, theorem proving,
abstract interpretation

4 / 120

Background

Issues of hybrid systems (Cont’d)

Synthesis: The process of computing an implementation (the
“how”) from a specification of the desired behavior and performance
(the “what”) and the assumptions on the environment (the “where”)
Qualitative issues:

Total absence of undesirable behavior is an overly ambitious goal,
being economically unattainable or even technically impossible due to

uncontrollable environment influences;
unavoidable manufacturing tolerance;
component breakdown, etc.

The existing qualitative safety analysis methods for hybrid systems
have to be complemented quantitative methods, quantifying the
likelihood of residual errors or the related performance figures in
systems subject to uncertain, stochastic behavior as well as noise.

Other issues: stability, controllability, observability, . . .

5 / 120

Background

Issues of hybrid systems (Cont’d)

Synthesis: The process of computing an implementation (the
“how”) from a specification of the desired behavior and performance
(the “what”) and the assumptions on the environment (the “where”)
Qualitative issues:

Total absence of undesirable behavior is an overly ambitious goal,
being economically unattainable or even technically impossible due to

uncontrollable environment influences;
unavoidable manufacturing tolerance;
component breakdown, etc.

The existing qualitative safety analysis methods for hybrid systems
have to be complemented quantitative methods, quantifying the
likelihood of residual errors or the related performance figures in
systems subject to uncertain, stochastic behavior as well as noise.

Other issues: stability, controllability, observability, . . .

5 / 120

Background

Issues of hybrid systems (Cont’d)

Synthesis: The process of computing an implementation (the
“how”) from a specification of the desired behavior and performance
(the “what”) and the assumptions on the environment (the “where”)
Qualitative issues:

Total absence of undesirable behavior is an overly ambitious goal,
being economically unattainable or even technically impossible due to

uncontrollable environment influences;
unavoidable manufacturing tolerance;
component breakdown, etc.

The existing qualitative safety analysis methods for hybrid systems
have to be complemented quantitative methods, quantifying the
likelihood of residual errors or the related performance figures in
systems subject to uncertain, stochastic behavior as well as noise.

Other issues: stability, controllability, observability, . . .

5 / 120

Background

Issues of hybrid systems (Cont’d)

Synthesis: The process of computing an implementation (the
“how”) from a specification of the desired behavior and performance
(the “what”) and the assumptions on the environment (the “where”)
Qualitative issues:

Total absence of undesirable behavior is an overly ambitious goal,
being economically unattainable or even technically impossible due to

uncontrollable environment influences;
unavoidable manufacturing tolerance;
component breakdown, etc.

The existing qualitative safety analysis methods for hybrid systems
have to be complemented quantitative methods, quantifying the
likelihood of residual errors or the related performance figures in
systems subject to uncertain, stochastic behavior as well as noise.

Other issues: stability, controllability, observability, . . .

5 / 120

Background

Issues of hybrid systems (Cont’d)

Synthesis: The process of computing an implementation (the
“how”) from a specification of the desired behavior and performance
(the “what”) and the assumptions on the environment (the “where”)
Qualitative issues:

Total absence of undesirable behavior is an overly ambitious goal,
being economically unattainable or even technically impossible due to

uncontrollable environment influences;
unavoidable manufacturing tolerance;
component breakdown, etc.

The existing qualitative safety analysis methods for hybrid systems
have to be complemented quantitative methods, quantifying the
likelihood of residual errors or the related performance figures in
systems subject to uncertain, stochastic behavior as well as noise.

Other issues: stability, controllability, observability, . . .

5 / 120

Background

Issues of hybrid systems (Cont’d)

Synthesis: The process of computing an implementation (the
“how”) from a specification of the desired behavior and performance
(the “what”) and the assumptions on the environment (the “where”)
Qualitative issues:

Total absence of undesirable behavior is an overly ambitious goal,
being economically unattainable or even technically impossible due to

uncontrollable environment influences;
unavoidable manufacturing tolerance;
component breakdown, etc.

The existing qualitative safety analysis methods for hybrid systems
have to be complemented quantitative methods, quantifying the
likelihood of residual errors or the related performance figures in
systems subject to uncertain, stochastic behavior as well as noise.

Other issues: stability, controllability, observability, . . .

5 / 120

Background

Issues of hybrid systems (Cont’d)

Synthesis: The process of computing an implementation (the
“how”) from a specification of the desired behavior and performance
(the “what”) and the assumptions on the environment (the “where”)
Qualitative issues:

Total absence of undesirable behavior is an overly ambitious goal,
being economically unattainable or even technically impossible due to

uncontrollable environment influences;
unavoidable manufacturing tolerance;
component breakdown, etc.

The existing qualitative safety analysis methods for hybrid systems
have to be complemented quantitative methods, quantifying the
likelihood of residual errors or the related performance figures in
systems subject to uncertain, stochastic behavior as well as noise.

Other issues: stability, controllability, observability, . . .

5 / 120

Background

Issues of hybrid systems (Cont’d)

Synthesis: The process of computing an implementation (the
“how”) from a specification of the desired behavior and performance
(the “what”) and the assumptions on the environment (the “where”)
Qualitative issues:

Total absence of undesirable behavior is an overly ambitious goal,
being economically unattainable or even technically impossible due to

uncontrollable environment influences;
unavoidable manufacturing tolerance;
component breakdown, etc.

The existing qualitative safety analysis methods for hybrid systems
have to be complemented quantitative methods, quantifying the
likelihood of residual errors or the related performance figures in
systems subject to uncertain, stochastic behavior as well as noise.

Other issues: stability, controllability, observability, . . .

5 / 120

Background

Related Work

Automata-based techniques

Modeling: Phase transition systems [Manna&Pnueli,1993]
Hybrid automata [Alur et al, 1995]

Advantages: intuitive, easy to model the behavior of systems, the
basis for model-checking.
Disadvantages: lacks of structured information, not easy to model
complex system.

Verification by computing reachable set: model-checking [Alur
et al, 1995], decision procedure [LPY, 2001],

Basic idea: partitioning infinite state space into finite many
equivalent classes according to the solution of ODEs, or representing
by O-minimal structures
Advantages: automatic
Disadvantages: cannot scale up
Focuses: symbolic computation, abstraction, approximation

6 / 120

Background

Related Work

Automata-based techniques

Modeling: Phase transition systems [Manna&Pnueli,1993]
Hybrid automata [Alur et al, 1995]

Advantages: intuitive, easy to model the behavior of systems, the
basis for model-checking.
Disadvantages: lacks of structured information, not easy to model
complex system.

Verification by computing reachable set: model-checking [Alur
et al, 1995], decision procedure [LPY, 2001],

Basic idea: partitioning infinite state space into finite many
equivalent classes according to the solution of ODEs, or representing
by O-minimal structures
Advantages: automatic
Disadvantages: cannot scale up
Focuses: symbolic computation, abstraction, approximation

6 / 120

Background

Related Work

Automata-based techniques

Modeling: Phase transition systems [Manna&Pnueli,1993]
Hybrid automata [Alur et al, 1995]

Advantages: intuitive, easy to model the behavior of systems, the
basis for model-checking.
Disadvantages: lacks of structured information, not easy to model
complex system.

Verification by computing reachable set: model-checking [Alur
et al, 1995], decision procedure [LPY, 2001],

Basic idea: partitioning infinite state space into finite many
equivalent classes according to the solution of ODEs, or representing
by O-minimal structures
Advantages: automatic
Disadvantages: cannot scale up
Focuses: symbolic computation, abstraction, approximation

6 / 120

Background

Related Work

Automata-based techniques

Modeling: Phase transition systems [Manna&Pnueli,1993]
Hybrid automata [Alur et al, 1995]

Advantages: intuitive, easy to model the behavior of systems, the
basis for model-checking.
Disadvantages: lacks of structured information, not easy to model
complex system.

Verification by computing reachable set: model-checking [Alur
et al, 1995], decision procedure [LPY, 2001],

Basic idea: partitioning infinite state space into finite many
equivalent classes according to the solution of ODEs, or representing
by O-minimal structures
Advantages: automatic
Disadvantages: cannot scale up
Focuses: symbolic computation, abstraction, approximation

6 / 120

Background

Related Work

Automata-based techniques

Modeling: Phase transition systems [Manna&Pnueli,1993]
Hybrid automata [Alur et al, 1995]

Advantages: intuitive, easy to model the behavior of systems, the
basis for model-checking.
Disadvantages: lacks of structured information, not easy to model
complex system.

Verification by computing reachable set: model-checking [Alur
et al, 1995], decision procedure [LPY, 2001],

Basic idea: partitioning infinite state space into finite many
equivalent classes according to the solution of ODEs, or representing
by O-minimal structures
Advantages: automatic
Disadvantages: cannot scale up
Focuses: symbolic computation, abstraction, approximation

6 / 120

Background

Related Work

Automata-based techniques

Modeling: Phase transition systems [Manna&Pnueli,1993]
Hybrid automata [Alur et al, 1995]

Advantages: intuitive, easy to model the behavior of systems, the
basis for model-checking.
Disadvantages: lacks of structured information, not easy to model
complex system.

Verification by computing reachable set: model-checking [Alur
et al, 1995], decision procedure [LPY, 2001],

Basic idea: partitioning infinite state space into finite many
equivalent classes according to the solution of ODEs, or representing
by O-minimal structures
Advantages: automatic
Disadvantages: cannot scale up
Focuses: symbolic computation, abstraction, approximation

6 / 120

Background

Related Work

Automata-based techniques

Modeling: Phase transition systems [Manna&Pnueli,1993]
Hybrid automata [Alur et al, 1995]

Advantages: intuitive, easy to model the behavior of systems, the
basis for model-checking.
Disadvantages: lacks of structured information, not easy to model
complex system.

Verification by computing reachable set: model-checking [Alur
et al, 1995], decision procedure [LPY, 2001],

Basic idea: partitioning infinite state space into finite many
equivalent classes according to the solution of ODEs, or representing
by O-minimal structures
Advantages: automatic
Disadvantages: cannot scale up
Focuses: symbolic computation, abstraction, approximation

6 / 120

Background

Related Work

Automata-based techniques

Modeling: Phase transition systems [Manna&Pnueli,1993]
Hybrid automata [Alur et al, 1995]

Advantages: intuitive, easy to model the behavior of systems, the
basis for model-checking.
Disadvantages: lacks of structured information, not easy to model
complex system.

Verification by computing reachable set: model-checking [Alur
et al, 1995], decision procedure [LPY, 2001],

Basic idea: partitioning infinite state space into finite many
equivalent classes according to the solution of ODEs, or representing
by O-minimal structures
Advantages: automatic
Disadvantages: cannot scale up
Focuses: symbolic computation, abstraction, approximation

6 / 120

Background

Related Work (Cont’d)

Compositional modeling approaches

Modeling environment: SHIFT [DGV 1996]

Hierarchical modeling: PTOLEMY [Lee et al 2003]

Modular modeling: I/O hybrid automata [Lynch et al 1996],
hybrid modules [Alur et al 2003], CHARON [Alur&Henzinger
1997]

Algebraic approach: Hybrid CSP [He 1994, Zhou et al 1995]

Problem
It lacks of verification techniques for these compositional
modelling techniques

7 / 120

Background

Related Work (Cont’d)

Compositional modeling approaches

Modeling environment: SHIFT [DGV 1996]

Hierarchical modeling: PTOLEMY [Lee et al 2003]

Modular modeling: I/O hybrid automata [Lynch et al 1996],
hybrid modules [Alur et al 2003], CHARON [Alur&Henzinger
1997]

Algebraic approach: Hybrid CSP [He 1994, Zhou et al 1995]

Problem
It lacks of verification techniques for these compositional
modelling techniques

7 / 120

Background

Related Work (Cont’d)

Compositional modeling approaches

Modeling environment: SHIFT [DGV 1996]

Hierarchical modeling: PTOLEMY [Lee et al 2003]

Modular modeling: I/O hybrid automata [Lynch et al 1996],
hybrid modules [Alur et al 2003], CHARON [Alur&Henzinger
1997]

Algebraic approach: Hybrid CSP [He 1994, Zhou et al 1995]

Problem
It lacks of verification techniques for these compositional
modelling techniques

7 / 120

Background

Related Work (Cont’d)

Compositional modeling approaches

Modeling environment: SHIFT [DGV 1996]

Hierarchical modeling: PTOLEMY [Lee et al 2003]

Modular modeling: I/O hybrid automata [Lynch et al 1996],
hybrid modules [Alur et al 2003], CHARON [Alur&Henzinger
1997]

Algebraic approach: Hybrid CSP [He 1994, Zhou et al 1995]

Problem
It lacks of verification techniques for these compositional
modelling techniques

7 / 120

Background

Related Work (Cont’d)

Compositional modeling approaches

Modeling environment: SHIFT [DGV 1996]

Hierarchical modeling: PTOLEMY [Lee et al 2003]

Modular modeling: I/O hybrid automata [Lynch et al 1996],
hybrid modules [Alur et al 2003], CHARON [Alur&Henzinger
1997]

Algebraic approach: Hybrid CSP [He 1994, Zhou et al 1995]

Problem
It lacks of verification techniques for these compositional
modelling techniques

7 / 120

Background

Related Work (Cont’d)

Compositional modeling approaches

Modeling environment: SHIFT [DGV 1996]

Hierarchical modeling: PTOLEMY [Lee et al 2003]

Modular modeling: I/O hybrid automata [Lynch et al 1996],
hybrid modules [Alur et al 2003], CHARON [Alur&Henzinger
1997]

Algebraic approach: Hybrid CSP [He 1994, Zhou et al 1995]

Problem
It lacks of verification techniques for these compositional
modelling techniques

7 / 120

Background

Related work (Cont’d)

Deduction based approach [Platzer&Clarke 2008]

Basic idea: extending Floyd-Hoare-Naur inductive assertion
method to hybrid systems.
Elements:

A compositional modelling laguage
A Hoare logic-like specification logic
Invariant generation

Well-known compositional modelling languages: hybrid
programs [Platzer&Clarke 2008], HCSP [He 1994, Zhou et al
1995], ...
Hybrid specification logics: DDL [Platzer2008], DADL
[Platzer2010], EDC [Zhou et al 1994], ...
Advantages: scalability
Difficulties: invariant generation

8 / 120

Background

Related work (Cont’d)

Deduction based approach [Platzer&Clarke 2008]

Basic idea: extending Floyd-Hoare-Naur inductive assertion
method to hybrid systems.
Elements:

A compositional modelling laguage
A Hoare logic-like specification logic
Invariant generation

Well-known compositional modelling languages: hybrid
programs [Platzer&Clarke 2008], HCSP [He 1994, Zhou et al
1995], ...
Hybrid specification logics: DDL [Platzer2008], DADL
[Platzer2010], EDC [Zhou et al 1994], ...
Advantages: scalability
Difficulties: invariant generation

8 / 120

Background

Related work (Cont’d)

Deduction based approach [Platzer&Clarke 2008]

Basic idea: extending Floyd-Hoare-Naur inductive assertion
method to hybrid systems.
Elements:

A compositional modelling laguage
A Hoare logic-like specification logic
Invariant generation

Well-known compositional modelling languages: hybrid
programs [Platzer&Clarke 2008], HCSP [He 1994, Zhou et al
1995], ...
Hybrid specification logics: DDL [Platzer2008], DADL
[Platzer2010], EDC [Zhou et al 1994], ...
Advantages: scalability
Difficulties: invariant generation

8 / 120

Background

Related work (Cont’d)

Deduction based approach [Platzer&Clarke 2008]

Basic idea: extending Floyd-Hoare-Naur inductive assertion
method to hybrid systems.
Elements:

A compositional modelling laguage
A Hoare logic-like specification logic
Invariant generation

Well-known compositional modelling languages: hybrid
programs [Platzer&Clarke 2008], HCSP [He 1994, Zhou et al
1995], ...
Hybrid specification logics: DDL [Platzer2008], DADL
[Platzer2010], EDC [Zhou et al 1994], ...
Advantages: scalability
Difficulties: invariant generation

8 / 120

Background

Related work (Cont’d)

Deduction based approach [Platzer&Clarke 2008]

Basic idea: extending Floyd-Hoare-Naur inductive assertion
method to hybrid systems.
Elements:

A compositional modelling laguage
A Hoare logic-like specification logic
Invariant generation

Well-known compositional modelling languages: hybrid
programs [Platzer&Clarke 2008], HCSP [He 1994, Zhou et al
1995], ...
Hybrid specification logics: DDL [Platzer2008], DADL
[Platzer2010], EDC [Zhou et al 1994], ...
Advantages: scalability
Difficulties: invariant generation

8 / 120

Background

Related work (Cont’d)

Deduction based approach [Platzer&Clarke 2008]

Basic idea: extending Floyd-Hoare-Naur inductive assertion
method to hybrid systems.
Elements:

A compositional modelling laguage
A Hoare logic-like specification logic
Invariant generation

Well-known compositional modelling languages: hybrid
programs [Platzer&Clarke 2008], HCSP [He 1994, Zhou et al
1995], ...
Hybrid specification logics: DDL [Platzer2008], DADL
[Platzer2010], EDC [Zhou et al 1994], ...
Advantages: scalability
Difficulties: invariant generation

8 / 120

Background

Related work (Cont’d)

Deduction based approach [Platzer&Clarke 2008]

Basic idea: extending Floyd-Hoare-Naur inductive assertion
method to hybrid systems.
Elements:

A compositional modelling laguage
A Hoare logic-like specification logic
Invariant generation

Well-known compositional modelling languages: hybrid
programs [Platzer&Clarke 2008], HCSP [He 1994, Zhou et al
1995], ...
Hybrid specification logics: DDL [Platzer2008], DADL
[Platzer2010], EDC [Zhou et al 1994], ...
Advantages: scalability
Difficulties: invariant generation

8 / 120

Background

Related work (Cont’d)

Deduction based approach [Platzer&Clarke 2008]

Basic idea: extending Floyd-Hoare-Naur inductive assertion
method to hybrid systems.
Elements:

A compositional modelling laguage
A Hoare logic-like specification logic
Invariant generation

Well-known compositional modelling languages: hybrid
programs [Platzer&Clarke 2008], HCSP [He 1994, Zhou et al
1995], ...
Hybrid specification logics: DDL [Platzer2008], DADL
[Platzer2010], EDC [Zhou et al 1994], ...
Advantages: scalability
Difficulties: invariant generation

8 / 120

Background

Related work (Cont’d)

Deduction based approach [Platzer&Clarke 2008]

Basic idea: extending Floyd-Hoare-Naur inductive assertion
method to hybrid systems.
Elements:

A compositional modelling laguage
A Hoare logic-like specification logic
Invariant generation

Well-known compositional modelling languages: hybrid
programs [Platzer&Clarke 2008], HCSP [He 1994, Zhou et al
1995], ...
Hybrid specification logics: DDL [Platzer2008], DADL
[Platzer2010], EDC [Zhou et al 1994], ...
Advantages: scalability
Difficulties: invariant generation

8 / 120

Background

A grand challenge
How to design correct safety-critical hybrid-systems is a grand
challenge in computer science and control theory

Our goal
to establish a systematic approach to formal design, analysis and
verification of hybrid systems

9 / 120

Background

A grand challenge
How to design correct safety-critical hybrid-systems is a grand
challenge in computer science and control theory

Our goal
to establish a systematic approach to formal design, analysis and
verification of hybrid systems

9 / 120

Background

Overview of Our Approach

建模

验证

代码自动生成

Simulink/Stateflow

<图形模型>

HCSP形式模型
HCSP带时延、概率和

随机扩充

已验证的形式模型

转化工具

HHL逻辑公式不变式生成

交互式定理证明工具
带时延、概率和随机混

成系统验证工具

带时延、概率和随机混
成系统验证

时延、概率和随机
等因素

C代码
10 / 120

Background

Schedule and References
Schedule

Talk 1: Preliminaries
Talk 2: Differential invariant generation
Talk 3: Controller synthesis

References
N. Zhan, S. Wang and H. Zhao (2013): Formal Verification of Simulink/Stateflow
Diagrams: A Deductive Way. Springer, 2016.
N. Zhan, S. Wang and H. Zhao (2013): Formal Modelling, Analysis and Verification of
Hybrid Systems. In the Theories of Programming, LNCS 8050.
J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou and L. Zou (2010): A calculus for
HCSP. Proc. of APLAS 2010, LNCS 6461.
J. Liu, N. Zhan and H. Zhao (2011): Computing semi-algebraic invariants for
polynomial dynamical systems. Proc. of EMSOFT’11.
H. Zhao, N. Zhan, D. Kapur, and K.G. Larsen (2012): A “hybrid” approach for
synthesizing optimal controllers of hybrid systems: A case study of the oil pump
industrial example. Proc. of FM 2012, LNCS 7436.
H. Zhao, M. Yang, N. Zhan, B. Gu, L. Zou and Y. Chen (2014): Formal verification of
a descent guidance control program of a lunar lander. Proc. of FM 2014, LNCS 8442.
L. Zou, M. Fraenzle, N. Zhan and P. Mosaad (2015): Automatic stability and safety
verification for delay differential equations. Proc. of CAV 2015, LNCS.

11 / 120

Talk1: Preliminaries

Outline

1 Background

2 Talk1: Preliminaries
Polynomials and Polynomial Ideals
First-order Theory of Reals
Continuous Dynamical Systems
Hybrid Automata

3 Talk2: Computing Invariants for Hybrid Systems
Generating Continuous Invariants in Simple Case
Generating Continuous Invariants in General Case
Generating Semi-algebraic Global Invariants
Abstraction of Elementary Hybrid Systems by Variable Transformation
An Industrial Case Study: Soft Landing

4 Talk3: Controller Synthesis
Controller Synthesis with Safety
Controller Synthesis with Safety and Optimality
An Industrial Case Study: The Oil Pump Control Problem

5 Conclusions

12 / 120

Talk1: Preliminaries Polynomials and Polynomial Ideals

Outline

1 Background

2 Talk1: Preliminaries
Polynomials and Polynomial Ideals
First-order Theory of Reals
Continuous Dynamical Systems
Hybrid Automata

3 Talk2: Computing Invariants for Hybrid Systems
Generating Continuous Invariants in Simple Case
Generating Continuous Invariants in General Case
Generating Semi-algebraic Global Invariants
Abstraction of Elementary Hybrid Systems by Variable Transformation
An Industrial Case Study: Soft Landing

4 Talk3: Controller Synthesis
Controller Synthesis with Safety
Controller Synthesis with Safety and Optimality
An Industrial Case Study: The Oil Pump Control Problem

5 Conclusions

13 / 120

Talk1: Preliminaries Polynomials and Polynomial Ideals

Let K be a number field, which can be either Q or R.
A monomial in n variables x1, x2, . . . , xn (or briefly x) is a product
form xα1

1 xα2
2 · · · xαn

n , or briefly xααα, where ααα = (α1, α2, . . . , αn) ∈ Nn.
The number

∑n
i=1 αi is called the degree of xααα.

A polynomial p(x) in x with coefficients in K is of the form∑
ααα cαααx

ααα, where all cααα ∈ K.
The degree deg(p) of p is the maximal degree of its component
monomials.
A polynomial in x1, x2, . . . , xn with degree d has at most

(
n+d
d

)
many

monomials.
The set of all polynomials in x1, x2, . . . , xn with coefficients in K form
a polynomial ring K[x].

A parametric polynomial is of the form
∑

ααα uαααx
ααα, where uααα ∈ R

are not constants but undetermined parameters, can be regarded as
a standard polynomial p(u, x) in R[u, x].

A parametric polynomial with degree d (in x) has at most
(
n+d
d

)
many indeterminates.
For any u0 ∈ Rw , pu0(x) ∈ R[x] obtained by substituting u0 for u in
p(u, x) is an instantiation of p(u, x).

14 / 120

Talk1: Preliminaries Polynomials and Polynomial Ideals

Let K be a number field, which can be either Q or R.
A monomial in n variables x1, x2, . . . , xn (or briefly x) is a product
form xα1

1 xα2
2 · · · xαn

n , or briefly xααα, where ααα = (α1, α2, . . . , αn) ∈ Nn.
The number

∑n
i=1 αi is called the degree of xααα.

A polynomial p(x) in x with coefficients in K is of the form∑
ααα cαααx

ααα, where all cααα ∈ K.
The degree deg(p) of p is the maximal degree of its component
monomials.
A polynomial in x1, x2, . . . , xn with degree d has at most

(
n+d
d

)
many

monomials.
The set of all polynomials in x1, x2, . . . , xn with coefficients in K form
a polynomial ring K[x].

A parametric polynomial is of the form
∑

ααα uαααx
ααα, where uααα ∈ R

are not constants but undetermined parameters, can be regarded as
a standard polynomial p(u, x) in R[u, x].

A parametric polynomial with degree d (in x) has at most
(
n+d
d

)
many indeterminates.
For any u0 ∈ Rw , pu0(x) ∈ R[x] obtained by substituting u0 for u in
p(u, x) is an instantiation of p(u, x).

14 / 120

Talk1: Preliminaries Polynomials and Polynomial Ideals

Let K be a number field, which can be either Q or R.
A monomial in n variables x1, x2, . . . , xn (or briefly x) is a product
form xα1

1 xα2
2 · · · xαn

n , or briefly xααα, where ααα = (α1, α2, . . . , αn) ∈ Nn.
The number

∑n
i=1 αi is called the degree of xααα.

A polynomial p(x) in x with coefficients in K is of the form∑
ααα cαααx

ααα, where all cααα ∈ K.
The degree deg(p) of p is the maximal degree of its component
monomials.
A polynomial in x1, x2, . . . , xn with degree d has at most

(
n+d
d

)
many

monomials.
The set of all polynomials in x1, x2, . . . , xn with coefficients in K form
a polynomial ring K[x].

A parametric polynomial is of the form
∑

ααα uαααx
ααα, where uααα ∈ R

are not constants but undetermined parameters, can be regarded as
a standard polynomial p(u, x) in R[u, x].

A parametric polynomial with degree d (in x) has at most
(
n+d
d

)
many indeterminates.
For any u0 ∈ Rw , pu0(x) ∈ R[x] obtained by substituting u0 for u in
p(u, x) is an instantiation of p(u, x).

14 / 120

Talk1: Preliminaries Polynomials and Polynomial Ideals

Let K be a number field, which can be either Q or R.
A monomial in n variables x1, x2, . . . , xn (or briefly x) is a product
form xα1

1 xα2
2 · · · xαn

n , or briefly xααα, where ααα = (α1, α2, . . . , αn) ∈ Nn.
The number

∑n
i=1 αi is called the degree of xααα.

A polynomial p(x) in x with coefficients in K is of the form∑
ααα cαααx

ααα, where all cααα ∈ K.
The degree deg(p) of p is the maximal degree of its component
monomials.
A polynomial in x1, x2, . . . , xn with degree d has at most

(
n+d
d

)
many

monomials.
The set of all polynomials in x1, x2, . . . , xn with coefficients in K form
a polynomial ring K[x].

A parametric polynomial is of the form
∑

ααα uαααx
ααα, where uααα ∈ R

are not constants but undetermined parameters, can be regarded as
a standard polynomial p(u, x) in R[u, x].

A parametric polynomial with degree d (in x) has at most
(
n+d
d

)
many indeterminates.
For any u0 ∈ Rw , pu0(x) ∈ R[x] obtained by substituting u0 for u in
p(u, x) is an instantiation of p(u, x).

14 / 120

Talk1: Preliminaries Polynomials and Polynomial Ideals

Let K be a number field, which can be either Q or R.
A monomial in n variables x1, x2, . . . , xn (or briefly x) is a product
form xα1

1 xα2
2 · · · xαn

n , or briefly xααα, where ααα = (α1, α2, . . . , αn) ∈ Nn.
The number

∑n
i=1 αi is called the degree of xααα.

A polynomial p(x) in x with coefficients in K is of the form∑
ααα cαααx

ααα, where all cααα ∈ K.
The degree deg(p) of p is the maximal degree of its component
monomials.
A polynomial in x1, x2, . . . , xn with degree d has at most

(
n+d
d

)
many

monomials.
The set of all polynomials in x1, x2, . . . , xn with coefficients in K form
a polynomial ring K[x].

A parametric polynomial is of the form
∑

ααα uαααx
ααα, where uααα ∈ R

are not constants but undetermined parameters, can be regarded as
a standard polynomial p(u, x) in R[u, x].

A parametric polynomial with degree d (in x) has at most
(
n+d
d

)
many indeterminates.
For any u0 ∈ Rw , pu0(x) ∈ R[x] obtained by substituting u0 for u in
p(u, x) is an instantiation of p(u, x).

14 / 120

Talk1: Preliminaries Polynomials and Polynomial Ideals

Let K be a number field, which can be either Q or R.
A monomial in n variables x1, x2, . . . , xn (or briefly x) is a product
form xα1

1 xα2
2 · · · xαn

n , or briefly xααα, where ααα = (α1, α2, . . . , αn) ∈ Nn.
The number

∑n
i=1 αi is called the degree of xααα.

A polynomial p(x) in x with coefficients in K is of the form∑
ααα cαααx

ααα, where all cααα ∈ K.
The degree deg(p) of p is the maximal degree of its component
monomials.
A polynomial in x1, x2, . . . , xn with degree d has at most

(
n+d
d

)
many

monomials.
The set of all polynomials in x1, x2, . . . , xn with coefficients in K form
a polynomial ring K[x].

A parametric polynomial is of the form
∑

ααα uαααx
ααα, where uααα ∈ R

are not constants but undetermined parameters, can be regarded as
a standard polynomial p(u, x) in R[u, x].

A parametric polynomial with degree d (in x) has at most
(
n+d
d

)
many indeterminates.
For any u0 ∈ Rw , pu0(x) ∈ R[x] obtained by substituting u0 for u in
p(u, x) is an instantiation of p(u, x).

14 / 120

Talk1: Preliminaries Polynomials and Polynomial Ideals

Let K be a number field, which can be either Q or R.
A monomial in n variables x1, x2, . . . , xn (or briefly x) is a product
form xα1

1 xα2
2 · · · xαn

n , or briefly xααα, where ααα = (α1, α2, . . . , αn) ∈ Nn.
The number

∑n
i=1 αi is called the degree of xααα.

A polynomial p(x) in x with coefficients in K is of the form∑
ααα cαααx

ααα, where all cααα ∈ K.
The degree deg(p) of p is the maximal degree of its component
monomials.
A polynomial in x1, x2, . . . , xn with degree d has at most

(
n+d
d

)
many

monomials.
The set of all polynomials in x1, x2, . . . , xn with coefficients in K form
a polynomial ring K[x].

A parametric polynomial is of the form
∑

ααα uαααx
ααα, where uααα ∈ R

are not constants but undetermined parameters, can be regarded as
a standard polynomial p(u, x) in R[u, x].

A parametric polynomial with degree d (in x) has at most
(
n+d
d

)
many indeterminates.
For any u0 ∈ Rw , pu0(x) ∈ R[x] obtained by substituting u0 for u in
p(u, x) is an instantiation of p(u, x).

14 / 120

Talk1: Preliminaries Polynomials and Polynomial Ideals

Let K be a number field, which can be either Q or R.
A monomial in n variables x1, x2, . . . , xn (or briefly x) is a product
form xα1

1 xα2
2 · · · xαn

n , or briefly xααα, where ααα = (α1, α2, . . . , αn) ∈ Nn.
The number

∑n
i=1 αi is called the degree of xααα.

A polynomial p(x) in x with coefficients in K is of the form∑
ααα cαααx

ααα, where all cααα ∈ K.
The degree deg(p) of p is the maximal degree of its component
monomials.
A polynomial in x1, x2, . . . , xn with degree d has at most

(
n+d
d

)
many

monomials.
The set of all polynomials in x1, x2, . . . , xn with coefficients in K form
a polynomial ring K[x].

A parametric polynomial is of the form
∑

ααα uαααx
ααα, where uααα ∈ R

are not constants but undetermined parameters, can be regarded as
a standard polynomial p(u, x) in R[u, x].

A parametric polynomial with degree d (in x) has at most
(
n+d
d

)
many indeterminates.
For any u0 ∈ Rw , pu0(x) ∈ R[x] obtained by substituting u0 for u in
p(u, x) is an instantiation of p(u, x).

14 / 120

Talk1: Preliminaries Polynomials and Polynomial Ideals

Let K be a number field, which can be either Q or R.
A monomial in n variables x1, x2, . . . , xn (or briefly x) is a product
form xα1

1 xα2
2 · · · xαn

n , or briefly xααα, where ααα = (α1, α2, . . . , αn) ∈ Nn.
The number

∑n
i=1 αi is called the degree of xααα.

A polynomial p(x) in x with coefficients in K is of the form∑
ααα cαααx

ααα, where all cααα ∈ K.
The degree deg(p) of p is the maximal degree of its component
monomials.
A polynomial in x1, x2, . . . , xn with degree d has at most

(
n+d
d

)
many

monomials.
The set of all polynomials in x1, x2, . . . , xn with coefficients in K form
a polynomial ring K[x].

A parametric polynomial is of the form
∑

ααα uαααx
ααα, where uααα ∈ R

are not constants but undetermined parameters, can be regarded as
a standard polynomial p(u, x) in R[u, x].

A parametric polynomial with degree d (in x) has at most
(
n+d
d

)
many indeterminates.
For any u0 ∈ Rw , pu0(x) ∈ R[x] obtained by substituting u0 for u in
p(u, x) is an instantiation of p(u, x).

14 / 120

Talk1: Preliminaries Polynomials and Polynomial Ideals

Polynomial ideal

Polynomial ideal

A subset I ⊆ K[x] is called an ideal if the following conditions are
satisfied:

1 0 ∈ I ;
2 If p, g ∈ I , then p + g ∈ I ;
3 If p ∈ I and h ∈ K[x], then hp ∈ I .

Let g1, g2, . . . , gs ∈ K[x], then 〈g1, g2, . . . , gs〉 =̂
{
∑s

i=1 higi : h1, h2, . . . , hs ∈ K[x]} is an ideal generated by
g1, g2, . . . , gs .
If I = 〈g1, g2, . . . , gs〉, then {g1, g2, . . . , gs} is called a basis of I .

15 / 120

Talk1: Preliminaries Polynomials and Polynomial Ideals

Polynomial ideal

Polynomial ideal

A subset I ⊆ K[x] is called an ideal if the following conditions are
satisfied:

1 0 ∈ I ;
2 If p, g ∈ I , then p + g ∈ I ;
3 If p ∈ I and h ∈ K[x], then hp ∈ I .

Let g1, g2, . . . , gs ∈ K[x], then 〈g1, g2, . . . , gs〉 =̂
{
∑s

i=1 higi : h1, h2, . . . , hs ∈ K[x]} is an ideal generated by
g1, g2, . . . , gs .
If I = 〈g1, g2, . . . , gs〉, then {g1, g2, . . . , gs} is called a basis of I .

15 / 120

Talk1: Preliminaries Polynomials and Polynomial Ideals

Polynomial ideal

Polynomial ideal

A subset I ⊆ K[x] is called an ideal if the following conditions are
satisfied:

1 0 ∈ I ;
2 If p, g ∈ I , then p + g ∈ I ;
3 If p ∈ I and h ∈ K[x], then hp ∈ I .

Let g1, g2, . . . , gs ∈ K[x], then 〈g1, g2, . . . , gs〉 =̂
{
∑s

i=1 higi : h1, h2, . . . , hs ∈ K[x]} is an ideal generated by
g1, g2, . . . , gs .
If I = 〈g1, g2, . . . , gs〉, then {g1, g2, . . . , gs} is called a basis of I .

15 / 120

Talk1: Preliminaries Polynomials and Polynomial Ideals

Hilbert Basis Theorem
Every ideal I ⊆ K[x] has a finite basis, that is, I = 〈g1, g2, . . . , gs〉 for
some g1, g2, . . . , gs ∈ K[x].

Ascending Chain Theorem

For any ascending chain of ideals I1 ⊆ I2 ⊆ · · · ⊆ Ik ⊆ · · · in K[x], there
exists an N ∈ N such that Ik = IN for any k ≥ N.

16 / 120

Talk1: Preliminaries First-order Theory of Reals

Outline

1 Background

2 Talk1: Preliminaries
Polynomials and Polynomial Ideals
First-order Theory of Reals
Continuous Dynamical Systems
Hybrid Automata

3 Talk2: Computing Invariants for Hybrid Systems
Generating Continuous Invariants in Simple Case
Generating Continuous Invariants in General Case
Generating Semi-algebraic Global Invariants
Abstraction of Elementary Hybrid Systems by Variable Transformation
An Industrial Case Study: Soft Landing

4 Talk3: Controller Synthesis
Controller Synthesis with Safety
Controller Synthesis with Safety and Optimality
An Industrial Case Study: The Oil Pump Control Problem

5 Conclusions

17 / 120

Talk1: Preliminaries First-order Theory of Reals

First-order Theory T (R) of Reals

Syntax

The language of T (R) consists of
variables: x , y , z , . . . , x1, x2, . . . , which are interpreted over R ;
relational symbols: >,<,≥,≤,=, 6= ;
Boolean connectives: ∧,∨,¬,→,↔, . . . ; and
quantifiers: ∀,∃ .

A term of T (R) over a finite set of variables {x1, x2, . . . , xn} is a
polynomial p ∈ R[x1, x2, . . . , xn].
An atomic formula of T (R) is of the form p B 0, where B is any
relational symbol.
A quantifier-free formula (QFF) of T (R) is a Boolean combination
of atomic formulas.
A generic formula of T (R) is built up from atomic formulas using
Boolean connectives as well as quantifiers.

18 / 120

Talk1: Preliminaries First-order Theory of Reals

First-order Theory T (R) of Reals

Syntax

The language of T (R) consists of
variables: x , y , z , . . . , x1, x2, . . . , which are interpreted over R ;
relational symbols: >,<,≥,≤,=, 6= ;
Boolean connectives: ∧,∨,¬,→,↔, . . . ; and
quantifiers: ∀,∃ .

A term of T (R) over a finite set of variables {x1, x2, . . . , xn} is a
polynomial p ∈ R[x1, x2, . . . , xn].
An atomic formula of T (R) is of the form p B 0, where B is any
relational symbol.
A quantifier-free formula (QFF) of T (R) is a Boolean combination
of atomic formulas.
A generic formula of T (R) is built up from atomic formulas using
Boolean connectives as well as quantifiers.

18 / 120

Talk1: Preliminaries First-order Theory of Reals

First-order Theory T (R) of Reals

Syntax

The language of T (R) consists of
variables: x , y , z , . . . , x1, x2, . . . , which are interpreted over R ;
relational symbols: >,<,≥,≤,=, 6= ;
Boolean connectives: ∧,∨,¬,→,↔, . . . ; and
quantifiers: ∀,∃ .

A term of T (R) over a finite set of variables {x1, x2, . . . , xn} is a
polynomial p ∈ R[x1, x2, . . . , xn].
An atomic formula of T (R) is of the form p B 0, where B is any
relational symbol.
A quantifier-free formula (QFF) of T (R) is a Boolean combination
of atomic formulas.
A generic formula of T (R) is built up from atomic formulas using
Boolean connectives as well as quantifiers.

18 / 120

Talk1: Preliminaries First-order Theory of Reals

First-order Theory T (R) of Reals

Syntax

The language of T (R) consists of
variables: x , y , z , . . . , x1, x2, . . . , which are interpreted over R ;
relational symbols: >,<,≥,≤,=, 6= ;
Boolean connectives: ∧,∨,¬,→,↔, . . . ; and
quantifiers: ∀,∃ .

A term of T (R) over a finite set of variables {x1, x2, . . . , xn} is a
polynomial p ∈ R[x1, x2, . . . , xn].
An atomic formula of T (R) is of the form p B 0, where B is any
relational symbol.
A quantifier-free formula (QFF) of T (R) is a Boolean combination
of atomic formulas.
A generic formula of T (R) is built up from atomic formulas using
Boolean connectives as well as quantifiers.

18 / 120

Talk1: Preliminaries First-order Theory of Reals

First-order Theory T (R) of Reals

Syntax

The language of T (R) consists of
variables: x , y , z , . . . , x1, x2, . . . , which are interpreted over R ;
relational symbols: >,<,≥,≤,=, 6= ;
Boolean connectives: ∧,∨,¬,→,↔, . . . ; and
quantifiers: ∀,∃ .

A term of T (R) over a finite set of variables {x1, x2, . . . , xn} is a
polynomial p ∈ R[x1, x2, . . . , xn].
An atomic formula of T (R) is of the form p B 0, where B is any
relational symbol.
A quantifier-free formula (QFF) of T (R) is a Boolean combination
of atomic formulas.
A generic formula of T (R) is built up from atomic formulas using
Boolean connectives as well as quantifiers.

18 / 120

Talk1: Preliminaries First-order Theory of Reals

Quantifier Elimination
Quantifier Elimination Property

A theory T is said to have quantifier elimination property, if for
any formula ϕ in T , there exists a quantifier-free formula ϕQF which
only contains free variables of ϕ such that ϕ⇔ ϕQF .
T (R) admits quantifier elimination.
The decidability of T (R)

Example

∃x .ax2 + bx + c = 0 ⇔ a = b = c = 0 ∨
(a = 0 ∧ b 6= 0) ∨
(a 6= 0 ∧ b2 − 4ac ≥ 0)

19 / 120

Talk1: Preliminaries First-order Theory of Reals

Quantifier Elimination
Quantifier Elimination Property

A theory T is said to have quantifier elimination property, if for
any formula ϕ in T , there exists a quantifier-free formula ϕQF which
only contains free variables of ϕ such that ϕ⇔ ϕQF .
T (R) admits quantifier elimination.
The decidability of T (R)

Example

∃x .ax2 + bx + c = 0 ⇔ a = b = c = 0 ∨
(a = 0 ∧ b 6= 0) ∨
(a 6= 0 ∧ b2 − 4ac ≥ 0)

19 / 120

Talk1: Preliminaries First-order Theory of Reals

Quantifier Elimination
Quantifier Elimination Property

A theory T is said to have quantifier elimination property, if for
any formula ϕ in T , there exists a quantifier-free formula ϕQF which
only contains free variables of ϕ such that ϕ⇔ ϕQF .
T (R) admits quantifier elimination.
The decidability of T (R)

Example

∃x .ax2 + bx + c = 0 ⇔ a = b = c = 0 ∨
(a = 0 ∧ b 6= 0) ∨
(a 6= 0 ∧ b2 − 4ac ≥ 0)

19 / 120

Talk1: Preliminaries First-order Theory of Reals

Quantifier Elimination (Cont’d)
Semi-algrbraic Set

A subset A ⊆ Rn is called a semi-algebraic set (SAS), if there
exists a QFF φ ∈ T (R), such that A = {x ∈ Rn | φ(x) is true}.
SASs are closed under common set operations:

A(φ1) ∩ A(φ2) = A(ϕ1 ∧ ϕ2) ;
A(φ1) ∪ A(φ2) = A(ϕ1 ∨ φ2) ;
A(φ1)c = A(¬φ1) ;
A(φ1) \ A(φ2) = A(φ1) ∩ A(φ2)c = A(φ1 ∧ ¬φ2).

Any SAS can be represented by a QFF in the form of
φ(x) =̂

∨K
k=1

∧Jk
j=1 pkj(x) . 0 , where pkj(x) ∈ Q[x] and . ∈ {≥, >} .

Semi-algebraic Template
A semi-algebraic template with degree d is of the form

φ(u, x) =̂ ∨Kk=1 ∧
Jk
j=1pkj(ukj , x) . 0.

20 / 120

Talk1: Preliminaries First-order Theory of Reals

Quantifier Elimination (Cont’d)
Semi-algrbraic Set

A subset A ⊆ Rn is called a semi-algebraic set (SAS), if there
exists a QFF φ ∈ T (R), such that A = {x ∈ Rn | φ(x) is true}.
SASs are closed under common set operations:

A(φ1) ∩ A(φ2) = A(ϕ1 ∧ ϕ2) ;
A(φ1) ∪ A(φ2) = A(ϕ1 ∨ φ2) ;
A(φ1)c = A(¬φ1) ;
A(φ1) \ A(φ2) = A(φ1) ∩ A(φ2)c = A(φ1 ∧ ¬φ2).

Any SAS can be represented by a QFF in the form of
φ(x) =̂

∨K
k=1

∧Jk
j=1 pkj(x) . 0 , where pkj(x) ∈ Q[x] and . ∈ {≥, >} .

Semi-algebraic Template
A semi-algebraic template with degree d is of the form

φ(u, x) =̂ ∨Kk=1 ∧
Jk
j=1pkj(ukj , x) . 0.

20 / 120

Talk1: Preliminaries First-order Theory of Reals

Quantifier Elimination (Cont’d)
Semi-algrbraic Set

A subset A ⊆ Rn is called a semi-algebraic set (SAS), if there
exists a QFF φ ∈ T (R), such that A = {x ∈ Rn | φ(x) is true}.
SASs are closed under common set operations:

A(φ1) ∩ A(φ2) = A(ϕ1 ∧ ϕ2) ;
A(φ1) ∪ A(φ2) = A(ϕ1 ∨ φ2) ;
A(φ1)c = A(¬φ1) ;
A(φ1) \ A(φ2) = A(φ1) ∩ A(φ2)c = A(φ1 ∧ ¬φ2).

Any SAS can be represented by a QFF in the form of
φ(x) =̂

∨K
k=1

∧Jk
j=1 pkj(x) . 0 , where pkj(x) ∈ Q[x] and . ∈ {≥, >} .

Semi-algebraic Template
A semi-algebraic template with degree d is of the form

φ(u, x) =̂ ∨Kk=1 ∧
Jk
j=1pkj(ukj , x) . 0.

20 / 120

Talk1: Preliminaries First-order Theory of Reals

Quantifier Elimination (Cont’d)
Semi-algrbraic Set

A subset A ⊆ Rn is called a semi-algebraic set (SAS), if there
exists a QFF φ ∈ T (R), such that A = {x ∈ Rn | φ(x) is true}.
SASs are closed under common set operations:

A(φ1) ∩ A(φ2) = A(ϕ1 ∧ ϕ2) ;
A(φ1) ∪ A(φ2) = A(ϕ1 ∨ φ2) ;
A(φ1)c = A(¬φ1) ;
A(φ1) \ A(φ2) = A(φ1) ∩ A(φ2)c = A(φ1 ∧ ¬φ2).

Any SAS can be represented by a QFF in the form of
φ(x) =̂

∨K
k=1

∧Jk
j=1 pkj(x) . 0 , where pkj(x) ∈ Q[x] and . ∈ {≥, >} .

Semi-algebraic Template
A semi-algebraic template with degree d is of the form

φ(u, x) =̂ ∨Kk=1 ∧
Jk
j=1pkj(ukj , x) . 0.

20 / 120

Talk1: Preliminaries First-order Theory of Reals

Quantifier Elimination (Cont’d)
Survey of QE Algorithms

Tarski’s algorithm [Tarski 51]: the first one, but its complexity is
nonelementary, impratical, simplified by Seidenberg [Seidenberg 54].

Collins’ algorithm [Collins 76]: based on cylindrical algebraic
decomposition (CAD), double exponential in the number of variables,
improved by Hoon Hong [Hoon Hong 92] by combining with SAT engine
partial cylindrical algebraic decomposition (PCAD), implemented in
many computer algebra tools, e.g., QEBCAD, REDLOG,

Ben-Or, Kozen and Reif’s algorithm [Ben-Or, Kozen&Reif 1986]:
double exponential in the number of variables using sequential
computation, single exponential using parallel computation, based on
Sturm sequence and Sturm Theorem, some mistake.

More efficient algorithms [Grigor’ev & Vorobjov 1988, Grigor’ev 1988],
[Renegar 1989], [Heintz, Roy&Solerno, 1989], [Basu,Pollack&Roy, 1996]:
mainly based on Ben-Or, Kozen and Reif’s work, double exponential in
the number of quantifier alternation, no implementation yet.

21 / 120

Talk1: Preliminaries First-order Theory of Reals

Quantifier Elimination (Cont’d)
Survey of QE Algorithms

Tarski’s algorithm [Tarski 51]: the first one, but its complexity is
nonelementary, impratical, simplified by Seidenberg [Seidenberg 54].

Collins’ algorithm [Collins 76]: based on cylindrical algebraic
decomposition (CAD), double exponential in the number of variables,
improved by Hoon Hong [Hoon Hong 92] by combining with SAT engine
partial cylindrical algebraic decomposition (PCAD), implemented in
many computer algebra tools, e.g., QEBCAD, REDLOG,

Ben-Or, Kozen and Reif’s algorithm [Ben-Or, Kozen&Reif 1986]:
double exponential in the number of variables using sequential
computation, single exponential using parallel computation, based on
Sturm sequence and Sturm Theorem, some mistake.

More efficient algorithms [Grigor’ev & Vorobjov 1988, Grigor’ev 1988],
[Renegar 1989], [Heintz, Roy&Solerno, 1989], [Basu,Pollack&Roy, 1996]:
mainly based on Ben-Or, Kozen and Reif’s work, double exponential in
the number of quantifier alternation, no implementation yet.

21 / 120

Talk1: Preliminaries First-order Theory of Reals

Quantifier Elimination (Cont’d)
Survey of QE Algorithms

Tarski’s algorithm [Tarski 51]: the first one, but its complexity is
nonelementary, impratical, simplified by Seidenberg [Seidenberg 54].

Collins’ algorithm [Collins 76]: based on cylindrical algebraic
decomposition (CAD), double exponential in the number of variables,
improved by Hoon Hong [Hoon Hong 92] by combining with SAT engine
partial cylindrical algebraic decomposition (PCAD), implemented in
many computer algebra tools, e.g., QEBCAD, REDLOG,

Ben-Or, Kozen and Reif’s algorithm [Ben-Or, Kozen&Reif 1986]:
double exponential in the number of variables using sequential
computation, single exponential using parallel computation, based on
Sturm sequence and Sturm Theorem, some mistake.

More efficient algorithms [Grigor’ev & Vorobjov 1988, Grigor’ev 1988],
[Renegar 1989], [Heintz, Roy&Solerno, 1989], [Basu,Pollack&Roy, 1996]:
mainly based on Ben-Or, Kozen and Reif’s work, double exponential in
the number of quantifier alternation, no implementation yet.

21 / 120

Talk1: Preliminaries First-order Theory of Reals

Quantifier Elimination (Cont’d)
Survey of QE Algorithms

Tarski’s algorithm [Tarski 51]: the first one, but its complexity is
nonelementary, impratical, simplified by Seidenberg [Seidenberg 54].

Collins’ algorithm [Collins 76]: based on cylindrical algebraic
decomposition (CAD), double exponential in the number of variables,
improved by Hoon Hong [Hoon Hong 92] by combining with SAT engine
partial cylindrical algebraic decomposition (PCAD), implemented in
many computer algebra tools, e.g., QEBCAD, REDLOG,

Ben-Or, Kozen and Reif’s algorithm [Ben-Or, Kozen&Reif 1986]:
double exponential in the number of variables using sequential
computation, single exponential using parallel computation, based on
Sturm sequence and Sturm Theorem, some mistake.

More efficient algorithms [Grigor’ev & Vorobjov 1988, Grigor’ev 1988],
[Renegar 1989], [Heintz, Roy&Solerno, 1989], [Basu,Pollack&Roy, 1996]:
mainly based on Ben-Or, Kozen and Reif’s work, double exponential in
the number of quantifier alternation, no implementation yet.

21 / 120

Talk1: Preliminaries Continuous Dynamical Systems

Outline

1 Background

2 Talk1: Preliminaries
Polynomials and Polynomial Ideals
First-order Theory of Reals
Continuous Dynamical Systems
Hybrid Automata

3 Talk2: Computing Invariants for Hybrid Systems
Generating Continuous Invariants in Simple Case
Generating Continuous Invariants in General Case
Generating Semi-algebraic Global Invariants
Abstraction of Elementary Hybrid Systems by Variable Transformation
An Industrial Case Study: Soft Landing

4 Talk3: Controller Synthesis
Controller Synthesis with Safety
Controller Synthesis with Safety and Optimality
An Industrial Case Study: The Oil Pump Control Problem

5 Conclusions

22 / 120

Talk1: Preliminaries Continuous Dynamical Systems

Continuous Dynamical Systems

A continuous dynamical systems (CDS) is of the form

ẋ = f(x), (1)

where x ∈ Rn and f : Rn → Rn is a vector field.
If f in (1) satisfies local Lipschitz condition, then given x0 ∈ Rn,
there exists a unique solution x(x0; t) : (a, b)→ Rn such that
x(x0; 0) = x0 and ∀t ∈ (a, b). dx(x0;t)

dt = f(x(x0; t)).

If f in (1) satisfies global Lipschitz condition, then the existence,
uniqueness and completeness of solutions to (1) can be
guaranteed.
The k-th Lie derivatives Lkf σ : Rn → R of σ along f is defined by:

L0
f σ(x) = σ(x),

Lkf σ(x) =
(
∇Lk−1

f σ(x), f(x)
)
, for k > 0,

where ∇%(x) =̂
(
∂%(x)
∂x1

, ∂%(x)
∂x2

, . . . , ∂%(x)
∂xn

)
and (·, ·) is the inner

product of two vectors.
23 / 120

Talk1: Preliminaries Continuous Dynamical Systems

Continuous Dynamical Systems

A continuous dynamical systems (CDS) is of the form

ẋ = f(x), (1)

where x ∈ Rn and f : Rn → Rn is a vector field.
If f in (1) satisfies local Lipschitz condition, then given x0 ∈ Rn,
there exists a unique solution x(x0; t) : (a, b)→ Rn such that
x(x0; 0) = x0 and ∀t ∈ (a, b). dx(x0;t)

dt = f(x(x0; t)).

If f in (1) satisfies global Lipschitz condition, then the existence,
uniqueness and completeness of solutions to (1) can be
guaranteed.
The k-th Lie derivatives Lkf σ : Rn → R of σ along f is defined by:

L0
f σ(x) = σ(x),

Lkf σ(x) =
(
∇Lk−1

f σ(x), f(x)
)
, for k > 0,

where ∇%(x) =̂
(
∂%(x)
∂x1

, ∂%(x)
∂x2

, . . . , ∂%(x)
∂xn

)
and (·, ·) is the inner

product of two vectors.
23 / 120

Talk1: Preliminaries Continuous Dynamical Systems

Continuous Dynamical Systems

A continuous dynamical systems (CDS) is of the form

ẋ = f(x), (1)

where x ∈ Rn and f : Rn → Rn is a vector field.
If f in (1) satisfies local Lipschitz condition, then given x0 ∈ Rn,
there exists a unique solution x(x0; t) : (a, b)→ Rn such that
x(x0; 0) = x0 and ∀t ∈ (a, b). dx(x0;t)

dt = f(x(x0; t)).

If f in (1) satisfies global Lipschitz condition, then the existence,
uniqueness and completeness of solutions to (1) can be
guaranteed.
The k-th Lie derivatives Lkf σ : Rn → R of σ along f is defined by:

L0
f σ(x) = σ(x),

Lkf σ(x) =
(
∇Lk−1

f σ(x), f(x)
)
, for k > 0,

where ∇%(x) =̂
(
∂%(x)
∂x1

, ∂%(x)
∂x2

, . . . , ∂%(x)
∂xn

)
and (·, ·) is the inner

product of two vectors.
23 / 120

Talk1: Preliminaries Continuous Dynamical Systems

Continuous Dynamical Systems

A continuous dynamical systems (CDS) is of the form

ẋ = f(x), (1)

where x ∈ Rn and f : Rn → Rn is a vector field.
If f in (1) satisfies local Lipschitz condition, then given x0 ∈ Rn,
there exists a unique solution x(x0; t) : (a, b)→ Rn such that
x(x0; 0) = x0 and ∀t ∈ (a, b). dx(x0;t)

dt = f(x(x0; t)).

If f in (1) satisfies global Lipschitz condition, then the existence,
uniqueness and completeness of solutions to (1) can be
guaranteed.
The k-th Lie derivatives Lkf σ : Rn → R of σ along f is defined by:

L0
f σ(x) = σ(x),

Lkf σ(x) =
(
∇Lk−1

f σ(x), f(x)
)
, for k > 0,

where ∇%(x) =̂
(
∂%(x)
∂x1

, ∂%(x)
∂x2

, . . . , ∂%(x)
∂xn

)
and (·, ·) is the inner

product of two vectors.
23 / 120

Talk1: Preliminaries Hybrid Automata

Outline

1 Background

2 Talk1: Preliminaries
Polynomials and Polynomial Ideals
First-order Theory of Reals
Continuous Dynamical Systems
Hybrid Automata

3 Talk2: Computing Invariants for Hybrid Systems
Generating Continuous Invariants in Simple Case
Generating Continuous Invariants in General Case
Generating Semi-algebraic Global Invariants
Abstraction of Elementary Hybrid Systems by Variable Transformation
An Industrial Case Study: Soft Landing

4 Talk3: Controller Synthesis
Controller Synthesis with Safety
Controller Synthesis with Safety and Optimality
An Industrial Case Study: The Oil Pump Control Problem

5 Conclusions

24 / 120

Talk1: Preliminaries Hybrid Automata

Hybrid Automaton

A hybrid automaton (HA) is a system H =̂ (Q,X , f ,D,E ,G ,R,Ξ),
where

• Q = {q1, . . . , qm} is a finite set of modes;
• X = {x1, . . . , xn} is a finite set of continuous state variables, with
x = (x1, . . . , xn) ranging over Rn; Q × Rn is the state space of H;
• f : Q → (Rn → Rn) assigns to each mode q ∈ Q a vector field fq;
• D : Q → 2R

n
assigns to each mode q ∈ Q a domain Dq ⊆ Rn;

• E ⊆ Q × Q is a set of discrete transitions;
• G : E → 2R

n
assigns to each transition e ∈ E a switching guard Ge

⊆ Rn.
R assigns to each transition e ∈ E a reset function Re : Rn → Rn;
Ξ assigns to each q ∈ Q a set of initial states Ξq ⊆ Rn.

25 / 120

Talk1: Preliminaries Hybrid Automata

Hybrid Trajectories Accepted by HA [Tomlin et al. 00]

Definition (Hybrid Time Set)

A hybrid time set is a sequence of time
intervals τ = {Ii}Ni=0 (N can be ∞) s.t.

Ii = [τi , τ
′
i] with τi ≤ τ ′i = τi+1 for all

i < N;
if N <∞, then IN = [τN , τ

′
N〉 is a

right-closed or right-open nonempty
interval (τ ′N may be ∞);
τ0 = 0 .

-0 t

τ0 τ ′0

τ1 τ ′1

τ2 τ ′2

. . .

α0, β0

α1, β1

α2, β2

...

?

?

26 / 120

Talk1: Preliminaries Hybrid Automata

Hybrid Trajectories Accepted by HA [Tomlin et al. 00]

Definition (Hybrid Time Set)

A hybrid time set is a sequence of time
intervals τ = {Ii}Ni=0 (N can be ∞) s.t.

Ii = [τi , τ
′
i] with τi ≤ τ ′i = τi+1 for all

i < N;
if N <∞, then IN = [τN , τ

′
N〉 is a

right-closed or right-open nonempty
interval (τ ′N may be ∞);
τ0 = 0 .

-0 t

τ0 τ ′0

τ1 τ ′1

τ2 τ ′2

. . .

α0, β0

α1, β1

α2, β2

...

?

?

26 / 120

Talk1: Preliminaries Hybrid Automata

Hybrid Trajectories Accepted by HA [Tomlin et al. 00]

Definition (Hybrid Trajectory)

A hybrid trajectory is a triple ω = (τ, α, β),
where τ = {Ii}Ni=0 is a hybrid time set and
α = {αi : Ii → Q} and β = {βi : Ii → Rn}
are two sequences of functions satisfying

1 Initial condition: α0[0] = q0 and β0[0] = x0;
2 Discrete transition: for all i < 〈τ〉,

e =
(
αi (τ

′
i), αi+1(τi+1)

)
∈ E , βi (τ ′i) ∈ Ge and

βi+1(τi+1) = Re(βi (τ
′
i));

3 Continuous evolution: for all i ≤ 〈τ〉 with τi < τ ′i ,
if q = αi (τi), then

(1) for all t ∈ Ii , αi (t) = q,
(2) βi (t) is the solution to the

differential equation ẋ = fq(x) over Ii
with initial value βi (τi), and

(3) for all t ∈ [τi , τ
′
i), βi (t) ∈ Dq .

-0 t

τ0 τ ′0

τ1 τ ′1

τ2 τ ′2

. . .

α0, β0

α1, β1

α2, β2

...

?

?

26 / 120

Talk1: Preliminaries Hybrid Automata

Hybrid Trajectories Accepted by HA [Tomlin et al. 00]

Definition (Hybrid Trajectory)

A hybrid trajectory is a triple ω = (τ, α, β),
where τ = {Ii}Ni=0 is a hybrid time set and
α = {αi : Ii → Q} and β = {βi : Ii → Rn}
are two sequences of functions satisfying

1 Initial condition: α0[0] = q0 and β0[0] = x0;
2 Discrete transition: for all i < 〈τ〉,

e =
(
αi (τ

′
i), αi+1(τi+1)

)
∈ E , βi (τ ′i) ∈ Ge and

βi+1(τi+1) = Re(βi (τ
′
i));

3 Continuous evolution: for all i ≤ 〈τ〉 with τi < τ ′i ,
if q = αi (τi), then

(1) for all t ∈ Ii , αi (t) = q,
(2) βi (t) is the solution to the

differential equation ẋ = fq(x) over Ii
with initial value βi (τi), and

(3) for all t ∈ [τi , τ
′
i), βi (t) ∈ Dq .

-0 t

τ0 τ ′0

τ1 τ ′1

τ2 τ ′2

. . .

α0, β0

α1, β1

α2, β2

...

?

?

26 / 120

Talk1: Preliminaries Hybrid Automata

Hybrid Trajectories Accepted by HA [Tomlin et al. 00]

Definition (Hybrid Trajectory)

A hybrid trajectory is a triple ω = (τ, α, β),
where τ = {Ii}Ni=0 is a hybrid time set and
α = {αi : Ii → Q} and β = {βi : Ii → Rn}
are two sequences of functions satisfying

1 Initial condition: α0[0] = q0 and β0[0] = x0;
2 Discrete transition: for all i < 〈τ〉,

e =
(
αi (τ

′
i), αi+1(τi+1)

)
∈ E , βi (τ ′i) ∈ Ge and

βi+1(τi+1) = Re(βi (τ
′
i));

3 Continuous evolution: for all i ≤ 〈τ〉 with τi < τ ′i ,
if q = αi (τi), then

(1) for all t ∈ Ii , αi (t) = q,
(2) βi (t) is the solution to the

differential equation ẋ = fq(x) over Ii
with initial value βi (τi), and

(3) for all t ∈ [τi , τ
′
i), βi (t) ∈ Dq .

-0 t

τ0 τ ′0

τ1 τ ′1

τ2 τ ′2

. . .

α0, β0

α1, β1

α2, β2

...

?

?

26 / 120

Talk1: Preliminaries Hybrid Automata

Hybrid Trajectories Accepted by HA (Cont’d) [Tomlin et al. 00]

A hybrid trajectory (τ, α, β)
is called infinite if

〈τ〉 = N is ∞, or
‖τ‖ =

∑N
i=0(τ ′i − τi)

is ∞.
A hybrid automaton is called
non-blocking if there is an
infinite trajectory starting from
any initial state (q0, x0), and
blocking otherwise.

27 / 120

Talk1: Preliminaries Hybrid Automata

Hybrid Trajectories Accepted by HA (Cont’d) [Tomlin et al. 00]

A hybrid trajectory (τ, α, β)
is called infinite if

〈τ〉 = N is ∞, or
‖τ‖ =

∑N
i=0(τ ′i − τi)

is ∞.
A hybrid automaton is called
non-blocking if there is an
infinite trajectory starting from
any initial state (q0, x0), and
blocking otherwise.

27 / 120

Talk1: Preliminaries Hybrid Automata

Hybrid Trajectories Accepted by HA (Cont’d) [Tomlin et al. 00]

A hybrid trajectory (τ, α, β)
is called infinite if

〈τ〉 = N is ∞, or
‖τ‖ =

∑N
i=0(τ ′i − τi)

is ∞.
A hybrid automaton is called
non-blocking if there is an
infinite trajectory starting from
any initial state (q0, x0), and
blocking otherwise.

27 / 120

Talk1: Preliminaries Hybrid Automata

Reachable Set of HA

Definition (Reachable Set)

Given an HA H, the reachable set RH of H consists of those (q, x) for
which there exists a finite sequence

(q0, x0), (q1, x1), . . . , (ql , xl)

such that (q0, x0) ∈ ΞH, (ql , xl) = (q, x), and for any 0 ≤ i ≤ l − 1, one
of the following two conditions holds:

(Discrete Jump): e = (qi , qi+1) ∈ E , xi ∈ Ge and xi+1 = Re(xi);
or
(Continuous Evolution): qi = qi+1, and there exists a δ ≥ 0 s.t.
the solution x(xi ; t) to ẋ = fqi satisfies

x(xi ; t) ∈ Dqi for all t ∈ [0, δ]; and
x(xi ; δ) = xi+1 .

28 / 120

Talk2: Computing Invariants for Hybrid Systems

Outline

1 Background

2 Talk1: Preliminaries
Polynomials and Polynomial Ideals
First-order Theory of Reals
Continuous Dynamical Systems
Hybrid Automata

3 Talk2: Computing Invariants for Hybrid Systems
Generating Continuous Invariants in Simple Case
Generating Continuous Invariants in General Case
Generating Semi-algebraic Global Invariants
Abstraction of Elementary Hybrid Systems by Variable Transformation
An Industrial Case Study: Soft Landing

4 Talk3: Controller Synthesis
Controller Synthesis with Safety
Controller Synthesis with Safety and Optimality
An Industrial Case Study: The Oil Pump Control Problem

5 Conclusions

29 / 120

Talk2: Computing Invariants for Hybrid Systems

Continuous vs Global Invariants

Note that
Hybrid systems consists of a set of CDSs, a set of transitions
between these CDSs, and a transition may be equipped with a guard
and reset
Invariant plays a key role in analysis, verification, synthesis of hybrid
systems
Global invariant keeps invariant during continuous and discrete
evolutions
Continuous invariant keeps invariant in a mode
Interplay between global and continuous invariant
Both can be reduced to constraint solving
Continuous invariant (differential invariant) generation is more
complicated

30 / 120

Talk2: Computing Invariants for Hybrid Systems

Global Invariant

Definition (Global Invariant)

An invariant of an HA H maps to each q ∈ Q a subset Iq ⊆ Rn, such
that for all (q, x) ∈ RH (the reachable set), we have x ∈ Iq.

Definition (Inductive Invariant)

Given an HA H, an inductive invariant maps to each q ∈ Q a subset
Iq ⊆ Rn, such that the following conditions are satisfied:

1 Ξq ⊆ Iq for all q ∈ Q;
2 for any e = (q, q′) ∈ E , if x ∈ Iq ∩ Ge , then x′ = Re(x) ∈ Iq′ ;
3 for any q ∈ Q and any x0 ∈ Iq, if there exists a δ ≥ 0 s.t. the

solution x(x0; t) to ẋ = fq satisfies: (i) x(x0; δ) = x′; and (ii)
x(x0; t) ∈ Dq for all t ∈ [0, δ], then x′ ∈ Iq .

31 / 120

Talk2: Computing Invariants for Hybrid Systems

Global Invariant

Definition (Global Invariant)

An invariant of an HA H maps to each q ∈ Q a subset Iq ⊆ Rn, such
that for all (q, x) ∈ RH (the reachable set), we have x ∈ Iq.

Definition (Inductive Invariant)

Given an HA H, an inductive invariant maps to each q ∈ Q a subset
Iq ⊆ Rn, such that the following conditions are satisfied:

1 Ξq ⊆ Iq for all q ∈ Q;
2 for any e = (q, q′) ∈ E , if x ∈ Iq ∩ Ge , then x′ = Re(x) ∈ Iq′ ;
3 for any q ∈ Q and any x0 ∈ Iq, if there exists a δ ≥ 0 s.t. the

solution x(x0; t) to ẋ = fq satisfies: (i) x(x0; δ) = x′; and (ii)
x(x0; t) ∈ Dq for all t ∈ [0, δ], then x′ ∈ Iq .

31 / 120

Talk2: Computing Invariants for Hybrid Systems

Continuous Invariant

Definition (Continuous Invariant see also [Platzer & Clarke 08])

Given (Dq, fq), we call P ⊆ Rn a continuous invariant of (Dq, fq) if for
all x0 ∈ P and all T ≥ 0,

(∀t ∈ [0,T]. x(t) ∈ Dq) =⇒ (∀t ∈ [0,T]. x(t) ∈ P) .

A continuous invariant of a PDS is called a semi-algebraic
invariant (SAI) if it is a semi-algebraic set. 32 / 120

Talk2: Computing Invariants for Hybrid Systems

Continuous Invariant

Definition (Continuous Invariant see also [Platzer & Clarke 08])

Given (Dq, fq), we call P ⊆ Rn a continuous invariant of (Dq, fq) if for
all x0 ∈ P and all T ≥ 0,

(∀t ∈ [0,T]. x(t) ∈ Dq) =⇒ (∀t ∈ [0,T]. x(t) ∈ P) .

A continuous invariant of a PDS is called a semi-algebraic
invariant (SAI) if it is a semi-algebraic set. 32 / 120

Talk2: Computing Invariants for Hybrid Systems

Related Work

Barrier-certificate [Prajna&Jadbadbaie 2004, Plazer&Clarke 2008]
Basic idea: Let D = {ẋ = f(x)} and H = {h(x) ≥ 0}. A function
B : Rn → R is a barrier certificate if it is differentiable and satisfying

∀x ∈ H.
∂B

∂x
f(x) ≤ 0.

or
∀x ∈ H(B(x) = 0⇒ ∂B

∂x
f(x) < 0).

Let P := {x | B(x) ≤ 0}. Then P is an invariant of (D,H).

33 / 120

Talk2: Computing Invariants for Hybrid Systems

Related Work (Cont’d)

Boundary method [Taly, Gulwani&Tiwari, VMCAI 2009]
Let D = {ẋ = f(x)} and H = {h(x) ≥ 0}. If P := {x | p(x) ≥ 0} has
the following property: For each x s.t. p(x) = 0, there is a δ > 0 s.t.

∀y : (p(y) = 0 ∧ ‖y − x‖ < δ ⇒ Lfp(y) ≥ 0 ∧ ∂p
∂y
6= 0),

then P is an invariant of (D,H).
It imposes a strong assumption on the boundary.

Ideal fixed point method [Sankaranarayanan, HSCC 2010]
Basic idea: If an ideal I ⊆ R[x] has the property:

1 (∀p ∈ I, x ∈ H)p(x) = 0,
2 (∀p ∈ I), Lfp ∈ I;

then P := {x | p(x) = 0,∀p ∈ I} is an invariant of (D,H).
It cannot cope with invariants as general semi-algebraic sets.

34 / 120

Talk2: Computing Invariants for Hybrid Systems

Related Work (Cont’d)

Boundary method [Taly, Gulwani&Tiwari, VMCAI 2009]
Let D = {ẋ = f(x)} and H = {h(x) ≥ 0}. If P := {x | p(x) ≥ 0} has
the following property: For each x s.t. p(x) = 0, there is a δ > 0 s.t.

∀y : (p(y) = 0 ∧ ‖y − x‖ < δ ⇒ Lfp(y) ≥ 0 ∧ ∂p
∂y
6= 0),

then P is an invariant of (D,H).
It imposes a strong assumption on the boundary.

Ideal fixed point method [Sankaranarayanan, HSCC 2010]
Basic idea: If an ideal I ⊆ R[x] has the property:

1 (∀p ∈ I, x ∈ H)p(x) = 0,
2 (∀p ∈ I), Lfp ∈ I;

then P := {x | p(x) = 0,∀p ∈ I} is an invariant of (D,H).
It cannot cope with invariants as general semi-algebraic sets.

34 / 120

Talk2: Computing Invariants for Hybrid Systems

Related Work (Cont’d)

Open Problem
Open problem [Sankaranarayanan, HSCC 2010, Taly&Tiwari,
FSTTCS 2009]: Can we find a complete method to generate all
semi-algebraic invariants of a polynomial dynamical system?
We addressed this problem and gave an affirmative answer in [Liu,
Zhan&Zhao 2011].

35 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Outline

1 Background

2 Talk1: Preliminaries
Polynomials and Polynomial Ideals
First-order Theory of Reals
Continuous Dynamical Systems
Hybrid Automata

3 Talk2: Computing Invariants for Hybrid Systems
Generating Continuous Invariants in Simple Case
Generating Continuous Invariants in General Case
Generating Semi-algebraic Global Invariants
Abstraction of Elementary Hybrid Systems by Variable Transformation
An Industrial Case Study: Soft Landing

4 Talk3: Controller Synthesis
Controller Synthesis with Safety
Controller Synthesis with Safety and Optimality
An Industrial Case Study: The Oil Pump Control Problem

5 Conclusions

36 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Basic Idea

Let (D, f) be a PDS, x(t) is a trajectory of (D, f) from x0, and
P=̂p(x) ≥ 0. Then P be a differential invariant of (D, f) iff

∀x0 ∈ ∂P ∩ D,∃ε > 0,∀t ∈ [0, ε].p(x(t)) ≥ 0 (2)
p(x(t))’s Taylor’s expansion at t = 0

p(x(t)) = L1f p(x0).t + L2f p(x0).
t2

2!
+ · · · Lifp(x0).

t i

i !
+ · · ·

(2) holds iff
1 either for all i ≥ 0, Lifp(x0) = 0
2 or there is some k > i ≥ 0, such that Lifp(x0) = 0 and Lkf p(x0) > 0.

The pointwise rank of p with respect to f as the function
γp,f : Rn → N ∪ {∞} defined by

γp,f(x) = min{k ∈ N | Lkf p(x) 6= 0}

if such k exists, and γp,f(x) =∞ otherwise.
37 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Basic Idea

Let (D, f) be a PDS, x(t) is a trajectory of (D, f) from x0, and
P=̂p(x) ≥ 0. Then P be a differential invariant of (D, f) iff

∀x0 ∈ ∂P ∩ D,∃ε > 0,∀t ∈ [0, ε].p(x(t)) ≥ 0 (2)
p(x(t))’s Taylor’s expansion at t = 0

p(x(t)) = L1f p(x0).t + L2f p(x0).
t2

2!
+ · · · Lifp(x0).

t i

i !
+ · · ·

(2) holds iff
1 either for all i ≥ 0, Lifp(x0) = 0
2 or there is some k > i ≥ 0, such that Lifp(x0) = 0 and Lkf p(x0) > 0.

The pointwise rank of p with respect to f as the function
γp,f : Rn → N ∪ {∞} defined by

γp,f(x) = min{k ∈ N | Lkf p(x) 6= 0}

if such k exists, and γp,f(x) =∞ otherwise.
37 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Basic Idea

Let (D, f) be a PDS, x(t) is a trajectory of (D, f) from x0, and
P=̂p(x) ≥ 0. Then P be a differential invariant of (D, f) iff

∀x0 ∈ ∂P ∩ D,∃ε > 0,∀t ∈ [0, ε].p(x(t)) ≥ 0 (2)
p(x(t))’s Taylor’s expansion at t = 0

p(x(t)) = L1f p(x0).t + L2f p(x0).
t2

2!
+ · · · Lifp(x0).

t i

i !
+ · · ·

(2) holds iff
1 either for all i ≥ 0, Lifp(x0) = 0
2 or there is some k > i ≥ 0, such that Lifp(x0) = 0 and Lkf p(x0) > 0.

The pointwise rank of p with respect to f as the function
γp,f : Rn → N ∪ {∞} defined by

γp,f(x) = min{k ∈ N | Lkf p(x) 6= 0}

if such k exists, and γp,f(x) =∞ otherwise.
37 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Example

Let f = (−x , y) and
p(x , y) = x + y2. Then

L0f p(x , y) = x + y2

L1f p(x , y) = −x + 2y2

L2f p(x , y) = x + 4y2

...

Consider point (−1, 1) (see the
picture),

The points on the parabola
p(x , y) = 0 with zero energy,
and the points in the white area
have positive energy, i.e.
p(x , y) > 0.
B denotes the evolution
direction of f at the point.
A is the gradient ∇p|(−1,1) of
p(x , y).
L1f p|(−1,1) = 3 predicts that the
trajectory starting at (−1, 1) will
enter the white area.

38 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Example

Let f = (−x , y) and
p(x , y) = x + y2. Then

L0f p(x , y) = x + y2

L1f p(x , y) = −x + 2y2

L2f p(x , y) = x + 4y2

...

Consider point (−1, 1) (see the
picture),

The points on the parabola
p(x , y) = 0 with zero energy,
and the points in the white area
have positive energy, i.e.
p(x , y) > 0.
B denotes the evolution
direction of f at the point.
A is the gradient ∇p|(−1,1) of
p(x , y).
L1f p|(−1,1) = 3 predicts that the
trajectory starting at (−1, 1) will
enter the white area.

38 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Example

Let f = (−x , y) and
p(x , y) = x + y2. Then

L0f p(x , y) = x + y2

L1f p(x , y) = −x + 2y2

L2f p(x , y) = x + 4y2

...

Consider point (−1, 1) (see the
picture),

The points on the parabola
p(x , y) = 0 with zero energy,
and the points in the white area
have positive energy, i.e.
p(x , y) > 0.
B denotes the evolution
direction of f at the point.
A is the gradient ∇p|(−1,1) of
p(x , y).
L1f p|(−1,1) = 3 predicts that the
trajectory starting at (−1, 1) will
enter the white area.

38 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Example

Let f(x , y) = (−2y , x2) and
h(x , y) = x + y2. Then
L0f h(x , y) = x + y2

L1f h(x , y) = −2y + 2x2y
L2f h(x , y) = −8y2x − (2− 2x2)x2

...

Also consider point (−1, 1) on
h(x , y) = 0 (see the picture),

the gradient of h is (1, 2)
(vector A);
the evolution direction is (−2, 1)
(vector B);
their inner product is zero, i.e.,
L1f h(−1, 1) = 0, thus it is
impossible to predict the
tendency of the trajectory
starting from (−1, 1) via the
1-order Lie derivative;
By a simple computation,
L2f h(−1, 1) = 8. Hence
γh,f(−1, 1) = 2.

39 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Example

Let f(x , y) = (−2y , x2) and
h(x , y) = x + y2. Then
L0f h(x , y) = x + y2

L1f h(x , y) = −2y + 2x2y
L2f h(x , y) = −8y2x − (2− 2x2)x2

...

Also consider point (−1, 1) on
h(x , y) = 0 (see the picture),

the gradient of h is (1, 2)
(vector A);
the evolution direction is (−2, 1)
(vector B);
their inner product is zero, i.e.,
L1f h(−1, 1) = 0, thus it is
impossible to predict the
tendency of the trajectory
starting from (−1, 1) via the
1-order Lie derivative;
By a simple computation,
L2f h(−1, 1) = 8. Hence
γh,f(−1, 1) = 2.

39 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Theoretical Results
Theorem (Rank Theorem)

Given a polynomial p and a PVF f, there is a natural number Np,f such that for
any x ∈ Rn, if γp,f(x) <∞, then γp,f(x) ≤ Np,f .

Theorem (Parametric Rank Theorem)

Given a parametric polynomial p(u, x) and a PVF f, there is an integer Np,f ∈ N
such that γpu0 ,f(x) <∞ implies γpu0 ,f(x) ≤ Np,f for all x ∈ Rn and all u0 ∈ Rw .

Theorem (Criterion Theorem)

Given a polynomial p, p(x) ≥ 0 is an SCI of the PCCDS (h(x) ≥ 0, f) iff
θ(h, p, f, x) =̂

(
p(x) = 0 ∧ π(p, f, x)

)
→ π(h, f, x), (3)

holds for all x ∈ Rn, where

π(i)(p, f, x) =̂

 ∧
0≤j<i

Ljfp(x) = 0

 ∧ Lifp(x) < 0 ,

π(p, f, x) =̂
∨

0≤i≤Np,f

π(i)(p, f, x) .

40 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Theoretical Results
Theorem (Rank Theorem)

Given a polynomial p and a PVF f, there is a natural number Np,f such that for
any x ∈ Rn, if γp,f(x) <∞, then γp,f(x) ≤ Np,f .

Theorem (Parametric Rank Theorem)

Given a parametric polynomial p(u, x) and a PVF f, there is an integer Np,f ∈ N
such that γpu0 ,f(x) <∞ implies γpu0 ,f(x) ≤ Np,f for all x ∈ Rn and all u0 ∈ Rw .

Theorem (Criterion Theorem)

Given a polynomial p, p(x) ≥ 0 is an SCI of the PCCDS (h(x) ≥ 0, f) iff
θ(h, p, f, x) =̂

(
p(x) = 0 ∧ π(p, f, x)

)
→ π(h, f, x), (3)

holds for all x ∈ Rn, where

π(i)(p, f, x) =̂

 ∧
0≤j<i

Ljfp(x) = 0

 ∧ Lifp(x) < 0 ,

π(p, f, x) =̂
∨

0≤i≤Np,f

π(i)(p, f, x) .

40 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Theoretical Results
Theorem (Rank Theorem)

Given a polynomial p and a PVF f, there is a natural number Np,f such that for
any x ∈ Rn, if γp,f(x) <∞, then γp,f(x) ≤ Np,f .

Theorem (Parametric Rank Theorem)

Given a parametric polynomial p(u, x) and a PVF f, there is an integer Np,f ∈ N
such that γpu0 ,f(x) <∞ implies γpu0 ,f(x) ≤ Np,f for all x ∈ Rn and all u0 ∈ Rw .

Theorem (Criterion Theorem)

Given a polynomial p, p(x) ≥ 0 is an SCI of the PCCDS (h(x) ≥ 0, f) iff
θ(h, p, f, x) =̂

(
p(x) = 0 ∧ π(p, f, x)

)
→ π(h, f, x), (3)

holds for all x ∈ Rn, where

π(i)(p, f, x) =̂

 ∧
0≤j<i

Ljfp(x) = 0

 ∧ Lifp(x) < 0 ,

π(p, f, x) =̂
∨

0≤i≤Np,f

π(i)(p, f, x) .

40 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Algorithm

I. First, set a simple semi-algebraic template P =̂ p(u, x) ≥ 0
using a parametric polynomial p(u, x).

II. Then apply QE to the formula ∀x.θ(h, p, f, x). In practice, QE
may be applied to a formula ∀x.(θ ∧ φ), where φ is a formula
imposing some additional constraint on the SCI P. If the
output of QE is false, then there is no SCI in the form of the
predefined P; otherwise, a constraint on u, denoted by R(u),
will be returned.

III. Now, use an SMT solver like Z3 to pick a u0 ∈ R(u) and then
pu0(x) ≥ 0 is an SCI of (h(x) ≥ 0, f).

41 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Algorithm

I. First, set a simple semi-algebraic template P =̂ p(u, x) ≥ 0
using a parametric polynomial p(u, x).

II. Then apply QE to the formula ∀x.θ(h, p, f, x). In practice, QE
may be applied to a formula ∀x.(θ ∧ φ), where φ is a formula
imposing some additional constraint on the SCI P. If the
output of QE is false, then there is no SCI in the form of the
predefined P; otherwise, a constraint on u, denoted by R(u),
will be returned.

III. Now, use an SMT solver like Z3 to pick a u0 ∈ R(u) and then
pu0(x) ≥ 0 is an SCI of (h(x) ≥ 0, f).

41 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Algorithm

I. First, set a simple semi-algebraic template P =̂ p(u, x) ≥ 0
using a parametric polynomial p(u, x).

II. Then apply QE to the formula ∀x.θ(h, p, f, x). In practice, QE
may be applied to a formula ∀x.(θ ∧ φ), where φ is a formula
imposing some additional constraint on the SCI P. If the
output of QE is false, then there is no SCI in the form of the
predefined P; otherwise, a constraint on u, denoted by R(u),
will be returned.

III. Now, use an SMT solver like Z3 to pick a u0 ∈ R(u) and then
pu0(x) ≥ 0 is an SCI of (h(x) ≥ 0, f).

41 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Running Example
Consider a PDS (D = −x − y2 ≥ 0, f(x , y) = (−2y , x2)).
Apply procedure (I-III), we have:

I Set a template P =̂ p(u, x) ≥ 0 with p(u, x) =̂ ay(x − y), where
u =̂ (a). By a simple computation we get Np,f = 2.

II Compute the corresponding formula

θ(h, p, f, x) =̂ p = 0 ∧ (π
(0)
p,f,x ∨ π

(1)
p,f,x ∨ π

(2)
p,f,x) −→

(π
(0)
h,f,x ∨ π

(1)
h,f,x ∨ π

(2)
h,f,x)

where

π
(0)
h,f,x =̂ −x − y2 < 0,

π
(1)
h,f,x =̂ −x − y2 = 0 ∧ 2y − 2x2y < 0,

π
(2)
h,f,x =̂ −x − y2 = 0 ∧ 2y − 2x2y = 0 ∧ 8xy2 + 2x2 − 2x4 < 0,

π
(0)
p,f,x =̂ ay(x − y) < 0,

π
(1)
p,f,x =̂ ay(x − y) = 0 ∧ −2ay2 + ax3 − 2yax2 < 0,

π
(2)
p,f,x =̂ ay(x − y) = 0 ∧ −2ay2 + ax3 − 2yax2 = 0

∧ 40axy2 − 16ay3 + 32ax3y − 10ax4 < 0. 42 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Running Example
Consider a PDS (D = −x − y2 ≥ 0, f(x , y) = (−2y , x2)).
Apply procedure (I-III), we have:

I Set a template P =̂ p(u, x) ≥ 0 with p(u, x) =̂ ay(x − y), where
u =̂ (a). By a simple computation we get Np,f = 2.

II Compute the corresponding formula

θ(h, p, f, x) =̂ p = 0 ∧ (π
(0)
p,f,x ∨ π

(1)
p,f,x ∨ π

(2)
p,f,x) −→

(π
(0)
h,f,x ∨ π

(1)
h,f,x ∨ π

(2)
h,f,x)

where

π
(0)
h,f,x =̂ −x − y2 < 0,

π
(1)
h,f,x =̂ −x − y2 = 0 ∧ 2y − 2x2y < 0,

π
(2)
h,f,x =̂ −x − y2 = 0 ∧ 2y − 2x2y = 0 ∧ 8xy2 + 2x2 − 2x4 < 0,

π
(0)
p,f,x =̂ ay(x − y) < 0,

π
(1)
p,f,x =̂ ay(x − y) = 0 ∧ −2ay2 + ax3 − 2yax2 < 0,

π
(2)
p,f,x =̂ ay(x − y) = 0 ∧ −2ay2 + ax3 − 2yax2 = 0

∧ 40axy2 − 16ay3 + 32ax3y − 10ax4 < 0. 42 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Running Example
Consider a PDS (D = −x − y2 ≥ 0, f(x , y) = (−2y , x2)).
Apply procedure (I-III), we have:

I Set a template P =̂ p(u, x) ≥ 0 with p(u, x) =̂ ay(x − y), where
u =̂ (a). By a simple computation we get Np,f = 2.

II Compute the corresponding formula

θ(h, p, f, x) =̂ p = 0 ∧ (π
(0)
p,f,x ∨ π

(1)
p,f,x ∨ π

(2)
p,f,x) −→

(π
(0)
h,f,x ∨ π

(1)
h,f,x ∨ π

(2)
h,f,x)

where

π
(0)
h,f,x =̂ −x − y2 < 0,

π
(1)
h,f,x =̂ −x − y2 = 0 ∧ 2y − 2x2y < 0,

π
(2)
h,f,x =̂ −x − y2 = 0 ∧ 2y − 2x2y = 0 ∧ 8xy2 + 2x2 − 2x4 < 0,

π
(0)
p,f,x =̂ ay(x − y) < 0,

π
(1)
p,f,x =̂ ay(x − y) = 0 ∧ −2ay2 + ax3 − 2yax2 < 0,

π
(2)
p,f,x =̂ ay(x − y) = 0 ∧ −2ay2 + ax3 − 2yax2 = 0

∧ 40axy2 − 16ay3 + 32ax3y − 10ax4 < 0. 42 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Running Example (Cont’d)
III In addition, we require the two points {(−1, 0.5), (−0.5,−0.6)} to

be contained in P . Then apply QE to the formula

∀x∀y .
(
θ(h, p, f, x) ∧ 0.5a(−1− 0.5) ≥ 0 ∧ −0.6a(−0.5 + 0.6) ≥ 0

)
.

The result is a ≤ 0.
IV Just pick a = −1, and then −xy + y2 ≥ 0 is an SCI of (D, f). The

grey part of Picture III is the intersection of the invariant P and
domain D.

43 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in Simple Case

Running Example (Cont’d)
III In addition, we require the two points {(−1, 0.5), (−0.5,−0.6)} to

be contained in P . Then apply QE to the formula

∀x∀y .
(
θ(h, p, f, x) ∧ 0.5a(−1− 0.5) ≥ 0 ∧ −0.6a(−0.5 + 0.6) ≥ 0

)
.

The result is a ≤ 0.
IV Just pick a = −1, and then −xy + y2 ≥ 0 is an SCI of (D, f). The

grey part of Picture III is the intersection of the invariant P and
domain D.

43 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in General Case

Outline

1 Background

2 Talk1: Preliminaries
Polynomials and Polynomial Ideals
First-order Theory of Reals
Continuous Dynamical Systems
Hybrid Automata

3 Talk2: Computing Invariants for Hybrid Systems
Generating Continuous Invariants in Simple Case
Generating Continuous Invariants in General Case
Generating Semi-algebraic Global Invariants
Abstraction of Elementary Hybrid Systems by Variable Transformation
An Industrial Case Study: Soft Landing

4 Talk3: Controller Synthesis
Controller Synthesis with Safety
Controller Synthesis with Safety and Optimality
An Industrial Case Study: The Oil Pump Control Problem

5 Conclusions

44 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in General Case

General Case

Problem: Consider a PDS (D, f) with

D =
I∨

i=1

Ji∧
j=1

pij(x) . 0,

and f ∈ Qn[x], where . ∈ {≥, >}, to generate SAIs automatically
with a general template

P =
K∨

k=1

Lk∧
l=1

pkl(ukl , x) . 0 , . ∈ {≥, >}

Basic idea The procedure is essentially same as in the simple case,
but have to sophisticatedly handle the complex combinations due to
the complicated boundaries.

45 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in General Case

General Case

Problem: Consider a PDS (D, f) with

D =
I∨

i=1

Ji∧
j=1

pij(x) . 0,

and f ∈ Qn[x], where . ∈ {≥, >}, to generate SAIs automatically
with a general template

P =
K∨

k=1

Lk∧
l=1

pkl(ukl , x) . 0 , . ∈ {≥, >}

Basic idea The procedure is essentially same as in the simple case,
but have to sophisticatedly handle the complex combinations due to
the complicated boundaries.

45 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in General Case

Theorem (Main Result)

A semi-algebraic template P(u, x) defined by

K∨
k=1

 jk∧
j=1

pkj(ukj , x) ≥ 0 ∧
Jk∧

j=jk+1

pkj(ukj , x) > 0

is a CI of the PCCDS (D, f) with

D =̂
M∨

m=1

 lm∧
l=1

pml(x) ≥ 0 ∧
Lm∧

l=lm+1

pml(x) > 0

 ,

iff u satisfies

∀x.
((

P ∧ D ∧ ΦD → ΦP

)
∧
(
¬P ∧ D ∧ ΦIv

D → ¬ΦIv
P

))
,

where

46 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in General Case

Theorem (Main Result (Cont’d))

ΦD =̂
M∨

m=1

 lm∧
l=1

ψ+
0 (pml , f) ∧

Lm∧
l=lm+1

ψ+(pml , f)

 ,

ΦP =̂
K∨

k=1

 jk∧
j=1

ψ+
0 (pkj , f) ∧

Jk∧
j=jk+1

ψ+(pkj , f)

 ,

ΦIv
D =̂

M∨
m=1

 lm∧
l=1

ϕ+
0 (pml , f) ∧

Lm∧
l=lm+1

ϕ+(pml , f)

 ,

ΦIv
P =̂

K∨
k=1

 jk∧
j=1

ϕ+
0 (pkj , f) ∧

Jk∧
j=jk+1

ϕ+(pkj , f)

 ,

ψ+(p, f) =̂
∨

0≤i≤Np,f

ψ(i)(p, f) with ψ(i)(p, f) =̂
(∧

0≤j<i

Ljfp = 0
)
∧ Lifp > 0, and

ψ+
0 (p, f) =̂ψ+(p, f) ∨

(∧
0≤j≤Np,f

Ljfp = 0
)

ϕ+(p, f) =̂
∨

0≤i≤Np,f

ϕ(i)(p, f) with ϕ(i)(p, f) =̂
(∧

0≤j<i

Ljfp = 0
)
∧ (−1)i · Lifp > 0, and

ϕ+
0 (p, f) =̂ϕ+(p, f) ∨

(∧
0≤j≤Np,f

Ljfp = 0
)
.

47 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in General Case

Running Example
Let f(x , y) = (−2y , x2) and D =̂R2.
Take a template: P(u, x) =̂ x − a ≥ 0 ∨ y − b > 0 with u = (a, b).
So, P is an SCI of (D, f) iff a, b satisfy

∀x∀y .(P → ζ) ∧ (¬P → ¬ξ),

where
ζ=̂(x − a > 0) ∨ (x − a = 0 ∧ −2y > 0)

∨ (x − a = 0 ∧ −2y = 0 ∧ −2x2 ≥ 0)

∨ (y − b > 0) ∨ (y − b = 0 ∧ x2 > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx = 0 ∧ 8y2 − 4x3 > 0)

ξ=̂(x − a > 0) ∨ (x − a = 0 ∧ −2y < 0)

∨ (x − a = 0 ∧ −2y = 0 ∧ −2x2 ≥ 0)

∨ (y − b > 0) ∨ (y − b = 0 ∧ x2 < 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx = 0 ∧ 8y2 − 4x3 < 0) 48 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in General Case

Running Example
Let f(x , y) = (−2y , x2) and D =̂R2.
Take a template: P(u, x) =̂ x − a ≥ 0 ∨ y − b > 0 with u = (a, b).
So, P is an SCI of (D, f) iff a, b satisfy

∀x∀y .(P → ζ) ∧ (¬P → ¬ξ),

where
ζ=̂(x − a > 0) ∨ (x − a = 0 ∧ −2y > 0)

∨ (x − a = 0 ∧ −2y = 0 ∧ −2x2 ≥ 0)

∨ (y − b > 0) ∨ (y − b = 0 ∧ x2 > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx = 0 ∧ 8y2 − 4x3 > 0)

ξ=̂(x − a > 0) ∨ (x − a = 0 ∧ −2y < 0)

∨ (x − a = 0 ∧ −2y = 0 ∧ −2x2 ≥ 0)

∨ (y − b > 0) ∨ (y − b = 0 ∧ x2 < 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx = 0 ∧ 8y2 − 4x3 < 0) 48 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in General Case

Running Example
Let f(x , y) = (−2y , x2) and D =̂R2.
Take a template: P(u, x) =̂ x − a ≥ 0 ∨ y − b > 0 with u = (a, b).
So, P is an SCI of (D, f) iff a, b satisfy

∀x∀y .(P → ζ) ∧ (¬P → ¬ξ),

where
ζ=̂(x − a > 0) ∨ (x − a = 0 ∧ −2y > 0)

∨ (x − a = 0 ∧ −2y = 0 ∧ −2x2 ≥ 0)

∨ (y − b > 0) ∨ (y − b = 0 ∧ x2 > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx = 0 ∧ 8y2 − 4x3 > 0)

ξ=̂(x − a > 0) ∨ (x − a = 0 ∧ −2y < 0)

∨ (x − a = 0 ∧ −2y = 0 ∧ −2x2 ≥ 0)

∨ (y − b > 0) ∨ (y − b = 0 ∧ x2 < 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx = 0 ∧ 8y2 − 4x3 < 0) 48 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in General Case

Running Example (Cont’d)

In addition, we require the set x + y ≥ 0 to be contained in P .
By applying QE, we get a + b ≤ 0 ∧ b ≤ 0.
Let a = −1 and b = −0.5, and we obtain an SCI
P =̂ x + 1 ≥ 0 ∨ y + 0.5 > 0.

49 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Continuous Invariants in General Case

Running Example (Cont’d)

In addition, we require the set x + y ≥ 0 to be contained in P .
By applying QE, we get a + b ≤ 0 ∧ b ≤ 0.
Let a = −1 and b = −0.5, and we obtain an SCI
P =̂ x + 1 ≥ 0 ∨ y + 0.5 > 0.

49 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Semi-algebraic Global Invariants

Outline

1 Background

2 Talk1: Preliminaries
Polynomials and Polynomial Ideals
First-order Theory of Reals
Continuous Dynamical Systems
Hybrid Automata

3 Talk2: Computing Invariants for Hybrid Systems
Generating Continuous Invariants in Simple Case
Generating Continuous Invariants in General Case
Generating Semi-algebraic Global Invariants
Abstraction of Elementary Hybrid Systems by Variable Transformation
An Industrial Case Study: Soft Landing

4 Talk3: Controller Synthesis
Controller Synthesis with Safety
Controller Synthesis with Safety and Optimality
An Industrial Case Study: The Oil Pump Control Problem

5 Conclusions

50 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Semi-algebraic Global Invariants

Algorithm

I. Predefine a familiy of semi-algebraic templates Iq(u, x) with degree bound
d for each q ∈ Q, as the SCI to be generated at mode q.

II. Translate conditions for the family of Iq(u, x) to be a GI of H, i.e.
Ξq ⊆ Iq for all q ∈ Q;
for any e = (q, q′) ∈ E , if x ∈ Iq ∩ Ge , then x′ = Re(x) ∈ Iq′ ;
for any q ∈ Q, Iq is a CI of (Dq, fq)

into a set of first-order real arithmetic formulas, i.e.
(1) ∀x.

(
Ξq → Iq(u, x)

)
for all q ∈ Q;

(2) ∀x, x′.
(
Iq(u, x) ∧ Ge ∧ x′ = Re(x)→ Iq′(u, x′)

)
for all q ∈ Q and all

e = (q, q′) ∈ E ;
(3) ∀x.

(
(Iq(u, x) ∧ Dq ∧ ΦDq → ΦIq) ∧ (¬Iq(u, x) ∧ Dq ∧ ΦIv

Dq
→ ¬ΦIv

Iq
)
)
,

for each q ∈ Q.
For safety property S, there may be a fourth set of formulas:
(4) ∀x.(Iq(u, x) −→ Sq) for all q ∈ Q.

III. Take the conjunction of all the formulas in Step 2 and apply QE to get a
QFF φ(u). Then choose a specific u0 from φ(u) with a tool like Z3, and
the set of instantiations Iq,u0(x) form a GI of H.

51 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Semi-algebraic Global Invariants

Algorithm

I. Predefine a familiy of semi-algebraic templates Iq(u, x) with degree bound
d for each q ∈ Q, as the SCI to be generated at mode q.

II. Translate conditions for the family of Iq(u, x) to be a GI of H, i.e.
Ξq ⊆ Iq for all q ∈ Q;
for any e = (q, q′) ∈ E , if x ∈ Iq ∩ Ge , then x′ = Re(x) ∈ Iq′ ;
for any q ∈ Q, Iq is a CI of (Dq, fq)

into a set of first-order real arithmetic formulas, i.e.
(1) ∀x.

(
Ξq → Iq(u, x)

)
for all q ∈ Q;

(2) ∀x, x′.
(
Iq(u, x) ∧ Ge ∧ x′ = Re(x)→ Iq′(u, x′)

)
for all q ∈ Q and all

e = (q, q′) ∈ E ;
(3) ∀x.

(
(Iq(u, x) ∧ Dq ∧ ΦDq → ΦIq) ∧ (¬Iq(u, x) ∧ Dq ∧ ΦIv

Dq
→ ¬ΦIv

Iq
)
)
,

for each q ∈ Q.
For safety property S, there may be a fourth set of formulas:
(4) ∀x.(Iq(u, x) −→ Sq) for all q ∈ Q.

III. Take the conjunction of all the formulas in Step 2 and apply QE to get a
QFF φ(u). Then choose a specific u0 from φ(u) with a tool like Z3, and
the set of instantiations Iq,u0(x) form a GI of H.

51 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Semi-algebraic Global Invariants

Algorithm

I. Predefine a familiy of semi-algebraic templates Iq(u, x) with degree bound
d for each q ∈ Q, as the SCI to be generated at mode q.

II. Translate conditions for the family of Iq(u, x) to be a GI of H, i.e.
Ξq ⊆ Iq for all q ∈ Q;
for any e = (q, q′) ∈ E , if x ∈ Iq ∩ Ge , then x′ = Re(x) ∈ Iq′ ;
for any q ∈ Q, Iq is a CI of (Dq, fq)

into a set of first-order real arithmetic formulas, i.e.
(1) ∀x.

(
Ξq → Iq(u, x)

)
for all q ∈ Q;

(2) ∀x, x′.
(
Iq(u, x) ∧ Ge ∧ x′ = Re(x)→ Iq′(u, x′)

)
for all q ∈ Q and all

e = (q, q′) ∈ E ;
(3) ∀x.

(
(Iq(u, x) ∧ Dq ∧ ΦDq → ΦIq) ∧ (¬Iq(u, x) ∧ Dq ∧ ΦIv

Dq
→ ¬ΦIv

Iq
)
)
,

for each q ∈ Q.
For safety property S, there may be a fourth set of formulas:
(4) ∀x.(Iq(u, x) −→ Sq) for all q ∈ Q.

III. Take the conjunction of all the formulas in Step 2 and apply QE to get a
QFF φ(u). Then choose a specific u0 from φ(u) with a tool like Z3, and
the set of instantiations Iq,u0(x) form a GI of H.

51 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Semi-algebraic Global Invariants

Algorithm

I. Predefine a familiy of semi-algebraic templates Iq(u, x) with degree bound
d for each q ∈ Q, as the SCI to be generated at mode q.

II. Translate conditions for the family of Iq(u, x) to be a GI of H, i.e.
Ξq ⊆ Iq for all q ∈ Q;
for any e = (q, q′) ∈ E , if x ∈ Iq ∩ Ge , then x′ = Re(x) ∈ Iq′ ;
for any q ∈ Q, Iq is a CI of (Dq, fq)

into a set of first-order real arithmetic formulas, i.e.
(1) ∀x.

(
Ξq → Iq(u, x)

)
for all q ∈ Q;

(2) ∀x, x′.
(
Iq(u, x) ∧ Ge ∧ x′ = Re(x)→ Iq′(u, x′)

)
for all q ∈ Q and all

e = (q, q′) ∈ E ;
(3) ∀x.

(
(Iq(u, x) ∧ Dq ∧ ΦDq → ΦIq) ∧ (¬Iq(u, x) ∧ Dq ∧ ΦIv

Dq
→ ¬ΦIv

Iq
)
)
,

for each q ∈ Q.
For safety property S, there may be a fourth set of formulas:
(4) ∀x.(Iq(u, x) −→ Sq) for all q ∈ Q.

III. Take the conjunction of all the formulas in Step 2 and apply QE to get a
QFF φ(u). Then choose a specific u0 from φ(u) with a tool like Z3, and
the set of instantiations Iq,u0(x) form a GI of H.

51 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Semi-algebraic Global Invariants

Running Example

The Thermostat can be described by the HA in following figure.

�
�
�
�

�
�
�
�

�
�
�
�

Cool Heat Check

Ṫ=2, ċ=1
T≤10, c≤3

Ṫ=−T , ċ=1
T≥5

Ṫ=−T
2 , ċ=1

c≤1
-

�
�

-

T≤6, c:=0

T≥9

c≥0.5, c:=0

c≥2, c:=0

To verify that under the initial condition ΞH =̂ {qht} × X0 with
X0 =̂ c = 0 ∧ 5 ≤ T ≤ 10, S =̂T ≥ 4.5 is satisfied at all modes.

52 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Semi-algebraic Global Invariants

Running Example

The Thermostat can be described by the HA in following figure.

�
�
�
�

�
�
�
�

�
�
�
�

Cool Heat Check

Ṫ=2, ċ=1
T≤10, c≤3

Ṫ=−T , ċ=1
T≥5

Ṫ=−T
2 , ċ=1

c≤1
-

�
�

-

T≤6, c:=0

T≥9

c≥0.5, c:=0

c≥2, c:=0

To verify that under the initial condition ΞH =̂ {qht} × X0 with
X0 =̂ c = 0 ∧ 5 ≤ T ≤ 10, S =̂T ≥ 4.5 is satisfied at all modes.

52 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Semi-algebraic Global Invariants

Running Example (Cont’d)

Firstly, predefine the following set of templates:
Iqht =̂T + a1c + a0 ≥ 0 ∧ c ≥ 0;
Iqcl =̂T + a2 ≥ 0;
Iqck =̂T ≥ a3c

2 − 4.5c + 9 ∧ c ≥ 0 ∧ c ≤ 1

By the second step, we get

10a3−9 ≤ 0∧2a3−1 ≥ 0∧a1+2 = 0∧a0+2a1+9 = 0∧a2−a0 = 0 .

By choosing a0 = −5, a1 = −2, a2 = −5, a3 = 1
2 , obtain the

following SGI
Iqht =̂T ≥ 2c + 5 ∧ c ≥ 0;
Iqcl =̂T ≥ 5;
Iqck =̂ 2T ≥ c2 − 9c + 18 ∧ c ≥ 0 ∧ c ≤ 1.

The safety property is successfully verified by the SGI.

53 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Semi-algebraic Global Invariants

Running Example (Cont’d)

Firstly, predefine the following set of templates:
Iqht =̂T + a1c + a0 ≥ 0 ∧ c ≥ 0;
Iqcl =̂T + a2 ≥ 0;
Iqck =̂T ≥ a3c

2 − 4.5c + 9 ∧ c ≥ 0 ∧ c ≤ 1

By the second step, we get

10a3−9 ≤ 0∧2a3−1 ≥ 0∧a1+2 = 0∧a0+2a1+9 = 0∧a2−a0 = 0 .

By choosing a0 = −5, a1 = −2, a2 = −5, a3 = 1
2 , obtain the

following SGI
Iqht =̂T ≥ 2c + 5 ∧ c ≥ 0;
Iqcl =̂T ≥ 5;
Iqck =̂ 2T ≥ c2 − 9c + 18 ∧ c ≥ 0 ∧ c ≤ 1.

The safety property is successfully verified by the SGI.

53 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Semi-algebraic Global Invariants

Running Example (Cont’d)

Firstly, predefine the following set of templates:
Iqht =̂T + a1c + a0 ≥ 0 ∧ c ≥ 0;
Iqcl =̂T + a2 ≥ 0;
Iqck =̂T ≥ a3c

2 − 4.5c + 9 ∧ c ≥ 0 ∧ c ≤ 1

By the second step, we get

10a3−9 ≤ 0∧2a3−1 ≥ 0∧a1+2 = 0∧a0+2a1+9 = 0∧a2−a0 = 0 .

By choosing a0 = −5, a1 = −2, a2 = −5, a3 = 1
2 , obtain the

following SGI
Iqht =̂T ≥ 2c + 5 ∧ c ≥ 0;
Iqcl =̂T ≥ 5;
Iqck =̂ 2T ≥ c2 − 9c + 18 ∧ c ≥ 0 ∧ c ≤ 1.

The safety property is successfully verified by the SGI.

53 / 120

Talk2: Computing Invariants for Hybrid Systems Generating Semi-algebraic Global Invariants

Running Example (Cont’d)

Firstly, predefine the following set of templates:
Iqht =̂T + a1c + a0 ≥ 0 ∧ c ≥ 0;
Iqcl =̂T + a2 ≥ 0;
Iqck =̂T ≥ a3c

2 − 4.5c + 9 ∧ c ≥ 0 ∧ c ≤ 1

By the second step, we get

10a3−9 ≤ 0∧2a3−1 ≥ 0∧a1+2 = 0∧a0+2a1+9 = 0∧a2−a0 = 0 .

By choosing a0 = −5, a1 = −2, a2 = −5, a3 = 1
2 , obtain the

following SGI
Iqht =̂T ≥ 2c + 5 ∧ c ≥ 0;
Iqcl =̂T ≥ 5;
Iqck =̂ 2T ≥ c2 − 9c + 18 ∧ c ≥ 0 ∧ c ≤ 1.

The safety property is successfully verified by the SGI.

53 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Outline

1 Background

2 Talk1: Preliminaries
Polynomials and Polynomial Ideals
First-order Theory of Reals
Continuous Dynamical Systems
Hybrid Automata

3 Talk2: Computing Invariants for Hybrid Systems
Generating Continuous Invariants in Simple Case
Generating Continuous Invariants in General Case
Generating Semi-algebraic Global Invariants
Abstraction of Elementary Hybrid Systems by Variable Transformation
An Industrial Case Study: Soft Landing

4 Talk3: Controller Synthesis
Controller Synthesis with Safety
Controller Synthesis with Safety and Optimality
An Industrial Case Study: The Oil Pump Control Problem

5 Conclusions

54 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Elementary Functions

f , g ::= c | x | f + g | f − g | f × g |
f

g
| f a | ef | ln(f) | sin(f) | cos(f) ,

c ∈ R, a ∈ Q, x ∈ {x , y , z , . . . , x1, x2, . . ., xn}

elementary (or polynomial) hybrid system (or CDS),
EHS/PHS/EDS/PDS:

55 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Elementary Functions

f , g ::= c | x | f + g | f − g | f × g |
f

g
| f a | ef | ln(f) | sin(f) | cos(f) ,

c ∈ R, a ∈ Q, x ∈ {x , y , z , . . . , x1, x2, . . ., xn}

elementary (or polynomial) hybrid system (or CDS),
EHS/PHS/EDS/PDS:

55 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Univariate Basic Elementary Functions: ẋ = f (x)

f (x) = 1
x : let v = 1

x , and thus v̇ = − ẋ
x2 , so (1) is transformed to{

ẋ = v
v̇ = −v3

f (x) =
√
x : let v =

√
x , and thus v̇ = ẋ

2
√
x
, so (1) is transformed to{

ẋ = v
v̇ = 1

2

f (x) = ex : let v = ex , and thus v̇ = ex · ẋ , so (??) is transformed to{
ẋ = v
v̇ = v2

56 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Univariate Basic Elementary Functions: ẋ = f (x)

f (x) = 1
x : let v = 1

x , and thus v̇ = − ẋ
x2 , so (1) is transformed to{

ẋ = v
v̇ = −v3

f (x) =
√
x : let v =

√
x , and thus v̇ = ẋ

2
√
x
, so (1) is transformed to{

ẋ = v
v̇ = 1

2

f (x) = ex : let v = ex , and thus v̇ = ex · ẋ , so (??) is transformed to{
ẋ = v
v̇ = v2

56 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Univariate Basic Elementary Functions: ẋ = f (x)

f (x) = 1
x : let v = 1

x , and thus v̇ = − ẋ
x2 , so (1) is transformed to{

ẋ = v
v̇ = −v3

f (x) =
√
x : let v =

√
x , and thus v̇ = ẋ

2
√
x
, so (1) is transformed to{

ẋ = v
v̇ = 1

2

f (x) = ex : let v = ex , and thus v̇ = ex · ẋ , so (??) is transformed to{
ẋ = v
v̇ = v2

56 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Univariate Basic Elementary Functions: ẋ = f (x)

f (x) = ln x : let v = ln x , and thus v̇ = ẋ
x ; further let u = 1

x , and
thus u̇ = − ẋ

x2 . Therefore (1) is transformed to
ẋ = v
v̇ = uv
u̇ = −u2v

f (x) = sin x : let v = sin x , and thus v̇ = ẋ · cos x ; further let
u = cos x , and thus u̇ = − sin x · ẋ . Therefore (1) is transformed to

ẋ = v
v̇ = uv
u̇ = −v2

f (x) = cos x : the transformation is analogous to the case of
f (x) = sin x .

57 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Univariate Basic Elementary Functions: ẋ = f (x)

f (x) = ln x : let v = ln x , and thus v̇ = ẋ
x ; further let u = 1

x , and
thus u̇ = − ẋ

x2 . Therefore (1) is transformed to
ẋ = v
v̇ = uv
u̇ = −u2v

f (x) = sin x : let v = sin x , and thus v̇ = ẋ · cos x ; further let
u = cos x , and thus u̇ = − sin x · ẋ . Therefore (1) is transformed to

ẋ = v
v̇ = uv
u̇ = −v2

f (x) = cos x : the transformation is analogous to the case of
f (x) = sin x .

57 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Univariate Basic Elementary Functions: ẋ = f (x)

f (x) = ln x : let v = ln x , and thus v̇ = ẋ
x ; further let u = 1

x , and
thus u̇ = − ẋ

x2 . Therefore (1) is transformed to
ẋ = v
v̇ = uv
u̇ = −u2v

f (x) = sin x : let v = sin x , and thus v̇ = ẋ · cos x ; further let
u = cos x , and thus u̇ = − sin x · ẋ . Therefore (1) is transformed to

ẋ = v
v̇ = uv
u̇ = −v2

f (x) = cos x : the transformation is analogous to the case of
f (x) = sin x .

57 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Compositional and Multivariate Functions

Compositional: if f (x) = ln(2 + sin x), then let
v = sin x
u = cos x
w = ln (2 + v) = ln (2 + sin x)
z = 1

2+v = 1
2+sin x

,

so (1) is transformed to
ẋ = w
v̇ = uw
u̇ = −vw
ẇ = zuw
ż = −z2uw

.

Multivariate: analogous.
58 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Abstracting EDSs

Abstracting EDS Cx =̂ (Ξx, fx,Dx) to PDS Cy =̂ (Ξy, fy,Dy)

(S1) Introduce new variables to replace all non-polynomial terms in fx, Ξx
and Dx, and obtain a collection of replacement equations v = Γ(x).

(S2) Differentiate both sides of v = Γ(x) w.r.t. time, and then replace all
newly appearing non-polynomial terms by introducing fresh variables.

(S3) Repeat (S2) until no more variables need to be introduced. For
simplicity, still denote the final set of replacement equations by
v = Γ(x).

(S4) Define the simulation map as Θ(x) = (x, Γ(x)). Then use v = Γ(x)
to construct Ξy and Dy as illustrated by the following example.

59 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Abstracting EDSs

Abstracting EDS Cx =̂ (Ξx, fx,Dx) to PDS Cy =̂ (Ξy, fy,Dy)

(S1) Introduce new variables to replace all non-polynomial terms in fx, Ξx
and Dx, and obtain a collection of replacement equations v = Γ(x).

(S2) Differentiate both sides of v = Γ(x) w.r.t. time, and then replace all
newly appearing non-polynomial terms by introducing fresh variables.

(S3) Repeat (S2) until no more variables need to be introduced. For
simplicity, still denote the final set of replacement equations by
v = Γ(x).

(S4) Define the simulation map as Θ(x) = (x, Γ(x)). Then use v = Γ(x)
to construct Ξy and Dy as illustrated by the following example.

59 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Abstracting EDSs

Abstracting EDS Cx =̂ (Ξx, fx,Dx) to PDS Cy =̂ (Ξy, fy,Dy)

(S1) Introduce new variables to replace all non-polynomial terms in fx, Ξx
and Dx, and obtain a collection of replacement equations v = Γ(x).

(S2) Differentiate both sides of v = Γ(x) w.r.t. time, and then replace all
newly appearing non-polynomial terms by introducing fresh variables.

(S3) Repeat (S2) until no more variables need to be introduced. For
simplicity, still denote the final set of replacement equations by
v = Γ(x).

(S4) Define the simulation map as Θ(x) = (x, Γ(x)). Then use v = Γ(x)
to construct Ξy and Dy as illustrated by the following example.

59 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Abstracting EDSs

Abstracting EDS Cx =̂ (Ξx, fx,Dx) to PDS Cy =̂ (Ξy, fy,Dy)

(S1) Introduce new variables to replace all non-polynomial terms in fx, Ξx
and Dx, and obtain a collection of replacement equations v = Γ(x).

(S2) Differentiate both sides of v = Γ(x) w.r.t. time, and then replace all
newly appearing non-polynomial terms by introducing fresh variables.

(S3) Repeat (S2) until no more variables need to be introduced. For
simplicity, still denote the final set of replacement equations by
v = Γ(x).

(S4) Define the simulation map as Θ(x) = (x, Γ(x)). Then use v = Γ(x)
to construct Ξy and Dy as illustrated by the following example.

59 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Abstracting EDSs: An Example

Consider the EDS Cx =̂ (Ξx, fx,Dx), where
– Ξx =̂ (x + 0.5)2 + (y − 0.5)2 − 0.16 ≤ 0;
– Dx =̂ − 2 ≤ x ≤ 2 ∧ −2 ≤ y ≤ 2; and
– fx defines the ODE(

ẋ
ẏ

)
=

(
e−x + y − 1
− sin2(x)

)
.

60 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Abstracting EDSs: An Example

(S1-S3): by the replacement relations v = Γ(x)

(v1, v2, v3) = (sin x , e−x , cos x)

we get the transformed polynomial ODE (i.e. fy)
ẋ
ẏ
v̇1
v̇2
v̇3

 =

v2 + y − 1
−v21

v3(v2 + y − 1)
−v2(v2 + y − 1)
−v1(v2 + y − 1)

 ,

61 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Abstracting EDSs: An Example

(S4): the simulation map is Θ(x , y) = (x , y , sin x , e−x , cos x)

Θ(Ξx) =̂ Ξx ∧ v1 = sin x ∧ v2 = e−x ∧ v3 = cos x
Θ(Dx) =̂ Dx ∧ v1 = sin x ∧ v2 = e−x ∧ v3 = cos x
abstracting v1 = sin x ∧ v2 = e−x ∧ v3 = cos x by polynomial
expressions

62 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Abstracting EDSs: An Example

(S4): the simulation map is Θ(x , y) = (x , y , sin x , e−x , cos x)

Θ(Ξx) =̂ Ξx ∧ v1 = sin x ∧ v2 = e−x ∧ v3 = cos x
Θ(Dx) =̂ Dx ∧ v1 = sin x ∧ v2 = e−x ∧ v3 = cos x
abstracting v1 = sin x ∧ v2 = e−x ∧ v3 = cos x by polynomial
expressions

62 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Polynomial Approximation via Taylor Model

Dx =̂ − 2 ≤ x ≤ 2 ∧ −2 ≤ y ≤ 2
Dx ∧ v1 = sin x , expand up to degree 6
Dx ∧ v2 = e−x , expand up to degree 6

In this way we can obtain Ξy, Dy

63 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Polynomial Approximation via Taylor Model

Dx =̂ − 2 ≤ x ≤ 2 ∧ −2 ≤ y ≤ 2
Dx ∧ v1 = sin x , expand up to degree 6
Dx ∧ v2 = e−x , expand up to degree 6

In this way we can obtain Ξy, Dy

63 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Abstracting EHSs

abstracting EHS Hx =̂ (Q,X , fx,Dx,E ,Gx,Rx,Ξx) by PHS
Hy =̂ (Q,Y , fy,Dy,E ,Gy,Ry,Ξy)

just extend the abstraction approach for EDSs to take into account
guard constraints and reset functions
treat each mode of a HA separately by constructing an individual
abstraction map for each of them

64 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Abstracting EHSs: An Example

Bouncing ball on a sine-waved surface

Q = {q}; X = {x , y , vx , vy};
E = {e} with e = (q, q);

Dx,q =̂ y ≥ sin x ; Gx,e =̂ y = sin x ;

Ξx,q =̂ y ≥ 4.9 ∧ y ≤ 5.1 ∧ x = 0 ∧ vx =
−1 ∧ vy = 0;

fx,q =

ẋ = vx
ẏ = vy
v̇x = 0
v̇y = −9.8

Rx,e(x , y , vx , vy) =̂ {(x , y , v ′x , v ′y)} with v ′x =
(sin x)2·vx+2(cos x)·vy

1+(cos x)2

v ′y =
2(cos x)·vx−(sin x)2·vy

1+(cos x)2

.

65 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Abstracting EHSs: An Example

Bouncing ball on a sine-waved surface

Q = {q}; X = {x , y , vx , vy};
E = {e} with e = (q, q);

Dx,q =̂ y ≥ sin x ; Gx,e =̂ y = sin x ;

Ξx,q =̂ y ≥ 4.9 ∧ y ≤ 5.1 ∧ x = 0 ∧ vx =
−1 ∧ vy = 0;

fx,q =

ẋ = vx
ẏ = vy
v̇x = 0
v̇y = −9.8

Rx,e(x , y , vx , vy) =̂ {(x , y , v ′x , v ′y)} with v ′x =
(sin x)2·vx+2(cos x)·vy

1+(cos x)2

v ′y =
2(cos x)·vx−(sin x)2·vy

1+(cos x)2

.

65 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Abstracting EHSs: An Example

replacement equations: (u1, u2, u3) = (sin x , cos x , 1
1+(cos x)2

),

flowpipe computation for the abstract system using Flow∗ (not
applicable on the original system)

66 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

The Verification Problem

Consider the EDS Cx =̂ (Ξx, fx,Dx), where
– Ξx =̂ (x + 0.5)2 + (y − 0.5)2 − 0.16 ≤ 0;
– Dx =̂ − 2 ≤ x ≤ 2 ∧ −2 ≤ y ≤ 2; and
– fx defines the ODE(

ẋ
ẏ

)
=

(
e−x + y − 1
− sin2(x)

)
.

– verify the safety of Cx w.r.t. an unsafe region
S̄x =̂ (x − 0.7)2 + (y + 0.7)2 − 0.09 ≤ 0

67 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

The Verification Problem

Consider the EDS Cx =̂ (Ξx, fx,Dx), where
– Ξx =̂ (x + 0.5)2 + (y − 0.5)2 − 0.16 ≤ 0;
– Dx =̂ − 2 ≤ x ≤ 2 ∧ −2 ≤ y ≤ 2; and
– fx defines the ODE(

ẋ
ẏ

)
=

(
e−x + y − 1
− sin2(x)

)
.

– verify the safety of Cx w.r.t. an unsafe region
S̄x =̂ (x − 0.7)2 + (y + 0.7)2 − 0.09 ≤ 0

67 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Generating Polynomial Invariants

(v1, v2, v3) = (sin x , e−x , cos x)

Assume a polynomial invariant template of degree 5 without fresh
variables

68 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Generating Elementary Invariants

(v1, v2, v3) = (sin x , e−x , cos x)

Assume a polynomial invariant template of degree 4 with fresh
variables

69 / 120

Talk2: Computing Invariants for Hybrid Systems
Abstraction of Elementary Hybrid Systems by Variable

Transformation

Comparison

70 / 120

Talk2: Computing Invariants for Hybrid Systems An Industrial Case Study: Soft Landing

Outline

1 Background

2 Talk1: Preliminaries
Polynomials and Polynomial Ideals
First-order Theory of Reals
Continuous Dynamical Systems
Hybrid Automata

3 Talk2: Computing Invariants for Hybrid Systems
Generating Continuous Invariants in Simple Case
Generating Continuous Invariants in General Case
Generating Semi-algebraic Global Invariants
Abstraction of Elementary Hybrid Systems by Variable Transformation
An Industrial Case Study: Soft Landing

4 Talk3: Controller Synthesis
Controller Synthesis with Safety
Controller Synthesis with Safety and Optimality
An Industrial Case Study: The Oil Pump Control Problem

5 Conclusions

71 / 120

Talk3: Controller Synthesis

Outline

1 Background

2 Talk1: Preliminaries
Polynomials and Polynomial Ideals
First-order Theory of Reals
Continuous Dynamical Systems
Hybrid Automata

3 Talk2: Computing Invariants for Hybrid Systems
Generating Continuous Invariants in Simple Case
Generating Continuous Invariants in General Case
Generating Semi-algebraic Global Invariants
Abstraction of Elementary Hybrid Systems by Variable Transformation
An Industrial Case Study: Soft Landing

4 Talk3: Controller Synthesis
Controller Synthesis with Safety
Controller Synthesis with Safety and Optimality
An Industrial Case Study: The Oil Pump Control Problem

5 Conclusions

72 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Outline

1 Background

2 Talk1: Preliminaries
Polynomials and Polynomial Ideals
First-order Theory of Reals
Continuous Dynamical Systems
Hybrid Automata

3 Talk2: Computing Invariants for Hybrid Systems
Generating Continuous Invariants in Simple Case
Generating Continuous Invariants in General Case
Generating Semi-algebraic Global Invariants
Abstraction of Elementary Hybrid Systems by Variable Transformation
An Industrial Case Study: Soft Landing

4 Talk3: Controller Synthesis
Controller Synthesis with Safety
Controller Synthesis with Safety and Optimality
An Industrial Case Study: The Oil Pump Control Problem

5 Conclusions

73 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Problem Decription

A safety requirement S assigns to each mode q ∈ Q a safe region
Sq ⊆ Rn, i.e. S =

⋃
q∈Q({q} × Sq).

Switching controller synthesis for safety [Asarin et al. 00]

Given a hybrid automaton H and a safety property S , find a hybrid
automaton H′ = (Q,X , f ,D ′,E ,G ′) such that
(r1) Refinement: for any q ∈ Q, D ′q ⊆ Dq, and for any e ∈ E , G ′e ⊆ Ge ;
(r2) Safety: for any trajectory ω that H′ accepts, if (q, x) is on ω, then

x ∈ Sq;
(r3) Non-blocking: H′ is non-blocking.

74 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Problem Decription

A safety requirement S assigns to each mode q ∈ Q a safe region
Sq ⊆ Rn, i.e. S =

⋃
q∈Q({q} × Sq).

Switching controller synthesis for safety [Asarin et al. 00]

Given a hybrid automaton H and a safety property S , find a hybrid
automaton H′ = (Q,X , f ,D ′,E ,G ′) such that
(r1) Refinement: for any q ∈ Q, D ′q ⊆ Dq, and for any e ∈ E , G ′e ⊆ Ge ;
(r2) Safety: for any trajectory ω that H′ accepts, if (q, x) is on ω, then

x ∈ Sq;
(r3) Non-blocking: H′ is non-blocking.

74 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Problem Decription

A safety requirement S assigns to each mode q ∈ Q a safe region
Sq ⊆ Rn, i.e. S =

⋃
q∈Q({q} × Sq).

Switching controller synthesis for safety [Asarin et al. 00]

Given a hybrid automaton H and a safety property S , find a hybrid
automaton H′ = (Q,X , f ,D ′,E ,G ′) such that
(r1) Refinement: for any q ∈ Q, D ′q ⊆ Dq, and for any e ∈ E , G ′e ⊆ Ge ;
(r2) Safety: for any trajectory ω that H′ accepts, if (q, x) is on ω, then

x ∈ Sq;
(r3) Non-blocking: H′ is non-blocking.

74 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Problem Decription

A safety requirement S assigns to each mode q ∈ Q a safe region
Sq ⊆ Rn, i.e. S =

⋃
q∈Q({q} × Sq).

Switching controller synthesis for safety [Asarin et al. 00]

Given a hybrid automaton H and a safety property S , find a hybrid
automaton H′ = (Q,X , f ,D ′,E ,G ′) such that
(r1) Refinement: for any q ∈ Q, D ′q ⊆ Dq, and for any e ∈ E , G ′e ⊆ Ge ;
(r2) Safety: for any trajectory ω that H′ accepts, if (q, x) is on ω, then

x ∈ Sq;
(r3) Non-blocking: H′ is non-blocking.

74 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Problem Decription

A safety requirement S assigns to each mode q ∈ Q a safe region
Sq ⊆ Rn, i.e. S =

⋃
q∈Q({q} × Sq).

Switching controller synthesis for safety [Asarin et al. 00]

Given a hybrid automaton H and a safety property S , find a hybrid
automaton H′ = (Q,X , f ,D ′,E ,G ′) such that
(r1) Refinement: for any q ∈ Q, D ′q ⊆ Dq, and for any e ∈ E , G ′e ⊆ Ge ;
(r2) Safety: for any trajectory ω that H′ accepts, if (q, x) is on ω, then

x ∈ Sq;
(r3) Non-blocking: H′ is non-blocking.

74 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

A Nuclear Reactor Example

The nuclear reactor system consists of a reactor core and a cooling rod
which is immersed into and removed out of the core periodically to keep
the temperature of the core in a certain range.

75 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

A Nuclear Reactor Example (Cont’d)

x : temperature;
p: proportion immersed

#
"

!
#
"

!

#
"

!
#
"

!

-

�

?

6

q1: no rod q2: being immersed

q4: being removed q3: immersed

76 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

A Nuclear Reactor Example (Cont’d)

x : temperature;
p: proportion immersed

#
"

!
#
"

!

#
"

!
#
"

!

-

�

?

6

q1: no rod q2: being immersed

q4: being removed q3: immersed

ẋ = x/10−6p−50
ṗ = 0

ẋ = x/10−6p−50
ṗ = 1

ẋ = x/10−6p−50
ṗ = 0

ẋ = x/10−6p−50
ṗ =−1

77 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

A Nuclear Reactor Example (Cont’d)

x : temperature;
p: proportion immersed

#
"

!
#
"

!

#
"

!
#
"

!

-

�

?

6

q1: no rod q2: being immersed

q4: being removed q3: immersed

ẋ = x/10−6p−50
ṗ = 0
D1 =̂ p = 0

ẋ = x/10−6p−50
ṗ = 1
D2 =̂ 0≤p≤1

ẋ = x/10−6p−50
ṗ = 0
D3 =̂ p = 1

ẋ = x/10−6p−50
ṗ =−1
D4 =̂ 0≤p≤1

78 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

A Nuclear Reactor Example (Cont’d)

x : temperature;
p: proportion immersed

#
"

!
#
"

!

#
"

!
#
"

!

-

�

?

6

G12

G34

G41 =̂ p=0 G23 =̂ p=1

q1: no rod q2: being immersed

q4: being removed q3: immersed

ẋ = x/10−6p−50
ṗ = 0
D1 =̂ p = 0

ẋ = x/10−6p−50
ṗ = 1
D2 =̂ 0≤p≤1

ẋ = x/10−6p−50
ṗ = 0
D3 =̂ p = 1

ẋ = x/10−6p−50
ṗ =−1
D4 =̂ 0≤p≤1

79 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Switching Controller Synthesis for the Reactor

S =̂ 510 ≤ x ≤ 550 for all modes

#
"

!
#
"

!

#
"

!
#
"

!

-

�

?

6

?

?

G41 =̂ p=0 G23 =̂ p=1

q1: no rod q2: being immersed

q4: being removed q3: immersed

ẋ = x/10−6p−50
ṗ = 0
D1 =̂ p = 0

ẋ = x/10−6p−50
ṗ = 1
D2 =̂ 0≤p≤1

ẋ = x/10−6p−50
ṗ = 0
D3 =̂ p = 1

ẋ = x/10−6p−50
ṗ =−1
D4 =̂ 0≤p≤1

80 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Switching Controller Synthesis for the Reactor

S =̂ 510 ≤ x ≤ 550 for all modes

#
"

!
#
"

!

#
"

!
#
"

!

-

�

?

6

?

?

G41 =̂ p=0 G23 =̂ p=1

q1: no rod q2: being immersed

q4: being removed q3: immersed

ẋ = x/10−6p−50
ṗ = 0
D1 =̂ p = 0

ẋ = x/10−6p−50
ṗ = 1
D2 =̂ 0≤p≤1

ẋ = x/10−6p−50
ṗ = 0
D3 =̂ p = 1

ẋ = x/10−6p−50
ṗ =−1
D4 =̂ 0≤p≤1

80 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Bad Switching Violates Safety Property

Transition from mode q1 to q2

81 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Solution to the Controller Synthesis Problem

Abstract Solution
Let H be a hybrid system and S be a safety property. If we can find a
family of D ′q ⊆ Rn such that
(c1) for all q ∈ Q, D ′q ⊆ Dq ∩ Sq;
(c2) for all q ∈ Q, D ′q is a continuous invariant of (Hq, fq) with

Hq =̂
(⋃
e=(q,q′)∈E

G ′e
)c
,

where G ′e =̂Ge ∩ D ′q′ for e = (q, q′), then the family of G ′e form a safe
switching controller.

82 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Solution to the Controller Synthesis Problem

Abstract Solution
Let H be a hybrid system and S be a safety property. If we can find a
family of D ′q ⊆ Rn such that
(c1) for all q ∈ Q, D ′q ⊆ Dq ∩ Sq;
(c2) for all q ∈ Q, D ′q is a continuous invariant of (Hq, fq) with

Hq =̂
(⋃
e=(q,q′)∈E

G ′e
)c
,

where G ′e =̂Ge ∩ D ′q′ for e = (q, q′), then the family of G ′e form a safe
switching controller.

82 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Solution to the Controller Synthesis Problem

Abstract Solution
Let H be a hybrid system and S be a safety property. If we can find a
family of D ′q ⊆ Rn such that
(c1) for all q ∈ Q, D ′q ⊆ Dq ∩ Sq;
(c2) for all q ∈ Q, D ′q is a continuous invariant of (Hq, fq) with

Hq =̂
(⋃
e=(q,q′)∈E

G ′e
)c
,

where G ′e =̂Ge ∩ D ′q′ for e = (q, q′), then the family of G ′e form a safe
switching controller.

82 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Template-Based Synthesis Framework

(s1) Template assignment: assign to each q ∈ Q a template D ′q as the
continuous invariant to be generated at mode q ;

(s2) Guard refinement: refine the transition guard Ge for each
e = (q, q′) ∈ E by setting G ′e =̂Ge ∩ D ′q′ ;

(s3) Deriving synthesis conditions: encode (c1) and (c2) in the abstract
solution into constraints on parameters appearing in the templates;

(s4) Constraint solving: solve the constraints derived from (s3) using
quantifier elimination (QE);

(s5) Parameters instantiation: find an appropriate instantiation of D ′q and
G ′e from the possible parameter values obtained at (s4)

83 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Template-Based Synthesis Framework

(s1) Template assignment: assign to each q ∈ Q a template D ′q as the
continuous invariant to be generated at mode q ;

(s2) Guard refinement: refine the transition guard Ge for each
e = (q, q′) ∈ E by setting G ′e =̂Ge ∩ D ′q′ ;

(s3) Deriving synthesis conditions: encode (c1) and (c2) in the abstract
solution into constraints on parameters appearing in the templates;

(s4) Constraint solving: solve the constraints derived from (s3) using
quantifier elimination (QE);

(s5) Parameters instantiation: find an appropriate instantiation of D ′q and
G ′e from the possible parameter values obtained at (s4)

83 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Template-Based Synthesis Framework

(s1) Template assignment: assign to each q ∈ Q a template D ′q as the
continuous invariant to be generated at mode q ;

(s2) Guard refinement: refine the transition guard Ge for each
e = (q, q′) ∈ E by setting G ′e =̂Ge ∩ D ′q′ ;

(s3) Deriving synthesis conditions: encode (c1) and (c2) in the abstract
solution into constraints on parameters appearing in the templates;

(s4) Constraint solving: solve the constraints derived from (s3) using
quantifier elimination (QE);

(s5) Parameters instantiation: find an appropriate instantiation of D ′q and
G ′e from the possible parameter values obtained at (s4)

83 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Template-Based Synthesis Framework

(s1) Template assignment: assign to each q ∈ Q a template D ′q as the
continuous invariant to be generated at mode q ;

(s2) Guard refinement: refine the transition guard Ge for each
e = (q, q′) ∈ E by setting G ′e =̂Ge ∩ D ′q′ ;

(s3) Deriving synthesis conditions: encode (c1) and (c2) in the abstract
solution into constraints on parameters appearing in the templates;

(s4) Constraint solving: solve the constraints derived from (s3) using
quantifier elimination (QE);

(s5) Parameters instantiation: find an appropriate instantiation of D ′q and
G ′e from the possible parameter values obtained at (s4)

83 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Template-Based Synthesis Framework

(s1) Template assignment: assign to each q ∈ Q a template D ′q as the
continuous invariant to be generated at mode q ;

(s2) Guard refinement: refine the transition guard Ge for each
e = (q, q′) ∈ E by setting G ′e =̂Ge ∩ D ′q′ ;

(s3) Deriving synthesis conditions: encode (c1) and (c2) in the abstract
solution into constraints on parameters appearing in the templates;

(s4) Constraint solving: solve the constraints derived from (s3) using
quantifier elimination (QE);

(s5) Parameters instantiation: find an appropriate instantiation of D ′q and
G ′e from the possible parameter values obtained at (s4)

83 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Heuristics for Predefining Templates by Qualitative Analysis

Using qualitative analysis to identify critical points for predefining
templates

Infer the evolution behavior (increasing or decreasing) of continuous
variables in each mode from the ODEs
Identify modes (called critical) at which the evolution behavior of a
continuous variable changes, and thus the maximal (or minimal)
value of this continuous variable can be achieved
Equate the maximal (or minimal) value to the corresponding safety
upper (or lower) bound to obtain a critical point
Backward propagate the critical point, by backtracking along the
continuous trajectory through the critical point

84 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Heuristics for Predefining Templates by Qualitative Analysis

Using qualitative analysis to identify critical points for predefining
templates

Infer the evolution behavior (increasing or decreasing) of continuous
variables in each mode from the ODEs
Identify modes (called critical) at which the evolution behavior of a
continuous variable changes, and thus the maximal (or minimal)
value of this continuous variable can be achieved
Equate the maximal (or minimal) value to the corresponding safety
upper (or lower) bound to obtain a critical point
Backward propagate the critical point, by backtracking along the
continuous trajectory through the critical point

84 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Heuristics for Predefining Templates by Qualitative Analysis

Using qualitative analysis to identify critical points for predefining
templates

Infer the evolution behavior (increasing or decreasing) of continuous
variables in each mode from the ODEs
Identify modes (called critical) at which the evolution behavior of a
continuous variable changes, and thus the maximal (or minimal)
value of this continuous variable can be achieved
Equate the maximal (or minimal) value to the corresponding safety
upper (or lower) bound to obtain a critical point
Backward propagate the critical point, by backtracking along the
continuous trajectory through the critical point

84 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Heuristics for Predefining Templates by Qualitative Analysis

Using qualitative analysis to identify critical points for predefining
templates

Infer the evolution behavior (increasing or decreasing) of continuous
variables in each mode from the ODEs
Identify modes (called critical) at which the evolution behavior of a
continuous variable changes, and thus the maximal (or minimal)
value of this continuous variable can be achieved
Equate the maximal (or minimal) value to the corresponding safety
upper (or lower) bound to obtain a critical point
Backward propagate the critical point, by backtracking along the
continuous trajectory through the critical point

84 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Revisiting the Running Example

For the running example,
At Dq2 , temperature x achieves
maximal value when crossing
l1 =̂ x/10− 6p − 50 = 0.
E (5/6, 550) at q2 is obtained by
taking the intersection of l1 and
safety upper bound x = 550
E is backward propagated to
A(0, a), with a a parameter
Compute a parabola
x−550− 36

25(a−550)(p− 5
6)2 = 0

through A and E as part of the
template D ′q2

85 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Revisiting the Running Example

For the running example,
At Dq2 , temperature x achieves
maximal value when crossing
l1 =̂ x/10− 6p − 50 = 0.
E (5/6, 550) at q2 is obtained by
taking the intersection of l1 and
safety upper bound x = 550
E is backward propagated to
A(0, a), with a a parameter
Compute a parabola
x−550− 36

25(a−550)(p− 5
6)2 = 0

through A and E as part of the
template D ′q2

85 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Revisiting the Running Example

For the running example,
At Dq2 , temperature x achieves
maximal value when crossing
l1 =̂ x/10− 6p − 50 = 0.
E (5/6, 550) at q2 is obtained by
taking the intersection of l1 and
safety upper bound x = 550
E is backward propagated to
A(0, a), with a a parameter
Compute a parabola
x−550− 36

25(a−550)(p− 5
6)2 = 0

through A and E as part of the
template D ′q2

85 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Revisiting the Running Example

For the running example,
At Dq2 , temperature x achieves
maximal value when crossing
l1 =̂ x/10− 6p − 50 = 0.
E (5/6, 550) at q2 is obtained by
taking the intersection of l1 and
safety upper bound x = 550
E is backward propagated to
A(0, a), with a a parameter
Compute a parabola
x−550− 36

25(a−550)(p− 5
6)2 = 0

through A and E as part of the
template D ′q2

85 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Revisiting the Running Example (Cont’d)

The set of parameters: a, b, c , d
D ′1 =̂ p = 0 ∧ 510 ≤ x ≤ a

D ′2 =̂ 0 ≤ p ≤ 1 ∧ x − b ≥ p(d − b) ∧
x − 550− 36

25(a− 550)(p − 5
6)2 ≤ 0

D ′3 =̂ p = 1 ∧ d ≤ x ≤ 550
D ′4 =̂ 0 ≤ p ≤ 1 ∧ x − a ≤ p(c − a) ∧

x − 510− 36
25(d − 510)(p − 1

6)2 ≥ 0

G ′12 =̂ p = 0 ∧ b ≤ x ≤ a

G ′23 =̂ p = 1 ∧ d ≤ x ≤ 550
G ′34 =̂ p = 1 ∧ d ≤ x ≤ c

G ′41 =̂ p = 0 ∧ 510 ≤ x ≤ a

86 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Revisiting the Running Example (Cont’d)

The set of parameters: a, b, c , d
D ′1 =̂ p = 0 ∧ 510 ≤ x ≤ a

D ′2 =̂ 0 ≤ p ≤ 1 ∧ x − b ≥ p(d − b) ∧
x − 550− 36

25(a− 550)(p − 5
6)2 ≤ 0

D ′3 =̂ p = 1 ∧ d ≤ x ≤ 550
D ′4 =̂ 0 ≤ p ≤ 1 ∧ x − a ≤ p(c − a) ∧

x − 510− 36
25(d − 510)(p − 1

6)2 ≥ 0

G ′12 =̂ p = 0 ∧ b ≤ x ≤ a

G ′23 =̂ p = 1 ∧ d ≤ x ≤ 550
G ′34 =̂ p = 1 ∧ d ≤ x ≤ c

G ′41 =̂ p = 0 ∧ 510 ≤ x ≤ a

86 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Revisiting the Running Example (Cont’d)

a = 6575
12 ∧ b = 4135

8 ∧ c = 4345
8 ∧ d = 6145

12 .

From this result we get that the cooling rod should be immersed
before temperature rises to 6575

12 = 547.92, and removed before
temperature drops to 6145

12 = 512.08.

By solving differential equations explicitly, the corresponding exact
bounds are 547.97 and 512.03

87 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Revisiting the Running Example (Cont’d)

a = 6575
12 ∧ b = 4135

8 ∧ c = 4345
8 ∧ d = 6145

12 .

From this result we get that the cooling rod should be immersed
before temperature rises to 6575

12 = 547.92, and removed before
temperature drops to 6145

12 = 512.08.

By solving differential equations explicitly, the corresponding exact
bounds are 547.97 and 512.03

87 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety

Revisiting the Running Example (Cont’d)

a = 6575
12 ∧ b = 4135

8 ∧ c = 4345
8 ∧ d = 6145

12 .

From this result we get that the cooling rod should be immersed
before temperature rises to 6575

12 = 547.92, and removed before
temperature drops to 6145

12 = 512.08.

By solving differential equations explicitly, the corresponding exact
bounds are 547.97 and 512.03

87 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety and Optimality

Outline

1 Background

2 Talk1: Preliminaries
Polynomials and Polynomial Ideals
First-order Theory of Reals
Continuous Dynamical Systems
Hybrid Automata

3 Talk2: Computing Invariants for Hybrid Systems
Generating Continuous Invariants in Simple Case
Generating Continuous Invariants in General Case
Generating Semi-algebraic Global Invariants
Abstraction of Elementary Hybrid Systems by Variable Transformation
An Industrial Case Study: Soft Landing

4 Talk3: Controller Synthesis
Controller Synthesis with Safety
Controller Synthesis with Safety and Optimality
An Industrial Case Study: The Oil Pump Control Problem

5 Conclusions

88 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety and Optimality

Problem Description

'
&
$
%
'
&
$
%

q1 q2

ẋ = f1(x) ẋ = f2(x)
-

�

h12(x,u)

h21(x,u)

Given a hybrid system H in which transition conditions hij are not
determined but parameterized by u, a vector of control parameters
Our task is to determine u such that H can make discrete jumps at
desired points, thus guaranteeing that

a safety property S is satisfied, i.e. x ∈ S at any time
an optimization goal, e.g. minu g(u), is achieved

89 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety and Optimality

Our Approach – Step 1

Derive constraint D(u) on u from the safety requirements S

Compute
the exact reachable set ReachH(x,u) of H, or
an inductive invariant InvH(x,u)

as polynomial formulas
Suppose S is also modeled by polynomial formulas, then D(u) can
be obtained by applying QE to

∀x.
(
ReachH(x,u) −→ S

)
or

∀x.
(
InvH(x,u) −→ S

)
90 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety and Optimality

Our Approach – Step 1

Derive constraint D(u) on u from the safety requirements S

Compute
the exact reachable set ReachH(x,u) of H, or
an inductive invariant InvH(x,u)

as polynomial formulas
Suppose S is also modeled by polynomial formulas, then D(u) can
be obtained by applying QE to

∀x.
(
ReachH(x,u) −→ S

)
or

∀x.
(
InvH(x,u) −→ S

)
90 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety and Optimality

Our Approach – Step 1

Derive constraint D(u) on u from the safety requirements S

Compute
the exact reachable set ReachH(x,u) of H, or
an inductive invariant InvH(x,u)

as polynomial formulas
Suppose S is also modeled by polynomial formulas, then D(u) can
be obtained by applying QE to

∀x.
(
ReachH(x,u) −→ S

)
or

∀x.
(
InvH(x,u) −→ S

)
90 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety and Optimality

Our Approach – Step 1

Derive constraint D(u) on u from the safety requirements S

Compute
the exact reachable set ReachH(x,u) of H, or
an inductive invariant InvH(x,u)

as polynomial formulas
Suppose S is also modeled by polynomial formulas, then D(u) can
be obtained by applying QE to

∀x.
(
ReachH(x,u) −→ S

)
or

∀x.
(
InvH(x,u) −→ S

)
90 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety and Optimality

Our Approach – Step 2

Encode the optimization problem (suppose the objective function g is a
polynomial) over constraint D(u) into a quantified first-order polynomial
formula Qu.ϕ(u, z) by introducing a fresh variable z

Minimize u2 on [−1, 1]

Introduce a fresh variable z :
u ≥ −1 ∧ u ≤ 1∧ u2 ≤ z

Projection to the z-axis:
∃u.(u ≥ −1 ∧ u ≤ 1 ∧ u2 ≤ z)

After QE: z ≥ 0, which means

min
u∈[−1,1]

u2 = 0

91 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety and Optimality

Our Approach – Step 2

Encode the optimization problem (suppose the objective function g is a
polynomial) over constraint D(u) into a quantified first-order polynomial
formula Qu.ϕ(u, z) by introducing a fresh variable z

Minimize u2 on [−1, 1]

Introduce a fresh variable z :
u ≥ −1 ∧ u ≤ 1∧ u2 ≤ z

Projection to the z-axis:
∃u.(u ≥ −1 ∧ u ≤ 1 ∧ u2 ≤ z)

After QE: z ≥ 0, which means

min
u∈[−1,1]

u2 = 0

91 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety and Optimality

Our Approach – Step 2

Encode the optimization problem (suppose the objective function g is a
polynomial) over constraint D(u) into a quantified first-order polynomial
formula Qu.ϕ(u, z) by introducing a fresh variable z

Minimize u2 on [−1, 1]

Introduce a fresh variable z :
u ≥ −1 ∧ u ≤ 1∧ u2 ≤ z

Projection to the z-axis:
∃u.(u ≥ −1 ∧ u ≤ 1 ∧ u2 ≤ z)

After QE: z ≥ 0, which means

min
u∈[−1,1]

u2 = 0

91 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety and Optimality

Our Approach – Step 2

Encode the optimization problem (suppose the objective function g is a
polynomial) over constraint D(u) into a quantified first-order polynomial
formula Qu.ϕ(u, z) by introducing a fresh variable z

Minimize u2 on [−1, 1]

Introduce a fresh variable z :
u ≥ −1 ∧ u ≤ 1∧ u2 ≤ z

Projection to the z-axis:
∃u.(u ≥ −1 ∧ u ≤ 1 ∧ u2 ≤ z)

After QE: z ≥ 0, which means

min
u∈[−1,1]

u2 = 0

91 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety and Optimality

Our Approach – Step 2

Encode the optimization problem (suppose the objective function g is a
polynomial) over constraint D(u) into a quantified first-order polynomial
formula Qu.ϕ(u, z) by introducing a fresh variable z

Minimize u2 on [−1, 1]

Introduce a fresh variable z :
u ≥ −1 ∧ u ≤ 1∧ u2 ≤ z

Projection to the z-axis:
∃u.(u ≥ −1 ∧ u ≤ 1 ∧ u2 ≤ z)

After QE: z ≥ 0, which means

min
u∈[−1,1]

u2 = 0

91 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety and Optimality

Encoding Optimization Criteria
Lemma

Suppose g1(u1), g2(u1,u2), g3(u1,u2,u3) are polynomials, and D1(u1),
D2(u1,u2), D3(u1,u2,u3) are nonempty compact semi-algebraic sets.
Then there exist c1, c2, c3 ∈ R s.t.

∃u1.(D1 ∧ g1 ≤ z) ⇔ z ≥ c1 (4)
∀u2.

(
∃u1.D2 ⇒ ∃u1.(D2 ∧ g2 ≤ z)

)
⇔ z ≥ c2 (5)

∃u3.
(
(∃u1u2.D3) ∧ ∀u2.

(
∃u1.D3 ⇒ ∃u1.(D3 ∧ g3 ≤ z)

))
⇔ z B c3 (6)

where B∈ {>,≥}, and c1, c2, c3 satisfy

c1 = min
u1

g1(u1) overD1(u1) , (7)

c2 = supmin
u2 u1

g2(u1,u2) overD2(u1,u2) , (8)

c3 = inf supmin
u3 u2 u1

g3(u1,u2,u3) overD3(u1,u2,u3) . (9)

92 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety and Optimality

Our Approach – Step 3

Eliminate quantifiers in Qu.ϕ(u, z) and from the result we can retrieve
the optimal value and the corresponding optimal controller u

Combine exact QE with numeric computation: (discretization of
existentially quantified variables)

∃x ∈ A. ϕ(x) ≈
∨

y∈FA

ϕ(y) ,

where FA is a finite subset of A

93 / 120

Talk3: Controller Synthesis Controller Synthesis with Safety and Optimality

Our Approach – Step 3

Eliminate quantifiers in Qu.ϕ(u, z) and from the result we can retrieve
the optimal value and the corresponding optimal controller u

Combine exact QE with numeric computation: (discretization of
existentially quantified variables)

∃x ∈ A. ϕ(x) ≈
∨

y∈FA

ϕ(y) ,

where FA is a finite subset of A

93 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Outline

1 Background

2 Talk1: Preliminaries
Polynomials and Polynomial Ideals
First-order Theory of Reals
Continuous Dynamical Systems
Hybrid Automata

3 Talk2: Computing Invariants for Hybrid Systems
Generating Continuous Invariants in Simple Case
Generating Continuous Invariants in General Case
Generating Semi-algebraic Global Invariants
Abstraction of Elementary Hybrid Systems by Variable Transformation
An Industrial Case Study: Soft Landing

4 Talk3: Controller Synthesis
Controller Synthesis with Safety
Controller Synthesis with Safety and Optimality
An Industrial Case Study: The Oil Pump Control Problem

5 Conclusions

94 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

A Reported Case Study

Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.F., Reynier, P.A.:
Automatic Synthesis of Robust and Optimal Controllers — An Industrial
Case Study. HSCC’09

Provided by the HYDAC ELECTRONIC GMBH company within the
European project Quasimodo
An oil pump control problem

safety
robustness
optimality

95 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

A Reported Case Study

Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.F., Reynier, P.A.:
Automatic Synthesis of Robust and Optimal Controllers — An Industrial
Case Study. HSCC’09

Provided by the HYDAC ELECTRONIC GMBH company within the
European project Quasimodo
An oil pump control problem

safety
robustness
optimality

95 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

A Reported Case Study

Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.F., Reynier, P.A.:
Automatic Synthesis of Robust and Optimal Controllers — An Industrial
Case Study. HSCC’09

Provided by the HYDAC ELECTRONIC GMBH company within the
European project Quasimodo
An oil pump control problem

safety
robustness
optimality

95 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

The System

The system is composed of a
machine, an accumulator, a
reservoir and a pump

The machine consumes oil out
of the accumulator; the pump
adds oil from the reservoir into
the accumulator

96 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

The System

The system is composed of a
machine, an accumulator, a
reservoir and a pump

The machine consumes oil out
of the accumulator; the pump
adds oil from the reservoir into
the accumulator

96 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

The Consumption Rate

The oil consumption is periodic. The length of one consumption
cycle is 20s (second)
The profile of consumption rate in one cycle is depicted by

97 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

The Consumption Rate

The oil consumption is periodic. The length of one consumption
cycle is 20s (second)
The profile of consumption rate in one cycle is depicted by

97 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

The Pump

The power of the pump is 2.2 l/s (liter/second)
2-second latency: if the pump is switched on (t2k+1) or off (t2k+2)
at time points

0 ≤ t1 ≤ t2 ≤ · · · ≤ ti ≤ ti+1 ≤ · · · ,

then
ti+1 − ti ≥ 2

for any i ≥ 1
It is obvious that the pump can be turned on at most 5 times in one
cycle

98 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

The Pump

The power of the pump is 2.2 l/s (liter/second)
2-second latency: if the pump is switched on (t2k+1) or off (t2k+2)
at time points

0 ≤ t1 ≤ t2 ≤ · · · ≤ ti ≤ ti+1 ≤ · · · ,

then
ti+1 − ti ≥ 2

for any i ≥ 1
It is obvious that the pump can be turned on at most 5 times in one
cycle

98 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

The Pump

The power of the pump is 2.2 l/s (liter/second)
2-second latency: if the pump is switched on (t2k+1) or off (t2k+2)
at time points

0 ≤ t1 ≤ t2 ≤ · · · ≤ ti ≤ ti+1 ≤ · · · ,

then
ti+1 − ti ≥ 2

for any i ≥ 1
It is obvious that the pump can be turned on at most 5 times in one
cycle

98 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Control Objectives

Determine the ti ’s in order to
Rs (safety): maintain

v(t) ∈ [Vmin,Vmax], ∀t ∈ [0,∞)

v(t) denotes the oil volume in the accumulator at time t
Vmin = 4.9l (liter)
Vmax = 25.1l

and considering the energy cost and wear of the system,
Ro (optimality): minimize the average accumulated oil volume in the
limit, i.e. minimize

lim
T→∞

1
T

∫ T

t=0
v(t)dt

99 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Control Objectives

Determine the ti ’s in order to
Rs (safety): maintain

v(t) ∈ [Vmin,Vmax], ∀t ∈ [0,∞)

v(t) denotes the oil volume in the accumulator at time t
Vmin = 4.9l (liter)
Vmax = 25.1l

and considering the energy cost and wear of the system,
Ro (optimality): minimize the average accumulated oil volume in the
limit, i.e. minimize

lim
T→∞

1
T

∫ T

t=0
v(t)dt

99 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Control Objectives (Cont’d)

Both objectives should be achieved under constraints:
Rpl (pump latency): ti+1 − ti ≥ 2

Rr (robustness): uncertainties of the system should be taken into
account:

fluctuation of consumption rate (if it is not 0), up to
f = 0.1l/s
imprecision in the measurement of oil volume, up to
ε = 0.06l
imprecision in the measurement of time, up to
δ = 0.015s.

100 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Control Objectives (Cont’d)

Both objectives should be achieved under constraints:
Rpl (pump latency): ti+1 − ti ≥ 2

Rr (robustness): uncertainties of the system should be taken into
account:

fluctuation of consumption rate (if it is not 0), up to
f = 0.1l/s
imprecision in the measurement of oil volume, up to
ε = 0.06l
imprecision in the measurement of time, up to
δ = 0.015s.

100 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Control Objectives (Cont’d)

Both objectives should be achieved under constraints:
Rpl (pump latency): ti+1 − ti ≥ 2

Rr (robustness): uncertainties of the system should be taken into
account:

fluctuation of consumption rate (if it is not 0), up to
f = 0.1l/s
imprecision in the measurement of oil volume, up to
ε = 0.06l
imprecision in the measurement of time, up to
δ = 0.015s.

100 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Control Objectives (Cont’d)

Both objectives should be achieved under constraints:
Rpl (pump latency): ti+1 − ti ≥ 2

Rr (robustness): uncertainties of the system should be taken into
account:

fluctuation of consumption rate (if it is not 0), up to
f = 0.1l/s
imprecision in the measurement of oil volume, up to
ε = 0.06l
imprecision in the measurement of time, up to
δ = 0.015s.

100 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Localize the Controller

0 ≤ t1 ≤ t2 ≤ · · · ≤ ti ≤ ti+1 ≤ · · ·
Employing the periodicity
Stable interval [L,U]⊆ [Vmin,Vmax]

101 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Localize the Controller

0 ≤ t1 ≤ t2 ≤ · · · ≤ ti ≤ ti+1 ≤ · · ·
Employing the periodicity
Stable interval [L,U]⊆ [Vmin,Vmax]

101 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Localize the Controller

0 ≤ t1 ≤ t2 ≤ · · · ≤ ti ≤ ti+1 ≤ · · ·
Employing the periodicity
Stable interval [L,U]⊆ [Vmin,Vmax]

101 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Repeated Cycles

102 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 1: Modeling Oil Consumption

time [2,4] [8,10] [10,12] [14,16] [16,18]
rate 1.2 1.2 2.5 1.7 0.5

fluctuation of consumption rate: f = 0.1

103 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 1: Modeling Oil Consumption

time [2,4] [8,10] [10,12] [14,16] [16,18]
rate 1.2 1.2 2.5 1.7 0.5

fluctuation of consumption rate: f = 0.1

C1 =̂

(0≤t≤2 −→ Vout=0)

∧ (2≤t≤4 −→ 1.1(t−2)≤Vout≤1.3(t−2))

∧ (4≤t≤8 −→ 2.2≤Vout≤2.6)

∧ (8≤t≤10 −→ 2.2+1.1(t−8)≤Vout≤2.6+1.3(t−8))

∧ (10≤t≤12 −→ 4.4+2.4(t−10)≤Vout≤5.2+2.6(t−10))

∧ (12≤t≤14 −→ 9.2≤Vout≤10.4)

∧ (14≤t≤16 −→ 9.2+1.6(t−14)≤Vout≤10.4+1.8(t−14))

∧ (16≤t≤18 −→ 12.4+0.4(t−16)≤Vout≤14+0.6(t−16))

∧ (18≤t≤20 −→ 13.2≤Vout≤15.2)

103 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 1: Modeling the Pump

We will first assume that the pump is activated at most twice in one
cycle: t1, t2, t3, t4
ti+1 − ti ≥ 2:

C2 =̂
(t1≥2∧ t2−t1≥2∧ t3−t2≥2∧ t4−t3≥2∧ t4≤20)

∨ (t1≥2∧ t2−t1≥2∧ t2≤20∧ t3=20∧ t4=20)

∨ (t1=20∧ t2=20∧ t3=20∧ t4=20)

.

2.2l/s

C3 =̂

(0≤t≤t1 −→ Vin=0)

∧ (t1≤t≤t2 −→ Vin=2.2(t−t1))

∧ (t2≤t≤t3 −→ Vin=2.2(t2−t1))

∧ (t3≤t≤t4 −→ Vin=2.2(t2−t1)+2.2(t−t3))

∧ (t4≤t≤20 −→ Vin=2.2(t2+t4−t1−t3))

.

104 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 1: Modeling the Pump

We will first assume that the pump is activated at most twice in one
cycle: t1, t2, t3, t4
ti+1 − ti ≥ 2:

C2 =̂
(t1≥2∧ t2−t1≥2∧ t3−t2≥2∧ t4−t3≥2∧ t4≤20)

∨ (t1≥2∧ t2−t1≥2∧ t2≤20∧ t3=20∧ t4=20)

∨ (t1=20∧ t2=20∧ t3=20∧ t4=20)

.

2.2l/s

C3 =̂

(0≤t≤t1 −→ Vin=0)

∧ (t1≤t≤t2 −→ Vin=2.2(t−t1))

∧ (t2≤t≤t3 −→ Vin=2.2(t2−t1))

∧ (t3≤t≤t4 −→ Vin=2.2(t2−t1)+2.2(t−t3))

∧ (t4≤t≤20 −→ Vin=2.2(t2+t4−t1−t3))

.

104 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 1: Modeling the Pump

We will first assume that the pump is activated at most twice in one
cycle: t1, t2, t3, t4
ti+1 − ti ≥ 2:

C2 =̂
(t1≥2∧ t2−t1≥2∧ t3−t2≥2∧ t4−t3≥2∧ t4≤20)

∨ (t1≥2∧ t2−t1≥2∧ t2≤20∧ t3=20∧ t4=20)

∨ (t1=20∧ t2=20∧ t3=20∧ t4=20)

.

2.2l/s

C3 =̂

(0≤t≤t1 −→ Vin=0)

∧ (t1≤t≤t2 −→ Vin=2.2(t−t1))

∧ (t2≤t≤t3 −→ Vin=2.2(t2−t1))

∧ (t3≤t≤t4 −→ Vin=2.2(t2−t1)+2.2(t−t3))

∧ (t4≤t≤20 −→ Vin=2.2(t2+t4−t1−t3))

.

104 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 1: Encoding Safety Requirements

Oil volume in the accumulator:

C4 =̂ v = v0 + Vin − Vout .

Inductiveness and safety (considering robustness):

C5 =̂ t = 20 −→ L+0.2 ≤ v ≤ U−0.2
C6 =̂ 0 ≤ t ≤ 20 −→ Vmin+0.2 ≤ v ≤ Vmax−0.2 .

105 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 1: Encoding Safety Requirements

Oil volume in the accumulator:

C4 =̂ v = v0 + Vin − Vout .

Inductiveness and safety (considering robustness):

C5 =̂ t = 20 −→ L+0.2 ≤ v ≤ U−0.2
C6 =̂ 0 ≤ t ≤ 20 −→ Vmin+0.2 ≤ v ≤ Vmax−0.2 .

105 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 1: Encoding Safety Requirements (Cont’d)

S =̂∀t, v ,Vin,Vout .(C1 ∧ C3 ∧ C4 −→ C5 ∧ C6) .

C1: oil consumed
C3: oil pumped
C4: oil in the accumulator
C5: inductiveness
C6: (local) safety

C8 =̂∀v0.
(
C7 −→ ∃t1t2t3t4.

(
C2 ∧ S

))
.

C7 =̂ L ≤ v0 ≤ U

C2: 2-second latency
106 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 1: Encoding Safety Requirements (Cont’d)

S =̂∀t, v ,Vin,Vout .(C1 ∧ C3 ∧ C4 −→ C5 ∧ C6) .

C1: oil consumed
C3: oil pumped
C4: oil in the accumulator
C5: inductiveness
C6: (local) safety

C8 =̂∀v0.
(
C7 −→ ∃t1t2t3t4.

(
C2 ∧ S

))
.

C7 =̂ L ≤ v0 ≤ U

C2: 2-second latency
106 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 1: Encoding Safety Requirements (Cont’d)

S =̂∀t, v ,Vin,Vout .(C1 ∧ C3 ∧ C4 −→ C5 ∧ C6) .

C1: oil consumed
C3: oil pumped
C4: oil in the accumulator
C5: inductiveness
C6: (local) safety

C8 =̂∀v0.
(
C7 −→ ∃t1t2t3t4.

(
C2 ∧ S

))
.

C7 =̂ L ≤ v0 ≤ U

C2: 2-second latency
106 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Deriving Constraints

Applying QE to

C8 =̂∀v0.
(
C7 −→ ∃t1t2t3t4.

(
C2 ∧ S

))
,

we get

C9 =̂ L ≥ 5.1 ∧ U ≤ 24.9 ∧ U − L ≥ 2.4 .

107 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Deriving Constraints

Applying QE to

C8 =̂∀v0.
(
C7 −→ ∃t1t2t3t4.

(
C2 ∧ S

))
,

we get

C9 =̂ L ≥ 5.1 ∧ U ≤ 24.9 ∧ U − L ≥ 2.4 .

107 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Deriving Constraints (Cont’d)

C10 =̂C2 ∧ C7 ∧ C9 ∧ S .

C2: 2-second latency
C7 : L ≤ v0 ≤ U

C9: constraint on L,U

S: safety and inductiveness

After QE:

D(L,U, v0, t1, t2, t3, t4) =̂
92∨
i=1

Di

108 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Deriving Constraints (Cont’d)

C10 =̂C2 ∧ C7 ∧ C9 ∧ S .

C2: 2-second latency
C7 : L ≤ v0 ≤ U

C9: constraint on L,U

S: safety and inductiveness

After QE:

D(L,U, v0, t1, t2, t3, t4) =̂
92∨
i=1

Di

108 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 2: Optimization Criterion

Ro (optimality): minimize the average accumulated oil volume in the
limit, i.e. minimize

lim
T→∞

1
T

∫ T

t=0
v(t)dt

109 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Optimization Criterion (Contd.)

• R′o : min
[L,U]

max
v0∈[L,U]

min
t

1
20

∫ 20

t=0
v(t)dt .

110 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 2: Encoding the Optimization Criterion

Cost function:

g(v0, t1, t2, t3, t4) =̂
1
20

∫ 20

t=0
v(t)dt

= 20v0+1.1(t21−t22+t23−t24−40t1+40t2−40t3+40t4)−132.2
20

R′o can be encoded into

∃L,U.
(
C9 ∧ ∀v0.

(
C7 −→ ∃t1t2t3t4.(D ∧ g ≤ z)

))
,

which is equivalent to z ≥ z∗ or z > z∗

111 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 2: Encoding the Optimization Criterion

Cost function:

g(v0, t1, t2, t3, t4) =̂
1
20

∫ 20

t=0
v(t)dt

= 20v0+1.1(t21−t22+t23−t24−40t1+40t2−40t3+40t4)−132.2
20

R′o can be encoded into

∃L,U.
(
C9 ∧ ∀v0.

(
C7 −→ ∃t1t2t3t4.(D ∧ g ≤ z)

))
,

which is equivalent to z ≥ z∗ or z > z∗

111 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Step 3: Performing QE

∃L,U.
(
C9 ∧ ∀v0.

(
C7 −→ ∃t1t2t3t4.(D ∧ g ≤ z)

))

the inner ∃: qudratic programming
the outer ∃: discretization

L ≥ 5.1 ∧ U ≤ 24.9 ∧ U − L ≥ 2.4

the middle ∀: divide and conquer

112 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Optimal Controllers with 2 Activations

In [Cassez et al hscc09], the optimal value 7.95 is obtained at interval
[5.1,8.3]
Using our approach, the optimal value is 7.53 (a 5% improvement)
and the corresponding interval is [5.1, 7.5]
Comparison of local optimal controllers: (the left one comes from
[Cassez et al hscc09])

113 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Optimal Controllers with 2 Activations

In [Cassez et al hscc09], the optimal value 7.95 is obtained at interval
[5.1,8.3]
Using our approach, the optimal value is 7.53 (a 5% improvement)
and the corresponding interval is [5.1, 7.5]
Comparison of local optimal controllers: (the left one comes from
[Cassez et al hscc09])

113 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Optimal Controllers with 2 Activations

In [Cassez et al hscc09], the optimal value 7.95 is obtained at interval
[5.1,8.3]
Using our approach, the optimal value is 7.53 (a 5% improvement)
and the corresponding interval is [5.1, 7.5]
Comparison of local optimal controllers: (the left one comes from
[Cassez et al hscc09])

113 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Local Optimal Controllers — 2 Activations

t1 =
10v0 − 25

13
∧ t2 =

10v0 + 1
13

∧ t3 =
10v0 + 153

22
∧ t4 =

157
11

114 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Improvement by Increasing Activations

The pump is allowed to be switched on at most 3 times in one cycle
The optimal average accumulated oil volume 7.35 (a 7.5%
improvement) is obtained at interval [5.2, 8.1]
The local optimal controllers corresponding to v0 ∈ [5.2, 8.1]:

115 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Improvement by Increasing Activations

The pump is allowed to be switched on at most 3 times in one cycle
The optimal average accumulated oil volume 7.35 (a 7.5%
improvement) is obtained at interval [5.2, 8.1]
The local optimal controllers corresponding to v0 ∈ [5.2, 8.1]:

115 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Improvement by Increasing Activations

The pump is allowed to be switched on at most 3 times in one cycle
The optimal average accumulated oil volume 7.35 (a 7.5%
improvement) is obtained at interval [5.2, 8.1]
The local optimal controllers corresponding to v0 ∈ [5.2, 8.1]:

115 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Local Optimal Controllers — 3 Activations

t1=

10v0−26
13 ∧ t2=

10v0
13 ∧ t3=

5v0+76
11 ∧ t4=12∧ t5=14∧ t6= 359

22 v0∈[5.2,6.8)

t1=
10v0−26

13 ∧ t2=
10v0
13 ∧ t3=

5v0+76
11 ∧ t4=

5v0+98
11 ∧ t5=

5v0+92
9 ∧ t6=

20v0+3095
198 v0∈[6.8,7.5)

t1=
10v0−26

13 ∧ t2=
10v0
13 ∧ t3=

5v0+76
11 ∧ t4=

5v0+98
11 ∧ t5=

5v0+92
9 ∧ t6=

5v0+110
9 v0∈[7.5,7.8)

t1=
10v0+26

13 ∧ t2=
45v0+1300

143 ∧ t3=14∧ t4= 359
22 ∧ t5=20∧ t6=20 v0∈[7.8,8.1]

116 / 120

Talk3: Controller Synthesis An Industrial Case Study: The Oil Pump Control Problem

Three Activations are Enough

Proposition

For each admissible [L,U], each v0 ∈ [L,U], and any local control
strategy s4 with at least 4 activations subject to Rlu, Ri and Rls , there
exists a local control strategy s3 subject to Rlu, Ri and Rls with 3
activations such that

1
20

∫ 20

t=0
vs3(t)dt <

1
20

∫ 20

t=0
vs4(t)dt

where vs3(t) (resp. vs4(t)) is the oil volume in the accumulator at t with
s3 (resp. s4).

117 / 120

Conclusions

Outline

1 Background

2 Talk1: Preliminaries
Polynomials and Polynomial Ideals
First-order Theory of Reals
Continuous Dynamical Systems
Hybrid Automata

3 Talk2: Computing Invariants for Hybrid Systems
Generating Continuous Invariants in Simple Case
Generating Continuous Invariants in General Case
Generating Semi-algebraic Global Invariants
Abstraction of Elementary Hybrid Systems by Variable Transformation
An Industrial Case Study: Soft Landing

4 Talk3: Controller Synthesis
Controller Synthesis with Safety
Controller Synthesis with Safety and Optimality
An Industrial Case Study: The Oil Pump Control Problem

5 Conclusions

118 / 120

Conclusions

Conclusions

Hybrid systems attracts more and more interests with the
development of safety critical embedded systems
Invariant plays an important role in the study (formal verification,
controller synthesis) of hybrid systems
Semi-algebraic inductive invariant checking for polynomial
continuous/hybrid systems is decidable
Use parametric polynomials and symbolic computation to
automatically discover invariants, and to perform optimization

rigorous
high complexity (may be combined with numeric computation)
Non-polynomial systems transformed to polynomials ones

Case studies show good prospect of proposed methods

119 / 120

Conclusions

Conclusions

Hybrid systems attracts more and more interests with the
development of safety critical embedded systems
Invariant plays an important role in the study (formal verification,
controller synthesis) of hybrid systems
Semi-algebraic inductive invariant checking for polynomial
continuous/hybrid systems is decidable
Use parametric polynomials and symbolic computation to
automatically discover invariants, and to perform optimization

rigorous
high complexity (may be combined with numeric computation)
Non-polynomial systems transformed to polynomials ones

Case studies show good prospect of proposed methods

119 / 120

Conclusions

Conclusions

Hybrid systems attracts more and more interests with the
development of safety critical embedded systems
Invariant plays an important role in the study (formal verification,
controller synthesis) of hybrid systems
Semi-algebraic inductive invariant checking for polynomial
continuous/hybrid systems is decidable
Use parametric polynomials and symbolic computation to
automatically discover invariants, and to perform optimization

rigorous
high complexity (may be combined with numeric computation)
Non-polynomial systems transformed to polynomials ones

Case studies show good prospect of proposed methods

119 / 120

Conclusions

Conclusions

Hybrid systems attracts more and more interests with the
development of safety critical embedded systems
Invariant plays an important role in the study (formal verification,
controller synthesis) of hybrid systems
Semi-algebraic inductive invariant checking for polynomial
continuous/hybrid systems is decidable
Use parametric polynomials and symbolic computation to
automatically discover invariants, and to perform optimization

rigorous
high complexity (may be combined with numeric computation)
Non-polynomial systems transformed to polynomials ones

Case studies show good prospect of proposed methods

119 / 120

Conclusions

Conclusions

Hybrid systems attracts more and more interests with the
development of safety critical embedded systems
Invariant plays an important role in the study (formal verification,
controller synthesis) of hybrid systems
Semi-algebraic inductive invariant checking for polynomial
continuous/hybrid systems is decidable
Use parametric polynomials and symbolic computation to
automatically discover invariants, and to perform optimization

rigorous
high complexity (may be combined with numeric computation)
Non-polynomial systems transformed to polynomials ones

Case studies show good prospect of proposed methods

119 / 120

Conclusions

Conclusions

Hybrid systems attracts more and more interests with the
development of safety critical embedded systems
Invariant plays an important role in the study (formal verification,
controller synthesis) of hybrid systems
Semi-algebraic inductive invariant checking for polynomial
continuous/hybrid systems is decidable
Use parametric polynomials and symbolic computation to
automatically discover invariants, and to perform optimization

rigorous
high complexity (may be combined with numeric computation)
Non-polynomial systems transformed to polynomials ones

Case studies show good prospect of proposed methods

119 / 120

Conclusions

Conclusions

Hybrid systems attracts more and more interests with the
development of safety critical embedded systems
Invariant plays an important role in the study (formal verification,
controller synthesis) of hybrid systems
Semi-algebraic inductive invariant checking for polynomial
continuous/hybrid systems is decidable
Use parametric polynomials and symbolic computation to
automatically discover invariants, and to perform optimization

rigorous
high complexity (may be combined with numeric computation)
Non-polynomial systems transformed to polynomials ones

Case studies show good prospect of proposed methods

119 / 120

Conclusions

Conclusions

Hybrid systems attracts more and more interests with the
development of safety critical embedded systems
Invariant plays an important role in the study (formal verification,
controller synthesis) of hybrid systems
Semi-algebraic inductive invariant checking for polynomial
continuous/hybrid systems is decidable
Use parametric polynomials and symbolic computation to
automatically discover invariants, and to perform optimization

rigorous
high complexity (may be combined with numeric computation)
Non-polynomial systems transformed to polynomials ones

Case studies show good prospect of proposed methods

119 / 120

Conclusions

Thank you!

Questions?

120 / 120

	Background
	Talk1: Preliminaries
	Talk2: Computing Invariants for Hybrid Systems
	Talk3: Controller Synthesis
	Conclusions

