Invariant-Based Verification and Synthesis for Hybrid Systems

Naijun Zhan

State Key Lab. of Comp. Sci., Institute of Software, Chinese Academy of Sciences

$$
\begin{aligned}
& \text { Summer School on Symbolic Computation } \\
& \qquad \text { Nanning, Jul.16-22, } 2017
\end{aligned}
$$

Outline

(1) Background
(2) Talk1: Preliminaries

- Polynomials and Polynomial Ideals
- First-order Theory of Reals
- Continuous Dynamical Systems
- Hybrid Automata
(3) Talk2: Computing Invariants for Hybrid Systems
- Generating Continuous Invariants in Simple Case
- Generating Continuous Invariants in General Case
- Generating Semi-algebraic Global Invariants
- Abstraction of Elementary Hybrid Systems by Variable Transformation
- An Industrial Case Study: Soft Landing
(4) Talk3: Controller Synthesis
- Controller Synthesis with Safety
- Controller Synthesis with Safety and Optimality
- An Industrial Case Study: The Oil Pump Control Problem
(5) Conclusions

Hybrid systems

Hybrid systems exhibit combinations of discrete jumps and continuous evolution.

Examples

Hybrid systems

Hybrid systems exhibit combinations of discrete jumps and continuous evolution.

Examples

Issues of hybrid systems

- Modelling:
- To establish a model for the system to be developed with precise mathematical semantics
- Have to consider: concurrency, deterministic vs nondeterministic, continuous vs discrete, communication, static vs dynamic (mobility, adaptability), qualitative vs quantitative (predicability), real-time,
- Simulation:
- To obtain a possible execution of the model upto a finite time horizon using numerical methods
- Well accepted in industrial practice
- Verification:
- Using mathematical approach to prove if a model satisfies the desired properties (specification)
- Main methods include: model-checking, theorem proving, abstract interpretation

Issues of hybrid systems

- Modelling:
- To establish a model for the system to be developed with precise mathematical semantics
- Have to consider: concurrency, deterministic vs nondeterministic, continuous vs discrete, communication, static vs dynamic (mobility, adaptability), qualitative vs quantitative (predicability), real-time,
- Simulation:
- To obtain a possible execution of the model upto a finite time horizon using numerical methods
- Well accepted in industrial practice
- Verification:
- Using mathematical approach to prove if a model satisfies the desired properties (specification)
- Main methods include: model-checking, theorem proving, abstract interpretation

Issues of hybrid systems

- Modelling:
- To establish a model for the system to be developed with precise mathematical semantics
- Have to consider: concurrency, deterministic vs nondeterministic, continuous vs discrete, communication, static vs dynamic (mobility, adaptability), qualitative vs quantitative (predicability), real-time, ...
- Simulation:
- To obtain a possible execution of the model upto a finite time horizon using numerical methods
- Well accepted in industrial practice
- Verification:
- Using mathematical approach to prove if a model satisfies the desired properties (specification)
- Main methods include: model-checking, theorem proving, abstract interpretation

Issues of hybrid systems

- Modelling:
- To establish a model for the system to be developed with precise mathematical semantics
- Have to consider: concurrency, deterministic vs nondeterministic, continuous vs discrete, communication, static vs dynamic (mobility, adaptability), qualitative vs quantitative (predicability), real-time, ...
- Simulation:
- To obtain a possible execution of the model upto a finite time horizon using numerical methods
- Well accepted in industrial practice
- Verification:
- Using mathematical approach to prove if a model satisfies the desired properties (specification)
- Main methods include: model-checking, theorem proving, abstract interpretation

Issues of hybrid systems

- Modelling:
- To establish a model for the system to be developed with precise mathematical semantics
- Have to consider: concurrency, deterministic vs nondeterministic, continuous vs discrete, communication, static vs dynamic (mobility, adaptability), qualitative vs quantitative (predicability), real-time, ...
- Simulation:
- To obtain a possible execution of the model upto a finite time horizon using numerical methods
- Well accepted in industrial practice
- Verification:
- Using mathematical approach to prove if a model satisfies the desired properties (specification)
- Main methods include: model-checking, theorem proving, abstract interpretation

Issues of hybrid systems

- Modelling:
- To establish a model for the system to be developed with precise mathematical semantics
- Have to consider: concurrency, deterministic vs nondeterministic, continuous vs discrete, communication, static vs dynamic (mobility, adaptability), qualitative vs quantitative (predicability), real-time, ...
- Simulation:
- To obtain a possible execution of the model upto a finite time horizon using numerical methods
- Well accepted in industrial practice
- Using mathematical approach to prove if a model satisfies the desired properties (specification)
- Main methods include: model-checking, theorem proving, abstract interpretation

Issues of hybrid systems

- Modelling:
- To establish a model for the system to be developed with precise mathematical semantics
- Have to consider: concurrency, deterministic vs nondeterministic, continuous vs discrete, communication, static vs dynamic (mobility, adaptability), qualitative vs quantitative (predicability), real-time, ...
- Simulation:
- To obtain a possible execution of the model upto a finite time horizon using numerical methods
- Well accepted in industrial practice
- Verification:
- Using mathematical approach to prove if a model satisfies the desired properties (specification)
- Main methods include: model-checking, theorem proving abstract interpretation

Issues of hybrid systems

- Modelling:
- To establish a model for the system to be developed with precise mathematical semantics
- Have to consider: concurrency, deterministic vs nondeterministic, continuous vs discrete, communication, static vs dynamic (mobility, adaptability), qualitative vs quantitative (predicability), real-time, ...
- Simulation:
- To obtain a possible execution of the model upto a finite time horizon using numerical methods
- Well accepted in industrial practice
- Verification:
- Using mathematical approach to prove if a model satisfies the desired properties (specification)
- Main methods include: model-checking, theorem proving,
abstract interpretation

Issues of hybrid systems

- Modelling:
- To establish a model for the system to be developed with precise mathematical semantics
- Have to consider: concurrency, deterministic vs nondeterministic, continuous vs discrete, communication, static vs dynamic (mobility, adaptability), qualitative vs quantitative (predicability), real-time, ...
- Simulation:
- To obtain a possible execution of the model upto a finite time horizon using numerical methods
- Well accepted in industrial practice
- Verification:
- Using mathematical approach to prove if a model satisfies the desired properties (specification)
- Main methods include: model-checking, theorem proving, abstract interpretation

Issues of hybrid systems (Cont'd)

- Synthesis: The process of computing an implementation (the "how") from a specification of the desired behavior and performance (the "what") and the assumptions on the environment (the "where")
- Qualitative issues:
- Total absence of undesirable behavior is an overly ambitious goal,
being economically unattainable or even technically impossible due to
- uncontrollable environment influences;
- unavoidable manufacturing tolerance;
- component breakdown, etc.
- The existing qualitative safety analysis methods for hybrid systems
have to be complemented quantitative methods, quantifying the
likelihood of residual errors or the related performance figures in systems subject to uncertain, stochastic behavior as well as noise.
- Other issues:
stability, controllability,
observability,

Issues of hybrid systems (Cont'd)

- Synthesis: The process of computing an implementation (the "how") from a specification of the desired behavior and performance (the "what") and the assumptions on the environment (the "where")
- Qualitative issues:
- Total absence of undesirable behavior is an overly ambitious goal,
being economically unattainable or even technically impossible due to
- uncontrollable environment influences;
- unavoidable manufacturing tolerance;
- component breakdown, etc.
- The existing qualitative safety analysis methods for hybrid systems
have to be complemented quantitative methods, quantifying the
likelihood of residual errors or the related performance figures in systems subject to uncertain, stochastic behavior as well as noise.
- Other issues:
stability, controllability, observability,

Issues of hybrid systems (Cont'd)

- Synthesis: The process of computing an implementation (the "how") from a specification of the desired behavior and performance (the "what") and the assumptions on the environment (the "where")
- Qualitative issues:
- Total absence of undesirable behavior is an overly ambitious goal, being economically unattainable or even technically impossible due to
- uncontrollable environment influences;
- unavoidable manufacturing tolerance;
- component breakdown, etc
- The existing qualitative safety analysis methods for hybrid systems have to be complemented quantitative methods, quantifying the likelihood of residual errors or the related performance figures in systems subject to uncertain, stochastic behavior as well as noise.

Other issues: stability, controllability, ohservability,

Issues of hybrid systems (Cont'd)

- Synthesis: The process of computing an implementation (the "how') from a specification of the desired behavior and performance (the "what") and the assumptions on the environment (the "where")
- Qualitative issues:
- Total absence of undesirable behavior is an overly ambitious goal, being economically unattainable or even technically impossible due to
- uncontrollable environment influences;
- unavoidable manufacturing tolerance;
- component breakdown, etc.
- The existing qualitative safety analysis methods for hybrid systems have to be complemented quantitative methods, quantifying the likelihood of residual errors or the related performance figures in systems subject to uncertain, stochastic behavior as well as noise.
- Other issues: stability, controllability, observability,

Issues of hybrid systems (Cont'd)

- Synthesis: The process of computing an implementation (the "how') from a specification of the desired behavior and performance (the "what") and the assumptions on the environment (the "where")
- Qualitative issues:
- Total absence of undesirable behavior is an overly ambitious goal, being economically unattainable or even technically impossible due to
- uncontrollable environment influences;
- unavoidable manufacturing tolerance;
- component breakdown, etc.
- The existing qualitative safety analysis methods for hybrid systems have to be complemented quantitative methods, quantifying the likelihood of residual errors or the related performance figures in systems subject to uncertain, stochastic behavior as well as noise.

Other issues: stability, controllability, observability,

Issues of hybrid systems (Cont'd)

- Synthesis: The process of computing an implementation (the "how') from a specification of the desired behavior and performance (the "what") and the assumptions on the environment (the "where")
- Qualitative issues:
- Total absence of undesirable behavior is an overly ambitious goal, being economically unattainable or even technically impossible due to
- uncontrollable environment influences;
- unavoidable manufacturing tolerance;
- component breakdown, etc.
- The existing qualitative safety analysis methods for hybrid systems have to be complemented quantitative methods, quantifying the likelihood of residual errors or the related performance figures in systems subject to uncertain, stochastic behavior as well as noise.
- Other issues: stability, controllability, observability,

Issues of hybrid systems (Cont'd)

- Synthesis: The process of computing an implementation (the "how") from a specification of the desired behavior and performance (the "what") and the assumptions on the environment (the "where")
- Qualitative issues:
- Total absence of undesirable behavior is an overly ambitious goal, being economically unattainable or even technically impossible due to
- uncontrollable environment influences;
- unavoidable manufacturing tolerance;
- component breakdown, etc.
- The existing qualitative safety analysis methods for hybrid systems have to be complemented quantitative methods, quantifying the likelihood of residual errors or the related performance figures in systems subject to uncertain, stochastic behavior as well as noise.
- Other issues: stability, controllability, observability,

Issues of hybrid systems (Cont'd)

- Synthesis: The process of computing an implementation (the "how') from a specification of the desired behavior and performance (the "what") and the assumptions on the environment (the "where")
- Qualitative issues:
- Total absence of undesirable behavior is an overly ambitious goal, being economically unattainable or even technically impossible due to
- uncontrollable environment influences;
- unavoidable manufacturing tolerance;
- component breakdown, etc.
- The existing qualitative safety analysis methods for hybrid systems have to be complemented quantitative methods, quantifying the likelihood of residual errors or the related performance figures in systems subject to uncertain, stochastic behavior as well as noise.
- Other issues: stability, controllability, observability, ...

Related Work

Automata-based techniques

- Modeling: Phase transition systems [Manna\&Pnueli,1993] Hybrid automata [Alur et al, 1995]
- Advantages: intuitive, easy to model the behavior of systems, the basis for model-checking.
- Disadvantages: lacks of structured information, not easy to model complex system.
- Verification by computing reachable set: model-checking
- Basic idea: partitioning infinite state space into finite many equivalent classes according to the solution of ODEs, or representing by O-minimal structures
- Advantages: automatic
- Disadvantages: cannot scale up
- Focuses: symbolic computation, abstraction, approximation

Related Work

Automata-based techniques

- Modeling: Phase transition systems [Manna\&Pnueli,1993] Hybrid automata [Alur et al, 1995]
- Advantages: intuitive, easy to model the behavior of systems, the basis for model-checking.
- Disadvantages: lacks of structured information, not easy to model complex system
- Verification by computing reachable set: model-checking
- Basic idea: partitioning infinite state space into finite many equivalent classes according to the solution of ODEs, or representing by O-minimal structures
- Advantages: automatic
- Disadvantages: cannot scale up
- Focuses: symbolic computation, abstraction, approximation

Related Work

Automata-based techniques

- Modeling: Phase transition systems [Manna\&Pnueli,1993] Hybrid automata [Alur et al, 1995]
- Advantages: intuitive, easy to model the behavior of systems, the basis for model-checking.
- Disadvantages: lacks of structured information, not easy to model complex system.

Related Work

Automata-based techniques

- Modeling: Phase transition systems [Manna\&Pnueli,1993] Hybrid automata [Alur et al, 1995]
- Advantages: intuitive, easy to model the behavior of systems, the basis for model-checking.
- Disadvantages: lacks of structured information, not easy to model complex system.
- Verification by computing reachable set: model-checking [Alur et al, 1995], decision procedure [LPY, 2001],
- Basic idea: partitioning infinite state space into finite many equivalent classes according to the solution of ODEs, or representing by O-minimal structures
- Advantages: automatic
- Disadvantages: cannot scale up
- Focuses: symbolic computation, abstraction, approximation

Related Work

Automata-based techniques

- Modeling: Phase transition systems [Manna\&Pnueli,1993] Hybrid automata [Alur et al, 1995]
- Advantages: intuitive, easy to model the behavior of systems, the basis for model-checking.
- Disadvantages: lacks of structured information, not easy to model complex system.
- Verification by computing reachable set: model-checking [Alur et al, 1995], decision procedure [LPY, 2001],
- Basic idea: partitioning infinite state space into finite many equivalent classes according to the solution of ODEs, or representing by O-minimal structures
- Advantages: automatic
- Disadvantages: cannot scale up
- Focuses: symbolic computation, abstraction, approximation

Related Work

Automata-based techniques

- Modeling: Phase transition systems [Manna\&Pnueli,1993] Hybrid automata [Alur et al, 1995]
- Advantages: intuitive, easy to model the behavior of systems, the basis for model-checking.
- Disadvantages: lacks of structured information, not easy to model complex system.
- Verification by computing reachable set: model-checking [Alur et al, 1995], decision procedure [LPY, 2001],
- Basic idea: partitioning infinite state space into finite many equivalent classes according to the solution of ODEs, or representing by O-minimal structures
- Advantages: automatic
- Disadvantages: cannot scale up
- Focuses: symbolic computation, abstraction, approximation

Related Work

Automata-based techniques

- Modeling: Phase transition systems [Manna\&Pnueli,1993] Hybrid automata [Alur et al, 1995]
- Advantages: intuitive, easy to model the behavior of systems, the basis for model-checking.
- Disadvantages: lacks of structured information, not easy to model complex system.
- Verification by computing reachable set: model-checking [Alur et al, 1995], decision procedure [LPY, 2001],
- Basic idea: partitioning infinite state space into finite many equivalent classes according to the solution of ODEs, or representing by O-minimal structures
- Advantages: automatic
- Disadvantages: cannot scale up

Related Work

Automata-based techniques

- Modeling: Phase transition systems [Manna\&Pnueli,1993] Hybrid automata [Alur et al, 1995]
- Advantages: intuitive, easy to model the behavior of systems, the basis for model-checking.
- Disadvantages: lacks of structured information, not easy to model complex system.
- Verification by computing reachable set: model-checking [Alur et al, 1995], decision procedure [LPY, 2001],
- Basic idea: partitioning infinite state space into finite many equivalent classes according to the solution of ODEs, or representing by O-minimal structures
- Advantages: automatic
- Disadvantages: cannot scale up
- Focuses: symbolic computation, abstraction, approximation

Related Work (Cont'd)

Compositional modeling approaches

- Modeling environment: SHIFT [DGV 1996]
- Hierarchical modeling: PTOLEMY [Lee et al 2003]
- Modular modeling: I/O hybrid automata ri unch at al 1996, hybrid modules [Alur et al 2003], CHARON [Alur\&Henzinger 1997]

- AIge'braic approach: Hybrid CSP

Problem

It lacks of verification techniques for these compositional modelling techniques

Related Work (Cont'd)

Compositional modeling approaches

- Modeling environment: SHIFT [DGV 1996]
- Hierarchical modeling: PTOLEMY [Lee et al 2003]
- Modular modeling: I/O hybrid automata hybrid modules [Alur et al 2003], CHARON 1997]
- Algebraic approach: Hybrid CSP [He 1994, Zhou et al 1995]

Problem

It lacks of verification techniques for these compositional modelling techniques

Related Work (Cont'd)

Compositional modeling approaches

- Modeling environment: SHIFT [DGV 1996]
- Hierarchical modeling: PTOLEMY [Lee et al 2003]
- Modular modeling: I/O hybrid automata hybrid modules
- Algebraic approach: Hybrid CSP

Problem

It lacks of verification techniques for these compositional modelling techniques

Related Work (Cont'd)

Compositional modeling approaches

- Modeling environment: SHIFT [DGV 1996]
- Hierarchical modeling: PTOLEMY [Lee et al 2003]
- Modular modeling: I/O hybrid automata [Lynch et al 1996], hybrid modules [Alur et al 2003], CHARON [Alur\&Henzinger 1997]
- Algebraic approach: Hybrid CSP

Problem

It lacks of verification techniques for these compositional modelling techniques

Related Work (Cont'd)

Compositional modeling approaches

- Modeling environment: SHIFT [DGV 1996]
- Hierarchical modeling: PTOLEMY [Lee et al 2003]
- Modular modeling: I/O hybrid automata [Lynch et al 1996], hybrid modules [Alur et al 2003], CHARON [Alur\&Henzinger 1997]
- Algebraic approach: Hybrid CSP [He 1994, Zhou et al 1995]

Problem

It lacks of verification techniques for these compositional modelling techniques

Related Work (Cont'd)

Compositional modeling approaches

- Modeling environment: SHIFT [DGV 1996]
- Hierarchical modeling: PTOLEMY [Lee et al 2003]
- Modular modeling: I/O hybrid automata [Lynch et al 1996], hybrid modules [Alur et al 2003], CHARON [Alur\&Henzinger 1997]
- Algebraic approach: Hybrid CSP [He 1994, Zhou et al 1995]

Problem

It lacks of verification techniques for these compositional modelling techniques

Related work (Cont'd)

Deduction based approach [Platzer\&Clarke 2008]

- Basic idea: extending Floyd-Hoare-Naur inductive assertion method to hybrid systems.
- Elements:
- A compositional modelling laguage
- A Hoare logic-like specification logic
- Invariant generation
- Well-known compositional modelling languages: hybrid programs
- Hybrid specification logics: DDL [Platzer2008], DADL
- Advantages: scalability
- Difficulties: invariant generation

Related work (Cont'd)

Deduction based approach [Platzer\&Clarke 2008]

- Basic idea: extending Floyd-Hoare-Naur inductive assertion method to hybrid systems.
- Elements:
- A compositional modelling laguage
- A Hoare logic-like specification logic
- Invariant generation
- Well-known compositional modelling languages: hybrid programs
- Hybrid specification logics: DDL DADL
- Advantages: scalability
- Difficulties: invariant generation

Related work (Cont'd)

Deduction based approach [Platzer\&Clarke 2008]

- Basic idea: extending Floyd-Hoare-Naur inductive assertion method to hybrid systems.
- Elements:
- A compositional modelling laguage
- A Hoare logic-like specification logic
- Invariant generation
- M/all-known compositional modelling languages: hybrid programs
- Hybrid specification logics: DDL DADL
- Advantages: scalability
- Difficulties: invariant generation

Related work (Cont'd)

Deduction based approach [Platzer\&Clarke 2008]

- Basic idea: extending Floyd-Hoare-Naur inductive assertion method to hybrid systems.
- Elements:
- A compositional modelling laguage
- A Hoare logic-like specification logic
- Invariant generation
- Well-known compositional modelling languages: hybrid programs
- Hybrid specification logics: DDL DADL
- Advantages: scalability
- Difficulties: invariant generation

Related work (Cont'd)

Deduction based approach [Platzer\&Clarke 2008]

- Basic idea: extending Floyd-Hoare-Naur inductive assertion method to hybrid systems.
- Elements:
- A compositional modelling laguage
- A Hoare logic-like specification logic
- Invariant generation
- Well-known compositional modelling languages: hybrid programs
- Hybrid specification logics: DDL DADL
- Advantages: scalability
- Difficulties: invariant generation

Related work (Cont'd)

Deduction based approach [Platzer\&Clarke 2008]

- Basic idea: extending Floyd-Hoare-Naur inductive assertion method to hybrid systems.
- Elements:
- A compositional modelling laguage
- A Hoare logic-like specification logic
- Invariant generation
- Well-known compositional modelling languages: hybrid programs [Platzer\&Clarke 2008], HCSP [He 1994, Zhou et al 1995], ...
- Hybrid specification logics: DDL [Platzer2008], DADL
- Advantages: scalability
- Difficulties: invariant generation

Related work (Cont'd)

Deduction based approach [Platzer\&Clarke 2008]

- Basic idea: extending Floyd-Hoare-Naur inductive assertion method to hybrid systems.
- Elements:
- A compositional modelling laguage
- A Hoare logic-like specification logic
- Invariant generation
- Well-known compositional modelling languages: hybrid programs [Platzer\&Clarke 2008], HCSP [He 1994, Zhou et al 1995], ...
- Hybrid specification logics: DDL [Platzer2008], DADL [Platzer2010], EDC [Zhou et al 1994], ...

Related work (Cont'd)

Deduction based approach [Platzer\&Clarke 2008]

- Basic idea: extending Floyd-Hoare-Naur inductive assertion method to hybrid systems.
- Elements:
- A compositional modelling laguage
- A Hoare logic-like specification logic
- Invariant generation
- Well-known compositional modelling languages: hybrid programs [Platzer\&Clarke 2008], HCSP [He 1994, Zhou et al 1995], ...
- Hybrid specification logics: DDL [Platzer2008], DADL [Platzer2010], EDC [Zhou et al 1994], ...
- Advantages: scalability
- Difficulties: invariant generation

Related work (Cont'd)

Deduction based approach [Platzer\&Clarke 2008]

- Basic idea: extending Floyd-Hoare-Naur inductive assertion method to hybrid systems.
- Elements:
- A compositional modelling laguage
- A Hoare logic-like specification logic
- Invariant generation
- Well-known compositional modelling languages: hybrid programs [Platzer\&Clarke 2008], HCSP [He 1994, Zhou et al 1995], ...
- Hybrid specification logics: DDL [Platzer2008], DADL [Platzer2010], EDC [Zhou et al 1994], ...
- Advantages: scalability
- Difficulties: invariant generation

A grand challenge

How to design correct safety-critical hybrid-systems is a grand challenge in computer science and control theory

Our goal

to establish a systematic approach to formal design, analysis and verification of hybrid systems

A grand challenge

How to design correct safety-critical hybrid-systems is a grand challenge in computer science and control theory

Our goal

to establish a systematic approach to formal design, analysis and verification of hybrid systems

Overview of Our Approach

Schedule and References

Schedule

- Talk 1: Preliminaries
- Talk 2: Differential invariant generation
- Talk 3: Controller synthesis

References

- N. Zhan, S. Wang and H. Zhao (2013): Formal Verification of Simulink/Stateflow Diagrams: A Deductive Way. Springer, 2016.
- N. Zhan, S. Wang and H. Zhao (2013): Formal Modelling, Analysis and Verification of Hybrid Systems. In the Theories of Programming, LNCS 8050.
- J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou and L. Zou (2010): A calculus for HCSP. Proc. of APLAS 2010, LNCS 6461.
- J. Liu, N. Zhan and H. Zhao (2011): Computing semi-algebraic invariants for polynomial dynamical systems. Proc. of EMSOFT'11.
- H. Zhao, N. Zhan, D. Kapur, and K.G. Larsen (2012): A "hybrid" approach for synthesizing optimal controllers of hybrid systems: A case study of the oil pump industrial example. Proc. of FM 2012, LNCS 7436.
- H. Zhao, M. Yang, N. Zhan, B. Gu, L. Zou and Y. Chen (2014): Formal verification of a descent guidance control program of a lunar lander. Proc. of FM 2014, LNCS 8442.
- L. Zou, M. Fraenzle, N. Zhan and P. Mosaad (2015): Automatic stability and safety verification for delay differential equations. Proc. of CAV 2015, LNCS.

Outline

(1) Background

(2) Talk1: Preliminaries

- Polynomials and Polynomial Ideals
- First-order Theory of Reals
- Continuous Dynamical Systems
- Hybrid Automata
(3) Talk2: Computing Invariants for Hybrid Systems
- Generating Continuous Invariants in Simple Case
- Generating Continuous Invariants in General Case
- Generating Semi-algebraic Global Invariants
- Abstraction of Elementary Hybrid Systems by Variable Transformation
- An Industrial Case Study: Soft Landing
(4) Talk3: Controller Synthesis
- Controller Synthesis with Safety
- Controller Synthesis with Safety and Optimality
- An Industrial Case Study: The Oil Pump Control Problem
(5) Conclusions

Outline

(1) Background
(2) Talk1: Preliminaries

- Polynomials and Polynomial Ideals
- First-order Theory of Reals
- Continuous Dynamical Systems
- Hybrid Automata
(3) Talk2: Computing Invariants for Hybrid Systems
- Generating Continuous Invariants in Simple Case
- Generating Continuous Invariants in General Case
- Generating Semi-algebraic Global Invariants
- Abstraction of Elementary Hybrid Systems by Variable Transformation
- An Industrial Case Study: Soft Landing
(4) Talk3: Controller Synthesis
- Controller Synthesis with Safety
- Controller Synthesis with Safety and Optimality
- An Industrial Case Study: The Oil Pump Control Problem
(5) Conclusions
- Let \mathbb{K} be a number field, which can be either \mathbb{Q} or \mathbb{R}.
- A monomial in n variables $x_{1}, x_{2}, \ldots, x_{n}$ (or briefly x) is a product form $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$, or briefly x^{α}, where $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ The number $\sum_{i=1}^{n} \alpha_{i}$ is called the degree of x^{α}.
- A polynomial $p(x)$ in x with coefficients in \mathbb{K} is of the form $\sum_{\alpha} c_{\alpha} x^{\alpha}$, where all $c_{\alpha} \in \mathbb{K}$.
- The degree $\operatorname{deg}(p)$ of p is the maximal degree of its component monomials.
- A polynomial in $x_{1}, x_{2}, \ldots, x_{n}$ with degree d has at most $\binom{n+d}{d}$ many monomials.
- The set of all polynomials in $x_{1}, x_{2}, \ldots, x_{n}$ with coefficients in \mathbb{K} form a polynomial ring $\mathbb{K}[x]$
- A parametric polynomial is of the form $\sum_{\alpha} u_{\alpha} x^{\alpha}$, where $u_{\alpha} \in \mathbb{R}$ are not constants but undetermined parameters, can be regarded as a standard polynomial $p(\mathbf{u}, \mathbf{x})$ in $\mathbb{R}[\mathbf{u}, \mathbf{x}]$
- A parametric polynomial with degree $d($ in $x)$ has at most $\binom{n+d}{d}$ many indeterminates.
- For any $\mathbf{u}_{0} \in \mathbb{R}^{w}$, $p_{\mathbf{u}_{0}}(\mathrm{x}) \in \mathbb{R}[\mathrm{x}]$ obtained by substituting u_{0} for u in $p(\mathbf{u}, \mathbf{x})$ is an instantiation of $p(\mathbf{u}, \mathbf{x})$.
- Let \mathbb{K} be a number field, which can be either \mathbb{Q} or \mathbb{R}.
- A monomial in n variables $x_{1}, x_{2}, \ldots, x_{n}$ (or briefly x) is a product form $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$, or briefly x^{α}, where $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$. The number $\sum_{i=1}^{n} \alpha_{i}$ is called the degree of x^{α}.
- A polynomial $p(x)$ in x with coefficients in \mathbb{K} is of the form \sum_{α}
- The degree $\operatorname{deg}(p)$ of p is the maximal degree of its component monomials.
- A polynomial in $x_{1}, x_{2}, \ldots, x_{n}$ with degree d has at most $\binom{n+d}{d}$ many monomials.
- The set of all polynomials in $x_{1}, x_{2}, \ldots, x_{n}$ with coefficients in \mathbb{Z} form a polynomial ring $\mathbb{K}[\mathrm{x}]$
- A parametric polynomial is of the form $\sum_{\alpha} u_{\alpha} x^{\alpha}$, where $u_{\alpha} \in \mathbb{R}$ are not constants but undetermined parameters, can be regarded as a standard polynomial $p(u, x)$ in $\mathbb{\mathbb { R }}[u, x]$
- A parametric polynomial with degree d (in x$)$ has at most $\binom{n-d}{d}$ many indeterminates.
- For any $\mathbf{u}_{0} \in \mathbb{R}^{w}, p_{\mathrm{u}_{0}}(\mathrm{x}) \in \mathbb{R}[\mathrm{x}]$ obtained by substituting u_{0} for \mathbf{u} in $p(\mathrm{u}, \mathrm{x})$ is an instantiation of $p(\mathrm{u}, \mathrm{x})$.
- Let \mathbb{K} be a number field, which can be either \mathbb{Q} or \mathbb{R}.
- A monomial in n variables $x_{1}, x_{2}, \ldots, x_{n}$ (or briefly x) is a product form $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$, or briefly x^{α}, where $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$. The number $\sum_{i=1}^{n} \alpha_{i}$ is called the degree of x^{α}.
- A polynomial $p(\mathrm{x})$ in x with coefficients in \mathbb{K} is of the form $\sum_{\alpha} c_{\alpha} \mathrm{x}^{\alpha}$, where all $c_{\alpha} \in \mathbb{K}$.
monomials.
- A polynomial in $x_{1}, x_{2} \ldots x_{n}$ with degree d has at most ($\left.n+d\right)$ many monomials.
- The set of all polynomials in $x_{1}, x_{2}, \ldots, x_{n}$ with coefficients in \mathbb{K} form
- A parametric polynomial is of the form $\sum_{\alpha} u_{\alpha} x^{\alpha}$, where $u_{\alpha} \in \mathbb{R}$ are not constants but undetermined parameters, can be regarded as a standard polynomial $p(\mathbf{u}, \mathbf{x})$ in $\mathbb{R}[\mathbf{u}, \mathbf{x}]$
- A parametric polynomial with degree d (in x) has at most many indeterminates.
- For any $\mathbf{u}_{0} \in \mathbb{R}^{w}, p_{\mathbf{u}_{0}}(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ obtained by substituting \mathbf{u}_{0} for \mathbf{u} in
$p(\mathbf{u}, \mathbf{x})$ is an instantiation of $p(\mathbf{u}, \mathbf{x})$.
- Let \mathbb{K} be a number field, which can be either \mathbb{Q} or \mathbb{R}.
- A monomial in n variables $x_{1}, x_{2}, \ldots, x_{n}$ (or briefly x) is a product form $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$, or briefly x^{α}, where $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$. The number $\sum_{i=1}^{n} \alpha_{i}$ is called the degree of x^{α}.
- A polynomial $p(\mathrm{x})$ in x with coefficients in \mathbb{K} is of the form $\sum_{\alpha} c_{\alpha} \mathrm{x}^{\alpha}$, where all $c_{\alpha} \in \mathbb{K}$.
- The degree $\operatorname{deg}(p)$ of p is the maximal degree of its component monomials.
- A polynomial in $x_{1}, x_{2}, \ldots, x_{n}$ with degree d has at most monomials.
- The set of all polynomials in $x_{1}, x_{2} \ldots \ldots x_{n}$ with coefficients in IK form
- A parametric polynomial is of the form $\sum_{\alpha} u_{\alpha} x^{\alpha}$, where $u_{\alpha} \in \mathbb{R}$ are not constants but undetermined parameters, can be regarded as a standard polynomial $p(u, x)$ in $\mathbb{R}[u, x]$
- A parametric polynomial with degree d (in x) has at most many indeterminates.
- For any $\mathrm{u}_{0} \in \mathbb{R}^{w}, p_{\mathrm{u}_{0}}(\mathrm{x}) \in \mathbb{R}[\mathrm{x}]$ obtained by substituting u_{0} for u in $p(\mathbf{u}, \mathbf{x})$ is an instantiation of $p(\mathbf{u}, \mathbf{x})$.
- Let \mathbb{K} be a number field, which can be either \mathbb{Q} or \mathbb{R}.
- A monomial in n variables $x_{1}, x_{2}, \ldots, x_{n}$ (or briefly x) is a product form $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$, or briefly x^{α}, where $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$. The number $\sum_{i=1}^{n} \alpha_{i}$ is called the degree of x^{α}.
- A polynomial $p(\mathrm{x})$ in x with coefficients in \mathbb{K} is of the form $\sum_{\alpha} c_{\alpha} \mathrm{x}^{\alpha}$, where all $c_{\alpha} \in \mathbb{K}$.
- The degree $\operatorname{deg}(p)$ of p is the maximal degree of its component monomials.
- A polynomial in $x_{1}, x_{2}, \ldots, x_{n}$ with degree d has at most $\binom{n+d}{d}$ many monomials.
- A parametric polynomial is of the form with coefficients in \mathbb{K} form are not constants but undetermined parameters, can be regarded as a standard polynomial $p(u, x)$ in $\mathbb{R}[u, x]$
- A parametric polynomial with degree d (in x) has at most many indeterminates.
- For any $\mathbf{u}_{0} \in \mathbb{R}^{w}, p_{u_{0}}(\mathbf{x}) \in \mathbb{R}[\mathrm{x}]$ obtained by substituting u_{0} for u in $p(\mathrm{u}, \mathrm{x})$ is an instantiation of $p(\mathrm{u}, \mathrm{x})$.
- Let \mathbb{K} be a number field, which can be either \mathbb{Q} or \mathbb{R}.
- A monomial in n variables $x_{1}, x_{2}, \ldots, x_{n}$ (or briefly x) is a product form $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$, or briefly x^{α}, where $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$. The number $\sum_{i=1}^{n} \alpha_{i}$ is called the degree of x^{α}.
- A polynomial $p(\mathrm{x})$ in x with coefficients in \mathbb{K} is of the form $\sum_{\alpha} c_{\alpha} \mathrm{x}^{\alpha}$, where all $c_{\alpha} \in \mathbb{K}$.
- The degree $\operatorname{deg}(p)$ of p is the maximal degree of its component monomials.
- A polynomial in $x_{1}, x_{2}, \ldots, x_{n}$ with degree d has at most $\binom{n+d}{d}$ many monomials.
- The set of all polynomials in $x_{1}, x_{2}, \ldots, x_{n}$ with coefficients in \mathbb{K} form a polynomial ring $\mathbb{K}[\mathbf{x}]$.
a standard polynomial $p(\mathbf{u}, \mathbf{x})$ in $\mathbb{R}[\mathbf{u}, \mathbf{x}]$
- A parametric polynomial with degree d (in x) has at most many indeterminates.
- For any $\mathbf{u}_{0} \in \mathbb{R}^{w}, p_{\mathbf{u}_{0}}(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ obtained by substituting \mathbf{u}_{0} for \mathbf{u} in
- Let \mathbb{K} be a number field, which can be either \mathbb{Q} or \mathbb{R}.
- A monomial in n variables $x_{1}, x_{2}, \ldots, x_{n}$ (or briefly x) is a product form $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$, or briefly x^{α}, where $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$. The number $\sum_{i=1}^{n} \alpha_{i}$ is called the degree of x^{α}.
- A polynomial $p(\mathrm{x})$ in x with coefficients in \mathbb{K} is of the form $\sum_{\alpha} c_{\alpha} \mathrm{x}^{\alpha}$, where all $c_{\alpha} \in \mathbb{K}$.
- The degree $\operatorname{deg}(p)$ of p is the maximal degree of its component monomials.
- A polynomial in $x_{1}, x_{2}, \ldots, x_{n}$ with degree d has at most $\binom{n+d}{d}$ many monomials.
- The set of all polynomials in $x_{1}, x_{2}, \ldots, x_{n}$ with coefficients in \mathbb{K} form a polynomial ring $\mathbb{K}[\mathbf{x}]$.
- A parametric polynomial is of the form $\sum_{\alpha} u_{\alpha} \mathrm{x}^{\alpha}$, where $u_{\alpha} \in \mathbb{R}$ are not constants but undetermined parameters, can be regarded as a standard polynomial $p(\mathbf{u}, \mathbf{x})$ in $\mathbb{R}[\mathbf{u}, \mathbf{x}]$.
- A parametric polynomial with degree d (in x) has at most many indeterminates.
- For any $\mathbf{u}_{0} \in \mathbb{R}^{w}, p_{\mathbf{u}_{0}}(\mathbf{x}) \in \mathbb{R}[x]$ obtained by substituting \mathbf{u}_{0} for \mathbf{u} in
- Let \mathbb{K} be a number field, which can be either \mathbb{Q} or \mathbb{R}.
- A monomial in n variables $x_{1}, x_{2}, \ldots, x_{n}$ (or briefly x) is a product form $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$, or briefly x^{α}, where $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$. The number $\sum_{i=1}^{n} \alpha_{i}$ is called the degree of x^{α}.
- A polynomial $p(\mathrm{x})$ in x with coefficients in \mathbb{K} is of the form $\sum_{\alpha} c_{\alpha} \mathrm{x}^{\alpha}$, where all $c_{\alpha} \in \mathbb{K}$.
- The degree $\operatorname{deg}(p)$ of p is the maximal degree of its component monomials.
- A polynomial in $x_{1}, x_{2}, \ldots, x_{n}$ with degree d has at most $\binom{n+d}{d}$ many monomials.
- The set of all polynomials in $x_{1}, x_{2}, \ldots, x_{n}$ with coefficients in \mathbb{K} form a polynomial ring $\mathbb{K}[\mathbf{x}]$.
- A parametric polynomial is of the form $\sum_{\alpha} u_{\alpha} \mathrm{x}^{\alpha}$, where $u_{\alpha} \in \mathbb{R}$ are not constants but undetermined parameters, can be regarded as a standard polynomial $p(\mathbf{u}, \mathbf{x})$ in $\mathbb{R}[\mathbf{u}, \mathbf{x}]$.
- A parametric polynomial with degree d (in \mathbf{x}) has at most $\binom{n+d}{d}$ many indeterminates.
- Let \mathbb{K} be a number field, which can be either \mathbb{Q} or \mathbb{R}.
- A monomial in n variables $x_{1}, x_{2}, \ldots, x_{n}$ (or briefly x) is a product form $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$, or briefly x^{α}, where $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$. The number $\sum_{i=1}^{n} \alpha_{i}$ is called the degree of x^{α}.
- A polynomial $p(\mathrm{x})$ in x with coefficients in \mathbb{K} is of the form $\sum_{\alpha} c_{\alpha} \mathrm{x}^{\alpha}$, where all $c_{\alpha} \in \mathbb{K}$.
- The degree $\operatorname{deg}(p)$ of p is the maximal degree of its component monomials.
- A polynomial in $x_{1}, x_{2}, \ldots, x_{n}$ with degree d has at most $\binom{n+d}{d}$ many monomials.
- The set of all polynomials in $x_{1}, x_{2}, \ldots, x_{n}$ with coefficients in \mathbb{K} form a polynomial ring $\mathbb{K}[\mathbf{x}]$.
- A parametric polynomial is of the form $\sum_{\alpha} u_{\alpha} \mathrm{x}^{\alpha}$, where $u_{\alpha} \in \mathbb{R}$ are not constants but undetermined parameters, can be regarded as a standard polynomial $p(\mathbf{u}, \mathbf{x})$ in $\mathbb{R}[\mathbf{u}, \mathbf{x}]$.
- A parametric polynomial with degree d (in \mathbf{x}) has at most $\binom{n+d}{d}$ many indeterminates.
- For any $\mathbf{u}_{0} \in \mathbb{R}^{w}, p_{\mathbf{u}_{0}}(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ obtained by substituting \mathbf{u}_{0} for \mathbf{u} in $p(\mathbf{u}, \mathbf{x})$ is an instantiation of $p(\mathbf{u}, \mathbf{x})$.

Polynomial ideal

Polynomial ideal

- A subset $I \subseteq \mathbb{K}[\mathrm{x}]$ is called an ideal if the following conditions are satisfied:
(1) $0 \in I$;
(2) If $p, g \in I$, then $p+g \in I$;
(3) If $p \in I$ and $h \in \mathbb{K}[\mathbf{x}]$, then $h p \in I$.

is an ideal generated by
- If $I=\left\langle g_{1}, g_{2}, \ldots, g_{s}\right\rangle$, then $\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$ is called a basis of I.

Polynomial ideal

Polynomial ideal

- A subset $I \subseteq \mathbb{K}[x]$ is called an ideal if the following conditions are satisfied:
(1) $0 \in I$;
(2) If $p, g \in I$, then $p+g \in I$;
(3) If $p \in I$ and $h \in \mathbb{K}[\mathbf{x}]$, then $h p \in I$.
- Let $g_{1}, g_{2}, \ldots, g_{s} \in \mathbb{K}[\mathbf{x}]$, then $\left\langle g_{1}, g_{2}, \ldots, g_{s}\right\rangle \widehat{=}$ $\left\{\sum_{i=1}^{s} h_{i} g_{i}: h_{1}, h_{2}, \ldots, h_{s} \in \mathbb{K}[\mathrm{x}]\right\}$ is an ideal generated by $g_{1}, g_{2}, \ldots, g_{s}$.

Polynomial ideal

Polynomial ideal

- A subset $I \subseteq \mathbb{K}[x]$ is called an ideal if the following conditions are satisfied:
(1) $0 \in I$;
(2) If $p, g \in I$, then $p+g \in I$;
(3) If $p \in I$ and $h \in \mathbb{K}[\mathbf{x}]$, then $h p \in I$.
- Let $g_{1}, g_{2}, \ldots, g_{s} \in \mathbb{K}[\mathbf{x}]$, then $\left\langle g_{1}, g_{2}, \ldots, g_{s}\right\rangle \widehat{=}$ $\left\{\sum_{i=1}^{s} h_{i} g_{i}: h_{1}, h_{2}, \ldots, h_{s} \in \mathbb{K}[\mathrm{x}]\right\}$ is an ideal generated by $g_{1}, g_{2}, \ldots, g_{s}$.
- If $I=\left\langle g_{1}, g_{2}, \ldots, g_{s}\right\rangle$, then $\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$ is called a basis of I.

Hilbert Basis Theorem

Every ideal $I \subseteq \mathbb{K}[\mathbf{x}]$ has a finite basis, that is, $I=\left\langle g_{1}, g_{2}, \ldots, g_{s}\right\rangle$ for some $g_{1}, g_{2}, \ldots, g_{s} \in \mathbb{K}[\mathrm{x}]$.

Ascending Chain Theorem

For any ascending chain of ideals $I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{k} \subseteq \cdots$ in $\mathbb{K}[\mathrm{x}]$, there exists an $N \in \mathbb{N}$ such that $I_{k}=I_{N}$ for any $k \geq N$.

Outline

(1) Background
(2) Talk1: Preliminaries

- Polynomials and Polynomial Ideals
- First-order Theory of Reals
- Continuous Dynamical Systems
- Hybrid Automata
(3) Talk2: Computing Invariants for Hybrid Systems
- Generating Continuous Invariants in Simple Case
- Generating Continuous Invariants in General Case
- Generating Semi-algebraic Global Invariants
- Abstraction of Elementary Hybrid Systems by Variable Transformation
- An Industrial Case Study: Soft Landing
(4) Talk3: Controller Synthesis
- Controller Synthesis with Safety
- Controller Synthesis with Safety and Optimality
- An Industrial Case Study: The Oil Pump Control Problem
(5) Conclusions

First-order Theory $T(\mathbb{R})$ of Reals

Syntax

- The language of $T(\mathbb{R})$ consists of
- variables: $x, y, z, \ldots, x_{1}, x_{2}, \ldots$, which are interpreted over \mathbb{R};
- relational symbols: $>,<, \geq, \leq,=, \neq$;
- Boolean connectives: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow, \ldots$; and
- quantifiers: \forall, \exists.
- A term of $T(\mathbb{R})$ over a finite set of variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a polynomial $p \in \mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$
- An atomic formula of $T(\mathbb{R})$ is of the form $p>0$, where D is any relational symbol
- A quantifier-free formula (QFF) of $T(\mathbb{R})$ is a Boolean combination of atomic formulas.
- A generic formula of $T(\mathbb{R})$ is built up from atomic formulas using Boolean connectives as well as quantifiers.

First-order Theory $T(\mathbb{R})$ of Reals

Syntax

- The language of $T(\mathbb{R})$ consists of
- variables: $x, y, z, \ldots, x_{1}, x_{2}, \ldots$, which are interpreted over \mathbb{R};
- relational symbols: $>,<, \geq, \leq,=, \neq$;
- Boolean connectives: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow, \ldots$; and
- quantifiers: \forall, \exists.
- A term of $T(\mathbb{R})$ over a finite set of variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a polynomial $p \in \mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
- An atomic formula of $T(\mathbb{R})$ is of the form $p \triangleright 0$, where \triangleright is any relational symbol
- A quantifier-free formula (QFF) of $T(\mathbb{R})$ is a Boolean combination of atomic formulas.
- A generic formula of $T(\mathbb{R})$ is built up from atomic formulas using Boolean connectives as well as quantifiers.

First-order Theory $T(\mathbb{R})$ of Reals

Syntax

- The language of $T(\mathbb{R})$ consists of
- variables: $x, y, z, \ldots, x_{1}, x_{2}, \ldots$, which are interpreted over \mathbb{R};
- relational symbols: $>,<, \geq, \leq,=, \neq$;
- Boolean connectives: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow, \ldots$; and
- quantifiers: \forall, \exists.
- A term of $T(\mathbb{R})$ over a finite set of variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a polynomial $p \in \mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
- An atomic formula of $T(\mathbb{R})$ is of the form $p \triangleright 0$, where \triangleright is any relational symbol.
- A quantifier-free formula (QFF) of $T(\mathbb{R})$ is a Boolean combination of atomic formulas.
- A generic formula of $T(\mathbb{R})$ is built up from atomic formulas using Boolean connectives as well as quantifiers.

First-order Theory $T(\mathbb{R})$ of Reals

Syntax

- The language of $T(\mathbb{R})$ consists of
- variables: $x, y, z, \ldots, x_{1}, x_{2}, \ldots$, which are interpreted over \mathbb{R};
- relational symbols: $>,<, \geq, \leq,=, \neq$;
- Boolean connectives: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow, \ldots$; and
- quantifiers: \forall, \exists.
- A term of $T(\mathbb{R})$ over a finite set of variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a polynomial $p \in \mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
- An atomic formula of $T(\mathbb{R})$ is of the form $p \triangleright 0$, where \triangleright is any relational symbol.
- A quantifier-free formula (QFF) of $T(\mathbb{R})$ is a Boolean combination of atomic formulas.
- A generic formula of $T(\mathbb{R})$ is built up from atomic formulas using Boolean connectives as well as quantifiers.

First-order Theory $T(\mathbb{R})$ of Reals

Syntax

- The language of $T(\mathbb{R})$ consists of
- variables: $x, y, z, \ldots, x_{1}, x_{2}, \ldots$, which are interpreted over \mathbb{R};
- relational symbols: $>,<, \geq, \leq,=, \neq$;
- Boolean connectives: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow, \ldots$; and
- quantifiers: \forall, \exists.
- A term of $T(\mathbb{R})$ over a finite set of variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a polynomial $p \in \mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
- An atomic formula of $T(\mathbb{R})$ is of the form $p \triangleright 0$, where \triangleright is any relational symbol.
- A quantifier-free formula (QFF) of $T(\mathbb{R})$ is a Boolean combination of atomic formulas.
- A generic formula of $T(\mathbb{R})$ is built up from atomic formulas using Boolean connectives as well as quantifiers.

Quantifier Elimination

Quantifier Elimination Property

- A theory \mathcal{T} is said to have quantifier elimination property, if for any formula φ in \mathcal{T}, there exists a quantifier-free formula $\varphi_{Q F}$ which only contains free variables of φ such that $\varphi \Leftrightarrow \varphi_{Q F}$.
- $T(\mathbb{R})$ admits quantifier elimination.
- The decidability of $T(\mathbb{R})$

Example

Quantifier Elimination

Quantifier Elimination Property

- A theory \mathcal{T} is said to have quantifier elimination property, if for any formula φ in \mathcal{T}, there exists a quantifier-free formula $\varphi_{Q F}$ which only contains free variables of φ such that $\varphi \Leftrightarrow \varphi_{Q F}$.
- $T(\mathbb{R})$ admits quantifier elimination.

Example

Quantifier Elimination

Quantifier Elimination Property

- A theory \mathcal{T} is said to have quantifier elimination property, if for any formula φ in \mathcal{T}, there exists a quantifier-free formula $\varphi_{Q F}$ which only contains free variables of φ such that $\varphi \Leftrightarrow \varphi_{Q F}$.
- $T(\mathbb{R})$ admits quantifier elimination.
- The decidability of $T(\mathbb{R})$

Example

$$
\begin{aligned}
\exists x \cdot a x^{2}+b x+c=0 \Leftrightarrow & a=b=c=0 \vee \\
& (a=0 \wedge b \neq 0) \vee \\
& \left(a \neq 0 \wedge b^{2}-4 a c \geq 0\right)
\end{aligned}
$$

Quantifier Elimination (Cont'd)

Semi-algrbraic Set

- A subset $A \subseteq \mathbb{R}^{n}$ is called a semi-algebraic set (SAS), if there exists a QFF $\phi \in T(\mathbb{R})$, such that $A=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \phi(\mathbf{x})\right.$ is true $\}$.
- SASs are closed under common set operations:
- Any SAS can be represented by a QFF in the form of where $p_{k j}(\mathrm{x}) \in \mathbb{Q}[\mathrm{x}]$ and

Semi-algebraic Template

A semi-algebraic template with degree d is of the form

Quantifier Elimination (Cont'd)

Semi-algrbraic Set

- A subset $A \subseteq \mathbb{R}^{n}$ is called a semi-algebraic set (SAS), if there exists a QFF $\phi \in T(\mathbb{R})$, such that $A=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \phi(\mathbf{x})\right.$ is true $\}$.
- SASs are closed under common set operations:
- $\mathcal{A}\left(\phi_{1}\right) \cap \mathcal{A}\left(\phi_{2}\right)=\mathcal{A}\left(\varphi_{1} \wedge \varphi_{2}\right) ;$
- $\mathcal{A}\left(\phi_{1}\right) \cup \mathcal{A}\left(\phi_{2}\right)=\mathcal{A}\left(\varphi_{1} \vee \phi_{2}\right) ;$
- $\mathcal{A}\left(\phi_{1}\right)^{c}=\mathcal{A}\left(\neg \phi_{1}\right)$;
- $\mathcal{A}\left(\phi_{1}\right) \backslash \mathcal{A}\left(\phi_{2}\right)=\mathcal{A}\left(\phi_{1}\right) \cap \mathcal{A}\left(\phi_{2}\right)^{c}=\mathcal{A}\left(\phi_{1} \wedge \neg \phi_{2}\right)$.
- Any SAS can be represented by a QFF in the form of

Semi-algebraic Template

A semi-algebraic template with degree d is of the form

Quantifier Elimination (Cont'd)

Semi-algrbraic Set

- A subset $A \subseteq \mathbb{R}^{n}$ is called a semi-algebraic set (SAS), if there exists a QFF $\phi \in T(\mathbb{R})$, such that $A=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \phi(\mathbf{x})\right.$ is true $\}$.
- SASs are closed under common set operations:
- $\mathcal{A}\left(\phi_{1}\right) \cap \mathcal{A}\left(\phi_{2}\right)=\mathcal{A}\left(\varphi_{1} \wedge \varphi_{2}\right) ;$
- $\mathcal{A}\left(\phi_{1}\right) \cup \mathcal{A}\left(\phi_{2}\right)=\mathcal{A}\left(\varphi_{1} \vee \phi_{2}\right) ;$
- $\mathcal{A}\left(\phi_{1}\right)^{c}=\mathcal{A}\left(\neg \phi_{1}\right)$;
- $\mathcal{A}\left(\phi_{1}\right) \backslash \mathcal{A}\left(\phi_{2}\right)=\mathcal{A}\left(\phi_{1}\right) \cap \mathcal{A}\left(\phi_{2}\right)^{c}=\mathcal{A}\left(\phi_{1} \wedge \neg \phi_{2}\right)$.
- Any SAS can be represented by a QFF in the form of $\phi(\mathrm{x}) \widehat{=} \bigvee_{k=1}^{K} \bigwedge_{j=1}^{J_{k}} p_{k j}(\mathrm{x}) \triangleright 0$, where $p_{k j}(\mathrm{x}) \in \mathbb{Q}[\mathrm{x}]$ and $\triangleright \in\{\geq,>\}$.

Semi-algebraic Template

A semi-algebraic template with degree d is of the form

Quantifier Elimination (Cont'd)

Semi-algrbraic Set

- A subset $A \subseteq \mathbb{R}^{n}$ is called a semi-algebraic set (SAS), if there exists a QFF $\phi \in T(\mathbb{R})$, such that $A=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \phi(\mathbf{x})\right.$ is true $\}$.
- SASs are closed under common set operations:
- $\mathcal{A}\left(\phi_{1}\right) \cap \mathcal{A}\left(\phi_{2}\right)=\mathcal{A}\left(\varphi_{1} \wedge \varphi_{2}\right) ;$
- $\mathcal{A}\left(\phi_{1}\right) \cup \mathcal{A}\left(\phi_{2}\right)=\mathcal{A}\left(\varphi_{1} \vee \phi_{2}\right) ;$
- $\mathcal{A}\left(\phi_{1}\right)^{c}=\mathcal{A}\left(\neg \phi_{1}\right)$;
- $\mathcal{A}\left(\phi_{1}\right) \backslash \mathcal{A}\left(\phi_{2}\right)=\mathcal{A}\left(\phi_{1}\right) \cap \mathcal{A}\left(\phi_{2}\right)^{c}=\mathcal{A}\left(\phi_{1} \wedge \neg \phi_{2}\right)$.
- Any SAS can be represented by a QFF in the form of $\phi(\mathrm{x}) \widehat{=} \bigvee_{k=1}^{K} \bigwedge_{j=1}^{J_{k}} p_{k j}(\mathrm{x}) \triangleright 0$, where $p_{k j}(\mathrm{x}) \in \mathbb{Q}[\mathrm{x}]$ and $\triangleright \in\{\geq,>\}$.

Semi-algebraic Template

A semi-algebraic template with degree d is of the form

$$
\phi(\mathbf{u}, \mathbf{x}) \widehat{=} \vee_{k=1}^{K} \wedge_{j=1}^{J_{k}} p_{k j}\left(\mathbf{u}_{k j}, \mathbf{x}\right) \triangleright 0
$$

Quantifier Elimination (Cont'd)

Survey of QE Algorithms

- Tarski's algorithm [Tarski 51]: the first one, but its complexity is nonelementary, impratical, simplified by Seidenberg [Seidenberg 54].
- Collins' algorithm [Collins 76]: based on cylindrical algebraic decomposition (CAD), double exponential in the number of variables, improved by Hoon Hong [Hoon Hong 92] by combining with SAT engine partial cylindrical algebraic decomposition (PCAD), implemented in many computer algebra tools, e.g., QEBCAD, REDLOG,
- Ben-Or, Kozen and Reif's algorithm double exponential in the number of variables using sequential computation, single exponential using parallel computation, based on Sturm sequence and Sturm Theorem, some mistake.
- More efficient algorithms
mainly based on Ben-Or, Kozen and Reif's work, double exponential in the number of quantifier alternation, no implementation yet.

Quantifier Elimination (Cont'd)

Survey of QE Algorithms

- Tarski's algorithm [Tarski 51]: the first one, but its complexity is nonelementary, impratical, simplified by Seidenberg [Seidenberg 54].
- Collins' algorithm [Collins 76]: based on cylindrical algebraic decomposition (CAD), double exponential in the number of variables, improved by Hoon Hong [Hoon Hong 92] by combining with SAT engine partial cylindrical algebraic decomposition (PCAD), implemented in many computer algebra tools, e.g., QEBCAD, REDLOG,
- Ben-Or, Kozen and Reif's algorithm double exponential in the number of variables using sequential computation, single exponential using parallel computation, basec on Sturm sequence and Sturm Theorem, some mistake.
- More efficient algorithms
mainly based on Ben-Or, Kozen and Reif's work, double exponential in the number of quantifier alternation, no implementation yet.

Quantifier Elimination (Cont'd)

Survey of QE Algorithms

- Tarski's algorithm [Tarski 51]: the first one, but its complexity is nonelementary, impratical, simplified by Seidenberg [Seidenberg 54].
- Collins' algorithm [Collins 76]: based on cylindrical algebraic decomposition (CAD), double exponential in the number of variables, improved by Hoon Hong [Hoon Hong 92] by combining with SAT engine partial cylindrical algebraic decomposition (PCAD), implemented in many computer algebra tools, e.g., QEBCAD, REDLOG,
- Ben-Or, Kozen and Reif's algorithm [Ben-Or, Kozen\&Reif 1986]: double exponential in the number of variables using sequential computation, single exponential using parallel computation, based on Sturm sequence and Sturm Theorem, some mistake.
- More efficient algorithms
mainly based on Ben-Or, Kozen and Reif's work, double exponential in the number of quantifier alternation, no implementation yet.

Quantifier Elimination (Cont'd)

Survey of QE Algorithms

- Tarski's algorithm [Tarski 51]: the first one, but its complexity is nonelementary, impratical, simplified by Seidenberg [Seidenberg 54].
- Collins' algorithm [Collins 76]: based on cylindrical algebraic decomposition (CAD), double exponential in the number of variables, improved by Hoon Hong [Hoon Hong 92] by combining with SAT engine partial cylindrical algebraic decomposition (PCAD), implemented in many computer algebra tools, e.g., QEBCAD, REDLOG,
- Ben-Or, Kozen and Reif's algorithm [Ben-Or, Kozen\&Reif 1986]: double exponential in the number of variables using sequential computation, single exponential using parallel computation, based on Sturm sequence and Sturm Theorem, some mistake.
- More efficient algorithms [Grigor'ev \& Vorobjov 1988, Grigor'ev 1988], [Renegar 1989], [Heintz, Roy\&Solerno, 1989], [Basu,Pollack\&Roy, 1996]: mainly based on Ben-Or, Kozen and Reif's work, double exponential in the number of quantifier alternation, no implementation yet.

Outline

(1) Background
(2) Talk1: Preliminaries

- Polynomials and Polynomial Ideals
- First-order Theory of Reals
- Continuous Dynamical Systems
- Hybrid Automata
(3) Talk2: Computing Invariants for Hybrid Systems
- Generating Continuous Invariants in Simple Case
- Generating Continuous Invariants in General Case
- Generating Semi-algebraic Global Invariants
- Abstraction of Elementary Hybrid Systems by Variable Transformation
- An Industrial Case Study: Soft Landing
(4) Talk3: Controller Synthesis
- Controller Synthesis with Safety
- Controller Synthesis with Safety and Optimality
- An Industrial Case Study: The Oil Pump Control Problem
(5) Conclusions

Continuous Dynamical Systems

- A continuous dynamical systems (CDS) is of the form

$$
\begin{equation*}
\dot{\mathrm{x}}=\mathrm{f}(\mathrm{x}), \tag{1}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a vector field.

- If f in (1) satisfies local Lipschitz condition, then given $x_{0} \in \mathbb{R}^{n}$, there exists a unique solution $x\left(x_{0} ; t\right):(a, b) \rightarrow \mathbb{R}^{n}$ such that $\mathrm{x}\left(\mathrm{x}_{0} ; 0\right)=\mathrm{x}_{0}$ and $\forall t \in(a, b) \cdot \frac{\mathrm{dx}\left(\mathrm{x}_{0} ; t\right)}{\mathrm{dt}}=\mathrm{f}\left(\mathrm{x}\left(\mathrm{x}_{0} ; t\right)\right)$.
- If f in (1) satisfies global Lipschitz condition, then the existence, uniqueness and completeness of solutions to (1) can be guaranteed.
- The k-th Lie derivatives $L_{f}^{k} \sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of σ along f is defined by:
where $\nabla \varrho(\mathrm{x}) \widehat{=}\left(\frac{\partial \varrho(\mathrm{x})}{\partial x_{1}}, \frac{\partial \varrho(\mathrm{x})}{\partial x_{2}}, \ldots, \frac{\partial \varrho(\mathrm{x})}{\partial x_{n}}\right)$ and (\cdot, \cdot) is the inner
product of two vectors.

Continuous Dynamical Systems

- A continuous dynamical systems (CDS) is of the form

$$
\begin{equation*}
\dot{\mathrm{x}}=\mathrm{f}(\mathrm{x}), \tag{1}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}$ and $\mathrm{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a vector field.

- If f in (1) satisfies local Lipschitz condition, then given $x_{0} \in \mathbb{R}^{n}$, there exists a unique solution $x\left(x_{0} ; t\right):(a, b) \rightarrow \mathbb{R}^{n}$ such that $\mathrm{x}\left(\mathrm{x}_{0} ; 0\right)=\mathrm{x}_{0}$ and $\forall t \in(a, b) \cdot \frac{\mathrm{dx}\left(\mathrm{x}_{0} ; t\right)}{\mathrm{dt}}=\mathrm{f}\left(\mathrm{x}\left(\mathrm{x}_{0} ; t\right)\right)$.
uniqueness and completeness of solutions to (1) can be guaranteed.
where $\nabla \varrho(\mathrm{x}) \widehat{=}\left(\frac{\partial \varrho(\mathrm{x})}{\partial x_{1}}, \frac{\partial \varrho(\mathrm{x})}{\partial x_{2}}, \ldots, \frac{\partial \varrho(\mathrm{x})}{\partial x_{n}}\right)$ and (\cdot, \cdot) is the inner
product of two vectors.

Continuous Dynamical Systems

- A continuous dynamical systems (CDS) is of the form

$$
\begin{equation*}
\dot{\mathrm{x}}=\mathrm{f}(\mathrm{x}), \tag{1}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}$ and $\mathrm{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a vector field.

- If f in (1) satisfies local Lipschitz condition, then given $x_{0} \in \mathbb{R}^{n}$, there exists a unique solution $x\left(x_{0} ; t\right):(a, b) \rightarrow \mathbb{R}^{n}$ such that $\mathrm{x}\left(\mathrm{x}_{0} ; 0\right)=\mathrm{x}_{0}$ and $\forall t \in(a, b) \cdot \frac{\mathrm{dx}\left(\mathrm{x}_{0} ; t\right)}{\mathrm{dt}}=\mathrm{f}\left(\mathrm{x}\left(\mathrm{x}_{0} ; t\right)\right)$.
- If f in (1) satisfies global Lipschitz condition, then the existence, uniqueness and completeness of solutions to (1) can be guaranteed.

Continuous Dynamical Systems

- A continuous dynamical systems (CDS) is of the form

$$
\begin{equation*}
\dot{\mathrm{x}}=\mathrm{f}(\mathrm{x}), \tag{1}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a vector field.

- If f in (1) satisfies local Lipschitz condition, then given $x_{0} \in \mathbb{R}^{n}$, there exists a unique solution $x\left(x_{0} ; t\right):(a, b) \rightarrow \mathbb{R}^{n}$ such that $\mathrm{x}\left(\mathrm{x}_{0} ; 0\right)=\mathrm{x}_{0}$ and $\forall t \in(a, b) \cdot \frac{\mathrm{dx}\left(\mathrm{x}_{0} ; t\right)}{\mathrm{dt}}=\mathrm{f}\left(\mathrm{x}\left(\mathrm{x}_{0} ; t\right)\right)$.
- If f in (1) satisfies global Lipschitz condition, then the existence, uniqueness and completeness of solutions to (1) can be guaranteed.
- The k-th Lie derivatives $L_{f}^{k} \sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of σ along f is defined by:
- $L_{f}^{0} \sigma(x)=\sigma(x)$,
- $L_{f}^{k} \sigma(x)=\left(\nabla L_{f}^{k-1} \sigma(x), f(x)\right)$, for $k>0$,
where $\nabla \varrho(\mathbf{x}) \widehat{=}\left(\frac{\partial \varrho(\mathrm{x})}{\partial x_{1}}, \frac{\partial \varrho(\mathrm{x})}{\partial x_{2}}, \ldots, \frac{\partial \varrho(\mathrm{x})}{\partial x_{n}}\right)$ and (\cdot, \cdot) is the inner product of two vectors.

Outline

(1) Background
(2) Talk1: Preliminaries

- Polynomials and Polynomial Ideals
- First-order Theory of Reals
- Continuous Dynamical Systems
- Hybrid Automata
(3) Talk2: Computing Invariants for Hybrid Systems
- Generating Continuous Invariants in Simple Case
- Generating Continuous Invariants in General Case
- Generating Semi-algebraic Global Invariants
- Abstraction of Elementary Hybrid Systems by Variable Transformation
- An Industrial Case Study: Soft Landing
(4) Talk3: Controller Synthesis
- Controller Synthesis with Safety
- Controller Synthesis with Safety and Optimality
- An Industrial Case Study: The Oil Pump Control Problem
(5) Conclusions

Hybrid Automaton

A hybrid automaton (HA) is a system $\mathcal{H} \widehat{=}(Q, X, f, D, E, G, R, \equiv)$, where

- $Q=\left\{q_{1}, \ldots, q_{m}\right\}$ is a finite set of modes;
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a finite set of continuous state variables, with $\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right)$ ranging over $\mathbb{R}^{n} ; Q \times \mathbb{R}^{n}$ is the state space of \mathcal{H};
- $f: Q \rightarrow\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right)$ assigns to each mode $q \in Q$ a vector field f_{q};
- $D: Q \rightarrow 2^{\mathbb{R}^{n}}$ assigns to each mode $q \in Q$ a domain $D_{q} \subseteq \mathbb{R}^{n}$;
- $E \subseteq Q \times Q$ is a set of discrete transitions;
- $G: E \rightarrow 2^{\mathbb{R}^{n}}$ assigns to each transition $e \in E$ a switching guard G_{e} $\subseteq \mathbb{R}^{n}$.
- R assigns to each transition $e \in E$ a reset function $R_{e}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$;
- 三 assigns to each $q \in Q$ a set of initial states $\bar{\Xi}_{q} \subseteq \mathbb{R}^{n}$.

Hybrid Trajectories Accepted by HA [Tomlin et al. 00]

Definition (Hybrid Time Set)

A hybrid time set is a sequence of time intervals $\tau=\left\{I_{i}\right\}_{i=0}^{N}(N$ can be $\infty)$ s.t.

- $\boldsymbol{l}_{i}=\left[\tau_{i}, \tau_{i}^{\prime}\right]$ with $\tau_{i} \leq \tau_{i}^{\prime}=\tau_{i+1}$ for all $i<N$;
- if $N<\infty$, then $I_{N}=\left[\tau_{N}, \tau_{N}^{\prime}\right\rangle$ is a right-closed or right-open nonempty interval (τ_{N}^{\prime} may be ∞);
- $\tau_{0}=0$.

Hybrid Trajectories Accepted by HA [Tomlin et al. 00]

Definition (Hybrid Time Set)

 right-closed or right-open nonempty interval (τ_{N}^{\prime} may be ∞);

- $\tau_{0}=0$.

Hybrid Trajectories Accepted by HA [Tomlin et al. 00]

Definition (Hybrid Trajectory)

A hybrid trajectory is a triple $\omega=(\tau, \alpha, \beta)$, where $\tau=\left\{I_{i}\right\}_{i=0}^{N}$ is a hybrid time set and $\alpha=\left\{\alpha_{i}: l_{i} \rightarrow Q\right\}$ and $\beta=\left\{\beta_{i}: l_{i} \rightarrow \mathbb{R}^{n}\right\}$ are two sequences of functions satisfying
(1) Initial condition: $\alpha_{0}[0]=q_{0}$ and $\beta_{0}[0]=x_{0}$;
(2) Discrete transition: for all $i<\langle\tau\rangle$,

$$
\begin{aligned}
& e=\left(\alpha_{i}\left(\tau_{i}^{\prime}\right), \alpha_{i+1}\left(\tau_{i+1}\right)\right) \in E, \beta_{i}\left(\tau_{i}^{\prime}\right) \in G_{e} \text { and } \\
& \beta_{i+1}\left(\tau_{i+1}\right)=R_{e}\left(\beta_{i}\left(\tau_{i}^{\prime}\right)\right) ;
\end{aligned}
$$

(3) Continuous evolution: for all $i \leq\langle\tau\rangle$ with $\tau_{i}<\tau_{i}^{\prime}$, if $q=\alpha_{i}\left(\tau_{i}\right)$, then
(1) for all $t \in I_{i}, \alpha_{i}(t)=q$,
(2) $\beta_{i}(t)$ is the solution to the differential equation $\dot{\mathbf{x}}=\mathbf{f}_{q}(\mathbf{x})$ over I_{i} with initial value $\beta_{i}\left(\tau_{i}\right)$, and
(3) for all $t \in\left[\tau_{i}, \tau_{i}^{\prime}\right), \beta_{i}(t) \in D_{q}$.

Hybrid Trajectories Accepted by HA [Tomlin et al. 00]

Definition (Hybrid Trajectory)

A hybrid trajectory is a triple $\omega=(\tau, \alpha, \beta)$, where $\tau=\left\{I_{i}\right\}_{i=0}^{N}$ is a hybrid time set and $\alpha=\left\{\alpha_{i}: I_{i} \rightarrow Q\right\}$ and $\beta=\left\{\beta_{i}: I_{i} \rightarrow \mathbb{R}^{n}\right\}$ are two sequences of functions satisfying
(1) Initial condition: $\alpha_{0}[0]=q_{0}$ and $\beta_{0}[0]=x_{0}$;
(2) Discrete transition: for all $i<\langle\tau\rangle$,

$$
\begin{aligned}
& e=\left(\alpha_{i}\left(\tau_{i}^{\prime}\right), \alpha_{i+1}\left(\tau_{i+1}\right)\right) \in E, \beta_{i}\left(\tau_{i}^{\prime}\right) \in G_{e} \text { and } \\
& \beta_{i+1}\left(\tau_{i+1}\right)=R_{e}\left(\beta_{i}\left(\tau_{i}^{\prime}\right)\right) ;
\end{aligned}
$$

(3) Continuous evolution: for all $i \leq\langle\tau\rangle$ with $\tau_{i}<\tau_{i}^{\prime}$, if $q=\alpha_{i}\left(\tau_{i}\right)$, then
(1) for all $t \in I_{i}, \alpha_{i}(t)=q$,
(2) $\beta_{i}(t)$ is the solution to the differential equation $\dot{\mathbf{x}}=\mathbf{f}_{q}(\mathbf{x})$ over I_{i} with initial value $\beta_{i}\left(\tau_{i}\right)$, and
(3) for all $t \in\left[\tau_{i}, \tau_{i}^{\prime}\right), \beta_{i}(t) \in D_{q}$.

Hybrid Trajectories Accepted by HA [Tomlin et al. 00]

Definition (Hybrid Trajectory)

A hybrid trajectory is a triple $\omega=(\tau, \alpha, \beta)$, where $\tau=\left\{I_{i}\right\}_{i=0}^{N}$ is a hybrid time set and $\alpha=\left\{\alpha_{i}: I_{i} \rightarrow Q\right\}$ and $\beta=\left\{\beta_{i}: I_{i} \rightarrow \mathbb{R}^{n}\right\}$ are two sequences of functions satisfying
(1) Initial condition: $\alpha_{0}[0]=q_{0}$ and $\beta_{0}[0]=x_{0}$;
(2) Discrete transition: for all $i<\langle\tau\rangle$,
$e=\left(\alpha_{i}\left(\tau_{i}^{\prime}\right), \alpha_{i+1}\left(\tau_{i+1}\right)\right) \in E, \beta_{i}\left(\tau_{i}^{\prime}\right) \in G_{e}$ and
$\beta_{i+1}\left(\tau_{i+1}\right)=R_{e}\left(\beta_{i}\left(\tau_{i}^{\prime}\right)\right) ;$
(3) Continuous evolution: for all $i \leq\langle\tau\rangle$ with $\tau_{i}<\tau_{i}^{\prime}$, if $q=\alpha_{i}\left(\tau_{i}\right)$, then
(1) for all $t \in I_{i}, \alpha_{i}(t)=q$,
(2) $\beta_{i}(t)$ is the solution to the differential equation $\dot{\mathbf{x}}=\mathbf{f}_{q}(\mathbf{x})$ over I_{i} with initial value $\beta_{i}\left(\tau_{i}\right)$, and
(3) for all $t \in\left[\tau_{i}, \tau_{i}^{\prime}\right), \beta_{i}(t) \in D_{q}$.

Hybrid Trajectories Accepted by HA (Cont'd) [Tomlin et al. 00]

A hybrid trajectory (τ, α, β) is called infinite if

- $\langle\tau\rangle=N$ is ∞, or

A hybrid automaton is called
non-blocking if there is an
infinite trajectory starting from
any initial state $\left(q_{0}, x_{0}\right)$, and
blocking otherwise.

Hybrid Trajectories Accepted by HA (Cont'd) [Tomlin et al. 00]

A hybrid trajectory (τ, α, β)
is called infinite if

- $\langle\tau\rangle=N$ is ∞, or
- $\|\tau\|=\sum_{i=0}^{N}\left(\tau_{i}^{\prime}-\tau_{i}\right)$ is ∞.

A hybrid automaton is called
non-blocking if there is an
infinite trajectory starting from
any initial state (q_{0}, x_{0}), and
blocking otherwise.

Hybrid Trajectories Accepted by HA (Cont'd) [Tomlin et al. 00]

A hybrid trajectory (τ, α, β) is called infinite if

- $\langle\tau\rangle=N$ is ∞, or
- $\|\tau\|=\sum_{i=0}^{N}\left(\tau_{i}^{\prime}-\tau_{i}\right)$ is ∞.
A hybrid automaton is called non-blocking if there is an infinite trajectory starting from any initial state (q_{0}, x_{0}), and blocking otherwise.

Reachable Set of HA

Definition (Reachable Set)

Given an HA \mathcal{H}, the reachable set $\mathcal{R}_{\mathcal{H}}$ of \mathcal{H} consists of those (q, x) for which there exists a finite sequence

$$
\left(q_{0}, x_{0}\right),\left(q_{1}, x_{1}\right), \ldots,\left(q_{1}, x_{1}\right)
$$

such that $\left(q_{0}, x_{0}\right) \in \Xi_{\mathcal{H}},\left(q_{I}, x_{l}\right)=(q, x)$, and for any $0 \leq i \leq I-1$, one of the following two conditions holds:

- (Discrete Jump): $e=\left(q_{i}, q_{i+1}\right) \in E, x_{i} \in G_{e}$ and $\mathrm{x}_{i+1}=R_{e}\left(\mathrm{x}_{i}\right)$; or
- (Continuous Evolution): $q_{i}=q_{i+1}$, and there exists a $\delta \geq 0$ s.t. the solution $\mathrm{x}\left(\mathrm{x}_{i} ; t\right)$ to $\dot{\mathrm{x}}=\mathrm{f}_{q_{i}}$ satisfies
- $\mathbf{x}\left(\mathbf{x}_{i} ; t\right) \in D_{q_{i}}$ for all $t \in[0, \delta]$; and
- $\mathbf{x}\left(\mathbf{x}_{i} ; \delta\right)=\mathbf{x}_{i+1}$.

Outline

(1) Background
(2) Talk1: Preliminaries

- Polynomials and Polynomial Ideals
- First-order Theory of Reals
- Continuous Dynamical Systems
- Hybrid Automata
(3) Talk2: Computing Invariants for Hybrid Systems
- Generating Continuous Invariants in Simple Case
- Generating Continuous Invariants in General Case
- Generating Semi-algebraic Global Invariants
- Abstraction of Elementary Hybrid Systems by Variable Transformation
- An Industrial Case Study: Soft Landing
(4) Talk3: Controller Synthesis
- Controller Synthesis with Safety
- Controller Synthesis with Safety and Optimality
- An Industrial Case Study: The Oil Pump Control Problem
(5) Conclusions

Continuous vs Global Invariants

Note that

- Hybrid systems consists of a set of CDSs, a set of transitions between these CDSs, and a transition may be equipped with a guard and reset
- Invariant plays a key role in analysis, verification, synthesis of hybrid systems
- Global invariant keeps invariant during continuous and discrete evolutions
- Continuous invariant keeps invariant in a mode
- Interplay between global and continuous invariant
- Both can be reduced to constraint solving
- Continuous invariant (differential invariant) generation is more complicated

Global Invariant

Definition (Global Invariant)

An invariant of an HA \mathcal{H} maps to each $q \in Q$ a subset $I_{q} \subseteq \mathbb{R}^{n}$, such that for all $(q, x) \in \mathcal{R}_{\mathcal{H}}$ (the reachable set), we have $\mathrm{x} \in I_{q}$.

Definition (Inductive Invariant)

Given an HA \mathcal{H}, an inductive invariant maps to each $q \in Q$ a subset $I_{q} \subseteq \mathbb{R}^{n}$, such that the following conditions are satisfied:

Global Invariant

Definition (Global Invariant)

An invariant of an HA \mathcal{H} maps to each $q \in Q$ a subset $I_{q} \subseteq \mathbb{R}^{n}$, such that for all $(q, x) \in \mathcal{R}_{\mathcal{H}}$ (the reachable set), we have $x \in I_{q}$.

Definition (Inductive Invariant)

Given an HA \mathcal{H}, an inductive invariant maps to each $q \in Q$ a subset $I_{q} \subseteq \mathbb{R}^{n}$, such that the following conditions are satisfied:
(1) $\bar{Z}_{q} \subseteq I_{q}$ for all $q \in Q$;
(2) for any $e=\left(q, q^{\prime}\right) \in E$, if $\mathrm{x} \in I_{q} \cap G_{e}$, then $\mathrm{x}^{\prime}=R_{e}(\mathrm{x}) \in I_{q^{\prime}}$;
(3) for any $q \in Q$ and any $x_{0} \in I_{q}$, if there exists a $\delta \geq 0$ s.t. the solution $\mathrm{x}\left(\mathrm{x}_{0} ; t\right)$ to $\dot{\mathrm{x}}=\mathrm{f}_{q}$ satisfies: (i) $\mathrm{x}\left(\mathrm{x}_{0} ; \delta\right)=\mathrm{x}^{\prime}$; and (ii) $x\left(x_{0} ; t\right) \in D_{q}$ for all $t \in[0, \delta]$, then $x^{\prime} \in I_{q}$.

Continuous Invariant

Definition (Continuous Invariant see also [Platzer \& Clarke 08])

Given $\left(D_{q}, \mathrm{f}_{q}\right)$, we call $P \subseteq \mathbb{R}^{n}$ a continuous invariant of $\left(D_{q}, \mathrm{f}_{q}\right)$ if for all $x_{0} \in P$ and all $T \geq 0$,

$$
\left(\forall t \in[0, T] . \mathbf{x}(t) \in D_{q}\right) \Longrightarrow(\forall t \in[0, T] . \mathbf{x}(t) \in P)
$$

- A continuous invariant of a PDS is called a semi-algebraic

Continuous Invariant

Definition (Continuous Invariant see also [Platzer \& Clarke 08])

Given $\left(D_{q}, \mathbf{f}_{q}\right)$, we call $P \subseteq \mathbb{R}^{n}$ a continuous invariant of $\left(D_{q}, \mathbf{f}_{q}\right)$ if for all $x_{0} \in P$ and all $T \geq 0$,

$$
\left(\forall t \in[0, T] . \mathbf{x}(t) \in D_{q}\right) \Longrightarrow(\forall t \in[0, T] . \mathbf{x}(t) \in P)
$$

- A continuous invariant of a PDS is called a semi-algebraic invariant (SAI) if it is a semi-algebraic set.

Related Work

- Barrier-certificate [Prajna\&Jadbadbaie 2004, Plazer\&Clarke 2008]
- Basic idea: Let $\mathcal{D}=\{\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})\}$ and $H=\{h(\mathbf{x}) \geq 0\}$. A function $B: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a barrier certificate if it is differentiable and satisfying

$$
\forall \mathbf{x} \in H \cdot \frac{\partial B}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x}) \leq 0
$$

or

$$
\forall \mathbf{x} \in H\left(B(x)=0 \Rightarrow \frac{\partial B}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x})<0\right)
$$

Let $P:=\{\mathbf{x} \mid B(\mathbf{x}) \leq 0\}$. Then P is an invariant of (\mathcal{D}, H).

Related Work (Cont'd)

- Boundary method [Taly, Gulwani\&Tiwari, VMCAI 2009]

Let $\mathcal{D}=\{\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})\}$ and $H=\{h(\mathbf{x}) \geq 0\}$. If $P:=\{\mathbf{x} \mid p(\mathbf{x}) \geq 0\}$ has the following property: For each x s.t. $p(\mathrm{x})=0$, there is a $\delta>0$ s.t.

$$
\forall \mathbf{y}:\left(p(\mathbf{y})=0 \wedge\|\mathbf{y}-\mathbf{x}\|<\delta \Rightarrow L_{\mathbf{f}} p(\mathbf{y}) \geq 0 \wedge \frac{\partial p}{\partial \mathbf{y}} \neq \mathbf{0}\right)
$$

then P is an invariant of (\mathcal{D}, H).

- It imposes a strong assumption on the boundary.
- Ideal fixed point method

Related Work (Cont'd)

- Boundary method [Taly, Gulwani\&Tiwari, VMCAI 2009]

Let $\mathcal{D}=\{\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})\}$ and $H=\{h(\mathbf{x}) \geq 0\}$. If $P:=\{\mathbf{x} \mid p(\mathbf{x}) \geq 0\}$ has the following property: For each x s.t. $\mathrm{p}(\mathrm{x})=0$, there is a $\delta>0$ s.t.

$$
\forall \mathbf{y}:\left(p(\mathbf{y})=0 \wedge\|\mathbf{y}-\mathbf{x}\|<\delta \Rightarrow L_{\mathbf{f}} p(\mathbf{y}) \geq 0 \wedge \frac{\partial p}{\partial \mathbf{y}} \neq \mathbf{0}\right)
$$

then P is an invariant of (\mathcal{D}, H).

- It imposes a strong assumption on the boundary.
- Ideal fixed point method [Sankaranarayanan, HSCC 2010]
- Basic idea: If an ideal $\mathcal{I} \subseteq \mathcal{R}[x]$ has the property:
(1) $(\forall p \in \mathcal{I}, \mathrm{x} \in H) p(\mathrm{x})=0$,
(2) $(\forall p \in \mathcal{I}), L_{f} p \in \mathcal{I}$;
then $P:=\{\mathbf{x} \mid p(\mathbf{x})=0, \forall p \in \mathcal{I}\}$ is an invariant of (\mathcal{D}, H).
- It cannot cope with invariants as general semi-algebraic sets.

Related Work (Cont'd)

Open Problem

- Open problem [Sankaranarayanan, HSCC 2010, Taly\&Tiwari, FSTTCS 2009]: Can we find a complete method to generate all semi-algebraic invariants of a polynomial dynamical system?
- We addressed this problem and gave an affirmative answer in [Liu, Zhan\&Zhao 2011].

Outline

(1) Background
(2) Talk1: Preliminaries

- Polynomials and Polynomial Ideals
- First-order Theory of Reals
- Continuous Dynamical Systems
- Hybrid Automata
(3) Talk2: Computing Invariants for Hybrid Systems
- Generating Continuous Invariants in Simple Case
- Generating Continuous Invariants in General Case
- Generating Semi-algebraic Global Invariants
- Abstraction of Elementary Hybrid Systems by Variable Transformation
- An Industrial Case Study: Soft Landing
(4) Talk3: Controller Synthesis
- Controller Synthesis with Safety
- Controller Synthesis with Safety and Optimality
- An Industrial Case Study: The Oil Pump Control Problem
(5) Conclusions

Basic Idea

- Let (D, f) be a PDS, $x(t)$ is a trajectory of (D, f) from x_{0}, and $P \widehat{=} p(\mathrm{x}) \geq 0$. Then P be a differential invariant of (D, f) iff

$$
\begin{equation*}
\forall x_{0} \in \partial P \cap D, \exists \epsilon>0, \forall t \in[0, \epsilon] \cdot p(x(t)) \geq 0 \tag{2}
\end{equation*}
$$

- $p(x(t)$)'s Taylor's expansion at $t=0$

- (2) holds iff

- The pointwise rank of p with respect to f as the function $\gamma_{p, \mathrm{f}}: \mathbb{R}^{n} \rightarrow \mathbb{N} \cup\{\infty\}$ defined by

Basic Idea

- Let (D, f) be a PDS, $x(t)$ is a trajectory of (D, f) from x_{0}, and $P \widehat{=} p(\mathrm{x}) \geq 0$. Then P be a differential invariant of (D, f) iff

$$
\begin{equation*}
\forall x_{0} \in \partial P \cap D, \exists \epsilon>0, \forall t \in[0, \epsilon] \cdot p(x(t)) \geq 0 \tag{2}
\end{equation*}
$$

- $p(x(t)$)'s Taylor's expansion at $t=0$

$$
p(x(t))=L_{f}^{1} p\left(\mathrm{x}_{0}\right) \cdot t+L_{\mathrm{f}}^{2} p\left(\mathrm{x}_{0}\right) \cdot \frac{t^{2}}{2!}+\cdots L_{\mathrm{f}}^{i} p\left(\mathrm{x}_{0}\right) \cdot \frac{t^{i}}{i!}+\cdots
$$

- (2) holds iff
(1) either for all $i \geq 0, L_{f}^{i} p\left(x_{0}\right)=0$
(2) or there is some k

$$
\text { if } p \text { with respect to } f \text { as the function }
$$ $\gamma_{p, f}: \mathbb{R}^{n} \rightarrow \mathbb{N} \cup\{\infty\}$ defined by

Basic Idea

- Let (D, \mathbf{f}) be a PDS, $\mathbf{x}(t)$ is a trajectory of (D, f) from x_{0}, and $P \widehat{=} p(\mathbf{x}) \geq 0$. Then P be a differential invariant of (D, \mathbf{f}) iff

$$
\begin{equation*}
\forall \mathrm{x}_{0} \in \partial P \cap D, \exists \epsilon>0, \forall t \in[0, \epsilon] \cdot p(\mathrm{x}(t)) \geq 0 \tag{2}
\end{equation*}
$$

- $p(x(t))$'s Taylor's expansion at $t=0$

$$
p(x(t))=L_{\mathrm{f}}^{1} p\left(\mathrm{x}_{0}\right) \cdot t+L_{\mathrm{f}}^{2} p\left(\mathrm{x}_{0}\right) \cdot \frac{t^{2}}{2!}+\cdots L_{\mathrm{f}}^{i} p\left(\mathrm{x}_{0}\right) \cdot \frac{t^{i}}{i!}+\cdots
$$

- (2) holds iff
(1) either for all $i \geq 0, L_{f}^{i} p\left(x_{0}\right)=0$
(2) or there is some $k>i \geq 0$, such that $L_{f}^{i} p\left(x_{0}\right)=0$ and $L_{f}^{k} p\left(x_{0}\right)>0$.
- The pointwise rank of p with respect to f as the function $\gamma_{p, \mathrm{f}}: \mathbb{R}^{n} \rightarrow \mathbb{N} \cup\{\infty\}$ defined by

$$
\gamma_{p, \mathbf{f}}(\mathbf{x})=\min \left\{k \in \mathbb{N} \mid L_{\mathbf{f}}^{k} p(\mathbf{x}) \neq 0\right\}
$$

if such k exists, and $\gamma_{p, f}(\mathbf{x})=\infty$ otherwise.

Example

Let $\mathrm{f}=(-x, y)$ and $p(x, y)=x+y^{2}$. Then

$$
\begin{aligned}
& L_{\mathrm{f}}^{0} p(x, y)=x+y^{2} \\
& L_{\mathrm{f}}^{1} p(x, y)=-x+2 y^{2} \\
& L_{\mathrm{f}}^{2} p(x, y)=x+4 y^{2}
\end{aligned}
$$

I: 1-order Lie Derivative and Gradient

Consider point $(-1,1)$ (see the

 picture),- The points on the parabola $p(x, y)=0$ with zero energy, and the points in the white area have positive energy, i.e. $p(x, y)>0$.
- B denotes the evolution direction of f at the point.
- A is the gradient $\left.\nabla p\right|_{(-1,1)}$ of $p(x, y)$.
- $\left.L_{f}^{1} p\right|_{(-1,1)}=3$ predicts that the trajectory starting at $(-1,1)$ will enter the white area.

Example

$$
\begin{aligned}
& \text { Let } f=(-x, y) \text { and } \\
& p(x, y)=x+y^{2} \text {. Then } \\
& \qquad \begin{array}{l}
L_{f}^{0} p(x, y)=x+y^{2} \\
L_{f}^{1} p(x, y)=-x+2 y^{2} \\
L_{f}^{2} p(x, y)=x+4 y^{2}
\end{array}
\end{aligned}
$$

- B denotes the evolution direction of f at the point.
- A is the gradient $\left.\nabla p\right|_{(-1,1)}$ of $p(x, y)$.
- $\left.L_{f}^{1} p\right|_{(-1,1)}=3$ predicts that the trajectory starting at $(-1,1)$ will enter the white area.

Example

$$
\begin{aligned}
& \text { Let } \mathrm{f}=(-x, y) \text { and } \\
& p(x, y)=x+y^{2} \text {. Then } \\
& \qquad \begin{array}{l}
L_{f}^{0} p(x, y)=x+y^{2} \\
L_{f}^{1} p(x, y)=-x+2 y^{2} \\
L_{f}^{2} p(x, y)=x+4 y^{2}
\end{array}
\end{aligned}
$$

I: 1-order Lie Derivative and Gradient
picture),

- The points on the parabola $p(x, y)=0$ with zero energy, and the points in the white area have positive energy, i.e. $p(x, y)>0$.
- B denotes the evolution direction of f at the point.
- A is the gradient $\left.\nabla p\right|_{(-1,1)}$ of $p(x, y)$.
- $\left.L_{f}^{1} p\right|_{(-1,1)}=3$ predicts that the trajectory starting at $(-1,1)$ will enter the white area.

Example

Let $\mathrm{f}(x, y)=\left(-2 y, x^{2}\right)$ and
$h(x, y)=x+y^{2}$. Then
$L_{\mathrm{f}}^{0} h(x, y)=x+y^{2}$
$L_{f}^{1} h(x, y)=-2 y+2 x^{2} y$
$L_{f}^{2} h(x, y)=-8 y^{2} x-\left(2-2 x^{2}\right) x^{2}$

II: Demand for Higher Order Lie Derivative

Example

Let $\mathrm{f}(x, y)=\left(-2 y, x^{2}\right)$ and
$h(x, y)=x+y^{2}$. Then
$L_{f}^{0} h(x, y)=x+y^{2}$
$L_{f}^{1} h(x, y)=-2 y+2 x^{2} y$
$L_{f}^{2} h(x, y)=-8 y^{2} x-\left(2-2 x^{2}\right) x^{2}$

II: Demand for Higher Order Lie Derivative

Also consider point $(-1,1)$ on $h(x, y)=0$ (see the picture),

- the gradient of h is $(1,2)$ (vector A);
- the evolution direction is $(-2,1)$ (vector B);
- their inner product is zero, i.e., $L_{\mathrm{f}}^{1} h(-1,1)=0$, thus it is impossible to predict the tendency of the trajectory starting from $(-1,1)$ via the 1-order Lie derivative;
- By a simple computation, $L_{f}^{2} h(-1,1)=8$. Hence $\gamma_{h, f}(-1,1)=2$.

Theoretical Results

Theorem (Rank Theorem)

Given a polynomial p and a PVF f , there is a natural number $N_{p, \mathrm{f}}$ such that for any $\mathrm{x} \in \mathbb{R}^{n}$, if $\gamma_{p, \mathrm{f}}(\mathrm{x})<\infty$, then $\gamma_{p, \mathrm{f}}(\mathbf{x}) \leq N_{p, \mathrm{f}}$.

Theorem (Parametric Rank Theorem)
Given a parametric polynomial $p(\mathbf{u}, \mathbf{x})$ and a PVF f , there is an integer $N_{p, f}$ such that $\gamma_{p_{u_{0}}, f}(\mathbf{x})<\infty$ implies $\gamma_{p_{u_{0}}, f}(\mathbf{x}) \leq N_{p, f}$ for all $\mathbf{x} \in \mathbb{R}^{n}$ and all \mathbf{u}_{0}

Theorem (Criterion Theorem)

Given a polynomial $p, p(x) \geq 0$ is an SCI of the $\operatorname{PCCDS}(h(x) \geq 0, \mathrm{f})$ iff
holds for all $\mathrm{x} \in \mathbb{R}^{n}$, where

Theoretical Results

Theorem (Rank Theorem)

Given a polynomial p and a PVF f , there is a natural number $N_{p, \mathrm{f}}$ such that for any $\mathbf{x} \in \mathbb{R}^{n}$, if $\gamma_{p, \mathrm{f}}(\mathbf{x})<\infty$, then $\gamma_{p, f}(\mathbf{x}) \leq N_{p, \mathrm{f}}$.

Theorem (Parametric Rank Theorem)

Given a parametric polynomial $p(\mathbf{u}, \mathbf{x})$ and a PVF \mathbf{f}, there is an integer $N_{p, f} \in \mathbb{N}$ such that $\gamma_{p_{u_{0}}, f}(\mathbf{x})<\infty$ implies $\gamma_{p_{\mathbf{u}_{0}}, f}(\mathbf{x}) \leq N_{p, f}$ for all $\mathbf{x} \in \mathbb{R}^{n}$ and all $\mathbf{u}_{0} \in \mathbb{R}^{w}$.

Theorem (Criterion Theorem)
Given a polynomial $p, p(x) \geq 0$ is an SCI of the PCCDS $(h(x) \geq 0, \mathbf{f})$ iff
holds for all $\mathrm{x} \in \mathbb{R}^{n}$, where

Theoretical Results

Theorem (Rank Theorem)

Given a polynomial p and a PVF f , there is a natural number $N_{p, f}$ such that for any $\mathbf{x} \in \mathbb{R}^{n}$, if $\gamma_{p, \mathrm{f}}(\mathbf{x})<\infty$, then $\gamma_{p, \mathrm{f}}(\mathbf{x}) \leq N_{p, \mathrm{f}}$.

Theorem (Parametric Rank Theorem)

Given a parametric polynomial $p(\mathbf{u}, \mathbf{x})$ and a PVF \mathbf{f}, there is an integer $N_{p, \mathbf{f}} \in \mathbb{N}$ such that $\gamma_{p_{u_{0}}, f}(\mathbf{x})<\infty$ implies $\gamma_{p_{u_{0}}, f}(\mathbf{x}) \leq N_{p, f}$ for all $\mathbf{x} \in \mathbb{R}^{n}$ and all $\mathbf{u}_{0} \in \mathbb{R}^{w}$.

Theorem (Criterion Theorem)

Given a polynomial $p, p(\mathbf{x}) \geq 0$ is an SCI of the PCCDS $(h(\mathbf{x}) \geq 0, \mathbf{f})$ iff

$$
\begin{equation*}
\theta(h, p, \mathbf{f}, \mathbf{x}) \widehat{=}(p(\mathbf{x})=0 \wedge \pi(p, \mathbf{f}, \mathbf{x})) \rightarrow \pi(h, \mathbf{f}, \mathbf{x}), \tag{3}
\end{equation*}
$$

holds for all $\mathrm{x} \in \mathbb{R}^{n}$, where

$$
\begin{aligned}
\pi^{(i)}(p, \mathbf{f}, \mathbf{x}) & \hat{=}\left(\bigwedge_{0 \leq j<i} L_{f}^{j} p(\mathbf{x})=0\right) \wedge L_{f}^{i} p(\mathbf{x})<0, \\
\pi(p, \mathbf{f}, \mathbf{x}) & \widehat{=} \bigvee_{0 \leq i \leq N_{\rho, f}} \pi^{(i)}(p, \mathbf{f}, \mathbf{x}) .
\end{aligned}
$$

Algorithm

I. First, set a simple semi-algebraic template $P \widehat{=} p(\mathbf{u}, \mathbf{x}) \geq 0$ using a parametric polynomial $p(\mathbf{u}, \mathbf{x})$.

Then apply QE to the formula $\forall x \cdot \theta(h, p, f, x)$. In practice, $Q E$ may be applied to a formula $\forall x \cdot(\theta \wedge \phi)$, where ϕ is a formula imposing some additional constraint on the SCI P. If the output of QE is false, then there is no SCI in the form of the predefined P; otherwise, a constraint on u , denoted by $R(\mathrm{u})$, will be returned.

Now, use an SMT solver like Z3 to pick a $\mathrm{u}_{0} \in R(\mathrm{u})$ and then $p_{\mathrm{u}_{0}}(\mathrm{x}) \geq 0$ is an SCI of $(h(x) \geq 0, \mathrm{f})$.

Algorithm

I. First, set a simple semi-algebraic template $P \widehat{=} p(\mathbf{u}, \mathbf{x}) \geq 0$ using a parametric polynomial $p(\mathbf{u}, \mathbf{x})$.
II. Then apply QE to the formula $\forall \mathrm{x} \cdot \theta(h, p, \mathbf{f}, \mathrm{x})$. In practice, QE may be applied to a formula $\forall x .(\theta \wedge \phi)$, where ϕ is a formula imposing some additional constraint on the SCI P. If the output of QE is false, then there is no SCI in the form of the predefined P; otherwise, a constraint on \mathbf{u}, denoted by $R(\mathbf{u})$, will be returned.

Now, use an SMT solver like Z3 to pick a $\mathrm{u}_{0} \in R(\mathrm{u})$ and then

Algorithm

I. First, set a simple semi-algebraic template $P \widehat{=} p(\mathbf{u}, \mathbf{x}) \geq 0$ using a parametric polynomial $p(u, x)$.
II. Then apply QE to the formula $\forall \mathrm{x} \cdot \theta(h, p, \mathbf{f}, \mathrm{x})$. In practice, QE may be applied to a formula $\forall x .(\theta \wedge \phi)$, where ϕ is a formula imposing some additional constraint on the SCI P. If the output of QE is false, then there is no SCI in the form of the predefined P; otherwise, a constraint on \mathbf{u}, denoted by $R(\mathbf{u})$, will be returned.
III. Now, use an SMT solver like Z 3 to pick a $\mathbf{u}_{0} \in R(\mathbf{u})$ and then $p_{\mathbf{u}_{0}}(x) \geq 0$ is an SCI of $(h(x) \geq 0, f)$.

Running Example

Consider a PDS ($D=-x-y^{2} \geq 0, f(x, y)=\left(-2 y, x^{2}\right)$). Apply procedure (I-III), we have:

where

Running Example

Consider a PDS $\left(D=-x-y^{2} \geq 0, f(x, y)=\left(-2 y, x^{2}\right)\right)$.
Apply procedure (I-III), we have:
I Set a template $P \hat{=} p(\mathbf{u}, \mathbf{x}) \geq 0$ with $p(\mathbf{u}, \mathbf{x}) \widehat{=} a y(x-y)$, where $\mathbf{u} \widehat{=}(a)$. By a simple computation we get $N_{p, f}=2$.

where

Running Example

Consider a PDS $\left(D=-x-y^{2} \geq 0, f(x, y)=\left(-2 y, x^{2}\right)\right)$.
Apply procedure (I-III), we have:
I Set a template $P \widehat{=} p(\mathbf{u}, \mathbf{x}) \geq 0$ with $p(\mathbf{u}, \mathbf{x}) \widehat{=} a y(x-y)$, where $\mathbf{u} \hat{=}(a)$. By a simple computation we get $N_{p, f}=2$.
II Compute the corresponding formula

$$
\begin{aligned}
\theta(h, p, \mathbf{f}, \mathbf{x}) \widehat{=} & p=0 \wedge\left(\pi_{p, f, \mathbf{x}}^{(0)} \vee \pi_{p, \mathbf{f}, \mathbf{x}}^{(1)} \vee \pi_{p, \mathbf{f}, \mathbf{x}}^{(2)}\right) \longrightarrow \\
& \left(\pi_{h, \mathbf{f}, \mathrm{x}}^{(0)} \vee \pi_{h, \mathbf{f}, \mathbf{x}}^{(1)} \vee \pi_{h, \mathbf{f}, \mathbf{x}}^{(2)}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \pi_{h, f, x}^{(0)} \widehat{=}-x-y^{2}<0, \\
& \pi_{h, f, x}^{(1)} \widehat{=}-x-y^{2}=0 \wedge 2 y-2 x^{2} y<0, \\
& \pi_{h, f, x}^{(2)} \widehat{=}-x-y^{2}=0 \wedge 2 y-2 x^{2} y=0 \wedge 8 x y^{2}+2 x^{2}-2 x^{4}<0, \\
& \pi_{p, f, x}^{(0)} \widehat{=} a y(x-y)<0, \\
& \pi_{p, f, x}^{(1)} \widehat{=} a y(x-y)=0 \wedge-2 a y^{2}+a x^{3}-2 y a x^{2}<0, \\
& \pi_{p, f, x}^{(2)} \widehat{=} a y(x-y)=0 \wedge-2 a y^{2}+a x^{3}-2 y a x^{2}=0 \\
& \wedge 40 a x y^{2}-16 a y^{3}+32 a x^{3} y-10 a x^{4}<0 .
\end{aligned}
$$

Running Example (Cont'd)

III In addition, we require the two points $\{(-1,0.5),(-0.5,-0.6)\}$ to be contained in P. Then apply QE to the formula $\forall x \forall y .(\theta(h, p, f, x) \wedge 0.5 a(-1-0.5) \geq 0 \wedge-0.6 a(-0.5+0.6) \geq 0)$.
The result is $a \leq 0$.
grey part of Picture III is the intersection of the invariant P and domain D

Running Example (Cont'd)

III In addition, we require the two points $\{(-1,0.5),(-0.5,-0.6)\}$ to be contained in P. Then apply QE to the formula $\forall x \forall y .(\theta(h, p, f, x) \wedge 0.5 a(-1-0.5) \geq 0 \wedge-0.6 a(-0.5+0.6) \geq 0)$.
The result is $a \leq 0$.
IV Just pick $a=-1$, and then $-x y+y^{2} \geq 0$ is an SCI of (D, f). The grey part of Picture III is the intersection of the invariant P and domain D.

Outline

(1) Background
(2) Talk1: Preliminaries

- Polynomials and Polynomial Ideals
- First-order Theory of Reals
- Continuous Dynamical Systems
- Hybrid Automata
(3) Talk2: Computing Invariants for Hybrid Systems
- Generating Continuous Invariants in Simple Case
- Generating Continuous Invariants in General Case
- Generating Semi-algebraic Global Invariants
- Abstraction of Elementary Hybrid Systems by Variable Transformation
- An Industrial Case Study: Soft Landing
(4) Talk3: Controller Synthesis
- Controller Synthesis with Safety
- Controller Synthesis with Safety and Optimality
- An Industrial Case Study: The Oil Pump Control Problem
(5) Conclusions

General Case

- Problem: Consider a PDS (D, f) with

$$
D=\bigvee_{i=1}^{\prime} \bigwedge_{j=1}^{J_{i}} p_{i j}(\mathbf{x}) \triangleright 0
$$

and $\mathrm{f} \in \mathbb{Q}^{n}[\mathrm{x}]$, where $\triangleright \in\{\geq,>\}$, to generate SAls automatically with a general template

$$
P=\bigvee_{k=1}^{K} \bigwedge_{l=1}^{L_{k}} p_{k I}\left(\mathbf{u}_{k l}, \mathbf{x}\right) \triangleright 0, \triangleright \in\{\geq,>\}
$$

- Basic idea The procedure is essentially same as in the simple case, but have to sophisticatedly handle the complex combinations due to the complicated boundaries.

General Case

- Problem: Consider a PDS (D, f) with

$$
D=\bigvee_{i=1}^{\prime} \bigwedge_{j=1}^{J_{i}} p_{i j}(\mathbf{x}) \triangleright 0
$$

and $\mathrm{f} \in \mathbb{Q}^{n}[\mathrm{x}]$, where $\triangleright \in\{\geq,>\}$, to generate SAls automatically with a general template

$$
P=\bigvee_{k=1}^{K} \bigwedge_{l=1}^{L_{k}} p_{k l}\left(\mathbf{u}_{k l}, \mathbf{x}\right) \triangleright 0, \triangleright \in\{\geq,>\}
$$

- Basic idea The procedure is essentially same as in the simple case, but have to sophisticatedly handle the complex combinations due to the complicated boundaries.

Theorem (Main Result)

A semi-algebraic template $P(\mathbf{u}, \mathbf{x})$ defined by

$$
\bigvee_{k=1}^{K}\left(\bigwedge_{j=1}^{j_{k}} p_{k j}\left(\mathbf{u}_{k j}, \mathbf{x}\right) \geq 0 \quad \wedge \bigwedge_{j=j_{k}+1}^{J_{k}} p_{k j}\left(\mathbf{u}_{k j}, \mathbf{x}\right)>0\right)
$$

is a Cl of the $\operatorname{PCCDS}(D, \mathbf{f})$ with

$$
D \widehat{=} \bigvee_{m=1}^{M}\left(\bigwedge_{l=1}^{I_{m}} p_{m l}(\mathbf{x}) \geq 0 \quad \wedge \bigwedge_{I=I_{m}+1}^{L_{m}} p_{m l}(\mathrm{x})>0\right)
$$

iff u satisfies

$$
\forall \mathrm{x} \cdot\left(\left(P \wedge D \wedge \Phi_{D} \rightarrow \Phi_{P}\right) \wedge\left(\neg P \wedge D \wedge \Phi_{D}^{/ v} \rightarrow \neg \Phi_{P}^{/ v}\right)\right)
$$

where

Theorem (Main Result (Cont'd))

$$
\begin{aligned}
& \Phi_{D} \widehat{=} \bigvee_{m=1}^{M}\left(\bigwedge_{I=1}^{I_{m}} \psi_{0}^{+}\left(p_{m l}, \mathbf{f}\right) \wedge \bigwedge_{I=I_{m}+1}^{L_{m}} \psi^{+}\left(p_{m l}, \mathbf{f}\right)\right), \\
& \Phi_{P} \widehat{=} \bigvee_{k=1}^{K}\left(\bigwedge_{j=1}^{j_{k}} \psi_{0}^{+}\left(p_{k j}, \mathbf{f}\right) \wedge \bigwedge_{j=j_{k}+1}^{J_{k}} \psi^{+}\left(p_{k j}, \mathbf{f}\right)\right), \\
& \Phi_{D}^{I v} \widehat{=} \bigvee_{m=1}^{M}\left(\bigwedge_{I=1}^{I_{m}} \varphi_{0}^{+}\left(p_{m l}, \mathbf{f}\right) \wedge \bigwedge_{I=I_{m}+1}^{L_{m}} \varphi^{+}\left(p_{m l}, \mathbf{f}\right)\right), \\
& \Phi_{P}^{\prime v} \widehat{=} \bigvee_{k=1}^{K}\left(\bigwedge_{j=1}^{j_{k}} \varphi_{0}^{+}\left(p_{k j}, \mathbf{f}\right) \wedge \bigwedge_{j=j_{k}+1}^{J_{k}} \varphi^{+}\left(p_{k j}, \mathbf{f}\right)\right), \\
& \psi^{+}(p, \mathbf{f}) \widehat{=} \bigvee_{0 \leq i \leq N_{p, f}} \psi^{(i)}(p, \mathbf{f}) \text { with } \psi^{(i)}(p, \mathbf{f}) \widehat{=}\left(\bigwedge_{0 \leq j<i} L_{f}^{j} p=0\right) \wedge L_{f}^{i} p>0 \text {, and } \\
& \psi_{0}^{+}(p, \mathbf{f}) \widehat{=} \psi^{+}(p, \mathbf{f}) \vee\left(\bigwedge_{0 \leq j \leq N_{p, f}} L_{f}^{j} p=0\right) \\
& \varphi^{+}(p, \mathbf{f}) \widehat{=} \bigvee_{0 \leq i \leq N_{p, f}} \varphi^{(i)}(p, \mathbf{f}) \text { with } \varphi^{(i)}(p, \mathbf{f}) \widehat{=}\left(\bigwedge_{0 \leq j<i} L_{f}^{j} p=0\right) \wedge(-1)^{i} \cdot L_{f}^{i} p>0 \text {, and } \\
& \varphi_{0}^{+}(p, \mathbf{f}) \widehat{=} \varphi^{+}(p, \mathbf{f}) \vee\left(\bigwedge_{0 \leq j \leq N_{p, f}} L_{f}^{j} p=0\right) .
\end{aligned}
$$

Running Example

- Let $\mathrm{f}(x, y)=\left(-2 y, x^{2}\right)$ and $D \widehat{=} \mathbb{R}^{2}$.
- Take a template: $P(\mathrm{u}, \mathrm{x}) \hat{=} x-a \geq 0 \vee y-b>0$ with $\mathrm{u}=(a, b)$.
- So, P is an SCl of (D, f) iff a, b satisfy

where

Running Example

- Let $\mathrm{f}(x, y)=\left(-2 y, x^{2}\right)$ and $D \widehat{=} \mathbb{R}^{2}$.
- Take a template: $P(\mathbf{u}, \mathbf{x}) \widehat{=} x-a \geq 0 \vee y-b>0$ with $\mathbf{u}=(a, b)$.

where

Running Example

- Let $\mathrm{f}(x, y)=\left(-2 y, x^{2}\right)$ and $D \widehat{=} \mathbb{R}^{2}$.
- Take a template: $P(\mathbf{u}, \mathbf{x}) \widehat{=} x-a \geq 0 \vee y-b>0$ with $\mathbf{u}=(a, b)$.
- So, P is an SCl of (D, f) iff a, b satisfy

$$
\forall x \forall y .(P \rightarrow \zeta) \wedge(\neg P \rightarrow \neg \xi)
$$

where

$$
\begin{aligned}
& \zeta \hat{=}(x-a>0) \vee(x-a=0 \wedge-2 y>0) \\
& \vee\left(x-a=0 \wedge-2 y=0 \wedge-2 x^{2} \geq 0\right) \\
& \vee(y-b>0) \vee\left(y-b=0 \wedge x^{2}>0\right) \\
& \vee\left(y-b=0 \wedge x^{2}=0 \wedge-4 y x>0\right) \\
& \vee\left(y-b=0 \wedge x^{2}=0 \wedge-4 y x=0 \wedge 8 y^{2}-4 x^{3}>0\right) \\
& \xi=(x-a>0) \vee(x-a=0 \wedge-2 y<0) \\
& \vee\left(x-a=0 \wedge-2 y=0 \wedge-2 x^{2} \geq 0\right) \\
& \vee(y-b>0) \vee\left(y-b=0 \wedge x^{2}<0\right) \\
& \vee\left(y-b=0 \wedge x^{2}=0 \wedge-4 y x>0\right) \\
& \vee\left(y-b=0 \wedge x^{2}=0 \wedge-4 y x=0 \wedge 8 y^{2}-4 x^{3}<0\right)
\end{aligned}
$$

Running Example (Cont'd)

- In addition, we require the set $x+y \geq 0$ to be contained in P.
- By applying QE, we get $a+b \leq 0 \wedge b \leq 0$.
- Let $a=-1$ and $b=-0.5$, and we obtain an SCI

Running Example (Cont'd)

- In addition, we require the set $x+y \geq 0$ to be contained in P.
- By applying QE, we get $a+b \leq 0 \wedge b \leq 0$.
- Let $a=-1$ and $b=-0.5$, and we obtain an SCI $P \hat{=} x+1 \geq 0 \vee y+0.5>0$.

Outline

(1) Background
(2) Talk1: Preliminaries

- Polynomials and Polynomial Ideals
- First-order Theory of Reals
- Continuous Dynamical Systems
- Hybrid Automata
(3) Talk2: Computing Invariants for Hybrid Systems
- Generating Continuous Invariants in Simple Case
- Generating Continuous Invariants in General Case
- Generating Semi-algebraic Global Invariants
- Abstraction of Elementary Hybrid Systems by Variable Transformation
- An Industrial Case Study: Soft Landing
(4) Talk3: Controller Synthesis
- Controller Synthesis with Safety
- Controller Synthesis with Safety and Optimality
- An Industrial Case Study: The Oil Pump Control Problem
(5) Conclusions

Algorithm

I. Predefine a familiy of semi-algebraic templates $I_{q}(\mathbf{u}, \mathbf{x})$ with degree bound d for each $q \in Q$, as the SCl to be generated at mode q.

Algorithm

I. Predefine a familiy of semi-algebraic templates $I_{q}(\mathbf{u}, \mathbf{x})$ with degree bound d for each $q \in Q$, as the SCl to be generated at mode q.
II. Translate conditions for the family of $I_{q}(\mathbf{u}, \mathbf{x})$ to be a GI of \mathcal{H}, i.e.

- $\bar{\Xi}_{q} \subseteq I_{q}$ for all $q \in Q$;
- for any $e=\left(q, q^{\prime}\right) \in E$, if $\mathbf{x} \in I_{q} \cap G_{e}$, then $\mathrm{x}^{\prime}=R_{e}(\mathbf{x}) \in I_{q^{\prime}}$;
- for any $q \in Q, I_{q}$ is a Cl of $\left(D_{q}, \mathbf{f}_{q}\right)$
into a set of first-order real arithmetic formulas, i.e.
(1) $\forall \mathbf{x} \cdot\left(\bar{\Xi}_{q} \rightarrow I_{q}(\mathbf{u}, \mathbf{x})\right)$ for all $q \in Q$;
(2) $\forall \mathbf{x}, \mathbf{x}^{\prime} \cdot\left(I_{q}(\mathbf{u}, \mathbf{x}) \wedge G_{e} \wedge \mathbf{x}^{\prime}=R_{e}(\mathbf{x}) \rightarrow I_{q^{\prime}}\left(\mathbf{u}, \mathbf{x}^{\prime}\right)\right)$ for all $q \in Q$ and all $e=\left(q, q^{\prime}\right) \in E$
(3) $\forall \mathbf{x} .\left(\left(I_{q}(\mathbf{u}, \mathbf{x}) \wedge D_{q} \wedge \Phi_{D_{q}} \rightarrow \Phi_{I_{q}}\right) \wedge\left(\neg I_{q}(\mathbf{u}, \mathbf{x}) \wedge D_{q} \wedge \Phi_{D_{q}}^{\mathrm{Iv}} \rightarrow \neg \Phi_{I_{q}}^{\mathrm{Iv}}\right)\right)$, for each $q \in Q$.
For safety property \mathcal{S}, there may be a fourth set of formulas:

Take the conjunction of all the formulas in Step 2 and apply QE to get a QFF $\phi(\mathbf{u})$. Then choose a specific \mathbf{u}_{0} from $\phi(\mathbf{u})$ with a tool like $\mathbf{Z} 3$, and

Algorithm

I. Predefine a familiy of semi-algebraic templates $I_{q}(\mathbf{u}, \mathbf{x})$ with degree bound d for each $q \in Q$, as the SCl to be generated at mode q.
II. Translate conditions for the family of $I_{q}(\mathbf{u}, \mathbf{x})$ to be a GI of \mathcal{H}, i.e.

- $\Xi_{q} \subseteq I_{q}$ for all $q \in Q$;
- for any $e=\left(q, q^{\prime}\right) \in E$, if $\mathbf{x} \in I_{q} \cap G_{e}$, then $\mathbf{x}^{\prime}=R_{e}(\mathbf{x}) \in I_{q^{\prime}}$;
- for any $q \in Q, I_{q}$ is a Cl of $\left(D_{q}, f_{q}\right)$
into a set of first-order real arithmetic formulas, i.e.
(1) $\forall \mathbf{x} \cdot\left(\bar{\Xi}_{q} \rightarrow I_{q}(\mathbf{u}, \mathbf{x})\right)$ for all $q \in Q$;
(2) $\forall \mathbf{x}, \mathbf{x}^{\prime} \cdot\left(I_{q}(\mathbf{u}, \mathbf{x}) \wedge G_{e} \wedge \mathbf{x}^{\prime}=R_{e}(\mathbf{x}) \rightarrow I_{q^{\prime}}\left(\mathbf{u}, \mathbf{x}^{\prime}\right)\right)$ for all $q \in Q$ and all $e=\left(q, q^{\prime}\right) \in E$
(3) $\forall \mathbf{x} .\left(\left(I_{q}(\mathbf{u}, \mathbf{x}) \wedge D_{q} \wedge \Phi_{D_{q}} \rightarrow \Phi_{I_{q}}\right) \wedge\left(\neg I_{q}(\mathbf{u}, \mathbf{x}) \wedge D_{q} \wedge \Phi_{D_{q}}^{\mathrm{Iv}} \rightarrow \neg \Phi_{I_{q}}^{\mathrm{IV}}\right)\right)$, for each $q \in Q$.
For safety property \mathcal{S}, there may be a fourth set of formulas: (4) $\forall \mathbf{x} .\left(I_{q}(\mathbf{u}, \mathbf{x}) \longrightarrow S_{q}\right)$ for all $q \in Q$.

Algorithm

I. Predefine a familiy of semi-algebraic templates $I_{q}(\mathbf{u}, \mathbf{x})$ with degree bound d for each $q \in Q$, as the SCl to be generated at mode q.
II. Translate conditions for the family of $I_{q}(\mathbf{u}, \mathbf{x})$ to be a GI of \mathcal{H}, i.e.

- $\bar{\Xi}_{q} \subseteq I_{q}$ for all $q \in Q$;
- for any $e=\left(q, q^{\prime}\right) \in E$, if $\mathbf{x} \in I_{q} \cap G_{e}$, then $\mathbf{x}^{\prime}=R_{e}(\mathbf{x}) \in I_{q^{\prime}}$;
- for any $q \in Q, I_{q}$ is a Cl of $\left(D_{q}, f_{q}\right)$
into a set of first-order real arithmetic formulas, i.e.
(1) $\forall \mathbf{x} \cdot\left(\bar{\Xi}_{q} \rightarrow I_{q}(\mathbf{u}, \mathbf{x})\right)$ for all $q \in Q$;
(2) $\forall \mathbf{x}, \mathbf{x}^{\prime} .\left(I_{q}(\mathbf{u}, \mathbf{x}) \wedge G_{e} \wedge \mathbf{x}^{\prime}=R_{e}(\mathbf{x}) \rightarrow I_{q^{\prime}}\left(\mathbf{u}, \mathbf{x}^{\prime}\right)\right)$ for all $q \in Q$ and all $e=\left(q, q^{\prime}\right) \in E$
(3) $\forall \mathbf{x} .\left(\left(I_{q}(\mathbf{u}, \mathbf{x}) \wedge D_{q} \wedge \Phi_{D_{q}} \rightarrow \Phi_{I_{q}}\right) \wedge\left(\neg I_{q}(\mathbf{u}, \mathbf{x}) \wedge D_{q} \wedge \Phi_{D_{q}}^{\mathrm{Iv}} \rightarrow \neg \Phi_{I_{q}}^{\mathrm{IV}}\right)\right)$, for each $q \in Q$.
For safety property \mathcal{S}, there may be a fourth set of formulas:

$$
\text { (4) } \forall \mathbf{x} .\left(I_{q}(\mathbf{u}, \mathbf{x}) \longrightarrow S_{q}\right) \text { for all } q \in Q \text {. }
$$

III. Take the conjunction of all the formulas in Step 2 and apply QE to get a QFF $\phi(\mathbf{u})$. Then choose a specific \mathbf{u}_{0} from $\phi(\mathbf{u})$ with a tool like Z3, and the set of instantiations $I_{q, u_{0}}(\mathbf{x})$ form a GI of \mathcal{H}.

Running Example

- The Thermostat can be described by the HA in following figure.

Running Example

- The Thermostat can be described by the HA in following figure.

- To verify that under the initial condition $\Xi_{\mathcal{H}} \widehat{=}\left\{q_{\mathrm{ht}}\right\} \times X_{0}$ with $X_{0} \widehat{=} c=0 \wedge 5 \leq T \leq 10, S \widehat{=} T \geq 4.5$ is satisfied at all modes.

Running Example (Cont'd)

- Firstly, predefine the following set of templates:
- $I_{q_{\mathrm{ht}}} \hat{=} T+a_{1} c+a_{0} \geq 0 \wedge c \geq 0$;
- $I_{q_{c l}} \widehat{=} T+a_{2} \geq 0$;
- $I_{q_{\mathrm{ck}}} \hat{=} T \geq a_{3} c^{2}-4.5 c+9 \wedge c \geq 0 \wedge c \leq 1$
- By the second step, we get
- By choosing $a_{0}=-5, a_{1}=-2, a_{2}=-5, a_{3}=\frac{1}{2}$, obtain the following SGI

- The safety property is successfully verified by the SGI.

Running Example (Cont'd)

- Firstly, predefine the following set of templates:
- $I_{q_{h t}} \hat{=} T+a_{1} c+a_{0} \geq 0 \wedge c \geq 0$;
- $I_{q_{\mathrm{cl}}} \hat{=} T+a_{2} \geq 0$;
- $I_{\text {ck }} \hat{=} T \geq a_{3} c^{2}-4.5 c+9 \wedge c \geq 0 \wedge c \leq 1$
- By the second step, we get

$$
10 a_{3}-9 \leq 0 \wedge 2 a_{3}-1 \geq 0 \wedge a_{1}+2=0 \wedge a_{0}+2 a_{1}+9=0 \wedge a_{2}-a_{0}=0 .
$$

Running Example (Cont'd)

- Firstly, predefine the following set of templates:
- $I_{q_{h t}} \hat{=} T+a_{1} c+a_{0} \geq 0 \wedge c \geq 0$;
- $I_{q_{\mathrm{cl}}} \hat{=} T+a_{2} \geq 0$;
- $I_{\text {ck }} \hat{=} T \geq a_{3} c^{2}-4.5 c+9 \wedge c \geq 0 \wedge c \leq 1$
- By the second step, we get

$$
10 a_{3}-9 \leq 0 \wedge 2 a_{3}-1 \geq 0 \wedge a_{1}+2=0 \wedge a_{0}+2 a_{1}+9=0 \wedge a_{2}-a_{0}=0 .
$$

- By choosing $a_{0}=-5, a_{1}=-2, a_{2}=-5, a_{3}=\frac{1}{2}$, obtain the following SGI
- $I_{q_{\mathrm{ht}}} \widehat{=} T \geq 2 c+5 \wedge c \geq 0$;
- $I_{q_{c l}} \widehat{=} T \geq 5$;
- $I_{q_{c k}} \widehat{=} 2 T \geq c^{2}-9 c+18 \wedge c \geq 0 \wedge c \leq 1$.
- The safety property is successfully verified by the SGI.

Running Example (Cont'd)

- Firstly, predefine the following set of templates:
- $I_{q_{h t}} \hat{=} T+a_{1} c+a_{0} \geq 0 \wedge c \geq 0$;
- $I_{q_{\mathrm{cl}}} \hat{=} T+a_{2} \geq 0$;
- $I_{\text {ck }} \hat{=} T \geq a_{3} c^{2}-4.5 c+9 \wedge c \geq 0 \wedge c \leq 1$
- By the second step, we get

$$
10 a_{3}-9 \leq 0 \wedge 2 a_{3}-1 \geq 0 \wedge a_{1}+2=0 \wedge a_{0}+2 a_{1}+9=0 \wedge a_{2}-a_{0}=0 .
$$

- By choosing $a_{0}=-5, a_{1}=-2, a_{2}=-5, a_{3}=\frac{1}{2}$, obtain the following SGI
- $I_{q_{\mathrm{ht}}} \widehat{=} T \geq 2 c+5 \wedge c \geq 0$;
- $I_{q_{\mathrm{cl}}} \widehat{=} T \geq 5$;
- $I_{q_{c k}} \widehat{=} 2 T \geq c^{2}-9 c+18 \wedge c \geq 0 \wedge c \leq 1$.
- The safety property is successfully verified by the SGI.

Outline

(1) Background
(2) Talk1: Preliminaries

- Polynomials and Polynomial Ideals
- First-order Theory of Reals
- Continuous Dynamical Systems
- Hybrid Automata
(3) Talk2: Computing Invariants for Hybrid Systems
- Generating Continuous Invariants in Simple Case
- Generating Continuous Invariants in General Case
- Generating Semi-algebraic Global Invariants
- Abstraction of Elementary Hybrid Systems by Variable Transformation
- An Industrial Case Study: Soft Landing
(4) Talk3: Controller Synthesis
- Controller Synthesis with Safety
- Controller Synthesis with Safety and Optimality
- An Industrial Case Study: The Oil Pump Control Problem
(5) Conclusions

Elementary Functions

$$
\begin{aligned}
f, g::= & c|x| f+g|f-g| f \times g \mid \\
& \left.\frac{f}{g}\left|f^{a}\right| e^{f}|\ln (f)| \sin (f) \right\rvert\, \cos (f),
\end{aligned}
$$

- $c \in \mathbb{R}, a \in \mathbb{Q}, x \in\left\{x, y, z, \ldots, x_{1}, x_{2}, \ldots, x_{n}\right\}$
- elementary (or polynomial) hybrid system (or CDS), EHS/PHS/EDS/PDS:

Elementary Functions

$$
\begin{aligned}
f, g::= & c|x| f+g|f-g| f \times g \mid \\
& \left.\frac{f}{g}\left|f^{a}\right| e^{f}|\ln (f)| \sin (f) \right\rvert\, \cos (f)
\end{aligned}
$$

- $c \in \mathbb{R}, a \in \mathbb{Q}, x \in\left\{x, y, z, \ldots, x_{1}, x_{2}, \ldots, x_{n}\right\}$
- elementary (or polynomial) hybrid system (or CDS), EHS/PHS/EDS/PDS:

Univariate Basic Elementary Functions: $\dot{x}=f(x)$

- $f(x)=\frac{1}{x}$: let $v=\frac{1}{x}$, and thus $\dot{v}=-\frac{\dot{x}}{x^{2}}$, so (1) is transformed to

$$
\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=-v^{3}
\end{array}\right.
$$

- $f(x)=\sqrt{x}$: let $v=\sqrt{x}$, and thus $\dot{v}=\frac{\dot{x}}{2 \sqrt{x}}$, so (1) is transformed to

- $f(x)=e^{x}$: let $v=e^{x}$, and thus $\dot{v}=e^{x} \cdot \dot{x}$, so (??) is transformed to

Univariate Basic Elementary Functions: $\dot{x}=f(x)$

- $f(x)=\frac{1}{x}$: let $v=\frac{1}{x}$, and thus $\dot{v}=-\frac{\dot{x}}{x^{2}}$, so (1) is transformed to

$$
\left\{\begin{aligned}
\dot{x} & =v \\
\dot{v} & =-v^{3}
\end{aligned}\right.
$$

- $f(x)=\sqrt{x}$: let $v=\sqrt{x}$, and thus $\dot{v}=\frac{\dot{x}}{2 \sqrt{x}}$, so (1) is transformed to

$$
\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=\frac{1}{2}
\end{array}\right.
$$

- $f(x)=e^{x}$: let $v=e^{x}$, and thus $\dot{v}=e^{x} \cdot \dot{x}$, so (??) is transformed to

Univariate Basic Elementary Functions: $\dot{x}=f(x)$

- $f(x)=\frac{1}{x}$: let $v=\frac{1}{x}$, and thus $\dot{v}=-\frac{\dot{x}}{x^{2}}$, so (1) is transformed to

$$
\left\{\begin{aligned}
\dot{x} & =v \\
\dot{v} & =-v^{3}
\end{aligned}\right.
$$

- $f(x)=\sqrt{x}$: let $v=\sqrt{x}$, and thus $\dot{v}=\frac{\dot{x}}{2 \sqrt{x}}$, so (1) is transformed to

$$
\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=\frac{1}{2}
\end{array}\right.
$$

- $f(x)=e^{x}$: let $v=e^{x}$, and thus $\dot{v}=e^{x} \cdot \dot{x}$, so (??) is transformed to

$$
\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=v^{2}
\end{array}\right.
$$

Univariate Basic Elementary Functions: $\dot{x}=f(x)$

- $f(x)=\ln x$: let $v=\ln x$, and thus $\dot{v}=\frac{\dot{x}}{x}$; further let $u=\frac{1}{x}$, and thus $\dot{u}=-\frac{\dot{x}}{x^{2}}$. Therefore (1) is transformed to

$$
\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=u v \\
\dot{u}=-u^{2} v
\end{array}\right.
$$

- $f(x)=\sin x$: let $v=\sin x$, and thus $\dot{v}=\dot{x} \cdot \cos x$; further let $u=\cos x$, and thus $\dot{u}=-\sin x \cdot \dot{x}$. Therefore (1) is transformed to

Univariate Basic Elementary Functions: $\dot{x}=f(x)$

- $f(x)=\ln x$: let $v=\ln x$, and thus $\dot{v}=\frac{\dot{x}}{x}$; further let $u=\frac{1}{x}$, and thus $\dot{u}=-\frac{\dot{x}}{x^{2}}$. Therefore (1) is transformed to

$$
\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=u v \\
\dot{u}=-u^{2} v
\end{array}\right.
$$

- $f(x)=\sin x$: let $v=\sin x$, and thus $\dot{v}=\dot{x} \cdot \cos x$; further let $u=\cos x$, and thus $\dot{u}=-\sin x \cdot \dot{x}$. Therefore (1) is transformed to

$$
\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=u v \\
\dot{u}=-v^{2}
\end{array}\right.
$$

Univariate Basic Elementary Functions: $\dot{x}=f(x)$

- $f(x)=\ln x$: let $v=\ln x$, and thus $\dot{v}=\frac{\dot{x}}{x}$; further let $u=\frac{1}{x}$, and thus $\dot{u}=-\frac{\dot{x}}{x^{2}}$. Therefore (1) is transformed to

$$
\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=u v \\
\dot{u}=-u^{2} v
\end{array}\right.
$$

- $f(x)=\sin x$: let $v=\sin x$, and thus $\dot{v}=\dot{x} \cdot \cos x$; further let $u=\cos x$, and thus $\dot{u}=-\sin x \cdot \dot{x}$. Therefore (1) is transformed to

$$
\left\{\begin{array}{l}
\dot{x}=v \\
\dot{v}=u v \\
\dot{u}=-v^{2}
\end{array}\right.
$$

- $f(x)=\cos x$: the transformation is analogous to the case of $f(x)=\sin x$.

Compositional and Multivariate Functions

- Compositional: if $f(x)=\ln (2+\sin x)$, then let

$$
\begin{cases}v & =\sin x \\ u & =\cos x \\ w & =\ln (2+v)=\ln (2+\sin x) \\ z & =\frac{1}{2+v}=\frac{1}{2+\sin x}\end{cases}
$$

so (1) is transformed to

$$
\left\{\begin{aligned}
\dot{x} & =w \\
\dot{v} & =u w \\
\dot{u} & =-v w \\
\dot{w} & =z u w \\
\dot{z} & =-z^{2} u w
\end{aligned}\right.
$$

- Multivariate: analogous.

Abstracting EDSs

Abstracting EDS $\mathcal{C}_{\mathrm{x}} \widehat{=}\left(\Xi_{\mathrm{x}}, f_{\mathrm{x}}, D_{\mathrm{x}}\right)$ to PDS $C_{\mathrm{y}} \widehat{=}\left(\Xi_{\mathrm{y}}, f_{\mathrm{y}}, D_{\mathrm{y}}\right)$

(S1) Introduce new variables to replace all non-polynomial terms in f_{x}, Ξ_{x} and D_{x}, and obtain a collection of replacement equations $\mathrm{v}=\Gamma(\mathrm{x})$.

Abstracting EDSs

Abstracting EDS $\mathcal{C}_{\mathrm{x}} \widehat{=}\left(\bar{\Xi}_{\mathrm{x}}, \mathrm{f}_{\mathrm{x}}, D_{\mathrm{x}}\right)$ to PDS $C_{\mathrm{y}} \widehat{=}\left(\Xi_{\mathrm{y}}, f_{\mathrm{y}}, D_{\mathrm{y}}\right)$

(S1) Introduce new variables to replace all non-polynomial terms in f_{x}, Ξ_{x} and D_{x}, and obtain a collection of replacement equations $v=\Gamma(x)$.
(S2) Differentiate both sides of $v=\Gamma(x)$ w.r.t. time, and then replace all newly appearing non-polynomial terms by introducing fresh variables.
Repeat (S2) until no more variables need to be introduced. For simplicity, still denote the final set of replacement equations by Define the simulation map as $\Theta(x)=(x, \Gamma(x))$. Then use $v=\Gamma(x)$ to construct Ξ_{y} and D_{y} as illustrated by the following example.

Abstracting EDSs

Abstracting EDS $\mathcal{C}_{\mathrm{x}} \widehat{=}\left(\Xi_{\mathrm{x}}, f_{\mathrm{x}}, D_{\mathrm{x}}\right)$ to PDS $C_{\mathrm{y}} \widehat{=}\left(\Xi_{\mathrm{y}}, f_{\mathrm{y}}, D_{\mathrm{y}}\right)$

(S1) Introduce new variables to replace all non-polynomial terms in f_{x}, Ξ_{x} and D_{x}, and obtain a collection of replacement equations $v=\Gamma(x)$.
(S2) Differentiate both sides of $v=\Gamma(x)$ w.r.t. time, and then replace all newly appearing non-polynomial terms by introducing fresh variables.
(S3) Repeat (S2) until no more variables need to be introduced. For simplicity, still denote the final set of replacement equations by $v=\Gamma(x)$.

Abstracting EDSs

Abstracting EDS $\mathcal{C}_{\mathrm{x}} \widehat{=}\left(\bar{\Xi}_{\mathrm{x}}, \mathrm{f}_{\mathrm{x}}, D_{\mathrm{x}}\right)$ to PDS $C_{\mathrm{y}} \widehat{=}\left(\Xi_{\mathrm{y}}, f_{\mathrm{y}}, D_{\mathrm{y}}\right)$

(S1) Introduce new variables to replace all non-polynomial terms in f_{x}, Ξ_{x} and D_{x}, and obtain a collection of replacement equations $v=\Gamma(x)$.
(S2) Differentiate both sides of $v=\Gamma(x)$ w.r.t. time, and then replace all newly appearing non-polynomial terms by introducing fresh variables.
(S3) Repeat (S2) until no more variables need to be introduced. For simplicity, still denote the final set of replacement equations by $v=\Gamma(x)$.
(S4) Define the simulation map as $\Theta(x)=(x, \Gamma(x))$. Then use $v=\Gamma(x)$ to construct Ξ_{y} and D_{y} as illustrated by the following example.

Abstracting EDSs: An Example

Consider the EDS $\mathcal{C}_{\mathrm{x}} \widehat{=}\left(\bar{\Xi}_{\mathrm{x}}, \mathrm{f}_{\mathrm{x}}, D_{\mathrm{x}}\right)$, where

$$
\begin{aligned}
& -\bar{\Xi}_{\mathrm{x}} \widehat{=}(x+0.5)^{2}+(y-0.5)^{2}-0.16 \leq 0 ; \\
& -D_{\mathbf{x}} \widehat{=}-2 \leq x \leq 2 \wedge-2 \leq y \leq 2 ; \text { and }
\end{aligned}
$$

- f_{x} defines the ODE

$$
\binom{\dot{x}}{\dot{y}}=\binom{e^{-x}+y-1}{-\sin ^{2}(x)} .
$$

Abstracting EDSs: An Example

- (S1-S3): by the replacement relations $v=\Gamma(x)$

$$
\left(v_{1}, v_{2}, v_{3}\right)=\left(\sin x, e^{-x}, \cos x\right)
$$

we get the transformed polynomial ODE (i.e. f_{y})

$$
\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{v}_{1} \\
\dot{v}_{2} \\
\dot{v}_{3}
\end{array}\right)=\left(\begin{array}{c}
v_{2}+y-1 \\
-v_{1}^{2} \\
v_{3}\left(v_{2}+y-1\right) \\
-v_{2}\left(v_{2}+y-1\right) \\
-v_{1}\left(v_{2}+y-1\right)
\end{array}\right)
$$

Abstracting EDSs: An Example

- (S4): the simulation map is $\Theta(x, y)=\left(x, y, \sin x, e^{-x}, \cos x\right)$
- $\Theta\left(\bar{\Xi}_{x}\right) \widehat{=} \bar{\Xi}_{x} \wedge v_{1}=\sin x \wedge v_{2}=e^{-x} \wedge v_{3}=\cos x$
- $\Theta\left(D_{\mathrm{x}}\right) \widehat{=} D_{\mathrm{x}} \wedge v_{1}=\sin x \wedge v_{2}=e^{-x} \wedge v_{3}=\cos x$ expressions

Abstracting EDSs: An Example

- (S4): the simulation map is $\Theta(x, y)=\left(x, y, \sin x, e^{-x}, \cos x\right)$
- $\Theta\left(\bar{\Xi}_{x}\right) \widehat{=} \bar{\Xi}_{x} \wedge v_{1}=\sin x \wedge v_{2}=e^{-x} \wedge v_{3}=\cos x$
- $\Theta\left(D_{x}\right) \widehat{=} D_{x} \wedge v_{1}=\sin x \wedge v_{2}=e^{-x} \wedge v_{3}=\cos x$
- abstracting $v_{1}=\sin x \wedge v_{2}=e^{-x} \wedge v_{3}=\cos x$ by polynomial expressions

Polynomial Approximation via Taylor Model

- $D_{\mathrm{x}} \hat{=}-2 \leq x \leq 2 \wedge-2 \leq y \leq 2$
- $D_{\mathbf{x}} \wedge v_{1}=\sin x$, expand up to degree 6
- $D_{\mathbf{x}} \wedge v_{2}=e^{-x}$, expand up to degree 6

- In this way we can obtain \bar{Z}_{y}, D_{y}

Polynomial Approximation via Taylor Model

- $D_{\mathrm{x}} \hat{=}-2 \leq x \leq 2 \wedge-2 \leq y \leq 2$
- $D_{\mathbf{x}} \wedge v_{1}=\sin x$, expand up to degree 6
- $D_{\mathrm{x}} \wedge v_{2}=e^{-x}$, expand up to degree 6

- In this way we can obtain Ξ_{y}, D_{y}

Abstracting EHSs

- abstracting EHS $\mathcal{H}_{\mathrm{x}} \widehat{=}\left(Q, X, f_{\mathrm{x}}, D_{\mathrm{x}}, E, G_{\mathrm{x}}, R_{\mathrm{x}}, \Xi_{\mathrm{x}}\right)$ by PHS

$$
\mathcal{H}_{\mathbf{y}} \widehat{=}\left(Q, Y, f_{\mathbf{y}}, D_{\mathbf{y}}, E, G_{\mathbf{y}}, R_{\mathbf{y}}, \bar{\Xi}_{\mathbf{y}}\right)
$$

- just extend the abstraction approach for EDSs to take into account guard constraints and reset functions
- treat each mode of a HA separately by constructing an individual abstraction map for each of them

Abstracting EHSs: An Example

- Bouncing ball on a sine-waved surface
- $Q=\{q\} ; X=\left\{x, y, v_{x}, v_{y}\right\}$;
- $E=\{e\}$ with $e=(q, q)$;
- $D_{x, q} \widehat{=} y \geq \sin x ; G_{x, e} \widehat{=} y=\sin x$;
- $\Xi_{x, q} \widehat{=} y \geq 4.9 \wedge y \leq 5.1 \wedge x=0 \wedge v_{x}=$ $-1 \wedge v_{y}=0$;
- $f_{x, q}=\left\{\begin{array}{l}\dot{x}=v_{x} \\ \dot{y}=v_{y} \\ \dot{v}_{x}=0 \\ \dot{v}_{y}=-9.8\end{array}\right.$
- $R_{x, e}\left(x, y, v_{x}, v_{y}\right) \hat{=}\left\{\left(x, y, v_{x}^{\prime}, v_{y}^{\prime}\right)\right\}$ with

$$
\left\{\begin{array}{l}
v_{x}^{\prime}=\frac{(\sin x)^{2} \cdot v_{x}+2(\cos x) \cdot v_{y}}{1+(\cos x)^{2}} \\
v_{y}^{\prime}=\frac{2(\cos x) \cdot v_{x}-(\sin x)^{2} \cdot v_{y}}{1+(\cos x)^{2}}
\end{array}\right.
$$

Abstracting EHSs: An Example

- Bouncing ball on a sine-waved surface
- $Q=\{q\} ; X=\left\{x, y, v_{x}, v_{y}\right\}$;
- $E=\{e\}$ with $e=(q, q)$;
- $D_{x, q} \widehat{=} y \geq \sin x ; G_{x, e} \widehat{=} y=\sin x$;
- $\Xi_{x, q} \widehat{=} y \geq 4.9 \wedge y \leq 5.1 \wedge x=0 \wedge v_{x}=$ $-1 \wedge v_{y}=0$;
- $f_{x, q}=\left\{\begin{array}{l}\dot{x}=v_{x} \\ \dot{y}=v_{y} \\ \dot{v}_{x}=0 \\ \dot{v}_{y}=-9.8\end{array}\right.$
- $R_{x, e}\left(x, y, v_{x}, v_{y}\right) \hat{=}\left\{\left(x, y, v_{x}^{\prime}, v_{y}^{\prime}\right)\right\}$ with

$$
\left\{\begin{array}{l}
v_{x}^{\prime}=\frac{(\sin x)^{2} \cdot v_{x}+2(\cos x) \cdot v_{y}}{1+(\cos x)^{2}} \\
v_{y}^{\prime}=\frac{2(\cos x) \cdot v_{x}-(\sin x)^{2} \cdot v_{y}}{1+(\cos x)^{2}}
\end{array}\right.
$$

Abstracting EHSs: An Example

- replacement equations: $\left(u_{1}, u_{2}, u_{3}\right)=\left(\sin x, \cos x, \frac{1}{1+(\cos x)^{2}}\right)$,
- flowpipe computation for the abstract system using Flow* (not applicable on the original system)

The Verification Problem

Consider the EDS $\mathcal{C}_{\mathrm{x}} \widehat{=}\left(\bar{\Xi}_{\mathrm{x}}, \mathrm{f}_{\mathrm{x}}, D_{\mathrm{x}}\right)$, where

$$
\begin{aligned}
& -\Xi_{\mathrm{x}} \widehat{=}(x+0.5)^{2}+(y-0.5)^{2}-0.16 \leq 0 ; \\
& -D_{\mathrm{x}} \widehat{=}-2 \leq x \leq 2 \wedge-2 \leq y \leq 2 ; \text { and }
\end{aligned}
$$

- f_{x} defines the ODE

$$
\binom{\dot{x}}{\dot{y}}=\binom{e^{-x}+y-1}{-\sin ^{2}(x)} .
$$

The Verification Problem

Consider the EDS $\mathcal{C}_{\mathrm{x}} \widehat{=}\left(\bar{\Xi}_{\mathrm{x}}, \mathrm{f}_{\mathrm{x}}, D_{\mathrm{x}}\right)$, where
$-\Xi_{\mathrm{x}} \hat{=}(x+0.5)^{2}+(y-0.5)^{2}-0.16 \leq 0 ;$

- $D_{\mathrm{x}} \widehat{=}-2 \leq x \leq 2 \wedge-2 \leq y \leq 2$; and
- f_{x} defines the ODE

$$
\binom{\dot{x}}{\dot{y}}=\binom{e^{-x}+y-1}{-\sin ^{2}(x)} .
$$

- verify the safety of \mathcal{C}_{x} w.r.t. an unsafe region $\bar{S}_{x} \widehat{=}(x-0.7)^{2}+(y+0.7)^{2}-0.09 \leq 0$

Generating Polynomial Invariants

- $\left(v_{1}, v_{2}, v_{3}\right)=\left(\sin x, e^{-x}, \cos x\right)$
- Assume a polynomial invariant template of degree 5 without fresh variables

Generating Elementary Invariants

- $\left(v_{1}, v_{2}, v_{3}\right)=\left(\sin x, e^{-x}, \cos x\right)$
- Assume a polynomial invariant template of degree 4 with fresh variables

Comparison

Outline

(1) Background
(2) Talk1: Preliminaries

- Polynomials and Polynomial Ideals
- First-order Theory of Reals
- Continuous Dynamical Systems
- Hybrid Automata
(3) Talk2: Computing Invariants for Hybrid Systems
- Generating Continuous Invariants in Simple Case
- Generating Continuous Invariants in General Case
- Generating Semi-algebraic Global Invariants
- Abstraction of Elementary Hybrid Systems by Variable Transformation
- An Industrial Case Study: Soft Landing
(4) Talk3: Controller Synthesis
- Controller Synthesis with Safety
- Controller Synthesis with Safety and Optimality
- An Industrial Case Study: The Oil Pump Control Problem
(5) Conclusions

Outline

(1) Background
(2) Talk1: Preliminaries

- Polynomials and Polynomial Ideals
- First-order Theory of Reals
- Continuous Dynamical Systems
- Hybrid Automata
(3) Talk2: Computing Invariants for Hybrid Systems
- Generating Continuous Invariants in Simple Case
- Generating Continuous Invariants in General Case
- Generating Semi-algebraic Global Invariants
- Abstraction of Elementary Hybrid Systems by Variable Transformation
- An Industrial Case Study: Soft Landing
(4) Talk3: Controller Synthesis
- Controller Synthesis with Safety
- Controller Synthesis with Safety and Optimality
- An Industrial Case Study: The Oil Pump Control Problem
(5) Conclusions

Outline

(1) Background
(2) Talk1: Preliminaries

- Polynomials and Polynomial Ideals
- First-order Theory of Reals
- Continuous Dynamical Systems
- Hybrid Automata
(3) Talk2: Computing Invariants for Hybrid Systems
- Generating Continuous Invariants in Simple Case
- Generating Continuous Invariants in General Case
- Generating Semi-algebraic Global Invariants
- Abstraction of Elementary Hybrid Systems by Variable Transformation
- An Industrial Case Study: Soft Landing

4) Talk3: Controller Synthesis

- Controller Synthesis with Safety
- Controller Synthesis with Safety and Optimality
- An Industrial Case Study: The Oil Pump Control Problem
(5) Conclusions

Problem Decription

- A safety requirement \mathcal{S} assigns to each mode $q \in Q$ a safe region $S_{q} \subseteq \mathbb{R}^{n}$, i.e. $\mathcal{S}=\bigcup_{q \in Q}\left(\{q\} \times S_{q}\right)$.

Switching controller synthesis for safety

Given a hybrid automaton \mathcal{H} and a safety property S, find a hybrid automaton $\mathcal{H}^{\prime}=\left(Q, X, f, D^{\prime}, E, G^{\prime}\right)$ such that Non-blocking: \mathcal{H}^{\prime} is non-blocking.

Problem Decription

- A safety requirement \mathcal{S} assigns to each mode $q \in Q$ a safe region $S_{q} \subseteq \mathbb{R}^{n}$, i.e. $\mathcal{S}=\bigcup_{q \in Q}\left(\{q\} \times S_{q}\right)$.

Switching controller synthesis for safety [Asarin et al. 00]
Given a hybrid automaton \mathcal{H} and a safety property S, find a hybrid automaton $\mathcal{H}^{\prime}=\left(Q, X, f, D^{\prime}, E, G^{\prime}\right)$ such that

Problem Decription

- A safety requirement \mathcal{S} assigns to each mode $q \in Q$ a safe region $S_{q} \subseteq \mathbb{R}^{n}$, i.e. $\mathcal{S}=\bigcup_{q \in Q}\left(\{q\} \times S_{q}\right)$.

Switching controller synthesis for safety [Asarin et al. 00]
Given a hybrid automaton \mathcal{H} and a safety property S, find a hybrid automaton $\mathcal{H}^{\prime}=\left(Q, X, f, D^{\prime}, E, G^{\prime}\right)$ such that
(r1) Refinement: for any $q \in Q, D_{q}^{\prime} \subseteq D_{q}$, and for any $e \in E, G_{e}^{\prime} \subseteq G_{e}$;
Safety: for any trajectory ω that \mathcal{H}^{\prime} accepts, if (q, x) is on ω, then

Non-blocking: \mathcal{H}^{\prime} is non-blocking.

Problem Decription

- A safety requirement \mathcal{S} assigns to each mode $q \in Q$ a safe region $S_{q} \subseteq \mathbb{R}^{n}$, i.e. $\mathcal{S}=\bigcup_{q \in Q}\left(\{q\} \times S_{q}\right)$.

Switching controller synthesis for safety [Asarin et al. 00]

Given a hybrid automaton \mathcal{H} and a safety property S, find a hybrid automaton $\mathcal{H}^{\prime}=\left(Q, X, f, D^{\prime}, E, G^{\prime}\right)$ such that
(r1) Refinement: for any $q \in Q, D_{q}^{\prime} \subseteq D_{q}$, and for any e $\in E, G_{e}^{\prime} \subseteq G_{e}$;
(r2) Safety: for any trajectory ω that \mathcal{H}^{\prime} accepts, if (q, x) is on ω, then $x \in S_{q}$;

Problem Decription

- A safety requirement \mathcal{S} assigns to each mode $q \in Q$ a safe region $S_{q} \subseteq \mathbb{R}^{n}$, i.e. $\mathcal{S}=\bigcup_{q \in Q}\left(\{q\} \times S_{q}\right)$.

Switching controller synthesis for safety [Asarin et al. 00]

Given a hybrid automaton \mathcal{H} and a safety property S, find a hybrid automaton $\mathcal{H}^{\prime}=\left(Q, X, f, D^{\prime}, E, G^{\prime}\right)$ such that
(r1) Refinement: for any $q \in Q, D_{q}^{\prime} \subseteq D_{q}$, and for any e $\in E, G_{e}^{\prime} \subseteq G_{e}$;
(r2) Safety: for any trajectory ω that \mathcal{H}^{\prime} accepts, if (q, x) is on ω, then $x \in S_{q} ;$
(r3) Non-blocking: \mathcal{H}^{\prime} is non-blocking.

A Nuclear Reactor Example

The nuclear reactor system consists of a reactor core and a cooling rod which is immersed into and removed out of the core periodically to keep the temperature of the core in a certain range.

A Nuclear Reactor Example (Cont'd)

- x : temperature;
- p: proportion immersed

A Nuclear Reactor Example (Cont'd)

- x : temperature;
- p: proportion immersed

A Nuclear Reactor Example (Cont'd)

- x: temperature;
- p: proportion immersed

A Nuclear Reactor Example (Cont'd)

- x: temperature;
- p: proportion immersed

Switching Controller Synthesis for the Reactor

$$
S \widehat{=} 510 \leq x \leq 550 \quad \text { for all modes }
$$

Switching Controller Synthesis for the Reactor

$$
S \widehat{=} 510 \leq x \leq 550 \quad \text { for all modes }
$$

Bad Switching Violates Safety Property

Transition from mode q_{1} to q_{2}

Solution to the Controller Synthesis Problem

Abstract Solution
Let \mathcal{H} be a hybrid system and \mathcal{S} be a safety property. If we can find a family of $D_{q}^{\prime} \subseteq \mathbb{R}^{n}$ such that
(c1) for all $q \in Q, D_{q}^{\prime} \subseteq D_{q} \cap S_{q}$;
for all $q \in Q, D_{q}^{\prime}$ is a continuous invariant of $\left(H_{q}, f_{q}\right)$ with
where $G_{e}^{\prime} \hat{=} G_{e} \cap D_{q^{\prime}}^{\prime}$ for $e=\left(q, q^{\prime}\right)$, then the family of G_{e}^{\prime} form a safe switching controller.

Solution to the Controller Synthesis Problem

Abstract Solution

Let \mathcal{H} be a hybrid system and \mathcal{S} be a safety property. If we can find a family of $D_{q}^{\prime} \subseteq \mathbb{R}^{n}$ such that
(c1) for all $q \in Q, D_{q}^{\prime} \subseteq D_{q} \cap S_{q}$;
(c2) for all $q \in Q, D_{q}^{\prime}$ is a continuous invariant of $\left(H_{q}, f_{q}\right)$ with

$$
H_{q} \hat{=}\left(\bigcup_{e=\left(q, q^{\prime}\right) \in E} G_{e}^{\prime}\right)^{c},
$$

Solution to the Controller Synthesis Problem

Abstract Solution

Let \mathcal{H} be a hybrid system and \mathcal{S} be a safety property. If we can find a family of $D_{q}^{\prime} \subseteq \mathbb{R}^{n}$ such that
(c1) for all $q \in Q, D_{q}^{\prime} \subseteq D_{q} \cap S_{q}$;
(c2) for all $q \in Q, D_{q}^{\prime}$ is a continuous invariant of $\left(H_{q}, \mathbf{f}_{q}\right)$ with

$$
H_{q} \hat{=}\left(\bigcup_{e=\left(q, q^{\prime}\right) \in E} G_{e}^{\prime}\right)^{c},
$$

where $G_{e}^{\prime} \widehat{=} G_{e} \cap D_{q^{\prime}}^{\prime}$ for $e=\left(q, q^{\prime}\right)$, then the family of G_{e}^{\prime} form a safe switching controller.

Template-Based Synthesis Framework

(s1) Template assignment: assign to each $q \in Q$ a template D_{q}^{\prime} as the continuous invariant to be generated at mode q;
(s2) Guard refinement: refine the transition guard G_{e} for each $e=\left(q, q^{\prime}\right) \in E$ by setting $G_{e}^{\prime} \widehat{=} G_{e} \cap D_{q^{\prime}}^{\prime}$
(s3) Deriving synthesis conditions: encode (c1) and (c2) in the abstract solution into constraints on parameters appearing in the templates;
(s4) Constraint solving: solve the constraints derived from (s3) using quantifier elimination (QE);
(s5) Parameters instantiation: find an appropriate instantiation of D_{q}^{\prime} and G_{e}^{\prime} from the possible parameter values obtained at (s4)

Template-Based Synthesis Framework

(s1) Template assignment: assign to each $q \in Q$ a template D_{q}^{\prime} as the continuous invariant to be generated at mode q;
(s2) Guard refinement: refine the transition guard G_{e} for each $e=\left(q, q^{\prime}\right) \in E$ by setting $G_{e}^{\prime} \widehat{=} G_{e} \cap D_{q^{\prime}}^{\prime} ;$
(s3) Deriving synthesis conditions: encode (c1) and (c2) in the abstract
solution into constraints on parameters appearing in the templates;
(s4) Constraint solving: solve the constraints derived from (s3) using
quantifier elimination (QE);
(s5) Parameters instantiation: find an appropriate instantiation of D_{q}^{\prime} and
G_{e}^{\prime} from the possible parameter values obtained at (s4)

Template-Based Synthesis Framework

(s1) Template assignment: assign to each $q \in Q$ a template D_{q}^{\prime} as the continuous invariant to be generated at mode q;
(s2) Guard refinement: refine the transition guard G_{e} for each $e=\left(q, q^{\prime}\right) \in E$ by setting $G_{e}^{\prime} \widehat{=} G_{e} \cap D_{q^{\prime}}^{\prime}$;
(s3) Deriving synthesis conditions: encode (c1) and (c2) in the abstract solution into constraints on parameters appearing in the templates;
(s4) Constraint solving: solve the constraints derived from (s3) using
quantifier elimination (QE);
(s5) Parameters instantiation: find an appropriate instantiation of D_{q}^{\prime} and G_{e}^{\prime} from the possible parameter values obtained at (s4)

Template-Based Synthesis Framework

(s1) Template assignment: assign to each $q \in Q$ a template D_{q}^{\prime} as the continuous invariant to be generated at mode q;
(s2) Guard refinement: refine the transition guard G_{e} for each $e=\left(q, q^{\prime}\right) \in E$ by setting $G_{e}^{\prime} \widehat{=} G_{e} \cap D_{q^{\prime}}^{\prime}$;
(s3) Deriving synthesis conditions: encode (c1) and (c2) in the abstract solution into constraints on parameters appearing in the templates;
(s4) Constraint solving: solve the constraints derived from (s3) using quantifier elimination (QE);
(s5) Parameters instantiation: find an appropriate instantiation of D_{q}^{\prime} and G_{e}^{\prime} from the possible parameter values obtained at (s4)

Template-Based Synthesis Framework

(s1) Template assignment: assign to each $q \in Q$ a template D_{q}^{\prime} as the continuous invariant to be generated at mode q;
(s2) Guard refinement: refine the transition guard G_{e} for each $e=\left(q, q^{\prime}\right) \in E$ by setting $G_{e}^{\prime} \widehat{=} G_{e} \cap D_{q^{\prime}}^{\prime}$;
(s3) Deriving synthesis conditions: encode (c1) and (c2) in the abstract solution into constraints on parameters appearing in the templates;
(s4) Constraint solving: solve the constraints derived from (s3) using quantifier elimination (QE);
(s5) Parameters instantiation: find an appropriate instantiation of D_{q}^{\prime} and G_{e}^{\prime} from the possible parameter values obtained at (s4)

Heuristics for Predefining Templates by Qualitative Analysis

Using qualitative analysis to identify critical points for predefining templates

- Infer the evolution behavior (increasing or decreasing) of continuous variables in each mode from the ODEs
- Identify modes (called critical) at which the evolution behavior of a continuous variable changes, and thus the maximal (or minimal) value of this continuous variable can be achieved
- Equate the maximal (or minimal) value to the corresponding safety upper (or lower) bound to obtain a critical point
- Backward propagate the critical point, by backtracking along the continuous trajectory through the critical point

Heuristics for Predefining Templates by Qualitative Analysis

Using qualitative analysis to identify critical points for predefining templates

- Infer the evolution behavior (increasing or decreasing) of continuous variables in each mode from the ODEs
- Identify modes (called critical) at which the evolution behavior of a continuous variable changes, and thus the maximal (or minimal) value of this continuous variable can be achieved
- Equate the maximal (or minimal) value to the corresponding safety upper (or lower) bound to obtain a critical point
- Backward nronagate the critical noint by backtracking along the continuous trajectory through the critical point

Heuristics for Predefining Templates by Qualitative Analysis

Using qualitative analysis to identify critical points for predefining templates

- Infer the evolution behavior (increasing or decreasing) of continuous variables in each mode from the ODEs
- Identify modes (called critical) at which the evolution behavior of a continuous variable changes, and thus the maximal (or minimal) value of this continuous variable can be achieved
- Equate the maximal (or minimal) value to the corresponding safety upper (or lower) bound to obtain a critical point
- Backward propagate the critical point, by backtracking along the continuous trajectory through the critical point

Heuristics for Predefining Templates by Qualitative Analysis

Using qualitative analysis to identify critical points for predefining templates

- Infer the evolution behavior (increasing or decreasing) of continuous variables in each mode from the ODEs
- Identify modes (called critical) at which the evolution behavior of a continuous variable changes, and thus the maximal (or minimal) value of this continuous variable can be achieved
- Equate the maximal (or minimal) value to the corresponding safety upper (or lower) bound to obtain a critical point
- Backward propagate the critical point, by backtracking along the continuous trajectory through the critical point

Revisiting the Running Example

For the running example,

- At $D_{q_{2}}$, temperature x achieves maximal value when crossing $I_{1} \widehat{=} x / 10-6 p-50=0$.
- $E(5 / 6,550)$ at q_{2} is obtained by taking the intersection of I_{1} and safety upper bound $x=550$
- E is backward propagated to $A(0, a)$, with a a parameter
- Compute a parabola $x-550-\frac{36}{25}(a-550)\left(p-\frac{5}{6}\right)^{2}=0$ through A and E as part of the template $D_{q_{2}}^{\prime}$

Revisiting the Running Example

For the running example,

- At $D_{q_{2}}$, temperature x achieves maximal value when crossing $I_{1} \widehat{=} x / 10-6 p-50=0$.
- $E(5 / 6,550)$ at q_{2} is obtained by taking the intersection of I_{1} and safety upper bound $x=550$
- E is backward propagated to A(0, a), with a a parameter
- Compute a parabola through A and E as part of the template $D_{q_{2}}^{\prime}$

Revisiting the Running Example

For the running example,

- At $D_{q_{2}}$, temperature x achieves maximal value when crossing $I_{1} \widehat{=} x / 10-6 p-50=0$.
- $E(5 / 6,550)$ at q_{2} is obtained by taking the intersection of I_{1} and safety upper bound $x=550$
- E is backward propagated to $A(0, a)$, with a a parameter
- Compute a parabola
through A and E as part of the
template $D_{q_{2}}^{\prime}$

Revisiting the Running Example

For the running example,

- At $D_{q_{2}}$, temperature x achieves maximal value when crossing
$I_{1} \widehat{=} x / 10-6 p-50=0$.
- $E(5 / 6,550)$ at q_{2} is obtained by taking the intersection of I_{1} and safety upper bound $x=550$
- E is backward propagated to $A(0, a)$, with a a parameter
- Compute a parabola $x-550-\frac{36}{25}(a-550)\left(p-\frac{5}{6}\right)^{2}=0$ through A and E as part of the template $D_{q_{2}}^{\prime}$

Revisiting the Running Example (Cont'd)

The set of parameters: a, b, c, d

- $D_{1}^{\prime} \widehat{=} p=0 \wedge 510 \leq x \leq a$
- $D_{2}^{\prime} \widehat{=} 0 \leq p \leq 1 \wedge x-b \geq p(d-b) \wedge$

$$
x-550-\frac{36}{25}(a-550)\left(p-\frac{5}{6}\right)^{2} \leq 0
$$

- $D_{3}^{\prime} \widehat{=} p=1 \wedge d \leq x \leq 550$
- $D_{4}^{\prime} \widehat{=} 0 \leq p \leq 1 \wedge x-a \leq p(c-a) \wedge$ $x-510-\frac{36}{25}(d-510)\left(p-\frac{1}{6}\right)^{2} \geq 0$

Revisiting the Running Example (Cont'd)

The set of parameters: a, b, c, d

- $D_{1}^{\prime} \widehat{=} p=0 \wedge 510 \leq x \leq a$
- $D_{2}^{\prime} \widehat{=} 0 \leq p \leq 1 \wedge x-b \geq p(d-b) \wedge$

$$
x-550-\frac{36}{25}(a-550)\left(p-\frac{5}{6}\right)^{2} \leq 0
$$

- $D_{3}^{\prime} \widehat{=} p=1 \wedge d \leq x \leq 550$
- $D_{4}^{\prime} \widehat{=} 0 \leq p \leq 1 \wedge x-a \leq p(c-a) \wedge$ $x-510-\frac{36}{25}(d-510)\left(p-\frac{1}{6}\right)^{2} \geq 0$
- $G_{12}^{\prime} \widehat{=} p=0 \wedge b \leq x \leq a$
- $G_{23}^{\prime} \widehat{=} p=1 \wedge d \leq x \leq 550$
- $G_{34}^{\prime} \widehat{=} p=1 \wedge d \leq x \leq c$
- $G_{41}^{\prime} \widehat{=} p=0 \wedge 510 \leq x \leq a$

Revisiting the Running Example (Cont'd)

- $a=\frac{6575}{12} \wedge b=\frac{4135}{8} \wedge c=\frac{4345}{8} \wedge d=\frac{6145}{12}$.
- From this result we get that the cooling rod should be immersed before temperature rises to $\frac{6575}{12}=547.92$, and removed before temperature drops to $\frac{6145}{12}=512.08$.
- By solving differential equations explicitly, the corresponding exact bounds are 547.97 and 512.03

Revisiting the Running Example (Cont'd)

- $a=\frac{6575}{12} \wedge b=\frac{4135}{8} \wedge c=\frac{4345}{8} \wedge d=\frac{6145}{12}$.
- From this result we get that the cooling rod should be immersed before temperature rises to $\frac{6575}{12}=547.92$, and removed before temperature drops to $\frac{6145}{12}=512.08$.
- By solving differential equations explicitly, the corresponding exact bounds are 547.97 and 512.03

Revisiting the Running Example (Cont'd)

- $a=\frac{6575}{12} \wedge b=\frac{4135}{8} \wedge c=\frac{4345}{8} \wedge d=\frac{6145}{12}$.
- From this result we get that the cooling rod should be immersed before temperature rises to $\frac{6575}{12}=547.92$, and removed before temperature drops to $\frac{6145}{12}=512.08$.
- By solving differential equations explicitly, the corresponding exact bounds are 547.97 and 512.03

Outline

(1) Background
(2) Talk1: Preliminaries

- Polynomials and Polynomial Ideals
- First-order Theory of Reals
- Continuous Dynamical Systems
- Hybrid Automata
(3) Talk2: Computing Invariants for Hybrid Systems
- Generating Continuous Invariants in Simple Case
- Generating Continuous Invariants in General Case
- Generating Semi-algebraic Global Invariants
- Abstraction of Elementary Hybrid Systems by Variable Transformation
- An Industrial Case Study: Soft Landing
(4) Talk3: Controller Synthesis
- Controller Synthesis with Safety
- Controller Synthesis with Safety and Optimality
- An Industrial Case Study: The Oil Pump Control Problem
(5) Conclusions

Problem Description

- Given a hybrid system \mathcal{H} in which transition conditions $h_{i j}$ are not determined but parameterized by \mathbf{u}, a vector of control parameters
- Our task is to determine u such that \mathcal{H} can make discrete jumps at desired points, thus guaranteeing that
- a safety property \mathcal{S} is satisfied, i.e. $x \in \mathcal{S}$ at any time
- an optimization goal, e.g. $\min _{\mathbf{u}} g(\mathbf{u})$, is achieved

Our Approach - Step 1

Derive constraint $D(\mathbf{u})$ on \mathbf{u} from the safety requirements \mathcal{S}

- Compute
- the exact reachable set $\operatorname{Reach}_{\mathcal{H}}(\mathrm{x}, \mathrm{u})$ of \mathcal{H}, or
- an inductive invariant $\operatorname{Inv}_{\mathcal{H}}(\mathrm{x}, \mathrm{u})$
as polynomial formulas
- Suppose \mathcal{S} is also modeled by polynomial formulas, then $D(\mathrm{u})$ can be obtained by applying QE to

Our Approach - Step 1

Derive constraint $D(\mathbf{u})$ on \mathbf{u} from the safety requirements \mathcal{S}

- Compute
- the exact reachable set $\operatorname{Reach}_{\mathcal{H}}(\mathbf{x}, \mathbf{u})$ of \mathcal{H}, or
- an inductive invariant $\operatorname{Inv}_{\mathcal{H}}(\mathbf{x}, \mathbf{u})$
as polynomial formulas
- Suppose \mathcal{S} is also modeled by polynomial formulas, then $D(u)$ can be obtained by applying QE to

Our Approach - Step 1

Derive constraint $D(\mathbf{u})$ on \mathbf{u} from the safety requirements \mathcal{S}

- Compute
- the exact reachable set $\operatorname{Reach}_{\mathcal{H}}(\mathbf{x}, \mathbf{u})$ of \mathcal{H}, or
- an inductive invariant $\operatorname{Inv}_{\mathcal{H}}(\mathbf{x}, \mathbf{u})$
as polynomial formulas
- Suppose \mathcal{S} is also modeled by polynomial formulas, then $D(\mathbf{u})$ can be obtained by applying QE to

$$
\forall \mathrm{x} .\left(\operatorname{Reach}_{\mathcal{H}}(\mathrm{x}, \mathbf{u}) \longrightarrow \mathcal{S}\right)
$$

Our Approach - Step 1

Derive constraint $D(\mathbf{u})$ on \mathbf{u} from the safety requirements \mathcal{S}

- Compute
- the exact reachable set $\operatorname{Reach}_{\mathcal{H}}(\mathbf{x}, \mathbf{u})$ of \mathcal{H}, or
- an inductive invariant $\operatorname{Inv}_{\mathcal{H}}(\mathbf{x}, \mathbf{u})$
as polynomial formulas
- Suppose \mathcal{S} is also modeled by polynomial formulas, then $D(\mathbf{u})$ can be obtained by applying QE to

$$
\forall \mathbf{x} .\left(\operatorname{Reach}_{\mathcal{H}}(\mathrm{x}, \mathbf{u}) \longrightarrow \mathcal{S}\right)
$$

or

$$
\forall \mathrm{x} .\left(\operatorname{Inv}_{\mathcal{H}}(\mathrm{x}, \mathbf{u}) \longrightarrow \mathcal{S}\right)
$$

Our Approach - Step 2

Encode the optimization problem (suppose the objective function g is a polynomial) over constraint $D(\mathbf{u})$ into a quantified first-order polynomial formula Qu. $\varphi(\mathbf{u}, z)$ by introducing a fresh variable z

Our Approach - Step 2

Encode the optimization problem (suppose the objective function g is a polynomial) over constraint $D(\mathbf{u})$ into a quantified first-order polynomial formula Qu. $\varphi(\mathbf{u}, z)$ by introducing a fresh variable z

- Minimize u^{2} on $[-1,1]$

- After QE: $z \geq 0$, which means

Our Approach - Step 2

Encode the optimization problem (suppose the objective function g is a polynomial) over constraint $D(\mathbf{u})$ into a quantified first-order polynomial formula Qu. $\varphi(\mathbf{u}, z)$ by introducing a fresh variable z

- Minimize u^{2} on $[-1,1]$
- Introduce a fresh variable z :
$u \geq-1 \wedge u \leq 1 \wedge u^{2} \leq z$
- Projection to the z-axis:
- After QE: $z \geq 0$, which means

Our Approach - Step 2

Encode the optimization problem (suppose the objective function g is a polynomial) over constraint $D(\mathbf{u})$ into a quantified first-order polynomial formula Qu. $\varphi(\mathbf{u}, z)$ by introducing a fresh variable z

- Minimize u^{2} on $[-1,1]$
- Introduce a fresh variable z :

$$
u \geq-1 \wedge u \leq 1 \wedge u^{2} \leq z
$$

- Projection to the z-axis:

$$
\exists u \cdot\left(u \geq-1 \wedge u \leq 1 \wedge u^{2} \leq z\right)
$$

- After QE: $z \geq 0$, which means

Our Approach - Step 2

Encode the optimization problem (suppose the objective function g is a polynomial) over constraint $D(\mathbf{u})$ into a quantified first-order polynomial formula Qu. $\varphi(\mathbf{u}, z)$ by introducing a fresh variable z

- Minimize u^{2} on $[-1,1]$
- Introduce a fresh variable z :

$$
u \geq-1 \wedge u \leq 1 \wedge u^{2} \leq z
$$

- Projection to the z-axis:

$$
\exists u \cdot\left(u \geq-1 \wedge u \leq 1 \wedge u^{2} \leq z\right)
$$

- After QE: $z \geq 0$, which means

$$
\min _{u \in[-1,1]} u^{2}=0
$$

Encoding Optimization Criteria

Lemma

Suppose $g_{1}\left(\mathbf{u}_{1}\right), g_{2}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right), g_{3}\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right)$ are polynomials, and $D_{1}\left(\mathbf{u}_{1}\right)$, $D_{2}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right), D_{3}\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right)$ are nonempty compact semi-algebraic sets. Then there exist $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ s.t.

$$
\begin{gather*}
\exists \mathbf{u}_{1} \cdot\left(D_{1} \wedge g_{1} \leq z\right) \Leftrightarrow z \geq c_{1} \tag{4}\\
\forall \mathbf{u}_{2} \cdot\left(\exists \mathbf{u}_{1} \cdot D_{2} \Rightarrow \exists \mathbf{u}_{1} \cdot\left(D_{2} \wedge g_{2} \leq z\right)\right) \Leftrightarrow z \geq c_{2} \tag{5}
\end{gather*}
$$

$\exists \mathbf{u}_{3} \cdot\left(\left(\exists \mathbf{u}_{1} \mathbf{u}_{2} \cdot D_{3}\right) \wedge \forall \mathbf{u}_{2} \cdot\left(\exists \mathbf{u}_{1} \cdot D_{3} \Rightarrow \exists \mathbf{u}_{1} \cdot\left(D_{3} \wedge g_{3} \leq z\right)\right)\right) \Leftrightarrow z \triangleright c_{3}$
where $\triangleright \in\{>, \geq\}$, and c_{1}, c_{2}, c_{3} satisfy

$$
\begin{align*}
& c_{1}=\min _{\mathbf{u}_{1}} g_{1}\left(\mathbf{u}_{1}\right) \quad \text { over } D_{1}\left(\mathbf{u}_{1}\right), \tag{7}\\
& c_{2}=\sup _{\mathbf{u}_{2}} \min _{\mathbf{u}_{1}} g_{2}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right) \quad \text { over } D_{2}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right), \tag{8}\\
& c_{3}=\inf \sup _{\min } g_{3}\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right) \quad \text { over } D_{3}\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right) . \tag{9}
\end{align*}
$$

Our Approach - Step 3

Eliminate quantifiers in Qu. $\varphi(\mathbf{u}, z)$ and from the result we can retrieve the optimal value and the corresponding optimal controller u

Our Approach - Step 3

Eliminate quantifiers in Qu. $\varphi(\mathbf{u}, z)$ and from the result we can retrieve the optimal value and the corresponding optimal controller u

- Combine exact QE with numeric computation: (discretization of existentially quantified variables)

$$
\exists x \in A \cdot \varphi(x) \approx \bigvee_{y \in F_{A}} \varphi(y)
$$

where F_{A} is a finite subset of A

Outline

(1) Background
(2) Talk1: Preliminaries

- Polynomials and Polynomial Ideals
- First-order Theory of Reals
- Continuous Dynamical Systems
- Hybrid Automata
(3) Talk2: Computing Invariants for Hybrid Systems
- Generating Continuous Invariants in Simple Case
- Generating Continuous Invariants in General Case
- Generating Semi-algebraic Global Invariants
- Abstraction of Elementary Hybrid Systems by Variable Transformation
- An Industrial Case Study: Soft Landing
(4) Talk3: Controller Synthesis
- Controller Synthesis with Safety
- Controller Synthesis with Safety and Optimality
- An Industrial Case Study: The Oil Pump Control Problem
(5) Conclusions

A Reported Case Study

Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.F., Reynier, P.A.: Automatic Synthesis of Robust and Optimal Controllers - An Industrial Case Study. HSCC'09

- Provided by the HYDAC ELECTRONIC GMBH company within the European project Quasimodo
- An oil pump control problem
- safety
- robustness
- optimality

A Reported Case Study

Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.F., Reynier, P.A.: Automatic Synthesis of Robust and Optimal Controllers - An Industrial Case Study. HSCC'09

- Provided by the hYDAC ELECTRONIC GMBH company within the European project Quasimodo
- An oil pump control problem
- safety
- robustness
- optimality

A Reported Case Study

Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.F., Reynier, P.A.: Automatic Synthesis of Robust and Optimal Controllers - An Industrial Case Study. HSCC'09

- Provided by the hydac electronic gmbi company within the European project Quasimodo
- An oil pump control problem
- safety
- robustness
- optimality

The System

- The system is composed of a machine, an accumulator, a reservoir and a pump

The System

- The system is composed of a machine, an accumulator, a reservoir and a pump
- The machine consumes oil out of the accumulator; the pump adds oil from the reservoir into the accumulator

The Consumption Rate

- The oil consumption is periodic. The length of one consumption cycle is 20 s (second)

- The profile of consumption rate in one cycle is depicted by

The Consumption Rate

- The oil consumption is periodic. The length of one consumption cycle is 20 s (second)
- The profile of consumption rate in one cycle is depicted by

The Pump

- The power of the pump is $2.2 \mathrm{I} / \mathrm{s}$ (liter/second)
- 2-second latency: if the pump is switched on $\left(t_{2 k+1}\right)$ or off $\left(t_{2 k+2}\right)$ at time points then for any $i \geq 1$
- It is obvious that the pump can be turned on at most 5 times in one cycle

The Pump

- The power of the pump is $2.2 \mathrm{I} / \mathrm{s}$ (liter/second)
- 2-second latency: if the pump is switched on $\left(t_{2 k+1}\right)$ or off $\left(t_{2 k+2}\right)$ at time points

$$
0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{i} \leq t_{i+1} \leq \cdots
$$

then

$$
t_{i+1}-t_{i} \geq 2
$$

for any $i \geq 1$

- It is obvious that the pump can be turned on at most 5 times in one cycle

The Pump

- The power of the pump is $2.2 \mathrm{I} / \mathrm{s}$ (liter/second)
- 2-second latency: if the pump is switched on $\left(t_{2 k+1}\right)$ or off $\left(t_{2 k+2}\right)$ at time points

$$
0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{i} \leq t_{i+1} \leq \cdots
$$

then

$$
t_{i+1}-t_{i} \geq 2
$$

for any $i \geq 1$

- It is obvious that the pump can be turned on at most 5 times in one cycle

Control Objectives

Determine the t_{i} 's in order to

- R_{s} (safety): maintain

$$
v(t) \in\left[V_{\min }, V_{\max }\right], \quad \forall t \in[0, \infty)
$$

- $v(t)$ denotes the oil volume in the accumulator at time t
- $V_{\text {min }}=4.9$ (liter)
- $V_{\text {max }}=25.1 /$
and considering the energy cost and wear of the system,
- R_{o} (optimality): minimize the average accumulated oil volume in the limit, i.e. minimize

Control Objectives

Determine the t_{i} 's in order to

- R_{s} (safety): maintain

$$
v(t) \in\left[V_{\min }, V_{\max }\right], \quad \forall t \in[0, \infty)
$$

- $v(t)$ denotes the oil volume in the accumulator at time t
- $V_{\text {min }}=4.9$ (liter)
- $V_{\text {max }}=25.1 /$
and considering the energy cost and wear of the system,
- R_{o} (optimality): minimize the average accumulated oil volume in the limit, i.e. minimize

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{t=0}^{T} v(t) \mathrm{d} t
$$

Control Objectives (Cont'd)

Both objectives should be achieved under constraints:

- R_{pl} (pump latency): $t_{i+1}-t_{i} \geq 2$
- R_{r} (robustness): uncertainties of the system should be taken into account:
- fluctuation of consumption rate (if it is not 0), up to
- imprecision in the measurement of oil volume, up to
$\epsilon=0061$
- imprecision in the measurement of time, up to $\delta=0.015 s$.

Control Objectives (Cont'd)

Both objectives should be achieved under constraints:

- R_{pl} (pump latency): $t_{i+1}-t_{i} \geq 2$
- R_{r} (robustness): uncertainties of the system should be taken into account:
- fluctuation of consumption rate (if it is not 0), up to $f=0.1 / / s$
- imprecision in the measurement of oil volume, up to
- imprecision in the measurement of time, up to $\delta=0.015 \mathrm{~s}$.

Control Objectives (Cont'd)

Both objectives should be achieved under constraints:

- R_{pl} (pump latency): $t_{i+1}-t_{i} \geq 2$
- R_{r} (robustness): uncertainties of the system should be taken into account:
- fluctuation of consumption rate (if it is not 0), up to $f=0.1 / / s$
- imprecision in the measurement of oil volume, up to $\epsilon=0.06 /$
- imprecision in the measurement of time, up to $\delta=0.015 \mathrm{~s}$.

Control Objectives (Cont'd)

Both objectives should be achieved under constraints:

- R_{pl} (pump latency): $t_{i+1}-t_{i} \geq 2$
- R_{r} (robustness): uncertainties of the system should be taken into account:
- fluctuation of consumption rate (if it is not 0), up to $f=0.1 / / s$
- imprecision in the measurement of oil volume, up to $\epsilon=0.06 /$
- imprecision in the measurement of time, up to $\delta=0.015$ s.

Localize the Controller

- $0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{i} \leq t_{i+1} \leq \cdots$
- Employing the periodicity
- Stable interval $[L, U] \subseteq\left[V_{\text {min }}, V_{\text {max }}\right]$

Localize the Controller

- $0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{i} \leq t_{i+1} \leq \cdots$
- Employing the periodicity
- Stable interval $[L, U] \subseteq\left[V_{\text {min }}, V_{\text {max }}\right]$

Localize the Controller

- $0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{i} \leq t_{i+1} \leq \cdots$
- Employing the periodicity
- Stable interval $[L, U] \subseteq\left[V_{\text {min }}, V_{\text {max }}\right]$

Repeated Cycles

Step 1: Modeling Oil Consumption

- | time | $[2,4]$ | $[8,10]$ | $[10,12]$ | $[14,16]$ | $[16,18]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| rate | 1.2 | 1.2 | 2.5 | 1.7 | 0.5 |
- fluctuation of consumption rate: $f=0.1$

Step 1: Modeling Oil Consumption

- | time | $[2,4]$ | $[8,10]$ | $[10,12]$ | $[14,16]$ | $[16,18]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| rate | 1.2 | 1.2 | 2.5 | 1.7 | 0.5 |
- fluctuation of consumption rate: $f=0.1$

$$
\begin{array}{rlll}
& (0 \leq t \leq 2 & \longrightarrow & \left.V_{\text {out }}=0\right) \\
& \wedge(2 \leq t \leq 4 & \longrightarrow & \left.1.1(t-2) \leq V_{\text {out }} \leq 1.3(t-2)\right) \\
& \wedge(4 \leq t \leq 8 & \longrightarrow & \left.2.2 \leq V_{\text {out }} \leq 2.6\right) \\
C_{1} \widehat{=} & \wedge(8 \leq t \leq 10 & \longrightarrow & \left.2.2+1.1(t-8) \leq V_{\text {out }} \leq 2.6+1.3(t-8)\right) \\
& \wedge(10 \leq t \leq 12 & \longrightarrow & \left.4.4+2.4(t-10) \leq V_{\text {out }} \leq 5.2+2.6(t-10)\right) \\
& \wedge(12 \leq t \leq 14 & \longrightarrow & \left.9.2 \leq V_{\text {out }} \leq 10.4\right) \\
& \wedge(14 \leq t \leq 16 & \longrightarrow & \left.9.2+1.6(t-14) \leq V_{\text {out }} \leq 10.4+1.8(t-14)\right) \\
& \wedge(16 \leq t \leq 18 & \longrightarrow & \left.12.4+0.4(t-16) \leq V_{\text {out }} \leq 14+0.6(t-16)\right) \\
& \wedge(18 \leq t \leq 20 & \longrightarrow & \left.13.2 \leq V_{\text {out }} \leq 15.2\right)
\end{array}
$$

Step 1: Modeling the Pump

- We will first assume that the pump is activated at most twice in one cycle: $t_{1}, t_{2}, t_{3}, t_{4}$

Step 1: Modeling the Pump

- We will first assume that the pump is activated at most twice in one cycle: $t_{1}, t_{2}, t_{3}, t_{4}$
- $t_{i+1}-t_{i} \geq 2$:

$$
C_{2} \widehat{=} \quad \begin{aligned}
& \left(t_{1} \geq 2 \wedge t_{2}-t_{1} \geq 2 \wedge t_{3}-t_{2} \geq 2 \wedge t_{4}-t_{3} \geq 2 \wedge t_{4} \leq 20\right) \\
& \vee\left(t_{1} \geq 2 \wedge t_{2}-t_{1} \geq 2 \wedge t_{2} \leq 20 \wedge t_{3}=20 \wedge t_{4}=20\right) \\
& \\
& \vee\left(t_{1}=20 \wedge t_{2}=20 \wedge t_{3}=20 \wedge t_{4}=20\right)
\end{aligned}
$$

Step 1: Modeling the Pump

- We will first assume that the pump is activated at most twice in one cycle: $t_{1}, t_{2}, t_{3}, t_{4}$
- $t_{i+1}-t_{i} \geq 2$:

$$
C_{2} \widehat{=} \quad \begin{aligned}
& \left(t_{1} \geq 2 \wedge t_{2}-t_{1} \geq 2 \wedge t_{3}-t_{2} \geq 2 \wedge t_{4}-t_{3} \geq 2 \wedge t_{4} \leq 20\right) \\
& \\
& \vee\left(t_{1} \geq 2 \wedge t_{2}-t_{1} \geq 2 \wedge t_{2} \leq 20 \wedge t_{3}=20 \wedge t_{4}=20\right) \\
& \\
& \vee\left(t_{1}=20 \wedge t_{2}=20 \wedge t_{3}=20 \wedge t_{4}=20\right)
\end{aligned}
$$

- $2.21 / \mathrm{s}$

$$
C_{3} \widehat{ } \begin{array}{rlll}
& \left(0 \leq t \leq t_{1}\right. & \longrightarrow & \left.V_{\text {in }}=0\right) \\
& \wedge\left(t_{1} \leq t \leq t_{2}\right. & \longrightarrow & \left.V_{\text {in }}=2.2\left(t-t_{1}\right)\right) \\
& \wedge\left(t_{2} \leq t \leq t_{3}\right. & \longrightarrow & \left.V_{i n}=2.2\left(t_{2}-t_{1}\right)\right) \\
& \wedge\left(t_{3} \leq t \leq t_{4}\right. & \longrightarrow & \left.V_{\text {in }}=2.2\left(t_{2}-t_{1}\right)+2.2\left(t-t_{3}\right)\right) \\
& \wedge\left(t_{4} \leq t \leq 20\right. & \longrightarrow & \left.V_{\text {in }}=2.2\left(t_{2}+t_{4}-t_{1}-t_{3}\right)\right)
\end{array}
$$

Step 1: Encoding Safety Requirements

- Oil volume in the accumulator:

$$
C_{4} \widehat{=} v=v_{0}+V_{\text {in }}-V_{\text {out }} .
$$

- Inductiveness and safety (considering robustness):

\square

Step 1: Encoding Safety Requirements

- Oil volume in the accumulator:

$$
C_{4} \widehat{=} v=v_{0}+V_{\text {in }}-V_{\text {out }} .
$$

- Inductiveness and safety (considering robustness):

$$
\begin{aligned}
& C_{5} \widehat{=} \quad t=20 \longrightarrow L+0.2 \leq v \leq U-0.2 \\
& C_{6} \widehat{=} \quad 0 \leq t \leq 20 \longrightarrow V_{\min }+0.2 \leq v \leq V_{\max }-0.2 .
\end{aligned}
$$

Step 1: Encoding Safety Requirements (Cont'd)

$$
\mathcal{S} \widehat{=} \forall t, v, V_{\text {in }}, V_{\text {out }} \cdot\left(C_{1} \wedge C_{3} \wedge C_{4} \longrightarrow C_{5} \wedge C_{6}\right) .
$$

- C_{1} : oil consumed
- C_{3} : oil pumped
- C_{4} : oil in the accumulator
- C_{5} : inductiveness
- C_{6} : (local) safety

$$
C_{8} \hat{=} \forall v_{0} \cdot\left(C_{7} \longrightarrow \exists t_{1} t_{2} t_{3} t_{4} \cdot\left(C_{2} \wedge \mathcal{S}\right)\right)
$$

Step 1: Encoding Safety Requirements (Cont'd)

$$
\mathcal{S} \widehat{=} \forall t, v, V_{\text {in }}, V_{\text {out }} \cdot\left(C_{1} \wedge C_{3} \wedge C_{4} \longrightarrow C_{5} \wedge C_{6}\right) .
$$

- C_{1} : oil consumed
- C_{3} : oil pumped
- C_{4} : oil in the accumulator
- C_{5} : inductiveness
- C_{6} : (local) safety

$$
C_{8} \hat{=} \forall v_{0} \cdot\left(C_{7} \longrightarrow \exists t_{1} t_{2} t_{3} t_{4} \cdot\left(C_{2} \wedge \mathcal{S}\right)\right)
$$

Step 1: Encoding Safety Requirements (Cont'd)

$$
\mathcal{S} \widehat{=} \forall t, v, V_{\text {in }}, V_{\text {out }} \cdot\left(C_{1} \wedge C_{3} \wedge C_{4} \longrightarrow C_{5} \wedge C_{6}\right) .
$$

- C_{1} : oil consumed
- C_{3} : oil pumped
- C_{4} : oil in the accumulator
- C_{5} : inductiveness
- C_{6} : (local) safety

$$
C_{8} \hat{=} \forall v_{0} \cdot\left(C_{7} \longrightarrow \exists t_{1} t_{2} t_{3} t_{4} \cdot\left(C_{2} \wedge \mathcal{S}\right)\right)
$$

- $C_{7} \hat{=} L \leq v_{0} \leq U$
- C_{2} : 2-second latency

Deriving Constraints

Applying QE to

$$
C_{8} \hat{=} \forall v_{0} \cdot\left(C_{7} \longrightarrow \exists t_{1} t_{2} t_{3} t_{4} \cdot\left(C_{2} \wedge \mathcal{S}\right)\right)
$$

Deriving Constraints

Applying QE to

$$
C_{8} \hat{=} \forall v_{0} \cdot\left(C_{7} \longrightarrow \exists t_{1} t_{2} t_{3} t_{4} \cdot\left(C_{2} \wedge \mathcal{S}\right)\right)
$$

we get

$$
C_{9} \widehat{=} L \geq 5.1 \wedge U \leq 24.9 \wedge U-L \geq 2.4 .
$$

Deriving Constraints (Cont'd)

$$
C_{10} \widehat{=} C_{2} \wedge C_{7} \wedge C_{9} \wedge \mathcal{S}
$$

- C_{2} : 2-second latency
- $C_{7}: L \leq v_{0} \leq U$
- C_{9} : constraint on L, U
- \mathcal{S} : safety and inductiveness

Deriving Constraints (Cont'd)

$$
C_{10} \widehat{=} C_{2} \wedge C_{7} \wedge C_{9} \wedge \mathcal{S}
$$

- C_{2} : 2-second latency
- $C_{7}: L \leq v_{0} \leq U$
- C_{9} : constraint on L, U
- \mathcal{S} : safety and inductiveness

After QE:

$$
\mathcal{D}\left(L, U, v_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right) \widehat{=} \bigvee_{i=1}^{92} D_{i}
$$

Step 2: Optimization Criterion

R_{o} (optimality): minimize the average accumulated oil volume in the limit, i.e. minimize

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{t=0}^{T} v(t) \mathrm{d} t
$$

Optimization Criterion (Contd.)

- $\mathrm{R}_{\mathrm{o}}^{\prime}: \min _{[L, U]} \max _{v_{0} \in[L, U]} \min _{\mathbf{t}} \frac{1}{20} \int_{t=0}^{20} v(t) \mathrm{d} t$.

Step 2: Encoding the Optimization Criterion

Cost function:

$$
\begin{aligned}
g\left(v_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right) & \widehat{=} \frac{1}{20} \int_{t=0}^{20} v(t) \mathrm{d} t \\
& =\frac{20 v_{0}+1.1\left(t_{1}^{2}-t_{2}^{2}+t_{3}^{2}-t_{4}^{2}-40 t_{1}+40 t_{2}-40 t_{3}+40 t_{4}\right)-132.2}{20}
\end{aligned}
$$

$\mathrm{R}_{\mathrm{o}}^{\prime}$ can be encoded into

which is equivalent to $z \geq z^{*}$ or $z>z^{*}$

Step 2: Encoding the Optimization Criterion

Cost function:

$$
\begin{aligned}
g\left(v_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right) & \widehat{=} \frac{1}{20} \int_{t=0}^{20} v(t) \mathrm{d} t \\
& =\frac{20 v_{0}+1.1\left(t_{1}^{2}-t_{2}^{2}+t_{3}^{2}-t_{4}^{2}-40 t_{1}+40 t_{2}-40 t_{3}+40 t_{4}\right)-132.2}{20}
\end{aligned}
$$

$\mathrm{R}_{\mathrm{o}}^{\prime}$ can be encoded into

$$
\exists L, U \cdot\left(C_{9} \wedge \forall v_{0} \cdot\left(C_{7} \longrightarrow \exists t_{1} t_{2} t_{3} t_{4} \cdot(\mathcal{D} \wedge g \leq z)\right)\right),
$$

which is equivalent to $z \geq z^{*}$ or $z>z^{*}$

Step 3: Performing QE

$$
\exists L, \cup \cdot\left(C_{9} \wedge \forall v_{0} \cdot\left(C_{7} \longrightarrow \exists t_{1} t_{2} t_{3} t_{4} \cdot(\mathcal{D} \wedge g \leq z)\right)\right)
$$

- the inner \exists : qudratic programming
- the outer \exists : discretization

$$
L \geq 5.1 \wedge U \leq 24.9 \wedge U-L \geq 2.4
$$

- the middle \forall : divide and conquer

Optimal Controllers with 2 Activations

- In [Cassez et al hscc09], the optimal value 7.95 is obtained at interval [5.1,8.3]

Optimal Controllers with 2 Activations

- In [Cassez et al hscc09], the optimal value 7.95 is obtained at interval [5.1,8.3]
- Using our approach, the optimal value is 7.53 (a 5% improvement) and the corresponding interval is [5.1, 7.5]

Optimal Controllers with 2 Activations

- In [Cassez et al hscc09], the optimal value 7.95 is obtained at interval [5.1,8.3]
- Using our approach, the optimal value is 7.53 (a 5% improvement) and the corresponding interval is [5.1,7.5]
- Comparison of local optimal controllers: (the left one comes from [Cassez et al hscc09])

Local Optimal Controllers - 2 Activations

$t_{1}=\frac{10 v_{0}-25}{13} \wedge t_{2}=\frac{10 v_{0}+1}{13} \wedge t_{3}=\frac{10 v_{0}+153}{22} \wedge t_{4}=\frac{157}{11}$

Improvement by Increasing Activations

- The pump is allowed to be switched on at most 3 times in one cycle
- The optimal average accumulated oil volume 7.35 (a 7.5% improvement) is obtained at interval [5.2, 8.1]
- The local optimal controllers corresponding to $v_{0} \in[5.2,8.1]$;

Improvement by Increasing Activations

- The pump is allowed to be switched on at most 3 times in one cycle
- The optimal average accumulated oil volume 7.35 (a 7.5% improvement) is obtained at interval [5.2, 8.1]

Improvement by Increasing Activations

- The pump is allowed to be switched on at most 3 times in one cycle
- The optimal average accumulated oil volume 7.35 (a 7.5% improvement) is obtained at interval [5.2, 8.1]
- The local optimal controllers corresponding to $v_{0} \in[5.2,8.1]$:

Local Optimal Controllers - 3 Activations

$$
\begin{array}{ll}
t_{1}=\frac{10 v_{0}-26}{13} \wedge t_{2}=\frac{10 v_{0}}{13} \wedge t_{3}=\frac{5 v_{0}+76}{11} \wedge t_{4}=12 \wedge t_{5}=14 \wedge t_{6}=\frac{359}{22} & v_{0} \in[5.2,6.8) \\
t_{1}=\frac{10 v_{0}-26}{13} \wedge t_{2}=\frac{10 v_{0}}{13} \wedge t_{3}=\frac{5 v_{0}+76}{11} \wedge t_{4}=\frac{5 v_{0}+98}{11} \wedge t_{5}=\frac{5 v_{0}+92}{9} \wedge t_{6}=\frac{20 v_{0}+3095}{198} & v_{0} \in[6.8,7.5) \\
t_{1}=\frac{10 v_{0}-26}{13} \wedge t_{2}=\frac{10 v_{0}}{13} \wedge t_{3}=\frac{5 v_{0}+76}{11} \wedge t_{4}=\frac{5 v_{0}+98}{11} \wedge t_{5}=\frac{5 v_{0}+92}{9} \wedge t_{6}=\frac{5 v_{0}+110}{9} & v_{0} \in[7.5,7.8) \\
t_{1}=\frac{10 v_{0}+26}{13} \wedge t_{2}=\frac{45 v_{0}+1300}{143} \wedge t_{3}=14 \wedge t_{4}=\frac{359}{22} \wedge t_{5}=20 \wedge t_{6}=20 & v_{0} \in[7.8,8.1]
\end{array}
$$

Three Activations are Enough

Proposition

For each admissible $[L, U]$, each $v_{0} \in[L, U]$, and any local control strategy s_{4} with at least 4 activations subject to $R_{/ L}, R_{i}$ and $R_{/ s}$, there exists a local control strategy s_{3} subject to $R_{/ u}, R_{i}$ and $R_{/ s}$ with 3 activations such that

$$
\frac{1}{20} \int_{t=0}^{20} v_{s_{3}}(t) \mathrm{d} t<\frac{1}{20} \int_{t=0}^{20} v_{s_{4}}(t) \mathrm{d} t
$$

where $v_{s_{3}}(t)$ (resp. $\left.v_{s_{4}}(t)\right)$ is the oil volume in the accumulator at t with s_{3} (resp. s_{4}).

Outline

(1) Background
(2) Talk1: Preliminaries

- Polynomials and Polynomial Ideals
- First-order Theory of Reals
- Continuous Dynamical Systems
- Hybrid Automata
(3) Talk2: Computing Invariants for Hybrid Systems
- Generating Continuous Invariants in Simple Case
- Generating Continuous Invariants in General Case
- Generating Semi-algebraic Global Invariants
- Abstraction of Elementary Hybrid Systems by Variable Transformation
- An Industrial Case Study: Soft Landing
(4) Talk3: Controller Synthesis
- Controller Synthesis with Safety
- Controller Synthesis with Safety and Optimality
- An Industrial Case Study: The Oil Pump Control Problem
(5) Conclusions

Conclusions

- Hybrid systems attracts more and more interests with the development of safety critical embedded systems
- Invariant plays an important role in the study (formal verification, controller synthesis) of hybrid systems
- Semi-algebraic inductive invariant checking for polynomial continuous/hybrid systems is decidable
- Use parametric polynomials and symbolic computation to automatically discover invariants, and to perform optimization
- Case studies show good prospect of proposed methods

Conclusions

- Hybrid systems attracts more and more interests with the development of safety critical embedded systems
- Invariant plays an important role in the study (formal verification, controller synthesis) of hybrid systems
- Semi-algebraic inductive invariant checking for polynomial continuous/hybrid systems is decidable
- Use parametric polynomials and symbolic computation to automatically discover invariants, and to perform optimization
- Case studies show good prospect of proposed methods

Conclusions

- Hybrid systems attracts more and more interests with the development of safety critical embedded systems
- Invariant plays an important role in the study (formal verification, controller synthesis) of hybrid systems
- Semi-algebraic inductive invariant checking for polynomial continuous/hybrid systems is decidable
- Use parametric polynomials and symbolic computation to automatically discover invariants, and to perform optimization
- Case studies show good prospect of proposed methods

Conclusions

- Hybrid systems attracts more and more interests with the development of safety critical embedded systems
- Invariant plays an important role in the study (formal verification, controller synthesis) of hybrid systems
- Semi-algebraic inductive invariant checking for polynomial continuous/hybrid systems is decidable
- Use parametric polynomials and symbolic computation to automatically discover invariants, and to perform optimization
- rigorous
- high complexity (may be combined with numeric computation)
- Non-polynomial systems transformed to polynomials ones
- Case studies show good prospect of proposed methods

Conclusions

- Hybrid systems attracts more and more interests with the development of safety critical embedded systems
- Invariant plays an important role in the study (formal verification, controller synthesis) of hybrid systems
- Semi-algebraic inductive invariant checking for polynomial continuous/hybrid systems is decidable
- Use parametric polynomials and symbolic computation to automatically discover invariants, and to perform optimization
- rigorous
- high complexity (may be combined with numeric computation)
- Non-polynomial systems transformed to polynomials ones
- Case studies show good prospect of proposed methods

Conclusions

- Hybrid systems attracts more and more interests with the development of safety critical embedded systems
- Invariant plays an important role in the study (formal verification, controller synthesis) of hybrid systems
- Semi-algebraic inductive invariant checking for polynomial continuous/hybrid systems is decidable
- Use parametric polynomials and symbolic computation to automatically discover invariants, and to perform optimization
- rigorous
- high complexity (may be combined with numeric computation)
- Non-polynomial systems transformed to polynomials ones
- Case studies show good prospect of proposed methods

Conclusions

- Hybrid systems attracts more and more interests with the development of safety critical embedded systems
- Invariant plays an important role in the study (formal verification, controller synthesis) of hybrid systems
- Semi-algebraic inductive invariant checking for polynomial continuous/hybrid systems is decidable
- Use parametric polynomials and symbolic computation to automatically discover invariants, and to perform optimization
- rigorous
- high complexity (may be combined with numeric computation)
- Non-polynomial systems transformed to polynomials ones
- Case studies show good prospect of proposed methods

Conclusions

- Hybrid systems attracts more and more interests with the development of safety critical embedded systems
- Invariant plays an important role in the study (formal verification, controller synthesis) of hybrid systems
- Semi-algebraic inductive invariant checking for polynomial continuous/hybrid systems is decidable
- Use parametric polynomials and symbolic computation to automatically discover invariants, and to perform optimization
- rigorous
- high complexity (may be combined with numeric computation)
- Non-polynomial systems transformed to polynomials ones
- Case studies show good prospect of proposed methods

Thank you!

Questions?

