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Abstract. Traditionally many proofs in real time scheduling theory were informal and
lacked the rigor usually required for good mathematical proofs. Some attempts have been
made towards making the proofs more reliable, including using formal logics to specify
scheduling algorithms and verify their properties. In particular, Duration Calculus, a real
time interval temporal logic, has been used since timing requirements in scheduling can
be naturally associated with intervals. This paper aims to improve the work in this area
and give a summary. Static and dynamic priority scheduling algorithms are formalised in
Duration Calculus and classical theorems for schedulability analysis are proven using the
formal proof system of Duration Calculus.
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1. Introduction

In the classical theory for real time scheduling, scheduling algorithms were in-
vented and then schedulability conditions, i.e., conditions that decide whether or
not the set of tasks will meet their timing requirements, were established. For
example, in the seminal work by Liu and Layland [Liu and Layland 1973], two
scheduling algorithms, i.e., Rate Monotonic Scheduler (RM) and Earliest Deadline
First (EDF), were proposed, and schedulability conditions for them were studied.
The correctness of the schedulability conditions is not trivial, and therefore needs
to be proved as mathematical theorems.

However, in many cases, including those in relatively recent book [Buttazzo
1997], the proofs lack the rigor usually required for good mathematical proofs.
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This is evident in the way in which new concepts were formed, definitions were
given and arguments were conducted. In the extreme case, argument was given
by diagrams representing execution of tasks, e.g., in the “critical instance” theo-
rem for RM, one can find reasoning like “as shown in Figure” [Liu and Layland
1973,Buttazzo 1997]. Intuitive understanding is surely important, but does not
provide the same level of assurance as solid mathematical proofs. Not surprisingly,
mistakes sometimes occur and what is indeed true remains uncertain.

Recently, some attempts have been made towards making the work in this area
more rigorous. Devillers and Goossens [Devillers and Goossens 2000,Goossens
1999] found several errors and incomplete places in the proofs of Liu and Layland,
including the “critical instance” theorem. Goossens [Goossens 1999] studied var-
ious scheduling algorithms in details and a considerable amount of effort was put
on proofs. Although the work by Devillers and Goossens was a lot more rigorous,
the level of formality was still not very high. For example, just as in the earlier
work, some definitions were given in natural languages, instead of more precise
mathematical terms. Reasoning was in natural language and soundness of some
deduction steps is not immediately clear.

In the meantime, completely formal proofs for scheduling theorems have been
investigated and we have participated in this effort. In our approach, a mathemat-
ical logic, Duration Calculus (DC) [Zhou et al. 1991] has been used. DC is a real
time extension of the Interval Temporal Logic (ITL) [Moszkowski 1985]. It has
been widely applied to specification and verification of various real time systems.
The first application of DC to scheduling was due to Zheng and Zhou [Zheng and
Zhou 1994], and they proved Liu and Layland’s theorem on the EDF. In [Dong et
al. 1999], Liu and Layland’s theorem on the RM scheduler was proven. The same
mistake in Liu and Layland’s paper reported by Devillers and Goossens [Devillers
and Goossens 2000] was independently discovered and corrected. In [Zhan 2000]
another proof of the theorem on EDF was given in DC, following the original proof
idea of Liu and Layland.

The approach of using DC is as follows.

◦ Variables are introduced to model the states of the system. For example,
Runi is a Boolean variable of time, and its value is true at time t if and only
if task τi is running at t.

◦ The assumptions, such as the tasks are periodic and they share one processor,
is specified by a DC formula Ass.

◦ The concerned scheduling policy, is represented as a DC formula Sch.

◦ The requirement, in this case, that all task instances should be completed by
their deadlines is modelled also as a DC formula Req.
Thus, that a schedulability condition Cond is sufficient is formally expressed
as the following logical implication in DC: Ass ∧ S ch ∧ Cond ⇒ Req.

◦ The proof system of DC is used to prove the theorems.

This paper aims to improve the work in this area and give a summary of it. The
remainder of this paper is organized as: Section 2 gives preliminaries of this paper,
including a brief review of the basic definitions and results of real-time scheduling
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and a short introduction to DC. In Section 3, we formally describe scheduling
problems in DC, that is, we specify in DC the assumptions under which the tasks
are executed, the underlining algorithms and timing requirements. Section 4 is
devoted to fixed priority schedulers. In particular, we prove Liu and Layland’s
schedulability theorem for RM. This is based on [Dong et al. 1999], but we have
changed the style of the proof to make it both more readable and more rigorous.
Liu and Layland’s schedulability theorem for EDF is proved in Section 5. The
proof is based on [Zhan 2000], which has not only been improved in style but also
considerably in contents. We end this paper with discussions of related work and
conclusions. A number of technical lemmas concerning RM are included in the
appendix where the mistake in Liu and Layland’s paper is reported and corrected.

2. Preliminaries

In this section, we introduce some basic notions and results that will be used later,
including a review of the basic concepts of real-time scheduling and an introduction
to DC.

2.1 Scheduling real-time tasks on a uniprocessor

In this paper, we study the basic scheduling problem with the following assump-
tions:

◦ Tasks are periodic and they start at the same time;

◦ There is only one processor, and therefore the execution of two tasks is mu-
tually exclusive;

◦ The deadline of each task is equal to its period;

◦ The tasks are independent in that requests of a task do not depend on the
execution of other tasks;

◦ Execution time, i.e., the time which is taken by a processor to execute the
task without interruption, is constant for a task.

These assumptions allow the complete characterization of a task by two attributes:
its request period and its execution time.

A scheduling algorithm is said to be preemptive and priority driven if whenever
there is a request for a task with a higher priority than the task currently being
executed, the running task is immediately interrupted and the newly requested task
is started. A scheduling algorithm is said to be static if priorities are assigned to
tasks once and kept unchanged, and a scheduling algorithm is called to be dynamic
if priorities of tasks may change during the execution.

Rate Monotonic Scheduler statically assigns priorities to tasks according to their
request rates, i.e., tasks with higher request rates (shorter periods) have higher pri-
orities. The most well-known dynamic scheduling algorithm is Earliest Deadline
First (EDF). In EDF, priorities are assigned to tasks according to the deadlines of
their current requests. A task is assigned the highest priority if the deadline of its
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current request is the nearest, and is assigned the lowest priority if the deadline of
its current request is the furthest.

Given a set of tasks and a scheduling algorithm, the task set is schedulable by the
algorithm if the requested execution time of each task instance is fulfilled before the
deadline. Unless stated otherwise, throughout this paper we shall use τ1, τ2, · · · , τm

to denote m tasks, C1,C2, · · · ,Cm their execution times and T1, T2, · · · , Tm their
periods. The processor utilisation factor of the tasks is defined as

∑m
i=1 Ci/Ti, and

is used in schedulability analysis.

Necessary Condition: If a set of m tasks is schedulable by any scheduling algo-
rithm, then processor utilisation factor is less than or equal to 1.

Liu and Layland [Liu and Layland 1973] studied sufficient schedulability condi-
tions for RM and EDF:

Sufficient Condition for RM: A set of m tasks is schedulable by RM, if the proces-
sor utilisation factor is less than or equal to m(2

1
m − 1).

Sufficient Condition for EDF: A set of m tasks is schedulable by EDF if the pro-
cessor utilisation factor is less than or equal to 1.

2.2 Duration calculus

In this subsection, we give a brief review of DC. DC, proposed by Zhou, Hoare and
Ravn [Zhou et al. 1991], is an extension of real arithmetics and ITL [Moszkowski
1985]. A more comprehensive introduction to DC can be found in [Hansen and
Zhou 1997,Zhou and Hansen 2004].

In this paper, we use N to denote the set of natural numbers and R the set of reals.
DC contains the following sets of symbols:

◦ A set of global variables GVar = {x, y, . . .}, and the meaning of a global
variable is independent of time;

◦ A set of state variables SVar = {P,Q, . . .} that are used to model the behavior
of systems;

◦ A set of temporal propositional letters PLetter = {X, Y, . . . };
◦ A set of global function symbols FSymb = { f , g, . . . };
◦ A set of global relation symbols RSymb = {G,H, . . . }.

In DC, only functions and relations of real arithmetic are concerned, and there-
fore a DC model contains

◦ a total function f n
i
∈ R

n → R is associated with each n-ary function symbols
f n
i ∈ FS ymb, and

◦ a total function Gn
i ∈ R → {tt, f f } is associated with each n-ary relation

symbol Gn
i ∈ RS ymb.

Here, tt and f f represent Boolean values true and false respectively.
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The meaning of global variables is given by a value assignment,

V ∈ GVar→ Values

associating a value with each global variable. Time is represented by the set of
non-negative reals, denoted by Time. An interval is a pair of time points, where the
beginning time point is no later than the ending point:

Intv=̂{[b, e] ∈ Time × Time | b ≤ e}.
Interpretations of state variables and propositional letters are defined as follows:

I ∈ SVar→ Time→ {0,1},
J ∈ PLetters → Intv→ {0,1}.

State variables are interpreted as functions from Time to Boolean values (denoted
by 0 and 1). All state variables are assumed to have finite variability, which means
that each state variable can only change its value a finite many times over any
(finite) interval. A model is a quadruple (I,J ,V, [b, e]).

A Boolean state expression S is constructed from (Boolean) state variables with
Boolean connectives and its duration in a model (I,J ,V, [c, d]) is defined as

(
∫
S )(I,J ,V, [b, e])=̂∫ e

b
(S )(I,V)(t)dt,

where (S )(I,V)(t) denotes the value of S at time t under state interpretation I
and valuation V. The length � of an interval is defined as �=̂

∫
1 and it is easy to

prove that (�)(I,J ,V, [c, d]) = d−c . Primitive formulae of DC are either temporal
propositionals letter or those constructed from terms using comparison operators in
arithmetics, such as <, = etc. DC formulae are contructed from prmitive formulae
by Boolean connectives and modality operators. A symbol is called rigid if its
meaning is independent of time and intervals; otherwise called flexible. Global
variables, constants, function symbols and relation symbols are rigid, whereas state
variables and temporal propositional letters are flexible. A term or formula is called
rigid if it contains no flexible symbols; otherwise called flexible. Boolean state
expression S holds almost everywhere (i.e., except possibly a finite number of
points) over a non-point interval, denoted as 		S 

, is defined as, 		S 

=̂∫S = �∧� > 0.
A point interval is characterised by � = 0, shortened as 		

. The modality “chop” of
ITL is defined as follows: for any formulae φ and ψ,

(I,J ,V, [b, e]) |= φ�ψ iff there exists m such that b ≤ m ≤ e and

(I,J ,V, [b,m]) |= φ and (I,J ,V, [m, e]) |= ψ .
The following abbreviations will be used:

�φ =̂ tt�(φ�tt) reads: “for some sub-interval: φ”,

�φ =̂ ¬�(¬φ) reads: “for all sub-intervals: φ”,

�pφ =̂ φ�tt reads: “for some prefix: φ”,

�pφ =̂ ¬�p(¬φ) reads: “for all prefixes: φ”.
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As usual, a formula φ is valid if for any model (I,J ,V, [b, e]),
(I,J ,V, [b, e]) |= φ.

A term θ is said to be free for x in φ if x does not occur freely in φ within the
scope of ∃y or ∀y, where y is any variable occurring in θ.

The axioms of DC include those of ITL which are taken from the paper by
Dutertre [Dutertre 1995]:

ITL1: � ≥ 0

ITL2: ((φ�ψ) ∧ ¬(φ�ϕ))⇒ (φ�(ψ ∧ ¬ϕ))
((φ�ψ) ∧ ¬(ϕ�ψ))⇒ ((φ ∧ ¬ϕ)�ψ)

ITL3: ((φ�ψ)�ϕ) ⇔ (φ�(ψ�ϕ))

ITL4: (φ�ψ) ⇒ φ, if φ is a rigid formula
(φ�ψ) ⇒ ψ, if ψ is a rigid formula

ITL5: (∃x.φ�ψ) ⇒ ∃x.(φ�ψ), if x is not free in ψ
(φ�∃x.ψ) ⇒ ∃x.(φ�ψ), if x is not free in φ

ITL6: ((� = x)�φ) ⇒ ¬((� = x)�¬φ)
(φ�(� = x)) ⇒ ¬(¬φ�(� = x))

ITL7: (x ≥ 0 ∧ y ≥ 0)⇒ ((� = x + y)⇔ ((� = x)�(� = y)))

ITL8: φ⇒ (φ�(� = 0))
φ⇒ ((� = 0)�φ)

and the following axioms about durations:

DCA1:
∫

0 = 0

DCA2:
∫

1 = �

DCA3:
∫

S ≥ 0

DCA4:
∫

S 1 +
∫

S 2 =
∫

(S 1 ∨ S 2) +
∫

(S 1 ∧ S 2)

DCA5: ((
∫

S = x)�(
∫

S = y))⇒ (
∫

S = x + y)

DCA6:
∫

S 1 =
∫

S 2, provided S 1 ⇔ S 2 holds in propositional logic

The inference rules of DC include:

MP: if φ and φ⇒ ψ then ψ (modus ponens)

G: if φ then ∀x.φ (generalization)

Q: ∀x.φ(x)⇒ φ(θ)
if either θ is free for x in φ(x) and θ is rigid
or θ is free for x in φ(x) and φ(x) is chop free.

N: if φ then ¬(¬φ�ψ)
if φ then ¬(ψ�¬φ)

M: if φ⇒ ψ then (φ�ϕ)⇒ (ψ�ϕ)

if φ⇒ ψ then (ϕ�φ)⇒ (ϕ�ψ)
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IR1: Let H(X) be a formula possibly containing the propositional letter
X, and S 1, . . . , S m be m state expressions with S 1 ∨ . . . ∨ S m = 1.

If H(		

) and H(X)⇒ H(X ∨ (X�		S 1

) ∨ . . . ∨ (X�		S m

)),
then H(tt),

where H(φ) denotes the formula obtained from H(X) by replacing
X in H with φ.

IR2: Let H(X) be a formula possibly containing the propositional letter
X, and S 1, . . . , S m be m state expressions with S 1 ∨ . . . ∨ S m = 1.

If H(		

) and H(X)⇒ H(X ∨ (		S 1

�X) ∨ . . . ∨ (		S m

�X)),
then H(tt).

The above proof system is sound and relative complete in the sense that all valid
formulae of ITL are assumed to be provable [Hansen and Zhou 1997, Zhou and
Hansen 2004].

Using the proof system, we can easily prove the following theorems which will
be used later. Below, variables x and y are assumed to be non-negative:

DC1 (tt�tt)⇔ tt

DC2-1 (φ�(ψ ∨ ϕ))⇔ ((φ�ψ) ∨ (φ�ϕ))

DC2-2 ((φ ∨ ψ)�ϕ)⇔ ((φ�ϕ) ∨ (ψ�ϕ))

DC3 (
∫

S ≥ x)⇔ ((
∫

S = x)�tt)

DC4-1 (φ�(� = 0))⇒ φ

DC4-2 ((� = 0)�φ)⇒ φ

DC5-1 ((�φ) ∧ (ψ�ϕ))⇒ ((φ ∧ ψ)�ϕ)

DC5-2 ((�φ) ∧ (ψ�ϕ))⇒ (ψ�(φ ∧ ϕ))

DC6 ((�pφ) ∧ (ψ�ϕ))⇒ ((φ ∧ ψ)�ϕ)

DC7-1 (�φ) ∧ (�ψ)⇔ (�(φ ∧ ψ))

DC7-2 (�pφ) ∧ (�pψ)⇔ (�p(φ ∧ ψ))

DC8-1 (�φ)⇒ φ

DC8-2 (�pφ)⇒ φ

DC9 ((�pφ) ∧ (�ψ))⇒ (�p(φ ∧ ψ))

DC10 ∃x.(� = x)

DC11 (		S 1

 ∧ 		S 2

)⇔ 		S 1 ∧ S 2


DC12 		¬S 

 ⇒ (

∫
S = 0)

DC13 (� = 0)⇒ (
∫

S = 0

DC14-1 		S 

 ⇔ (		S 

�		S 

)
DC14-2 ((φ�ψ) ∧ (		S 

 ∨ 		

)) ⇒ ((φ ∧ (		S 

 ∨ 		

))�(ψ ∧ (		S 

 ∨ 		

)))
DC15-1 ((φ�ψ) ∧ (

∫
S ≤ x)) ⇒ ((φ ∧ (

∫
S ≤ x))�(ψ ∧ (

∫
S ≤ x)))
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DC15-2 ((φ�ψ) ∧ (
∫

S < x)) ⇒ ((φ ∧ (
∫

S < x))�(ψ ∧ (
∫

S < x)))

DC16-1 ( (φ1 ∧ (� = x))�ψ1 ∧ (φ2 ∧ (� = x))�ψ2) ⇒
( (φ1 ∧ φ2 ∧ (� = x))�(ψ1 ∧ ψ2) )

DC16-2 (φ�1 (ψ1 ∧ (� = x)) ∧ φ�2 (ψ2 ∧ (� = x)) ) ⇒
( (φ1 ∧ φ2)�(ψ1 ∧ ψ2 ∧ (� = x)) )

DC17 ((
∫

S < x) ∧ (� ≥ y))⇔ ((
∫

S < x)�(� = y))

DC18 ((
∫

S ≤ x) ∧ ((
∫

S ≥ y)�tt))⇒ (x ≥ y)

DC19 ((
∫

S ≥ x)�(
∫

S ≥ y))⇒ (
∫

S ≥ x + y)

DC20 (
∫

S � �)⇒ (tt�		¬S 

�(
∫

S = �)) and (
∫

S � 0)⇒
(tt�		S 

�(

∫
S = 0))

DC21 ((
∑m

i=1

∫
S i ≤ �)�(

∑m
i=1

∫
S i ≤ �))⇒ (

∑m
i=1

∫
S i ≤ �)

DC22 ((
∫

S ≤ 	�/T 
C) ∧ ((
∫

S = 	�/T 
C)�(� = x)))⇒
(tt�((� = x) ∧ (

∫
S ≤ 	�/T 
C)))

DC23 ((
∫

S < ��/T �C) ∧ ((
∫

S = 	�/T 
C)�(� = x)))⇒
(tt�((� = x) ∧ (

∫
S < ��/T �C)))

DC24 ((
∫

S ≤ ��/T �C) ∧ ((
∫

S = 	�/T 
C)�(� = x)))⇒
(tt�((� = x) ∧ (

∫
S ≤ ��/T �C)

DC22, DC23 and DC24 hold due to the following properties of real numbers:

	a/c
 + 	b/c
 ≥ 	(a + b)/c
 and 	a/c
 + �b/c� ≥ �(a + b)/c�,
where a, b ≥ 0, c > 0, 	a/c
 and �a/c� denote respectively the smallest integer
greater than or equal to a/c and the largest integer less than or equal to a/c.

The following rules can be derived:

DC25 if (φ1 ∧ · · · ∧ φn)⇒ ψ is a theorem, where each φi starts with �,
then (φ1 ∧ · · · ∧ φn)⇒ (�ψ) is also a theorem,

DC26 if (φ1 ∧ · · · ∧ φn)⇒ ψ is a theorem, where each φi starts with �
or �pthen (φ1 ∧ · · · ∧ φn)⇒ (�pψ) is also a theorem.

As special cases, if ψ is a theorem, then �ψ and �pψ are also theorems. 1

2.3 Proof style

Dijkstra and Scholten introduced calculational proof [Dijkstra and Scholten 1990]
as a way of writing practical proofs. In the calculational style, a typical proof of a
scheduling theorem in this paper is of the form exemplified in Fig. 1.

In the proof, many of the subformulae, such as Q1 and P4 are repeated many
times. In a complex proof, the subformulae may be quite long, so the proof will
take a lot of space. Moreover, the subformula that is being transformed in one
step is mixed with subformulae that are not changed, and therefore the readability

1 This is not the same as saying (ψ⇒ �ψ) and (ψ⇒ �pψ) are theorems. They are in fact not.
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P1 ∧ P2 ∧ P3 ∧ P4 (1)

⇒ Q1 ∧ Q2 ∧ P2 ∧ P3 ∧ P4 {hints for P1 ⇒ Q1 ∧ Q2} (2)

⇒ Q1 ∧ (∃x.Q3) ∧ P3 ∧ P4 {hints for Q2 ∧ P2 ⇒ (∃x.Q3)} (3)

⇒ Q1 ∧ (∃x.(Q3 ∧ Q4)) ∧ P3 ∧ P4 {hints for Q3 ∧ P3 ⇒ Q4} (4)

⇒ Q1 ∧ (∃x.(Q4 ∧ Q5)) ∧ P4 {hints for Q3 ∧ P3 ⇒ Q5} (5)

⇒ Q1 ∧ (∃x.(Q4 ∧ Q5 ∧ (R1 ∨ R2))) ∧ P4 { R1 ∨ R2 is a tautology } (6)

⇒ Q1 ∧ (∃x.((Q4 ∧ R1) ∨ (Q5 ∧ R2))) ∧ P4 {(6)} (7)

⇒ Q1 ∧ (∃x.(Q6 ∨ (Q5 ∧ R2))) ∧ P4 {hints for Q4 ∧ R1 ∧ P4 ⇒ Q6} (8)

⇒ Q1 ∧ (∃x.(Q6 ∨ Q6)) {hints for Q5 ∧ R2 ∧ P4 ⇒ Q6} (9)

⇒ Q1 ∧ (∃x.Q6) {(9)} (10)

⇒ Q7 {hints for Q1 ∧ (∃x.Q6)⇒ Q7} (11)

Fig. 1: A typical proof of a scheduling theorem in the calculational style.

is poor. In fact, during the process of a proof, one would most likely only wish
to write down the subformula that is being transformed. In [Back et al. 1997],
Back, Grundy and von Wright proposed a way to structure the calculational proof
in which only the subformula that is being transformed is written. We adopted a
similar style in our previous work [Dong et al. 1999,Zhan 2000], and in particular,
we used labels to refer to subformulae. However, our style did not express the
relation between the formulae explicitly. In this paper, we adopt the idea from
[Back et al. 1997], but continue to use labels to refer to subformulae as compared
to repeating the formulae to simplify the presentation. As an example, the previous
proof template will be presented in our new style in Fig 2.

3. General Scheduler Assumptions

In this section, we specify the assumptions that hold for schedulers in general, and
deduce a number of basic properties from these assumptions.

3.1 State variables

Two state variables Runi and Stdi are introduced for each task τi. The intention is
that Runi has the value 1 at time t if and only if τi is running on the processor at
the time point, and Stdi has the value 1 if and only if τi still needs processing time.
The accumulated run time of task τi on an interval is given by

∫
Runi. A task is

running at time t only if it has a standing request at t and this holds for every task
and each time point of every interval. We therefore have the following assumption:

A1 =̂
∧m

i=1 � (		Runi

 ⇒ 		Stdi

).
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P1 ∧ P2 ∧ P3 ∧ P4 (1)

⇒ P1 {(1)} (2)

⇒ P2 {(1)} (3)

⇒ P3 {(1)} (4)

⇒ P4 {(1)} (5)

⇒ Q1 ∧ Q2 {(2) and hints for P1 ⇒ Q1 ∧ Q2} (6)

⇒ Q1 {(6)} (7)

⇒ Q2 {(6)} (8)

⇒ ∃x /∗ begin scope ∃ x ∗/
Q3 {(3), (8), and hints for Q2 ∧ P2 ⇒ (∃x.Q3)} (9)

⇒ Q4 {(4), (9), and hints for Q3 ∧ P3 ⇒ Q4} (10)

⇒ Q5 {(4), (9), and hints for Q3 ∧ P3 ⇒ Q5} (11)

⇒ R1 ∨ R2 {R1 ∨ R2 is a tautology} (12)

case 1: R1 /∗ case split on (12) ∗/ (13)

⇒ Q6 {(5), (10), (13), and hints for Q4 ∧ R1 ∧ P4 ⇒ Q6} (14)

case 2: R2 /∗ case split on (12) ∗/ (15)

⇒ Q6 {(5), (11), (15), and hints for Q5 ∧ R2 ∧ P4 ⇒ Q6} (16)

⇒ Q6 /∗ combine cases 1 and 2 ∗/ (17)

⇒ Q7 {(7), (17), and hints for (Q1 ∧ ∃x.Q6)⇒ Q7} (18)

Fig. 2: A proof of a scheduling theorem in the style with labels to refer to subformulae.

3.2 Mutual exclusion

Since there is only one processor, if one task is running, then any other task cannot
be running:

A2 =̂
∧m

i=1 � (		Runi

 ⇒ ∧ j�i		¬Run j

).
In other words, there does not exist an interval such that two tasks are running in
parallel.

Lemma 1. For any i and j, i � j, A2 ⇒ �(¬		Runi ∧ Run j

).

Proof. From DC25, we only need to prove A2 ⇒ ¬		Runi ∧ Run j

, and this
follows immediately from DC11 and propositional logic. �

Consider a subset of tasks τi1 , . . . , τin (n ≤ m). The single processor assumption
implies that the sum of the running time of these tasks is equal to

∫∨n
j=1Runi j .

Lemma 2. A2 ⇒ � (
∑n

j=1

∫
Runij =

∫∨n
j=1Runij ).
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Proof. By DC25 it is enough to prove A2 ⇒ (
∑n

j=1

∫
Runi j =

∫∨n
j=1Runi j ). This

is shown as follows:

A2 (1)

⇒ ∑n−1
j=1

∫
(Runi j ∧ Runin ) = 0 {Lemma 1 and DC20} (2)

⇒ ∫∨n−1
j=1(Runi j ∧ Runin) ≤

∑n−1
j=1

∫
(Runi j ∧ Runin) {DCA4} (3)

⇒ ∫∨n−1
j=1(Runi j ∧ Runin) = 0 {(2), (3), and DCA3} (4)

⇒ ∫∨n
j=1Runi j = (

∫∨n−1
j=1Runi j ) +

∫
Runin −

∫
((
∨n−1

j=1Runi j ) ∧ Runin ) {DCA4} (5)

⇒ ∫
((
∨n−1

j=1Runi j ) ∧ Runin ) =
∫∨n−1

j=1(Runi j ∧ Runin) {DCA6} (6)

⇒ ∫∨n
j=1Runi j = (

∫∨n−1
j=1Runi j ) +

∫
Runin {(4), (5), and (6)} (7)

We can repeat the above steps until the lemma is proven. �
Two obvious facts can be easily derived from this lemma: the sum of the running

time of a subset of tasks is less than or equal to the length of the interval, and the
equality holds if the processor is occupied completely by the tasks over the interval.

Corollary 1 of Lemma 2. A2 ⇒ � (
∑n

j=1

∫
Runi j ≤ �).

Corollary 2 of Lemma 2. A2 ⇒ � (		∨n
j=1Runi j

 ⇒ (

∑n
j=1

∫
Runi j = �)).

3.3 No overhead

We assume that if there are some tasks with standing requests, then one of the tasks
must be running:

A3 =̂ �(		∨m
i=1Stdi

 ⇒ 		∨m

i=1Runi

).

3.4 Execution time bound

Task τi requires Ci units execution time for each of its period Ti, and in the interval
of length � starting from 0, there are at most 	�/Ti
 requests for τi. Consequently,
the accumulated running time of the task will not exceed 	�/Ti
Ci:

A4 =̂
∧m

i=1 �p (
∫
Runi ≤ 	�/Ti
Ci).

Let multi =̂ ∃k ∈ N.(k · Ti = �).
Thus, multi holds for intervals whose lengthes are multiples of period Ti. If the

request of task τi is still not fulfilled at a time point and it is not a period point, then
the accumulated running time up to that moment cannot be equal to (should be less
than) 	�/Ti
Ci:

A5 =̂
∧m

i=1 �p ¬(((¬multi) ∧ (
∫
Runi = 	�/Ti
Ci))

�		Stdi

).
If a task’s request is not standing, then the execution time requirement has been

reached:
A6 =̂

∧m
i=1 �p ((tt�		¬Stdi

)⇒ (

∫
Runi = 	�/Ti
Ci)).
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Denote the conjunction of all the assumptions A1 to A6 by A,

A =̂ A1 ∧ A2 ∧ A3 ∧ A4 ∧ A5 ∧ A6.

It represents the general assumptions about behaviours of the scheduling algo-
rithms that we study.

3.5 Requirement

In any interval starting from 0 and of length �, a task should have been granted at
least ��/Ti�Ci execution time. The requirement for task τi is

Reqi =̂ �p(
∫
Runi ≥ ��/Ti�Ci).

This must hold for every task:

Req =̂
∧m

i=1Reqi.

3.6 Necessary condition

If the tasks are schedulable, then the running time requirement is satisfied over
any interval, and therefore in particular over [0, T ], where T = T1T2 · · ·Tn is the
product of the periods of all the tasks. The necessity of the condition is implied by
the following theorem.

Theorem 1. (A ∧ Req ∧ (� = T )) ⇒ (
∑m

i=1 Ci/Ti ≤ 1).

Proof.

A ∧ Req ∧ (� = T ) (1)

⇒ A {(1)} (2)

⇒ Req {(1)} (3)

⇒ � = T {(1)} (4)

⇒ ∧
1≤i≤m(

∫
Runi ≥ ��/Ti�Ci) {definition of Req, DC7, DC8, and (3)} (5)

⇒ ∧
1≤i≤m(

∫
Runi ≥ (T/Ti)Ci) {(4) and (5)} (6)

⇒ ∑m
i=1

∫
Runi ≥ ∑m

i=1(T/Ti)Ci {(6)} (7)

⇒ � ≥ ∑m
i=1(T/Ti)Ci {Corollary 1 of Lemma 2, and (7)} (8)

⇒ ∑m
i=1Ci/Ti ≤ 1 {(4) and (8)} (9)

�

4. Static Scheduler

Without loss of generality, we assume priorities are in decreasing order from τ1 to
τm. For i < j, task τ j cannot be running if task τi has a standing request, i.e.

SchS =̂
∧

1≤i≤m�(		Stdi

 ⇒ ∧i< j≤m		¬Run j

).
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4.1 General properties

For any task τk, if its execution time is not fulfilled at t within its first period, then
the interval [0, t] is completely occupied by τ1, . . . , τk.

Lemma 3. For any 1 ≤ k ≤ m,

A3 ∧ A5 ∧ A6 ∧ SchS ⇒ �p ( ((� ≤ Tk) ∧ (tt�		Stdk

)) ⇒ 		∨k
i=1Runi

 ).

Proof. According to DC26 and propositional logic, it is enough to prove

(A3 ∧ A5 ∧ A6 ∧ SchS ∧ (� ≤ Tk) ∧ (tt�		Stdk

)) ⇒ 		∨k
i=1Runi

.

This is shown as follows:

A3 ∧ A5 ∧ A6 ∧ SchS ∧ (� ≤ Tk) ∧ (tt�		Stdk

) (1)

⇒ A3 ∧ A5 ∧ A6 {(1)} (2)

⇒ � ≤ Tk {(1)} (3)

⇒ tt�		Stdk

 {(1)} (4)

⇒ (
∫
Stdk = �) ∨ (

∫
Stdk � �) {tautology} (5)

case 1:
∫
Stdk = � {case split on (5)} (6)

⇒ � > 0 {(4)} (7)

⇒ 		Stdk

 {(6) and (7)} (8)

case 2:
∫
Stdk � � {case split on (5)} (9)

⇒ tt�		¬Stdk

�tt {(9) and DC20} (10)

⇒ tt�		¬Stdk

�		¬Stdk

�tt {(10) and DC14} (11)

⇒ tt�		¬Stdk

�(� > 0) {(11)} (12)

⇒ (
∫
Runk = Ck)�(� > 0) {(3), (12), and A6} (13)

⇒ ((� < Tk) ∧ (
∫
Runk = Ck))�		Stdk

 {(3), (4), and (13)} (14)

⇒ ((¬multk) ∧ (� < Tk) ∧ (
∫
Runk = Ck))

�		Stdk

 {(14)} (15)

⇒ f f {(15) and A5} (16)

⇒ 		Stdk

 {combine cases 1 and 2} (17)

⇒ 		∨m
i=1Runi

 {(17) and A3} (18)

⇒ ∧m
i=k+1 		¬Runi

 {(17) and SchS} (19)

⇒ 		∨k
i=1Runi

 {(18), (19), and DC11} (20)

�
We next prove a result similar to Liu and Layland’s critical instance theorem: a

task can be scheduled successfully by the static scheduler if it can be done so in its
first period. In another word, the task set is schedulable by the static scheduler if
the tasks can be scheduled successfully in the first longest period.

Theorem 2. For any 1 ≤ i ≤ m,

(A ∧ SchS) ⇒ (Reqi ⇔ �p((� ≥ Ti)⇒ (((� = Ti) ∧ Reqi)
�tt))).
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Proof. For any 1 ≤ i ≤ m, it is obvious that

Reqi ⇒ �p((� ≥ Ti)⇒ (((� = Ti) ∧ Reqi)
�tt)),

therefore we only need to prove

(A ∧ SchS ∧�p((� ≥ Ti)⇒ (((� = Ti) ∧ Reqi)
�tt))) ⇒ Reqi,

and by DC26 it is reduced to show

(A ∧ SchS ∧�p((� ≥ Ti)⇒ (((� = Ti) ∧ Reqi)
�tt))) ⇒ (

∫
Runi ≥ ��/Ti�Ci).

Suppose that there exists a k such that
∫
Runk < ��/Tk�·Ck, then we prove this leads

to contradiction:

A ∧ SchS ∧�p((� ≥ Tk)⇒ (((� = Tk) ∧ Reqk)
�tt)) ∧ ∫Runk < ��/Tk� · Ck (1)

⇒ A {(1)} (2)

⇒ SchS {(1)} (3)

⇒ �p((� ≥ Tk)⇒ (((� = Tk) ∧ Reqk)
�tt)) {(1)} (4)

⇒ ∫
Runk < ��/Tk�Ck {(1)} (5)

⇒ (� ≥ Tk)⇒ (((� = Tk) ∧ Reqk)
�tt) {(4) and DC8} (6)

⇒ � ≥ Tk ∧ Ck > 0 {(5) and DCA3} (7)

⇒ ((� = Tk) ∧ Reqk)
�tt {(6) and (7)} (8)

⇒ ((� = Tk) ∧ (
∫
Runk = Ck))�tt {(8), (2), def. of Reqk, A4, and DC8} (9)

⇒ ( (� = Tk) ∧ (
∫
Runk = Ck) ∧ (tt�		Runk

�(

∫
Runk = 0) )�tt (10)

{(7), (9), and DC20}
⇒ ∃ a ∈ R.a ≥ 0 ∧ /∗ begin scope ∃ a ∗/

( (� = Tk) ∧ (
∫
Runk = Ck) ∧ (((� = a) ∧ (tt�		Runk

))�

(
∫
Runk = 0)) )�tt {(10) and DC10} (11)

⇒ ( (� = a) ∧ (� ≤ Tk) ∧ (tt�		∧k−1
i=1¬Stdi

) ∧ 		∨k

i=1Runi

∧
(
∫
Runk = Ck) )�tt {(11), (3), ITL7, Lemma 3, and DCA5} (12)

⇒ ((� = a) ∧ (a ≤ Tk) ∧ (� > 0) ∧ (� =
∑k

i=1

∫
Runi)

∧∧k
i=1(
∫
Runi = 	�/Ti
Ci))

�tt {(12), Corollary 2, A6, and DC1} (13)

⇒ ((a ≤ Tk) ∧ (a > 0) ∧ (a =
∑k

i=1	a/Ti
Ci))�tt {(13)} (14)

⇒ (a ≤ Tk) ∧ (a > 0) ∧ (a =
∑k

i=1	a/Ti
Ci) {(14) and ITL4} (15)

⇒ (
∫∨k

i=1Runi = �) ∨ (
∫∨k

i=1Runi � �) {tautology} (16)
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case 1:
∫∨k

i=1Runi = � {case split on (16)} (17)

⇒ ∃n ∈ N, b ∈ R. 0 ≤ b < a ∧ � = na + b /∗ begin scope ∃n, b ∗/ (18)

⇒ ((� = na) ∧ (
∫∨k

i=1Runi = �))
�(� = b) (19)

{(17), (18), ITL7, and DC14}
⇒ ((� = na) ∧ (

∑k
i=1

∫
Runi = �))

�(� = b) {(19) and Lemma 2} (20)

⇒ (
∧k−1

i=1 (
∫
Runi ≤ 	na/Ti
Ci))

�(� = b) {A4} (21)

⇒ ��/Tk� ≤ 	na/Tk
 + �b/Tk� {(18)} (22)

⇒ ��/Tk� ≤ 	na/Tk
 {(22) and b < Tk} (23)

⇒ ∫
Runk < 	na/Tk
Ck {(5) and (23)} (24)

⇒ (
∫
Runk < 	na/Tk
Ck)�(� = b) {(18), (24), ITL7, and DC15} (25)

⇒ (na <
∑k

i=1	na/Ti
Ci)�(� = b) {(20), (21), (25), and DC16} (26)

⇒ na <
∑k

i=1	na/Ti
Ci {(26) and ITL4} (27)

⇒ na = n
∑k

i=1	a/Ti
Ci {(15)} (28)

⇒ n
∑k

i=1	a/Ti
Ci <
∑k

i=1	na/Ti
Ci {(27) and (28)} (29)

⇒ f f {(29) and arithmetics} (30)

⇒ f f /∗ end scope ∃n, b ∗/ (31)

case 2:
∫∨k

i=1Runi � � {case split on (16)} (32)

⇒ tt�		∧k
i=1¬Runi

�(

∫∨k
i=1Runi = �) {(32) and DC20} (33)

⇒ tt�		∧k
i=1¬Stdi

�(

∫∨k
i=1Runi = �) {(33), (3), A3} (34)

⇒ (
∧k

i=1

∫
Runi = 	�/Ti
Ci)�(

∫∨k
i=1Runi = �) {(34) and A6} (35)

⇒ ∃n′ ∈ N, b′ ∈ R. 0 ≤ b′ < a ∧ /∗ begin scope ∃n′, b′ ∗/
(
∧k

i=1

∫
Runi = 	�/Ti
Ci)�((� = n′a + b′) ∧ (

∫∨k
i=1Runi = �)) {(35)} (36)

⇒ tt�((� = n′a) ∧ (
∫∨k

i=1Runi = �))�(� = b′) {(36) and DC14} (37)

⇒ tt�((� = n′a) ∧ (
∑k

i=1

∫
Runi = �))�(� = b′) {(37) and Lemma 2} (38)

⇒ (
∧k−1

i=1 (
∫
Runi ≤ 	�/Ti
Ci))�(� = b′) {(38), A4 and DC6} (39)

⇒ tt�((� = n′a) ∧ (
∧k−1

i=1 (
∫
Runi ≤ 	�/Ti
Ci)))�(� = b′)

{(36), (39) and DC22} (40)

⇒ tt�((� = n′a + b′) ∧ (
∫
Runk < ��/Tk�Ck)) {(5), (36) and DC23} (41)

⇒ f f {similar to steps (22) − (30)} (42)

⇒ f f {combine cases 1 and 2} (43)

⇒ f f /∗ end scope ∃ a ∗/ (44)

We have hence deduced a contradiction. This completes the proof of the theorem.
�
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4.2 RM scheduler

Recall we adopt the convention that priorities are in decreasing order from τ1 to
τm. The RM scheduler is then specified as

SchRM =̂ SchS ∧ (T1 ≤ T2 ≤ · · · ≤ Tm).

An important concept used in Liu and Layland’s proof is that of full utilisation.
A set of tasks is said to fully utilise the processor if the task set is schedulable and
any increase of the execution time for any task will cause the task set to be un-
schedulable. Liu and Layland, as well as most of the subsequent work, including
recent papers such as [Devillers and Goossens 2000,Goossens 1999], did not fur-
ther formalise the concept. Reasoning with this kind of definition is inevitably at a
lower level of formality.

We studied a formal definition in [Dong et al. 1999], and in the proofs followed
we found that the property that the task set is schedulable is not useful. We there-
fore did not include that property, but still used the term full utilisation in [Dong
et al. 1999], although it is more appropriate to give it another name which we do
now.

Definition 1. A set of tasks τ1, τ2,...,τm, with execution times C1, C2,...,Cm and
periods T1, T2,...,Tm, is said to have non-increasable execution time, denoted as
non inc(C1, · · · ,Cm, T1, · · · , Tm), iff for any 0 < x ≤ Tmax,

∑m
i=1	x/Ti
Ci ≥ x.

At any time point x,
∑m

i=1	x/Ti
Ci is the total requested execution time of all
the tasks until that moment. We can prove that non inc implies that the processor
cannot be idle in the interval [0, Tm], and consequently any increase of Ci will
make the task set unschedulable by RM (in particular, τm will miss its deadline).
However, we do not include the proofs since the results are not needed for the
theorems concerned in this paper.

Denote (C1, · · · ,Cm) by C and (T1, · · · , Tm) by T . Denote non inc(C1, · · · ,Cm,
T1, · · · , Tm) by non inc(C, T ). Similarly, let C′ stand for (C′1, · · · ,C′m), T ′
for (T ′1, · · · , T ′m), we shall abbreviate non inc(C′1, · · · ,C′m, T1, · · · , Tm) as
non inc(C′, T ) and non inc(C′1, · · · ,C′m, T ′1, · · · , T ′m) as non inc(C′, T ′).

Let lub(m) denote the minimum of the utilisation factors over all the sets of m
tasks that have non-increasable execution time. Formally,

Definition 2. lub(m) =̂ min{∑m
i=1 Ci/Ti | non inc(C, T )}.

The value of lub(m) for RM was discovered by Liu and Layland [Liu and Layland
1973] and is expressed by the following lemma. The calculation involves many
technical details, and a corrected and improved proof is given in the appendix.

Lemma 4. For RM, lub(m) = m(2
1
m − 1).

The below fact follows from the property of the function.

Corollary 3 of Lemma 4. lub(k) ≥ lub(m) if k ≤ m.
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The value of lub(m) obviously provides an upper bound for the set of m tasks,
in the sense that if its utilisation factor is above the value, then it is quite possible
that the task set is unschedulable (whether the task set is schedulable depends on
the specific values of execution times and periods). The question is whether lub(m)
also provides the lower bound, that is, for any given set of m tasks, if its utilisation
factor is less than lub(m), then the task set is schedulable. Liu and Layland found
this to be true, but just stated it without proof [Liu and Layland 1973].

However, this property does not follow from the definition directly and as far
as we know was only proved recently by Devillers and Goossens [Devillers and
Goossens 2000] and us [Dong et al. 1999] independently. 2

Theorem 3. (Sufficiency for RM) (A ∧ SchS ∧ (
∑m

i=1Ci/Ti ≤ lub(m))) ⇒ Req.

Proof.

A ∧ SchS ∧ (
∑m

i=1Ci/Ti ≤ lub(m)) ∧ ¬Reqk (1)

⇒ A {(1)} (2)

⇒ SchS {(1)} (3)

⇒ ∑m
i=1Ci/Ti ≤ lub(m) {(1)} (4)

⇒ ¬Reqk {(1)} (5)

⇒ ((� = Tk) ∧ (
∫
Runk < Ck))

�tt {(2), (3) and Theorem 2} (6)

⇒ ((� = Tk) ∧ (
∫
Runk < Ck) ∧ (tt�		Stdk

))�tt {(2) and (6)} (7)

⇒ ( (� = Tk) ∧ 		∨k
i=1Runi

 ∧ (

∫
Runk < Ck) )�tt (8)

{(2), (3), (7) and Lemma 3}
⇒ ∃C′k. 0 ≤ C′k < Ck ∧ /∗ formulae below are within ∃ ∗/
⇒ ( (� = Tk) ∧ 		∨k

i=1Runi

 ∧ (
∫
Runk = C′k) )�tt {(8) and DC10} (9)

⇒ ∀x.0 < x ≤ Tk ⇒ /∗ formulae below are within ∀ ∗/
⇒ (� = Tk)⇒ ((� = x)�(� = Tk − x)) {ITL7} (10)

⇒ ( ((� = x)�(� = Tk − x)) ∧ 		∨k
i=1Runi

 ∧ (

∫
Runk = C′k) )�tt (11)

{(9) and (10)}
⇒ ( (� = x) ∧ 		∨k

i=1Runi

 ∧ (
∫
Runk ≤ C′k) )�tt (12)

{(11), DC14 and DC15}
⇒ ( (� = x) ∧ (� =

∑k
i=1

∫
Runi) ∧ (

∫
Runk ≤ C′k) )�tt (13)

{(12), DC13 and Corollary 2}
⇒ ( x ≤ (

∑k−1
i=1 	x/Ti
Ci) +C′k )�tt {(2) and (13)} (14)

⇒ x ≤ (
∑k−1

i=1 	x/Ti
Ci) + C′k {(14) and ITL4} (15)

2 Liu and Layland’s statement was of course given using full utilisation and Devillers and Goossens
proved that. Although we used the term full utilisation in [Dong et al. 1999], the actual definition
was non-increasable execution time.
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⇒ non inc(C1, · · · ,Ck−1,C′k, T1, · · · , Tk) {(15) and the def. of non inc} (16)

⇒ lub(k) ≤ (
∑k−1

i=1 Ci/Ti) +C′k/Tk {(16) and the def. of lub(k)} (17)

⇒ (
∑k−1

i=1 Ci/Ti) + C′k/Tk <
∑m

i=1Ci/Ti {C′k < Ck and k ≤ m} (18)

⇒ lub(k) < lub(m) {(4), (17) and (18)} (19)

⇒ f f {(19) and Cor. of Lemma 4} (20)

⇒ f f {(20)} (21)

This completes the proof for the theorem. �

5. Proof for EDF

EDF assigns priorities to tasks dynamically according to the distance to their dead-
lines. The task closer to the deadline has a higher priority.

The following formula describes that at least in the latter part of the considered
interval, task τi is more urgent than task τ j:

urgent(i, j) =̂ 	�/Ti
Ti < 	�/T j
T j.

The subinterval on which task τi is more urgent than task τ j may be very small or
it may be the whole interval. Once such a subinterval exists, and task τ j is running
over it, then task τi cannot have a standing request:

SchEDF =̂ �p ( ((tt�		Run j

) ∧ urgent(i, j)) ⇒ (tt�		¬Stdi

) ).

As for EDF, Liu and Layland discovered that for a task set to be scheduable, it
is sufficient that its utilisation factor is not greater than 1 (this is of course also
the necessary condition, proven formally in Section 3.6, as for all the scheduling
policies).

Theorem 4. (Sufficiency for EDF) (A ∧ SchEDF ∧ (
∑m

i=1 Ci/Ti ≤ 1))⇒ Req.

The proof is by contradiction. Suppose that the requirement is not satisfied, then
there exists k,

�p (
∫
Runk < ��/Tk�Ck ).

We shall deduce that
∑m

i=1 Ci/Ti > 1. We first prove the following lemma.

Lemma 5. A2 ⇒ � ( ((
∧m

i=1(
∫
Runi ≤ ��/Ti�Ci)) ∧ (

∫
Runk < ��/Tk�Ck)∧

(
∫∨m

i=1Runi = �)) ⇒ (
∑m

i=1Ci/Ti > 1) ).

By DC25, we only need to prove

A2 ⇒ ( ((
∧m

i=1(
∫
Runi ≤ ��/Ti�Ci)) ∧ (

∫
Runk < ��/Tk�Ck)∧

(
∫∨m

i=1Runi = �))⇒ (
∑m

i=1Ci/Ti > 1) ).
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Proof.

A2 ∧ (
∧m

i=1(
∫
Runi ≤ ��/Ti�Ci)) ∧ (

∫
Runk < ��/Tk�Ck) ∧ (

∫∨m
i=1Runi = �) (1)

⇒ (
∧m

i=1(
∫
Runi ≤ ��/Ti�Ci)) ∧ (

∫
Runk < ��/Tk�Ck) ∧ (

∑m
i=1

∫
Runi = �) (2)

{Lemma 2}
⇒ ∑m

i=1��/Ti�Ci > � (3)

⇒ ∑m
i=1Ci/Ti > 1 (4)

�
Now, we come to the proof for Theorem 4. Let

α(i) =̂ mult�i ((� < Ti) ∧ (
∫
Runi = 0)), (1)

β(i) =̂ mult�i ((� < Ti) ∧ (
∫
Runi � 0)). (2)

Proof.

A ∧ SchEDF ∧ �p (
∫
Runk < ��/Tk�Ck) (3)

⇒ �p (
∫
Runk < ��/Tk�Ck) { (3) } (4)

⇒ ∃n ∈ N,∃r ∈ R.0 ≤ r < Tk ∧ ((
∫
Runk < ��/Tk�Ck) ∧ (� = nTk + r))�tt (5)

⇒ �p /∗ formulae below are within �p ∗/
(
∫
Runk < ��/Tk�Ck) ∧ multk {(5), DC1 and def. of �p} (6)

⇒ ∫
Runk < ��/Tk�Ck {(6)} (7)

⇒ multk {(6)} (8)

⇒ ∧m
i=1(α(i) ∨ β(i)) { (1) and (2)} (9)

⇒ (
∨m

i=1β(i)) ∨ (
∧m

i=1¬β(i)) {tautology} (10)

case 1 :
∧m

i=1¬β(i) {case split on (10)} (11)

⇒ ∧m
i=1α(i) {(9) and (11)} (12)

⇒ ∧m
i=1(
∫
Runi ≤ ��/Ti�Ci) {A4, (12), and (1)} (13)

⇒ (
∫∨m

i=1Runi = �) ∨ (
∫∨m

i=1Runi � �) {tautology} (14)

case 1.1 :
∫∨m

i=1Runi = � {case split on (14)} (15)

⇒ ∑m
i=1Ci/Ti > 1 {(7), (13), (15), and Lemma 5} (16)

case 1.2:
∫∨m

i=1Runi � � {case split on (14)} (17)

⇒ tt�		∧m
i=1¬Runi

�(

∫∨m
i=1Runi = �) {(17) and DC20} (18)

⇒ tt �		∧m
i=1¬Stdi

�(

∫∨m
i=1Runi = �) {(18) and A3} (19)

⇒ (
∧m

i=1

∫
Runi = 	�/Ti
Ci)�(

∫∨m
i=1Runi = �) {(19) and A6} (20)

⇒ (
∧m

i=1

∫
Runi = 	�/Ti
Ci)� ( (

∫∨m
i=1Runi = �)

∧∧m
i=1(
∫
Runi ≤ ��/Ti�Ci) ∧ (

∫
Runk < ��/Tk�Ck) ) (21)

{(7), (13), (20), DC22, and DC23}
⇒ (
∧m

i=1

∫
Runi = 	�/Ti
Ci)�(

∑m
i=1Ci/Ti > 1) (22)

{(21) and Lemma 5}
⇒ ∑m

i=1Ci/Ti > 1 {(22) } (23)
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⇒ ∑m
i=1Ci/Ti > 1 {combine 1.1 and 1.2 } (24)

case 2 :
∨m

i=1β(i) {case split on (10)} (25)

⇒ Γ ∪ Δ = {1, · · · ,m} ∧ Δ � ∅,
where Γ=̂{1 ≤ i ≤ m | α(i)} and Δ=̂{1 ≤ i ≤ m | β(i)}. {(9) and (25)} (26)

⇒ ∧
i∈Δ (∃xi ∈ R.xi ≥ 0 multi

�((� < Ti)

∧ (tt�		Runi

�((
∫
Runi = 0) ∧ (� = xi)))) ) (27)

{(2), (26), DC10 and DC20}
⇒ multu

�((� < Tu) ∧ (tt�		Runu

�(� = x)))

∧ (
∧

i∈Δ(multi
�((� < Ti) ∧ (tt�((

∫
Runi = 0) ∧ (� = x)))),

where x = min{xi | i ∈ Δ} and u = min{i ∈ Δ | xi = x} {(27)} (28)

⇒ ∧
i∈Γα(i) {definition of Γ} (29)

⇒ ∧
i∈Γ(
∫
Runi ≤ ��/Ti�Ci) {A4 and (1)} (30)

⇒ (tt�((
∫∨m

i=1Runi = �) ∧ (� = x)))

∨ (tt�((
∫∨m

i=1Runi � �) ∧ (� = x))) {tautology} (31)

case 2.1 : tt�((
∫∨m

i=1Runi � �) ∧ (� = x)) {case split on (31)} (32)

⇒ tt�((		∧m
i=1¬Runi

�(

∫∨m
i=1Runi = �)) ∧ (� = x)) {(32) and DC20} (33)

⇒ tt �		∧m
i=1¬Stdi

�((

∫∨m
i=1Runi = �) ∧ (� < x)) {(33) and A3} (34)

⇒ (
∧m

i=1

∫
Runi = 	�/Ti
Ci)

�((
∫∨m

i=1Runi = �) ∧ (� < x)) {(34) and A6} (35)

⇒ (
∧m

i=1

∫
Runi = 	�/Ti
Ci)

� ( (
∫∨m

i=1Runi = �) ∧ (
∧

i∈Δ(
∫
Runi = 0))

∧(∧i∈Γ(
∫
Runi ≤ ��/Ti�Ci)) ∧ (

∫
Runk < ��/Tk� ·Ck) ) (36)

{(7), (28), (30), DC22 and DC23}
⇒ (
∧m

i=1

∫
Runi = 	�/Ti
Ci)�(

∑m
i=1Ci/Ti > 1) {(36) and Lemma 5} (37)

⇒ ∑m
i=1Ci/Ti > 1 {(37)} (38)

case 2.2 : tt�((
∫∨m

i=1Runi = �) ∧ (� = x)) {case split on (31)} (39)

⇒ ∧
i∈Γ mult�i ((� < Ti) ∧ (

∫
Runi = 0)) {(29) and (1)} (40)

⇒ ∧
i∈Γ ∃xi ∈ R.xi ≥ 0

mult�i ((� = xi) ∧ (
∫
Runi = 0)) {(40) and DC10} (41)

⇒ (xi < x) ∨ (xi ≥ x) {tautology} (42)

case 2.2.1 : xi < x {case split on (42)} (43)

⇒ urgent(i, u)�(� = x) {(28), (41), (43), and (44)

def. of urgent}
⇒ tt �		¬Stdi

�(� = x) {(28), (44) and SchEDF} (45)

⇒ (
∫
Runi = 	�/Ti
Ci)

�(� = x) {(45) and A6} (46)

⇒ tt�((
∫
Runi ≤ ��/Ti�Ci) ∧ (� = x)) {(30), (46) and DC22} (47)

⇒ tt�((
∫
Runk < ��/Tk�Ck) ∧ (� = x)) {(7), (46) and DC23} (48)
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case 2.2.2: xi ≥ x {case split on (42)} (49)

⇒ tt�((� = x) ∧ (
∫
Runi = 0)) {(41), (49), DCA1, (50)

and DCA5}
⇒ tt�((� = x) ∧ (

∫
Runi ≤ ��/Ti�Ci)) {combine 2.2.1 and 2.2.2} (51)

⇒ tt�((� = x) ∧ (
∧

i∈Γ(
∫
Runi ≤ ��/Ti�Ci)) ∧ (

∫
Runk < ��/Tk� ·Ck) ) (52)

{(48) and (51)}
⇒ tt�((� = x) ∧ (

∧
i∈Δ(
∫
Runi ≤ ��/Ti�Ci))) {(28)} (53)

⇒ tt �((� = x) ∧ (
∫∨m

i=1Runi = �) ∧ (
∧m

i=1(
∫
Runi ≤ ��/Ti�Ci))

∧(∫Runk < ��/Tk� ·Ck) ) {(39), (52), and (53)} (54)

⇒ tt�(
∑m

i=1Ci/Ti > 1) {(54) and Lemma 5} (55)

⇒ ∑m
i=1Ci/Ti > 1 {(55)} (56)

⇒ ∑m
i=1Ci/Ti > 1 {combine 2.1 and 2.2} (57)

⇒ ∑m
i=1Ci/Ti > 1 {combine cases 1 and 2} (58)

/∗ the above is inside �p ∗/
⇒ ∑m

i=1Ci/Ti > 1 {(58)} (59)

We have deduced
∑m

i=1 Ci/Ti > 1, a contradiction, hence completed the proof. �

6. Related Work

There is some other work on formal verification of scheduling theorems. Wild-
ing [Wilding 1998] verified EDF using the Nqthm theorem prover and Dutertre
[Dutertre 2000] verified priority ceiling protocol in PVS.

Recently, there is a lot of work applying techniques developed in model check-
ing, mainly on timed automata [Alur and Dill 1994], to scheduling. Roughly, they
can be classified into the schedulability analysis and the controller synthesis. The
idea of former is to model real-time systems, including a particular scheduling pol-
icy, by (a variant of) timed automata. The schedulability problem is formulated
as the reachability problem which can be model checked, see e.g. [Fersman et al.
2007]. The advantage of this approach is that it can handle more general scheduling
problems (e.g., tasks are non-periodic) where the traditional schedulability analysis
method has no general solutions. The controller synthesis approach is to achieve
schedulability by construction. It was first proposed in [Wong-Toi and Hoffmann
1992] and further studied in [Maler et al. 1995,Altisen et al. 2002]. There is also
considerable amount of research on optimal scheduling using timed automata, e.g.
[Alur et al. 2001,Abdedaim et al. 2006,Bouyer et al. 2008].

Schedulability analysis based on other formal techniques has also been studied.
For example, process algebra was used to model scheduling problems and schedu-
lability is checked by symbolic weak bisimulation [Kwak et al. 1998].

However, it is unlikely that the model checking based methods for scheduling can
be used to prove general scheduling theorems. Model checking is usually limited
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to a specific system, and is not easy to be extended to system with arbitrary number
of tasks and parameters (execution times etc).

7. Conclusions

In this paper, we have formalised the two classic scheduling algorithms, i.e., RM
and EDF, and formally proven their schedulability theorems. Our proofs are based
in a large part on the intuitions of Liu and Layland’s original work [Liu and Layland
1973]. This says that there are common grounds between formal and informal
proofs. However, there is a lot of work to produce formal proofs from intuitive
arguments. The reward for this somewhat arduous effort is that the proofs are now
much more reliable. This does not mean that formal proofs are always correct, but
there are certainly fewer chances for mistakes to creep in, because now concepts
and definitions are formed without ambiguity and deduction is by well-established
proof rules. Therefore, formal proofs can be subject to precise scrutiny. On the
contrary, in an informal proof, concepts and definitions can be ambiguous, deduc-
tion can be not much more than hand waving, consequently, mistakes are more
likely to occur, and one may remain unconvinced for something which is indeed
correct. This has indeed happened with the informal proof of RM.

A proof is only meaningful if the assumptions are correct. In this paper in partic-
ular, the assumptions model the environment and the scheduling algorithms. These
assumptions are based on the intuitive understanding of the system (at a lower
level, one may want to formally verify whether these assumptions are indeed prop-
erties of the system, but this is out of the scope of the current paper). Most of the
assumptions do not pose any questions, but there is an exception with A6. The cur-
rent form stipulates that if a task is not requesting at the end of an interval, then the
maximal required execution time over the whole interval has been satisfied. This is
not a problem if there are no overflows happened before the last period is started.
However, when there is an overflow happened before the last period, our assump-
tion is based on the view that the missing execution time will be carried over to the
subsequent periods. A particular system may be implemented in a different way,
for example, the task which has not completed in a period is simply removed, or
the system calls an exception handling procedure when an overflow occurs. Ide-
ally, the formal model should include all these cases, but we have not been able to
do so. We can of course formalise different models and prove the feasibility con-
ditions separately. In fact, some of the earlier work assumed that incomplete tasks
are removed. Most of the proof steps are actually similar.

In this paper, the formal logic we used is DC. DC is designed to specify and rea-
son about real time behavior over intervals, and is a suitable tool for formalising
scheduling theories because the accumulated running time of a task is associated
with an interval and can be conveniently expressed. DC provides an abstraction
for intervals (so one does not refer to an interval explicitly in a formula, say in
the form of [b,e]). The price for this is that the logic is more demanding to learn.
However, many computer professionals may not have a strong background in logic.
For people who are more accustomed to set theory or classic first order logic, an
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alternative is to use basically the semantics of DC and this gives a first order logic
with a special variable for time. A calculus similar to this, but in a set-theoretic no-
tation, is the Timed Interval Calculus [Fidge et al. 1998]. Another shortcoming of
DC is that to follow the principle “small is beautiful”, state variables are restricted
to a special kind (namely, boolean functions of time) and terms are only defined
over intervals. These restrictions are not a serious problem for our paper, except
the scheduling policy of EDF has to be expressed in a somewhat indirect way. One
would like to be able to talk more directly about it, say by having a function which
gives the next deadline value. It is possible to extend DC to include such features
and in fact several variants of DC have been developed, e.g. Extended Duration
Calculus [Zhou et al. 1993]. However, having several variants of DC may not be
desirable. In this case, one may also consider using the first order logic over time
corresponding to the semantics of DC, since less work is expected in extending it.

The proofs in this paper are the longest on applications of DC as far as we are
aware of. We found it is difficult to be rigorous with previous styles of DC proofs
in the literature to handle proofs of this size. Our way of writing DC proofs is new
and we expect it to be useful in writing other long proofs in DC.

A great deal of research has been done on the theory and implementation of the-
orem proving systems, providing automatic or semi-automatic support to various
formal logics. Proofs conducted on a theorem prover are usually much more reli-
able than those by human beings, because the system is carefully constructed by
specialists and constantly debugged by the large number of people using it. A cou-
ple of theorem provers exist for DC, usually based on some other theorem proving
systems. However, on the whole, there is not much work on theorem provers for
DC. When the theorem provers for DC are further developed, it may be interesting
to try the proofs in this paper mechanically.
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In this case, non inc(C, T ) holds if the inequality holds for every period points.

Lemma 6. If 0 < Ti/T j < 2 for all 1 ≤ i, j ≤ m, then

non inc(C, T ) ⇔ ∧m
i=1(Ti ≤ ∑m

j=1	Ti/T j
C j).

Proof. By the definition of non inc(C, T) (full utilisation), the ⇒ direction is
trivial, since it just corresponds to the special cases where x is instantiated by the
periods respectively. We next prove the ⇐ direction. For notational convenience,
let T0 = 0.

(0 < x ≤ Tm) ∧ (
∧m

i=1(
∑m

j=1	Ti/T j
Cj ≥ Ti)) (1)

⇒ (
∨m

i=1(Ti−1 < x ≤ Ti)) ∧ (
∧m

i=1(
∑m

j=1	Ti/T j
Cj ≥ Ti)) (2)

⇒ ∨m
i=1 ( (Ti−1 < x ≤ Ti) ∧ (

∧m
i=1(
∑m

j=1	Ti/T j
Cj ≥ Ti)) ) (3)

⇒ ∨m
i=1 ( (x ≤ Ti) ∧ (

∧m
j=1(	x/T j
 = 	Ti/T j
))

∧ (
∑m

j=1	Ti/T j
Cj ≥ Ti) ) (4)

{0 < Ti/T j < 2 for all 1 ≤ i, j ≤ m }
⇒ ∨m

i=1(
∑m

j=1	x/T j
Cj ≥ x) (5)

⇒ ∑m
j=1	x/T j
Cj ≥ x (6)

�
The next lemma indicates that the minimal value is reached when Ci = Ti+1 − Ti

for i = 1, . . . ,m − 1 and Cm = 2T1 − Tm.

Lemma 7. If 0 < Ti/T j < 2 for all 1 ≤ i, j ≤ m, then

min{∑m
i=1Ci/Ti | non inc(C, T )}

= min{∑m
i=1Ci/Ti | (

∧m−1
i=1 Ci = Ti+1 − Ti ) ∧ Cm = 2T1 − Tm}.

Proof. By definition, it is easy to prove non inc(C, T ) holds when Ci = Ti+1 − Ti

for i = 1 · · ·m − 1 and Cm = 2T1 − Tm and therefore follows that

min{∑m
i=1Ci/Ti | non inc(C, T )}

≤ min{∑m
i=1Ci/Ti | ∧m−1

i=1 Ci = Ti+1 − Ti ∧ Cm = 2T1 − Tm}
We next prove the converse direction. For this, it is enough to prove that if
non inc(C, T ) holds, then

∑m
i=1 Ci/Ti ≥ (

∑m−1
i=1 (Ti+1 − Ti)/Ti) + (2T1 − Tm)/Tm.

From Lemma 6, it results that there exist αi ≥ 1, i = 1 . . .m such that

C1 +C2+ · · · +Cm−1 +Cm = α1T1

2C1 +C2+ · · · +Cm−1 +Cm = α2T2
...

2C1 + 2C2+ · · · +2Cm−1 +Cm = αmTm
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Thus,

C1 = α2T2 − α1T1
...

Cm−1 = αmTm − αm−1Tm−1
Cm = 2α1T1 − αmTm

Hence,

∑m
i=1Ci/Ti − ((

∑m−1
i=1 (Ti+1 − Ti)/Ti) + (2T1 − Tm)/Tm)

=
∑m−1

i=1 [(αi+1 − 1)Ti+1/Ti − (αi − 1) ] + (α1 − 1)2T1/Tm − (αm − 1)

=
∑m−1

i=1 [(αi+1 − 1)Ti+1/Ti − (αi+1 − 1)] + (α1 − 1)2T1/Tm − (α1 − 1)

≥ 0 {Ti < Ti+1, 2T1 > Tm}

�

Now we are ready to calculate the minimal value. The calculation in Liu and
Layland’s paper [Liu and Layland 1973] is complicated and missing steps. In the
following, a straightforward proof using only elementary mathematics is given.

Lemma 8. If 0 < Ti/T j < 2 for all 1 ≤ i, j ≤ m, then

min{∑m
i=1Ci/Ti | (

∧m−1
i=1 (Ci = Ti+1 − Ti)) ∧ Cm = 2T1 − Tm} = m(2

1
m − 1).

Proof. For i = 1 . . .m − 1, Ci/Ti = Ti+1/Ti − 1, and Cm/Tm = 2T1/Tm − 1.
It follows that

∑m
i=1 Ci/Ti = (

∑m−1
i=1 Ti+1/Ti) + 2T1/Tm − m. By a simple mathe-

matical property, the minimal value of ((
∑m−1

i=1 Ti+1/Ti) + 2T1/Tm)/m is equal to

((T2/T1)(T3/T2) · · · (Tm/Tm−1)(2T1/Tm))
1
m = 2

1
m . Therefore, the minimal value of∑m

i=1 Ci/Ti = m(2
1
m − 1). �

This indicates Lemma 4 is true under the assumption that any period is at least
half of any other period. What remains to be shown is that the lemma is still true
without the assumption. Let qi = �Tm/Ti� and T ′i = qiTi for 1 ≤ i ≤ m. According
to this definition, it is easy to show the following.

Lemma 9. (1) qi ≥ 1 for any 1 ≤ i ≤ m.

(2) 	Tm/Ti
 ≤ qi + 1 for any 1 ≤ i ≤ m.

(3) 0 < T ′i /T
′
j < 2 for any 1 ≤ i, j ≤ m.

Proof. Obvious and omitted. �

Lemma 10. Let qi = �Tm/Ti�, T ′i = qiTi for 1 ≤ i ≤ m, and C′i = Ci for
i = 1, . . . ,m−1, C′m = Cm+

∑m−1
i=1 (qi−1)Ci. If non inc(C, T ), then non inc(C′, T ′).
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Proof. We prove the lemma by contradiction.

¬non inc(C′, T ′)
⇒ ∨m

i=1 (
∑m

j=1	T ′i /T ′j
C′j < T ′i ) {Lemma 6}
⇒ ∨m

i=1 (
∑

T ′j<T ′i 2C
′
j +
∑

T ′j≥T ′i C
′
j < T ′i )

{for any j such that T ′j < T ′i , 	T ′i /T ′j
 = 2,

for any j such that T ′j ≥ T ′i , 	T ′i /T ′j
 = 1}
⇒ ∨m

i=1 (
∑

T ′j<T ′i (q j + 1)Cj +
∑

T ′j ≥ T ′i q jC j < T ′i ) {definition of C′m}
⇒ ∨m

i=1 (
∑m

j=1	T ′i /T j
Cj < T ′i ) {Lemma 9}
This is in contradiction to non inc(C, T ), and completes the proof. �

Lemma 11. min{∑m
i=1Ci/Ti | non inc(C, T ) ∧ 0 < Ti/T j < 2 for all 1 ≤ i, j ≤ m}
= min{∑m

i=1Ci/Ti | non inc(C, T )}.
Proof. Let

S = {∑m
i=1Ci/Ti | non inc(C, T )},

S′ = {∑m
i=1Ci/Ti | non inc(C, T ) ∧ 0 < Ti/T j < 2 for each 1 ≤ i, j ≤ m}.

Assume U =
∑m

i=1 Ci/Ti ∈ S and non inc(C, T ). Let qi = �Tm/Ti�, T ′i = qiTi,C′i =
Ci (i = 1, · · · ,m−1), T ′m = Tm,C′m = Cm+

∑m−1
i=1 (qi−1)Ci. It follows from Lemma 9

that 0 < T ′i /T
′
j < 2 and from Lemma 10 that non inc(C′, T ′). It is easy to prove

U′ =
∑m

i=1C
′
i/T
′
i = U +

∑m−1
i=1 Ci(qi − 1)(1/Tm − 1/T ′i ) ≤ U.

Therefore, min S′ ≤ min S. On the other hand, it is easy to see min S′ ≥ min S
since S′ ⊆ S. Thus, min S′ = min S. �

Finally, Lemma 4 follows from Lemma 8 and Lemma 11.

In Liu and Layland’s original proof for what we formalise as Lemma 7, they
proposed two transformations. The transformations are not used in our proof of
Lemma 7, since we have found a simpler proof. However, the transformation may
be of interests for other reasons. The first transformation can be expressed by the
following lemma

Lemma 12. Assume 0 < Ti/T j < 2 for all 1 ≤ i, j ≤ m, C1 = T2 − T1 + Δ,
Δ > 0,C′1 = T2 − T1,C′2 = C2 + Δ,C′i = Ci (i = 3, · · · ,m), If non inc(C, T ), then
non inc(C′, T ).

Proof.∑m
i=1	T1/Ti
C′i =

∑m
i=1C

′
i =
∑m

i=1Ci ≥ T1∑m
i=1	T2/Ti
C′i =

∑m
i=1C

′
i +C′1 ≥ T1 + (T2 − T1) = T2

...∑m
i=1	Tm/Ti
C′i =

∑m
i=1	Tm/Ti
Ci ≥ Tm {non inc(C, T )}

non inc(C′, T ) {Lemma 6}
�
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In the second transformation, Liu and Layland made a mistake. This was re-
ported in [Dong et al. 1999,Devillers and Goossens 2000]. In [Dong et al. 1999],
we gave the following corrected version

Lemma 13. Assume 0 < Ti/T j < 2 for all 1 ≤ i, j ≤ m, C1 = T2 − T1 − Δ,
Δ > 0,C′1 = T2 − T1,C′i = Ci(i = 2 · · ·m),C′m = Cm − 2Δ.3 If non inc(C, T ), then
non inc(C′, T ).

Proof.∑m
i=1	T1/Ti
C′i =

∑m
i=1	T2/Ti
Ci −C′1 ≥ T2 − (T2 − T1) = T1∑m

i=1	T2/Ti
C′i =
∑m

i=1	T2/Ti
Ci ≥ T2
...∑m

i=1	Tm/Ti
C′i =
∑m

i=1	Tm/Ti
Ci ≥ Tm {non inc(C, T )}
non inc(C′, T ) {Lemma 6}

�
This transformation only makes sense when Cm ≥ 2Δ and therefore cannot be

applied in all cases. However, it is possible to prove Lemma 7 along the line as
follows. First, we can extend Lemma 12 to all i ≤ m − 1 (consider Lemma 12
in the case i = 1), and by applying it repeatedly, we obtain Ci ≤ Ti+1 − Ti for
all i = 1, . . . ,m − 1. Next, we can apply a new transformation indicated by the
following lemma.

Lemma 14. Assume 0 < Ti/T j < 2 for all 1 ≤ i, j ≤ m, Ci = Ti+1 − Ti − Δi,Δi ≥
0,C′i = Ti+1 −Ti, i = 1 . . .m−1,C′m = Cm−2(Δ1 + · · ·Δm−1). If non inc(C, T ), then
C′m ≥ 0 and non inc(C′, T ).

Proof.

2C1 + 2C2 + · · · + 2Cm−1 +Cm ≥ Tm {non inc(C, T )}
⇒ 2(C′1 − Δ1) + 2(C′2 − Δ2) + · · · + 2(C′m−1 − Δm−1) + Cm ≥ Tm

⇒ 2(C′1 + C′2 + · · · +C′m−1) − 2(Δ1 + Δ2 + · · · + Δm−1) + Cm ≥ Tm

⇒ 2(Tm − T1) − 2(Δ1 + Δ2 + · · · + Δm−1) +Cm ≥ Tm

⇒ Cm − 2(Δ1 + Δ2 + · · · + Δm−1) ≥ 2T1 − Tm

⇒ C′m ≥ 2T1 − Tm

⇒ C′m ≥ 0

and

C′1 +C′2 + · · · +C′m−1 + C′m ≥ Tm − T1 + 2T1 − Tm = T1
...

2C′1 + 2C′2 + · · · + 2C′j−1 +C′j + · · · + C′m ≥ Tm − T1 + T j − T1 + 2T1 − Tm = T j

...
2C′1 + 2C′2 + · · · + 2C′m−1 + C′m ≥ 2(Tm − T1) + 2T1 − Tm = Tm

�
3 In Liu and Layland’s paper, they let C′2 = C2 − 2Δ and C′m = Cm. A counterexample was given
in [Devillers and Goossens 2000]
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It is easy to prove that these transformations will not increase the utilisation fac-
tor, and from the proof of Lemma 13 that C′m ≥ 2T1−Tm, hence, Lemma 7 follows.


