
Bounded Model-checking of Discrete Duration Calculus ∗

Quan Zu and Miaomiao Zhang
School of Software Engineering

Tongji University
Shanghai, China

{7quanzu,miaomiao}@tongji.edu.cn

Jiaqi Zhu and Naijun Zhan
∗

State Key Lab. of Comp. Sci.
Institute of Software, CAS

Beijing, China
{zhujq,znj}@ios.ac.cn

ABSTRACT
Fränzle and Hansen investigated the model-checking problem of
the subset of Duration Calculus without individual variables and
quantifications w.r.t. some approximation semantics by reduction
to the decision problem of Presburger Arithmetic, thus obtained
a model-checking algorithm with 4-fold exponential complexity
[6, 7]. As an alternative, inspired by their work, we consider the
bounded model-checking problem of the subset in the context of the
standard discrete-time semantics in this paper. Based on our previ-
ous work [20], we reduce this problem to the reachability problem
of timed automata. The complexity of our approach is singly ex-
ponential in the size of formulas and quadratic in the number of
states of models. We implement our approach using UPPAAL and
demonstrate its efficiency by some examples.

Keywords
Model Checking, Duration Calculus, Timed Automata

1. INTRODUCTION
In their seminal work [24], Zhou et al introduced the notion of

durations of states into Interval Temporal Logic (ITL) [13] for spec-
ifying and reasoning about quantitative properties of real-time and
hybrid systems and founded Duration Calculus (DC). DC is a very
expressive interval-based logic for real-time and hybrid systems at
a very abstract level, which is thought as a new trend in formal de-
sign of real-time and hybrid systems [8] and has been widely and
successfully applied in practice [22]. However, because of its ex-
pressiveness, the dark side of DC is the high undecidability of its
decision procedure and model-checking issues [23] in general, un-
less the notion of duration, the use of negation and chop (the only
modality in DC), or the models considered are severely constrained,
e.g. [23, 21, 4, 5, 9, 12, 15, 14, 17].
∗The first two authors are funded by NSFC 61073022 and
the Fundamental Research Funds for the Central Universities
(No.2100219031), and the last two authors are funded by NSFC-
91118007, NSFC-60970031 and National Science and Technology
Major Project of China (No. 2012ZX03039-004).∗The corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC’13, April 8–11, 2013, Philadelphia, Pennsylvania, USA.
Copyright 2013 ACM 978-1-4503-1567-8/13/04 ...$15.00.

Linear duration invariants (LDIs) form an important subset of
DC, as many safety properties of real-time systems can be defined
with them. For instance, in the gas burner example [16], it is easy
to specify the requirement that for any observed interval of length
greater than or equal to 60, the duration of the Leak is not greater
than one twentieth by an LDI as

60 ≤ �⇒ (19
∫

Leak − ∫¬Leak) ≤ 0.

In [21], the model-checking problem of LDIs is reduced to the lin-
ear programming problem and therefore solvable, where models
are given by real-time automata. While in [3, 11, 17, 19], the au-
thors investigated the model-checking problem of LDIs over timed
automata.

Whether it is possible to find out a larger subset of DC whose de-
cision and/or model-checking problem are/is decidable is quite in-
teresting. An obvious solution is to investigate the extension of LD-
Is with Boolean connectives and the chop (we call such extension
ELDIs for short). However, unfortunately, according to the results
given in [23], the decision problem of ELDIs becomes undecidable
both in the discrete time and continuous time settings. Moreover,
in [6, 7], Fränzle and Hansen pointed out that the model-checking
problem of ELDIs over finite-state Kripke structures turns out to be
undecidable also both in the discrete time and continuous time set-
tings. Motivated by this observation, they proposed an approxima-
tion semantics for ELDIs, called doubly situation based semantics,
and showed that its model-checking is decidable in the discrete time
setting with cubic complexity in the number of states of the model
and linear in the size of the formula. However, further observation
indicates that the approximation semantics is too coarse to be useful
in practice [7]. So, the authors refined the semantics to another ap-
proximation semantics called counting semantics and reduced the
model-checking problem of ELDIs to Presburger Arithmetic with
4-fold exponential complexity. So, two obstacles hinder the appli-
cation of their approach:

1. The first one is the approximation semantics. According to
their approach, one can only prove/disprove those formu-
las that can be approximated to be true/false over the giv-
en model represented by a finite-state Kripke structure, but
cannot say anything about other formulas;

2. The second one is the efficiency as explained above.

In this paper, motivated by Fränzle and Hansen’s work, as an al-
ternative, we give a more efficient algorithm for model-checking a
subset of ELDIs over timed automata in the context of the standard
discrete-time semantics. ELDI formulas considered here are of the
form a ≤ � ≤ b⇒ φ, where φ is an ELDI formula defined in [5, 6]
(see the definition given later), a is a natural number, and b is a nat-
ural number or ∞. When a = 0 and b = ∞, this case exactly cor-

213

responds to the subset of DC considered in [5, 6]. However, in this
paper, we only focus on the case when b is bounded, which means
all reference intervals should be with a bounded length. In other
words, we just investigate “bounded model-checking” of ELDIs.
The solution is based on the technique developed in our previous
work [20]. The basic idea is as follows: For a given timed au-
tomaton A and an ELDI formula Φ, we first construct an auxiliary
automaton S to count the observation time of A, and meanwhile,
to check whether Φ is satisfied or not at every integral time point
whenever the observation time is within the scope; then for the
product A‖S , we use a CTL formula to characterize all the failure
states at which the checking procedure returns false. So, A |= Φ is
reduced to verifying that none of these failure states is reachable in
A‖S , i.e., the formula is not satisfied by the product. The hardest
part is to design an algorithm called BMC-DC, to check at every
integral time point whether or not the given formula is satisfied on
any reachable execution segment whose length is within the bound.
BMC-DC is executed as an action when some transitions of the aux-
iliary automaton S happen. This allows us to easily implement our
approach in the model checker UPPAAL, and we will demonstrate
the efficiency of our approach by some examples.

The rest of the paper is organized as follows: Section 2 recalls
some basic notions of timed automata and Duration Calculus. Sec-
tion 3 explains the basic idea of our approach by some running
examples, while the detail is given in Section 4. Section 5 reports
the implementation and experimental results. Section 6 concludes
this paper and discusses the future work.

2. PRELIMINARIES
In this section, we introduce timed automata with discrete time

that will be used as models, and ELDIs that will be used as specifi-
cation language for real-time systems.

For convenience, we fix a finite set of state variables P , ranged
by P,Q, · · · , and let L = 2P in the rest of this paper.

2.1 Timed Automata with Discrete Time
A timed automaton [1] is a finite state machine equipped with a

set of clocks. In our case, we use a subset of P to represent a state
(location), and a set X of integer valued variables to represent the
clocks. Let Δ(X) be the set of clock constraints on X , which are
conjunctions of formulas of the form x ≤ c or c ≤ x, where x ∈ X
and c ∈ N. Formally,

Definition 1. A timed automaton A is a tuple A = (L, l0,Σ, X,
E, I), where L ⊆ L is a finite set of locations; l0 ∈ L is the initial
location; Σ is a finite set of actions; X is a finite set of clocks; I is
a mapping that assigns each location l ∈ L with a clock constraint
I(l) ∈ Δ(X) called the invariant at l; E ⊆ L×Σ×Δ(X)× 2X

×L is a relation among locations, whose elements are called edges
labeled with an action, a guard and a set of clocks to be reset.

A clock interpretation ν for the set of clocks X is a mapping
that assigns a natural number to each clock. For t ∈ N, let ν + t
denote the clock interpretation which maps each clock x ∈ X to
ν(x) + t. For λ ⊆ X , let ν[λ = 0] denote the clock interpretation
which assigns 0 to each x ∈ λ and agrees with ν over the rest of
the clocks.

A state of automaton A is a pair (l, ν), where l is a location of
A and ν is a clock interpretation which satisfies the invariant I(l).
State (l0, ν0) is the initial state, where ν0(x) = 0 for any clock
x ∈ X.

Let A be a timed automaton,

1. A run or an execution r of A is an infinite sequence of the

form

r : (l0, ν0)
a1−→
t1

(l1, ν1)
a2−→
t2

(l2, ν2)
a3−→
t3

· · ·

with li ∈ L and νi is a clock interpretation, for i ≥ 0, satis-
fying the following requirements:

Initiation: (l0, ν0) is the initial state.

Consecution: for all i > 0, either there is an edge in E of
the form (li−1, ai, δi, λi, li) such that (νi−1 + ti − ti−1)
satisfies δi and νi equals (νi−1 + ti − ti−1)[λi = 0];
or li−1 = li, νi = νi−1 + (ti − ti−1), ai = ti − ti−1

to denote an action to delay ti − ti−1 time units, and
for any 0 ≤ t < ti − ti−1, νi−1 + t satisfies I(li−1).

2. A behaviour ρ corresponding to the above run r, is the infi-
nite sequence of timed locations

ρ : (l0, t0)(l1, t1) · · · (ln, tn) · · ·
satisfying the following conditions: (1) t0 = 0; (2) for any
T ∈ N, there is some i ≥ 0 such that ti ≥ T , which guaran-
tees divergence and nonzeno.

Note that ti is the instant that A enters li, for all i ≥ 0. This means
that it stays in li−1 for ti − ti−1 time units and then transits to li in
the run. Also, in this paper we use a sequence of time-stamped lo-
cations to denote a behaviour instead of a sequence of time-stamped
switches as in other papers.

The product of several timed automata is defined in a standard
way (please refer to [1, 2]). As in UPPAAL [2], each component
timed automaton can be associated with a priority in a product.
Priorities among the component timed automata are specified on
the system level using a partial order < to indicate that the right
component timed automaton has a higher priority.

2.2 Extended Linear Duration Invariants
ELDIs with P investigated in [5, 6] consist of three syntactic

categories, which are state expressions S, linear duration formu-
las (LDFs) D, and ELDI formulas φ. The BNFs for them are as
follows:

S ::= 0 | P | ¬S | S1 ∨ S2

D ::=
∑
i∈Ω

ci
∫
Si ≤ c

φ ::= D | ¬φ | φ1 ∨ φ2 | φ1;φ2

where cis and c are integers, and Ω is a finite set of indices.
As the convention of DC, � is defined as

∫
1, denoting the length

of the reference interval. The Boolean value true, denoted by �, is
defined by � ≥ 0, falling in ELDIs. Obviously, each ELDI formula
can be represented by the form a ≤ � ≤ b⇒ φ, where a is a natu-
ral number, b is either a natural number or ∞, and φ is defined as
above. In this paper, we only focus on the case when b is bounded,
and will represent an ELDI of this form by Φ,Ψ, · · ·, possibly with
superscript and subscript in the sequel.

Given a timed automaton A, each of its behaviours ρ, defines an
interpretation Iρ of ELDIs in the following way:

State expressions: Iρ(0)(t) = 0 for any t ∈ N;

Iρ(P)(t) =

{
1 if ti−1 ≤ t < ti ∧ P ∈ li−1 for some i > 0
0 otherwise

Iρ(¬S)(t) = 1− Iρ(S)(t);

Iρ(S1 ∨ S2)(t) = max{Iρ(S1)(t),Iρ(S2)(t)}.

214

Durations: given an interval [t1, t2], where t1, t2 ∈ N and t1 ≤ t2,
then

∫
S is interpreted by

∫ t2
t1

Iρ(S)(t)dt.

Formulas: given an interval [t1, t2] as above, an ELDI formula φ
is interpreted by

Iρ, [t1, t2] |= ∑
i∈Ω ci

∫
Si ≤ c iff

∑
i∈Ω ciIρ(

∫
Si, [t1, t2]) ≤ c;

Iρ, [t1, t2] |= ¬φ iff Iρ, [t1, t2] �|= φ;

Iρ, [t1, t2] |= φ1 ∨ φ2 iff Iρ, [t1, t2] |= φ1 or Iρ, [t1, t2] |= φ2;

Iρ, [t1, t2] |= φ1;φ2 iff Iρ, [t1, t] |= φ1 and Iρ, [t, t2] |= φ2 for
some t ∈ [t1, t2] ∩ N.

In the above, (Iρ, [t1, t2]) is called an ELDI model of A, and we
denote M(A) the set of all ELDI models of A. We say A |= φ iff
M |= φ for any M ∈ M(A).

Notice that using the axioms of DC [22], it is easy to transform
each ELDI formula to an equivalent one in which all state expres-
sions are of the form P1 ∧ · · · ∧ Pn, where Pi ∈ P . Thus, here-
after, we assume all ELDIs are of this form unless otherwise stated.

3. BASIC IDEA AND RUNNING EXAMPLES
Given an ELDI Φ = (a ≤ � ≤ b ⇒ φ) and a timed automa-

ton A, our approach for checking A |= Φ is sketched as follows:
Firstly, we construct an auxiliary automaton S that is parallel with
A and can be triggered at any reachable state of A to check if φ
is satisfied on any execution segment of A starting from the state
whose length is in between a and b. Then we define a CTL for-
mula to characterize the set of failure states at which the checking
algorithm returns false. Thus, A |= Φ iff the CTL formula is not
satisfied by A‖S .

The auxiliary automaton S is given in Figure 1, in which

• there are three states: the initial state, p0 and p1, and the
invariants at p0 and p1 are both x ≤ 1;

• there are five transitions: one from the initial state to p0

with an action represented by the procedure Init to analyze
the formula to be checked; one from p0 to p1 with an ac-
tion represented by the checking algorithm BMC-DC from
which the reference interval is counted and the checking al-
gorithm is triggered; one self-transition at p0 that keeps idle
so that the checking algorithm can be triggered on arbitrary
reference interval starting from any reachable state; and two
self-transitions at p1. The first self transition labeled with
BMC-DC keeps checking the formula at any integral time
points of the reference interval whose length is still within
the scope, while the second one does nothing whenever the
reference interval is beyond the given scope. The details of
Init and BMC-DC will be given in the next section.

• there are two clocks: gc is a local variable to record the
length of the observed interval starting from a reachable s-
tate; x is a local clock variable with an initial value 1, to be
reset to 0 whenever its value is 1, which is used to indicate
only integral time points are observed, and the checking algo-
rithm should be triggered and executed only at these points.

Obviously, the set of failure states F of A‖S are the ones in
which BMC-DC returns false, which can be characterized by a CTL
formula ψ =̂ E<>¬BMC-DC(). When b is finite, it is easy to see
that A |= Φ iff A‖S �|= ψ.

In order to guarantee the elapse of clocks is never blocked by
other actions in the product A‖S , it is required that S has a higher
priority in A‖S , i.e., S < A.

p1
x<=1

p0

x<=1

x=1,
Init()

x==1
x=0 x==1

gc=0,
x=0,
BMC-DC()

gc==b
x=0

x==1 && gc<b
gc=gc+1,
x=0,
BMC-DC()

Figure 1: Auxiliary automaton S

3.1 Running Examples
First of all, we use some examples to show how to use BMC-DC

to check if a given ELDI formula is satisfied on a considered exe-
cution segment.

Let’s consider an execution segment

ρ = ({P0}, 0)({P1}, 1)({P2}, 2)({P3}, 3)({P4}, 4)({P5}, 5),
and five LDFs

∫
P0 −

∫
P1 +

∫
P2 +

∫
P3 +

∫
P4 ≤ 0, 2

∫
P1 +

∫
P2−∫

P3 ≤ 0, −∫
P0 + 2

∫
P2 − 2

∫
P4 ≤ 0,

∫
P0 ≤ 0 and

∫
P3 ≤ 0, de-

noted by D1, · · · ,D5 respectively. Moreover, for each Di, we in-
troduce a variable di.

Firstly, consider to check the above segment against a simple for-
mula 5 ≤ � ≤ 5 ⇒ D1;D2. A natural way is to check its satisfi-
ability by considering D1 on [0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5],
correspondingly, D2 on [0, 5], [1, 5], [2, 5], [3, 5], [4, 5], [5, 5], ac-
cording to the semantics. Thus, the duration expressions of D1 and
D2 have to be calculated on all the corresponding subintervals. Al-
ternatively, we give a more efficient approach by using the notion
of optimal potential chop point (OPCP). A time point is called po-
tential chop point (PCP) if D1 is satisfied on the interval from the
start point to this point, and a PCP is called optimal if the value
of the duration expression of D2 on the interval from this PCP to
the current point is minimal among all its values on these interval-
s from a PCP to the current point. We calculate the values of the
duration expressions of D1 and D2 step by step from the begin-
ning point to the end point of the execution segment, and record
the value of the duration expression of D1 on the segment from the
beginning time point to the current time point by d1, and that of
D2 on the segment from the OPCP to the current time point by d2.
Meanwhile, reset d2 to 0 whenever the OPCP is updated. In this
example, at the beginning, d1 is set to 0, and d2 to 11, which is
large enough to guarantee that the duration expressions of D1 and
D2 on the execution segment are always smaller than this value. At
t = 0, obviously, D1 is satisfied as d1 ≤ 0, so this point is the cur-
rent OPCP and the duration expression of D2 needs to be computed
from scratch and hence d2 is reset to 0. At t = 1, d1 is increased
by 1 (staying at {P0} for one time unit), so t = 1 cannot be a PCP.
At t = 2, d1 is changed to 0 and d2 is updated to 2. Now, t = 2
becomes the new OPCP as d2 > 0, and accordingly, d2 is reset to
0 again. Repeat the above procedure until t = 5. Then we can con-
clude the formula is satisfied as d2 = 0 ≤ 0. In our approach, the
duration expressions of D1 and D2 are just needed to be calculated
one time on the execution segment.

However, in many cases, we cannot distinguish which is optimal
among several PCPs. E.g., consider the above model against the
formula

5 ≤ � ≤ 5 ⇒ D1;¬(¬(D2;D3); (D4 ∧ D5)).

Obviously, t = 0 and t = 2 are two PCPs w.r.t. the outmost chop,
but we cannot tell which is optimal as we cannot guarantee that the
values of the duration expression of D4 and D5 achieve optimal
simultaneously. In this case, the two PCPs have to be checked ac-

215

cording to the semantics separately. Thus, we duplicate d2 at t = 0
and t = 2, and denote by d02 and d22 respectively. Obviously, d02
is set to 0 at t = 0, while d22 is set to 0 at t = 2. Moreover, ac-
cording to the semantics, ρ, [t1, t2] |= ¬(¬(D2; D3); (D4 ∧ D5))
iff ρ, [t1, t] |= ¬(D2;D3) implies ρ, [t, t2] |= ¬(D4 ∧ D5), for
any t ∈ [t1, t2]. Checking the premise part can be done as above
thanks to the existence of OPCPs. Accordingly, we also need to
duplicate d3 respectively corresponding to the two PCPs, and de-
note by d03 and d23 respectively. W.r.t. the PCP t = 0 of the outmost
chop, it is easy to see that t = 3 and t = 4 are two PCPs of the
second outmost chop as ¬(D2;D3) is satisfied on both [0, 3] and
[0, 4]. Regarding the chop point t = 4 of the second outmost chop,
D4 and D5 are both satisfied on [4, 5]. This indicates that firstly,
t = 0 cannot be seen as a chop point of the outmost chop; secondly,
the second outmost chop does not have “optimal” property, as we
cannot guarantee the duration expressions of D4 and D5 achieve
“optimal” simultaneously. An analogous analysis indicates the for-
mula is satisfied if t = 2 is chosen as the chop point of the outmost
chop, because only t = 3 is the PCP of the second outmost chop,
and D4 is satisfied on [3, 5], but D5 not.

4. ALGORITHMS
In this section, we focus on how to implement the procedures

Init and BMC-DC for checking ELDIs.
Clearly, negation of an LDF or a logical combination of LDFs

can be easily eliminated and we can obtain another equivalent LDF
or logical combination of LDFs in which no negation occurs. Thus,
for simplicity, as a convention, we just consider the ELDIs in which
any ¬ is only applied to a subformula with ; as its outmost operator.

4.1 In a Nutshell
It is a natural way to check the satisfiability of an ELDI Φ a-

gainst a timed automaton directly by the semantics, possibly with
a complexity O(nbbr), where n is the number of locations of the
considered timed automaton, b is the upper bound of reference in-
tervals, and r is the number of LDIs in Φ. Obviously, it is quite
high. However, we found we can dramatically reduce the complex-
ity by using the notion of optimal potential chop point (OPCP).

In order to define the notion of OPCP, we introduce some nota-
tions first. First of all, let’s fix an ELDI Φ = a ≤ � ≤ b⇒ φ for
the sequel discussions, D1, · · · ,Dr are all LDFs occurring φ, and
all other formulas are subformulas of Φ unless otherwise stated.
For each Dk , we introduce a variable dk to denote the value of
the duration expression of Dk on the reference interval, and mean-
while, define an upper bound dmax of dks by b ·max{ |cik,k|, |ck| |
ik ∈ Ωk ∧k = 1, . . . , r}+ 1.

Definition 2. Given an ELDI formula φ′; (D1 ∨ · · · ∨ Di) and
an interval [t1, t2], an integral time point t of [t1, t2] is called po-
tential chop point (PCP) if φ′ is satisfied on [t1, t]; a PCP t is called
optimal up to t′, if there is 1 ≤ k ≤ i such that

dk([t, t
′]) = min{dk([t∗, t′]) | t∗ ≤ t′ and t∗ is a PCP},

where t1 ≤ t ≤ t′ ≤ t2 and t, t′ ∈ N, and dk([b, e]) denotes the
value of dk on [b, e].

For the given φ′; (D1 ∨ · · · ∨ Di) and [t1, t2], we can show that
at any time t′ ∈ [t1, t2], the formula is satisfied on [t1, t

′] iff there
exists an OPCP t such that φ′ is satisfied on [t1, t] and D1 ∨ · · · ∨ Di

is satisfied on [t, t′] (see the proof for Theorem 1 in Appendix).
Thus, we just need to visit all PCPs from t1 to t2, update the current
OPCPs t, and keep the values of duration variables in φ′ on [t1, t

′]
and values of d1, . . . , di on [t, t′], in order to check the satisfiability

of the whole formula over [t1, t2]. We do not need to consider all
possible values of variables on all subintervals of [t1, t2]. This in-
deed reduces the complexity of the checking so much. Similar idea
is applicable to any ELDI formulas only with chop and disjunction
of the form φ′; (D1,1 ∨ · · · ∨ D1,i1); · · · ; (Dk,1 ∨ · · · ∨ Dk,ik) by
simultaneously maintaining k interdependent OPCPs.

However, the idea is not applicable to the combinations of chop
with conjunction or negation. For example, consider D1; (D2 ∧ D3).
It is impossible to guarantee the existence of OPCPs, because if it
exists, the duration expressions of D2 and D3 both have to be opti-
mal w.r.t. it. So, in order to check the satisfiability of D1; (D2 ∧ D3),
all the PCPs need to be maintained and checked for D2 ∧ D3 ac-
cording to the semantics. Therefore, we duplicate the variable d2 at
each visited point (at most b+ 1 times), denoted by d02, d

1
2, · · · , db2,

which respectively stand for the values of the duration expression
of D2 on the interval from the corresponding time point to the end
of the reference interval. Analogously for D3. In this case, we call
the subformula D2 ∧ D3 duplicated. Similarly, for the negation of
a subformula which is a right operand of chop, we also need to du-
plicate the corresponding variables for each LDF in the subformula
at each visited time point. E.g., in D1;¬(D2;D3), ¬(D2;D3) is a
duplicated subformula. In order to improve the efficiency, we had
better exploit the idea of OPCP as many as possible. So, we give a
syntactical criterion to tell to which subformulas the OPCP-based
approach is not applicable, called duplicated formulas.

Definition 3. Given a subformula ϕ of φ, we say ϕ is dupli-
cated, if ϕ is of the form φ1 ∧ φ2 or ¬φ1, and ψ;ϕ is a sub-
formula of φ for some ψ. Duplicated subformulas can be nested
and there is a largest nested depth for each ELDI formula. We
use D-Sub(χ) to denote the set of duplicated subformulas of φ, of
which χ is a proper subformula; furthermore denote the minimal
one min(D-Sub(χ)) by MD(χ).

Example 1. InD1;¬(D2; (D3 ∧ D4)), ¬(D2; (D3 ∧ D4)) is du-
plicated, and D3 ∧ D4 is duplicated too. So the largest nested
depth of the formula is 2. D-Sub(D3) = {D3 ∧ D4,¬(D2; (D3∧
D4))} and MD(D3) = D3 ∧ D4; D-Sub(D3 ∧ D4) = {¬(D2; (D3

∧D4))} and MD(D3 ∧ D4) = ¬(D2; (D3 ∧ D4)); while neither
D-Sub(¬(D2; (D3 ∧ D4))) nor MD(¬(D2; (D3 ∧ D4))) exists.

According to Definition 3, we design a preprocessing procedure
PreTreat in Algorithm 1 to analyze the syntactical structure of φ, in-
cluding which subformulas have the “optimal property”, which are
duplicated, and the relation between them. To this end, φ will be
represented as a binary syntactical tree, in which each node is orga-
nized as a tuple of the form (Nu,Op, Left,Right, V,W,C, S, tag),
where Nu stands for the number of the subformula in the tree given
by a mapping J , Op for its outmost operator, Left and Right for
the numbers of the subformulas at the left and the right of Op re-
spectively, V for the set of indices of the LDIs, W for the set of
indices of the LDIs that are likely to be duplicated, C for the set
of indices of the LDIs that have to be duplicated, S for the set of
indices of the LDIs of the subformula whose duration expressions
need to be initialized to 0 whenever the subformula is considered,
and tag to indicate if the subformula itself is duplicated. Note that
if a subformula is an LDF Dk, then its Op will be set to its index
k, and its Left and Right will be set to −1; if a subformula is of the
form ¬ψ, Left will be set to the number of ψ, while Right will be
set to −1. The numbering mapping J follows the convention that
all of φ’s subformulas are numbered by consecutive integers from
0, and different subformulas with different numbers. In addition, φ
itself is numbered as 0 and the number of a formula is always less
than those of its subformulas. We use an array A of the tuple to

216

represent the syntax tree, and each subformula corresponds to an
element of A whose index is the same as the subformula’s number
Nu.

Algorithm 1 PreTreat()
Input: φ, flag
1: n := J(φ);
2: if φ = Dk then
3: A[n].(Nu,Op, tag, Left, Right) := (n, k, false,−1,−1);
4: A[n].(V,W,C, S) := ({k}, ∅, ∅, {k});
5: if φ = φ1 ∨ φ2 then
6: PreTreat(φ1, flag); PreTreat(φ2, flag);
7: A[n].(Nu,Op, tag, Left, Right) := (n,∨, false, J(φ1), J(φ2));
8: A[n].(V,W,C, S) :=
9: (A[J(φ1)].V ∪ A[J(φ2)].V,A[J(φ1)].W ∪ A[J(φ2)].W,

10: A[J(φ1)].C ∪A[J(φ2)].C,A[J(φ1)].S ∪ A[J(φ2)].S);
11: if φ = φ1 ∧ φ2 then
12: PreTreat(φ1, false); PreTreat(φ2, false);
13: A[n].(Nu,Op, tag, Left,Right) := (n,∧, flag, J(φ1), J(φ2));
14: A[n].(V,W,C, S) :=
15: (A[J(φ1)].V ∪ A[J(φ2)].V,A[J(φ1)].V ∪ A[J(φ2)].V,
16: A[J(φ1)].C ∪A[J(φ2)].C,A[J(φ1)].S ∪ A[J(φ2)].S);
17: if φ = ¬φ1 then
18: PreTreat(φ1, false);
19: A[n].(Nu,Op, tag, Left,Right) := (n,¬, flag, J(φ1),−1);
20: A[n].(V,W,C, S) := A[J(φ1)].(V, V,C, S);
21: if φ = φ1;φ2 then
22: PreTreat(φ1, flag); PreTreat(φ2, true);
23: A[n].(Nu,Op, tag, Left,Right) := (n, ; , false, J(φ1), J(φ2));
24: A[n].(V,W,C, S) := (A[J(φ1)].V ∪ A[J(φ2)].V,A[J(φ1)].W,
25: A[J(φ1)].C ∪A[J(φ2)].C ∪ A[J(φ2)].W,A[J(φ1)].S)

Example 2. Still consider the formula above D1;¬(D2; (D3∧
D4)). Thus, four dk (k = 1, . . . , 4) are introduced. The syntactic
tree just with the number and operator of each subformula is shown
in Figure 2, and the array represented the syntactic tree is shown
in the table. Using PreTreat, except that tag is computed from top
to bottom, other information is computed from bottom to top. E.g.,
3 and 4 are added to A[3].C as they are contained in A[5].W , and
A[5].tag is true as node 5 is the right child of node 3 and its operator
is ∧.

1

;

;

2

3 4

(1)

(0)

(2)

(3)

(4) (5)

(6) (7)

Nu V W C S tag

0 {1,2,3,4} { } {2,3,4} {1} false

1 {1} { } { } {1} false

2 {2,3,4} {2,3,4} {3,4} {2} true

3 {2,3,4} { } {3,4} {2} false

4 {2} { } { } {2} false

5 {3,4} {3,4} { } {3,4} true

6 {3} { } { } {3} false

7 {4} { } { } {4} false

Figure 2: The syntactic tree and the information on the tuples

So, the procedure Init in the auxiliary automaton S of Figure 1
is implemented in Algorithm 2. It first analyzes the syntactical in-
formation of φ and records it in A by calling PreTreat. Then it
initializes the corresponding introduced variables.

Then, we implement the action BMC-DC in the auxiliary au-
tomaton by calling two subroutines after updating the values of the
dis and their duplicates, where Reset for resetting the values of the
corresponding duration expressions if the considered time point is
a new OPCP, and Sat for calculating the return value indicating
whether a formula is satisfied on the current reference interval. We
will explain these two subroutines in detail later.

Algorithm 2 Init()
Input: φ
1: PreTreat(φ, false);
2: for all k ∈ A[0].V −A[0].C do
3: dk := dmax;
4: for all k ∈ A[0].C do
5: for i := 0 to b do
6: dik := dmax;
7: for all k ∈ A[0].S do
8: dk := 0;

Algorithm 3 BMC-DC()

1: for all k ∈ A[0].V −A[0].C do
2: for all i ∈ Ωk do
3: if dk �= dmax and Si,k is satisfied at the current location1and

gc > 0 then
4: dk := dk + ci,k;
5: for all k ∈ A[0].C do
6: for i := 0 to b do
7: for all i ∈ Ωk do
8: if dik �= dmax and Si,k is satisfied at the current location and

gc > 0 then
9: dik := dik + ci,k;

10: Reset(0, false);
11: if gc ≥ a ∧ ¬Sat(0,−1,−1) then
12: return false;
13: return true;

4.2 The Subroutine Reset

The functions of Reset include the following two points:

1. Whenever a PCP is visited, we need to see whether to update
the OPCPs, and accordingly reset the values of the duration
expressions listed in the set S of the right operand of the
chop;

2. For any two immediately nested chops in a nested duplicated
subformula, maintain a correspondence relation between the
chop points of the outer chop and the ones of the inner chop.
That is recorded in a mapping relation T , which is empty at
the beginning.

Reset takes as parameters the number n of a formula to be con-
sidered and a Boolean variable flag to indicate whether the formula
is inside a duplicated subformula. For an LDF, Reset does noth-
ing but return; for logical connectives, we recursively call the sub-
routine with its subformulas and the recalculated flag as parame-
ters; for the chop, it is needed to reset the values of some dura-
tion expressions in the right operand of the chop, which is execut-
ed between the recursive invocations of the subroutines to its two
operands. That can be categorized into the following two cases:

¬flag In this case, the dks corresponding to the LDFs of the left
operand A[n].Left do not need to be duplicated, therefore
there is no need to keep a correspondence with the chop
points of any outer chops. The current time point is possi-
bly optimal if A[n].Left is satisfied, and then the dks corre-
sponding to the LDFs listed in the set S of the right operand
A[n].Right should be reset by case analysis:

• If the index of a dk is in A[A[n].Right].S, but not in
A[A[n].Right].W , then if its value is greater than 0,
it should be reset to 0 as the current point is indeed

1This can be easily implemented by checking if each state variable
in Si,k occurs in the current location.

217

optimal; otherwise unchanged, as the previous optimal
point is better than the current one.

• If the index of a dk is in both A[n].Right’s S and W ,
a new duplicated subformula is encountered, so we just
simply reset its duplicate at the current point to 0.

flag In this case, the OPCPs of the left operand A[n]. Left are re-
lated to the PCPs of the immediate outer chop. Thus, the
current time point is possibly optimal w.r.t. some outer chop
point i if the right operand of the outer chop has been calcu-
lated from i (indicated by dih �= dmax) and A[n].Left is sat-
isfied w.r.t. i, so the respective duplicates of the dks corre-
sponding to the LDFs listed in the set S of the right operand
A[n].Right should be reset by case analysis:

• If the index of a dk is in A[A[n].Right].S, but not in
A[A[n].Right].W , then if the duplicate dik is greater
than 0, it should be reset to 0 as the current point is
indeed optimal w.r.t. i; otherwise unchanged.

• If the index of a dk is in both A[n].Right’s S and W ,
we just simply reset its duplicate at the current point to
0. Meanwhile, the correspondence between the chop
point of the outer chop at i and the chop point of the
inner chop at gc is recorded in T .

Algorithm 4 Reset()
Input: n, flag
1: if A[n].Op ∈ N then
2: return ;
3: if A[n].Op == ∨ or A[n].Op == ∧ then
4: Reset(A[n].Left, flag ∨ A[n].tag);

Reset(A[n].Right, flag ∨A[n].tag);
5: if A[n].Op == ¬ then
6: Reset(A[n].Left, flag ∨ A[n].tag);
7: if A[n].Op ==; then
8: Reset(A[n].Left, flag);
9: if ¬flag then

10: if Sat(A[n].Left,−1,−1) then
11: for all h ∈ A[A[n].Right].S − A[A[n].Right].W do
12: dh := min(0, dh);
13: for all h ∈ A[A[n].Right].S ∩ A[A[n].Right].W do
14: dgch := 0;
15: else
16: choose k ∈ A[n].S;
17: for all i ∈ [0, gc] do
18: if dik �= dmax ∧ Sat(A[n].Left, k, i) then
19: for all h ∈ A[A[n].Right].S −A[A[n].Right].W do
20: dih := min(0, dih);
21: for all h ∈ A[A[n].Right].S ∩A[A[n].Right].W do
22: dgch := 0;
23: for all k ∈ A[n].S do
24: T (dik) := T (dik) ∪ {dgch };
25: Reset(A[n].Right, flag);

4.3 The Subroutine Sat

The subroutine Sat is to determine whether a considered formu-
la is satisfied on the reference interval, which is used as the return
condition of BMC-DC and also as resetting conditions in Reset. Sat
takes three parameters: n is the number corresponding to the for-
mula to be checked; if the minimal duplicated subformula strictly
containing n exists, say m, i.e., m = MD(n), then k is the index
of some dk in A[m].S and i is the specific point to duplicate dk;
otherwise, k and i are both assigned with −1.

We compute the satisfiability in a recursive way. For an LDF Dk,
the return value is calculated according to the semantics depending

on whether MD(n) exists. If it does not exist, the value of dk is
used; otherwise, the value of dk’s i-th duplicate, i.e., dik, is used.
“;” and “∨” can be handled in a standard way as they do not need to
be duplicated. Regarding “¬” and “∧”, if the considered formula
is not duplicated, then it is handled in a standard way; otherwise,
the satisfiability of the formula should be discussed on all possible
reference subintervals indicated by the duplicates of a dh from its
S according to the following two cases:

1. the first is when the formula itself is not strictly contained in
another duplicated subformula, indicated by i == −1, i.e.,
MD(n) does not exist. Then, we just need to check if the
formula is satisfied on some of the considered subintervals
(indicated by djh �= dmax);

2. the other is when the formula itself is strictly contained in an-
other duplicated subformula, indicated by i �= −1. Thus, we
need to check if the formula is satisfied on some of the subin-
tervals corresponding to the chop point of the outer chop (in-
dicated by dih ∈ T (dik)).

Algorithm 5 Boolean Sat()
Input: n, k, i
1: if A[n].Op ∈ N then
2: if i == −1 then
3: return dA[n].Op ≤ cA[n].Op;
4: else
5: return di

A[n].Op ≤ cA[n].Op;

6: if A[n].Op == ∨ then
7: return Sat(A[n].Left, k, i) ∨ Sat(A[n].Right, k, i);
8: if A[n].Op == ∧ and A[n].tag == false then
9: return Sat(A[n].Left, k, i) ∧ Sat(A[n].Right, k, i);

10: if A[n].Op == ∧ and A[n].tag == true then
11: choose a h ∈ A[n].S;
12: for j := 0 to gc do
13: if i == −1 ∧ djh �= dmax ∧ Sat(A[n].Left, h, j)∧

Sat(A[n].Right, h, j) then
14: return true;
15: if i �= −1 ∧ djh ∈ T (dik) ∧ Sat(A[n].Left, h, j)∧

Sat(A[n].Right, h, j) then
16: return true;
17: return false;
18: if A[n].Op == ¬ and A[n].tag == false then
19: return ¬Sat(A[n].Left, k, i);
20: if A[n].Op == ¬ and A[n].tag == true then
21: choose h ∈ A[n].S;
22: for j := 0 to gc do
23: if i == −1 ∧ djh �= dmax ∧ ¬Sat(A[n].Left, h, j) then
24: return true;
25: if i �= −1 ∧ djh ∈ T (dik) ∧ ¬Sat(A[n].Left, h, j) then
26: return true;
27: return false;
28: if A[n].Op ==; then
29: return Sat(A[n].Right, k, i);

4.4 Correctness and Complexity
The correctness of our approach is guaranteed by the following

theorem. The proof is given in the appendix.

THEOREM 1. Our approach is correct. That is,

Termination: Our approach is certain to terminate.

Soundness: If none of the failure states is reachable in A‖S , then
the given ELDI formula Φ is satisfied by A.

218

Completeness: If some of the failure states are reachable in A‖S ,
then the given ELDI formula Φ is not satisfied by A.

In order to implement our algorithms on UPPAAL, given a timed
automaton A, we reformulate it by replacing each location with a
label and using a labeling function f to map each label to the set of
state variables corresponding to the location, denoted by G.

As we implement the checking of the reachability of the fail-
ure states in the composed automaton G‖S using UPPAAL, the
complexity of our approach depends on the implementation of UP-
PAAL, in which on-the-fly checking on the whole system is ap-
plied. Here the state space is the product of the locations of the
automaton and the values of introduced variables. Regarding the
number of variables, first of all, we need to introduce a duration
variable dk for each LDF Dk (k = 1, . . . , r); moreover, each dk
could be duplicated at most b+ 1 times; finally, the mapping T is
implemented as a (b+ 1)r × (b+ 1)r matrix, in which each entry
is a Boolean variable that indicates whether there is a correspon-
dence between the two corresponding introduced variables. So, the
total number of introduced variables is at most (b+ 1)r · (br + r+
1). In addition, in our approach we have to take the cost for exe-
cuting the action BMC-DC on the corresponding transitions into
account.

The checking procedure consists of three phases. The first phase
is when S stays in p0, in which all the introduced variables as well
as gc keep unchanged. So, this phase contains at most |SA| state
changes and |SA|2 transitions.

The second phase is to do the actual checking in which gc keeps
increased from 0 to b. Let the transition from p0 to p1 happen at
a specific state s. Each execution of BMC-DC consists of the fol-
lowing three steps: updating, resetting and checking. Obviously,
the cost for updating is O(br). Resetting may change the values
of the introduced variables and the entries of the mapping matrix,
and recursively call Reset and Sat many times. Each dk possibly
with a superscript i is reset at most once, so the time cost of reset
operations is O(br). Meanwhile, applying Sat to a duplicated sub-
formula n could result in recursive invocations of Sat of at most
(2(b+ 1))h times, and each execution of BMC-DC checks each n-
ode (subformula) of the ELDI φ at most once, so the cost of the
satisfiability checking in each execution of BMC-DC is O(|φ|bh),
where h is the largest nested depth of duplicated subformulas of φ.

Let x be the maximal number of outgoing transitions from the
locations of A. In each execution of BMC-DC, gc increases by 1,
and there are at most x+ 1 possibilities for the next location, which
results in at most 2(x+ 1)(b+1) possible states. As shown above,
each transition costs time O(br + |φ|bh), so the cost for checking
intervals starting from s is O((br + |φ|bh)xb). Thus, the cost of
the second phase is totally O(|SA|(br + |φ|bh)xb).

The third phase is when gc is equal to b and the self transition
at p1 is executed. In this phase, the length of the current execution
segment has exceeded b, and BMC-DC will not be invoked any
more, therefore we can conclude that none of the failure states will
be reached. Thus, the cost of this phase is zero.

In summary, the number of transitions in the system handled by
UPPAAL is O(|SA|2 +|SA|xb) and the time complexity of our
approach is O(|SA|2 + |SA|(br + |φ|bh)xb). We can see that the
largest nested depth of duplicated subformulas directly affects the
complexity of the algorithm. As it is generally very small, com-
pared with the 4-fold exponential approximation algorithm in [7],
we have an essential improvement subject to the constraint of the
finite observation time.

5. IMPLEMENTATION AND EXPERIMENTS

Using C++, we develop a tool that can be integrated with UP-
PAAL to check whether a given system A satisfies an ELDI Φ (see
the dotted box in Figure 3). The input of the tool is Φ and an XML
file representing A. Then it automatically generates G in terms of
these information. While the generation of S , whose crucial part
is the procedure BMC-DC, is only dependent on Φ. At last, the
composed automaton G‖S , as well as the CTL formula defined in
Section 3 is the input to the model checker UPPAAL.

We now use the following four examples to show the efficiency
of our approach, the first three of which are taken from [10] and
the fourth is the complex one given in Section 3.1. All the exper-
iments are conducted on a laptop with the Intel Core2 Duo T6400
processor and 2 GB RAM using the operating system Windows 7.
Due to the space limitation, we here skip the detailed description of
models and model transformation, while only compare the results
with those in paper [10].

1. We first check the automaton AN obtained by N iterations
of the automaton depicted in Figure 4(a) with respect to the
property also shown in the figure. The automaton AN is
constructed by combining N automata M1,M2, . . . ,MN ,
so that there are edges from Di to Ai+1, for 1 ≤ i < N ,
and edges from Di to Aj , for 1 ≤ j ≤ i ≤ N . With re-
gard to different values of N , the checking times (t1) using
our approach are given in the second column of Figure 4(b).
Clearly, for each N , the time is less than those listed in the
third and the fourth columns (t2 and t3), which are needed
by two different approaches in [10].

2. The second problem is taken from the experiment 2 of [10]2,
where k1, k2 and k3 are coefficients that appear in an ELDI

to be checked. We need to solve the problem that for given
values of k1 and k2, the smallest value of k3 should be found,
so that the ELDI is satisfied. The results of the experiment
demonstrate that for each case of different values of k1 and
k2 given in [10], it takes less time to find the smallest value of
k3 using our approach. For instance, in the first case, it takes
6.3s, while the two methods proposed in [10] respectively
need 38.9s and 9.0s.

3. As discussed in [10], the approximation algorithm fails to
check the automaton with respect to the property shown in
Figure 4(c) even when the observation interval is finite. While
our tool is able to give definite results. For instance, it takes
0.2s to verify the satisfiability of the property for � = 4.

4. The tool can handle complex ELDI formulas as well. For ex-
ample, for the simple and the complex ones in Section 3.1, it
respectively takes 0.16s and 0.22s to verify the satisfiability
of the formulas for the given execution segment.

6. CONCLUSION
In this paper, inspired by Fränzle and Hansen’s work [6, 7, 10],

we investigated bounded model-checking of ELDIs, which is a very
expressive subset of DC. Compared with their work, the advantages
of our approach include:

1. instead of using approximation semantics of DC, the stan-
dard discrete time semantics of DC is adopted;

2. our approach is much more efficient by case studies. As ana-
lyzed in Section 4.4, the complexity of our approach is much

2This example actually comes from the full version of [10] thanks
to Prof. Michael Hansen for his courtesy of this example.

219

xml of A

ELDI Φ

G

S

transform

transform
E<>¬BMC-DC()

UPPAALxml of G ‖ S
compose input

Figure 3: ELDI checking tool

Ci DiAi Bi

p p

Property: [](l < 4 → ∫
p < 3)

N t1(s) t2(s) t3(s)
3 0.59 5.7 5.7
4 0.64 16.5 15.8
5 0.75 27.9 26.2
6 0.84 55.4 −−

A

B

C

D
P

Q

Property: (true; �P �) ∨ (true; �Q�)
(c)(a) (b)

Figure 4: (a) Models in experiment 1 (b) Execution time of experiment 1 (c) Models in experiment 3

lower than theirs subject to the constraint of the finite obser-
vation time.

We implemented the approach using UPPAAL, and showed its ef-
ficiency by some examples.

The disadvantage of our approach is that all reference interval-
s are constrained to be bounded. So, our main future work is to
consider how to weaken this constraint.

7. REFERENCES
[1] R. Alur and D. L. Dill. A theory of timed automata.

Theoretical Computer Science, 126(2):183–235, 1994.
[2] G. Behrmann, A. David, and K. G. Larsen. A tutorial on

UPPAAL. In SFM’04, pages 200–236, 2004.
[3] V. A. Braberman and D. V. Hung. On checking timed

automata for linear duration invariants. In RTSS’98, pages
264–273. IEEE Computer Society, 1998.

[4] M. Fränzle. Model-checking dense-time duration calculus.
Formal Aspects of Computing, 16(2):121–139, 2004.

[5] M. Fränzle and M. R. Hansen. Deciding an interval logic
with accumulated durations. In TACAS’07, pages 201–215,
2007.

[6] M. Fränzle and M. R. Hansen. Efficient model checking for
duration calculus based on branching-time approximations.
In SEFM’08, pages 63–72, 2008.

[7] M. Fränzle and M. R. Hansen. Efficient model checking for
duration calculus. International Journal of Software and
Informatics, 3(2-3):171–196, 2009.

[8] V. Goranko, A. Montanari, and G. Sciavicco. A road map of
interval temporal logics and duration calculi. Journal of
Applied Non-Classical Logics, 14(1-2):9–54, 2004.

[9] M. R. Hansen. Model-checking discrete duration calculus.
Formal Aspects of Computing, 6(6):826–845, 1994.

[10] M. R. Hansen and A. W. Brekling. On tool support for
duration calculus on the basis of presburger arithmetic. In
TIME’11, pages 115–122, 2011.

[11] X. Li and D. V. Hung. Checking linear duration invariants by
linear programming. In ASIAN’96, pages 321–332, 1996.

[12] R. Meyer, J. Faber, J. Hoenicke, and A. Rybalchenko. Model

checking duration calculus: a practical approach. Formal
Aspects of Computing, 20(4-5):481–505, 2008.

[13] B. Moszkowski. A temporal logic for multilevel reasoning
about hardware. Computer, 18(2):10–19, February 1985.

[14] P. Pandya. Specifying and deciding quantified discrete-time
duration calculus formulae using DCVALID. In
RT-TOOLS’01, 2001.

[15] B. Sharma, P. K. Pandya, and S. Chakraborty. Bounded
validity checking of interval duration logic. In TACAS’05,
pages 301–316, 2005.

[16] E. V. Sorensen, A. P. Ravn, and H. Rischel. Control program
for a gas burnew: Part 1: Informal requirements, ProCoS
case study 1. Technical report, Department of Computer
Science, Technical University of Denmark, 1990.

[17] P. H. Thai and D. V. Hung. Verifying linear duration
constraints of timed automata. In ICTAC’04, pages 295–309,
2004.

[18] N. Zhan and M. E. Majster-Cederbaum. On hierarchically
developing reactive systems. Inf. Comput., 208(9):997–1019,
2010.

[19] M. Zhang, D. V. Hung, and Z. Liu. Verification of linear
duration invariants by model checking CTL properties. In
ICTAC’08, pages 395–409, 2008.

[20] M. Zhang, Z. Liu, and N. Zhan. Model checking linear
duration invariants of networks of automata. In FSEN’09,
pages 244–259, 2009.

[21] C. Zhou. Linear duration invariants. In FTRTFT’94, pages
86–109, 1994.

[22] C. Zhou and M. R. Hansen. Duration Calculus: A Formal
Approach to Real-Time Systems. Springer, 2004.

[23] C. Zhou, M. R. Hansen, and P. Sestoft. Decidability and
undecidability results for duration calculus. In STACS’93,
pages 58–68, 1993.

[24] C. Zhou, C. A. R. Hoare, and A. P. Ravn. A calculus of
durations. Information Processing Letters, 40(5):269–276,
1991.

220

Appendix: Proof of Theorem 1
In order to prove Theorem 1, we need the following three lemmas.
Lemma 1 certifies the existence of OPCPs for ELDIs of the form
D1;D2, which will be a basic case in the proof of the correctness
of BMC-DC. Based on that, Lemma 2 shows the correctness of the
subroutine Sat, and Lemma 3 shows the correctness of the proce-
dure BMC-DC in general cases.

LEMMA 1. Let ρ = (l′0, t
′
0)(l1, t1) · · · (lgc, tgc) be the current

execution segment in the automaton A and Φ be (a ≤ � ≤ b ⇒ D1;
D2). Then, the model checking algorithm BMC-DC is correct w.r.t.
ρ and Φ, i.e.,

1. The algorithm is certain to terminate.

2. If the algorithm returns true, then Φ is satisfied by ρ.

3. If the algorithm returns false, then Φ is not satisfied by ρ.

PROOF. When checking D1;D2 subject to a ≤ � ≤ b, the effect
of Reset(0, false) is same as

if d1 ≤ c1 then
d2 := min(0, d2);

while the return condition by calling Sat(0,−1,−1) is d2 ≤ c2.
So, 1 is obvious.

Regarding to 2, if the algorithm returns true, then gc < a or
(gc ≥ a ∧ d2 ≤ c2) holds. Φ holds trivially for the former case.
For the latter case, since d2 ≤ c2 �= dmax, it must have been reset
to 0 at some point. Assume the latest reset statement happens at
point t = ti (0 ≤ i ≤ gc). As the condition of resetting is d1 ≤ c1,
ρ, [t0, ti] |= D1 holds. Also, t = ti is the latest resetting point,
so d2 is exactly the value of the duration expression of D2 on the
interval [ti, tgc], hence ρ, [ti, tgc] |= D2. Therefore, Φ is satisfied
by ρ.

As for 3, if the algorithm returns false, then both gc ≥ a and
d2 > c2 hold. By contraposition, suppose ρ, [t0, tgc] |= D1;D2,
i.e., there exists tj such that ρ, [t0, tj] |= D1 and ρ, [tj , tgc] |= D2.
So d2 must have been reset to 0 at some point. Also, assume the
latest reset happens at t = ti (0 ≤ i ≤ gc). Now, we make a case
analysis on the relation between ti and tj . Firstly, if ti = tj , then
d2 ≤ c2 simply holds. Secondly, if ti < tj , as t = ti is the latest
resetting point and no reset operation happens at point t = tj , the
duration expression of D2 on the subinterval [ti, tj] is less than 0.
Besides, the duration expression of D2 on the subinterval [tj , tgc] is
less than or equal to c2 as ρ, [tj , tgc] |= D2 holds. So, d2 is equal
to the summation of the above two parts and thus also less than
or equal to c2. Thirdly, if ti > tj , the duration expression of D2 is
larger than 0 on [tj , ti] as t = ti is a resetting point. So the duration
expression of D2 is less than or equal to c2 on [j, gc] implies that
the proposition also holds on [ti, tgc]. In summary, in any case
the duration expression of D2 is always less than or equal to c2 on
[ti, tgc], which contradicts to d2 > c2 at t = tgc. Hence, φ is not
satisfied by ρ.

In the following, we give some definitions that will be used in
the proof.

Definition 4. We say a subformula φ is a left formula, ifA[J(φ)].
S ∩ A[J(MD(φ))].S �= ∅. That is, in MD(φ), φ does not occur as
the right operand of any chop operator. Hereafter, conceptually, if
D-Sub(φ) is ∅, we set MD(φ) to be the whole formula.

Regarding left formulas, we have

LEMMA 2. Let ρ = (l′0, t
′
0)(l1, t1) · · · (lgc, tgc) be the current

execution segment, φ be a left formula with k ∈ A[J(MD(φ))].S
and J(φ) = n, and i ≥ 0. Then,

(1) Sat(φ,−1,−1) returns true iff ρ, [t0, tgc] |= φ; and

(2) Sat(φ, k, i) returns true iff ρ, [ti, tgc] |= φ.

In order to prove the lemma by induction on formulas, as in [18],
we need to define a well-founded order on the formulas of ELDIs,
denoted by <. To this end, we first define a partial order, denoted
by ≺ over ELDIs as: (φ1;φ2) ≺ (ψ1;ψ2) iff φ1;φ2 ⇔ ψ1;ψ2 and
ψ1 is a proper subformula of φ1. In other words, we assume the left
association of ; has a higher precedence. Then, we say φ < ψ iff
either φ is a proper subformula of ψ, or φ ≺ ψ. It can be proved
that < is well-founded, referring to [18] for the detail.

PROOF. By induction on the structure of φ w.r.t “<”.

Base case φ = Dh. Then for (1)

Sat(φ,−1,−1) returns true
iff dh ≤ ch (line 2 of Sat)
iff ρ, [t0, tgc] |= Dh (h ∈ A[n].S and dh is initialized to 0)

For (2)

Sat(φ, h, i) returns true
iff dih ≤ ch (line 4 of Sat)
iff ρ, [i, gc] |= Dh (h ∈ A[n].S so is reset to 0 at ti)

Induction Hypothesis (IH): For any ψ, if ψ < φ, then (1) and (2)
hold for ψ.

Inductive steps: We just prove (1) if (2) can be proved similarly
for the considered case.

• φ = φ1 ∨ φ2
Sat(n,−1,−1) returns true

iff Sat(φ1,−1,−1) returns true or
Sat(φ2,−1,−1) returns true (line 6)

iff ρ, [t0, tgc] |= φ1 or ρ, [t0, tgc] |= φ2

(IH, as φ1 and φ2 are both left formulas)
• φ = φ1 ∧ φ2. Because φ is a left formula, A[n].tag is

false. So,
Sat(n,−1,−1) returns true

iff Sat(φ1,−1,−1) returns true and
Sat(φ2,−1,−1) returns true (line 8)

iff ρ, [t0, tgc] |= φ1 and ρ, [t0, tgc] |= φ2

(IH, as φ1 and φ2 are both left formulas)
• φ = ¬φ1. Because φ is a left formula, A[n].tag is false.

Thus,
Sat(n,−1,−1) returns true

iff Sat(φ1,−1,−1) returns false (line 18)
iff ρ, [t0, tgc] |= ¬φ1 (IH, as φ1 is a left formula)

• φ = φ1;φ2. By induction on the structure of φ2.
– φ = φ1;Dh

Sat(n,−1,−1) returns true
iff Sat(φ2,−1,−1) returns true (line 28)
iff dh ≤ ch (line 2)
iff ∃t • (ρ, [t0, t] |= φ1 and ρ, [t, tgc] |= Dh)

(dh has been reset to 0 at t by line 11 of Reset,
and the property of OPCPs (Lemma 1))

iff ∃t • (ρ, [t0, t] |= φ1 ∧ ρ, [t, tgc] |= Dh)
(IH, as φ1 is a left formula)

iff ρ, [t0, tgc] |= φ1;φ2

– φ = φ1; (φ2 ∨ φ3)
Sat(φ,−1,−1) returns true

iff Sat(φ1;φ2,−1,−1) returns true or
Sat(φ1;φ3,−1,−1) returns true
(Distributivity of chop over disjunction)

iff ρ, [t0, tgc] |= φ1;φ2 or ρ, [t0, tgc] |= φ1;φ3 (IH)
iff ρ, [t0, tgc] |= φ1; (φ2 ∨ φ3)

221

– φ = φ1; (φ2 ∧ φ3). Here A[A[n].Right].tag is true
as the conjunction occurs as the right operand of the
outmost chop operator. For (1)

Sat(φ,−1,−1) returns true
iff Sat(φ2 ∧ φ3,−1,−1) returns true (line 28)
iff ∃j ∈ [0, gc], h ∈ A[A[n].Right].S •

(djh �= dmax ∧ Sat(φ2, h, j) ∧ Sat(φ3, h, j)) (line 13)
iff ∃j ∈ [0, gc], h ∈ A[A[n].Right].S •

(djh �= dmax, ρ, [tj , tgc] |= φ2 and ρ, [tj , tgc] |= φ3)
(IH, as φ2 and φ3 are both left formulas)

iff ∃j ∈ [0, gc] • (ρ, [t0, tj] |= φ1,
ρ, [tj , tgc] |= φ2 and ρ, [tj , tgc] |= φ3)

(djh is reset to 0 at tj , and line 13 of Reset)
iff ∃j ∈ [0, gc] • (ρ, [t0, tj] |= φ1,

ρ, [tj , tgc] |= φ2 and ρ, [tj , tgc] |= φ3)
(IH, as φ1 is a left formula)

iff ρ, [t0, tgc] |= φ1; (φ2 ∧ φ3)

For (2)
Sat(φ, k, i) returns true

iff Sat(φ2 ∧ φ3, k, i) returns true (line 28)
iff ∃j ∈ [i, gc], h ∈ A[A[n].Right].S •

(djh ∈ T (dik) ∧ Sat(φ2, h, j) ∧ Sat(φ3, h, j)) (line 15)
iff ∃j ∈ [i, gc], h ∈ A[A[n].Right].S •

(djh ∈ T (dik) and ρ, [j, gc] |= φ2 and ρ, [j, gc] |= φ3)
(IH, as φ2 and φ3 are both left formulas)

iff ∃j ∈ [i, gc] • (ρ, [t0, tj] |= φ1

ρ, [tj , tgc] |= φ2 and ρ, [tj , tgc] |= φ3)

(djh is reset to 0 at tj , and line 21 of Reset)
iff ∃j ∈ [i, gc] • (ρ, [ti, tj] |= φ1,

ρ, [tj , tgc] |= φ2 and ρ, [tj , tgc] |= φ3)
(IH, as φ1 is a left formula)

iff ρ, [ti, tgc] |= φ1; (φ2 ∧ φ3)

– φ = φ1; (¬φ2). Here A[A[n].Right].tag is also true
as the negation occurs as the right operand of the
outmost chop operator. For (1)

Sat(φ,−1,−1) returns true
iff Sat(¬φ2,−1,−1) returns true (line 28)
iff ∃j ∈ [0, gc], h ∈ A[A[n].Right].S •

(djh �= dmax ∧ ¬Sat(φ2, h, j)) (line 23)
iff ∃j ∈ [0, gc], h ∈ A[A[n].Right].S •

(djh �= dmax and ρ, [tj , tgc] |= ¬φ2)
(IH, as φ2 is a left formula)

iff ∃j ∈ [0, gc] • (ρ, [t0, tj] |= φ1 and
ρ, [tj , tgc] |= ¬φ2)

(djh has to be reset to 0 at tj by line 13 of Reset)
iff ∃j ∈ [0, gc] • (ρ, [t0, tj] |= φ1 and ρ, [tj , tgc] |= ¬φ2)

(IH, as φ1 is a left formula)
iff ρ, [t0, tgc] |= φ1;¬φ2

For (2)
Sat(φ, k, i) returns true

iff Sat(¬φ2, k, i) returns true (line 28)
iff ∃j ∈ [i, gc], h ∈ A[A[n].Right].S •

(djh ∈ T (dik) ∧ ¬Sat(φ2, h, j)) (line 25)
iff ∃j ∈ [i, gc], h ∈ A[A[n].Right].S •

(djh ∈ T (dik) and ρ, [j, gc] |= ¬φ2)
(IH, as φ2 is a left formula)

iff ∃j ∈ [i, gc] • (ρ, [t0, tj] |= φ1 and ρ, [tj , tgc] |= ¬φ2)

(djh has to be reset to 0 at tj by line 21 of Reset)
iff ∃j ∈ [i, gc] • (ρ, [ti, tj] |= φ1 and ρ, [tj , tgc] |= ¬φ2)

(IH, as φ1 is a left formula)
iff ρ, [ti, tgc] |= φ1;¬φ2

– φ = φ1; (φ2;φ3).
Sat(φ,−1,−1) returns true

iff Sat((φ1;φ2);φ3,−1,−1) returns true
iff ρ, [t0, tgc] |= (φ1;φ2);φ3

(IH as (φ1;φ2);φ3 ≺ φ1; (φ2;φ3))
iff ρ, [t0, tgc] |= φ1; (φ2;φ3)

From this lemma, we can conclude the correctness of BMC-DC
w.r.t. a given execution.

LEMMA 3. Let ρ = (l′0, t
′
0)(l1, t1) · · · (lgc, tgc) be the current

execution segment in the automaton A and Φ be (a ≤ l ≤ b⇒ φ).
The model checking algorithm BMC-DC is correct, that is

1. Termination: The algorithm is certain to terminate.

2. Soundness: If the algorithm returns true, the ELDI formula
Φ is satisfied by ρ.

3. Completeness: If the algorithm returns false, the ELDI for-
mula Φ is not satisfied by ρ.

PROOF. From the complexity analysis, we can see that in each
execution of BMC-DC, the reset operation by Reset is executed at
most O(br) times, and the basic satisfiability checking by Sat is
executed at most O(|φ|bh) times, so each BMC-DC is certain to
terminate.

The soundness and the completeness can be directly obtained
from Lemma 2 as follows.

The algorithm returns false
iff tgc ≥ a ∧ ¬Sat(n,−1,−1) (line 11 of BMC-DC)
iff tgc ≥ a and ρ, [t0, tgc] |= ¬φ (Lemma 2(1))
iff ρ, [t0, tgc] �|= (a ≤ � ≤ b⇒ φ) (tgc ≤ b always holds)
iff ρ, [t0, tgc] �|= Φ

Now we can prove Theorem 1, which guarantees the correctness
of our approach.

PROOF FOR THEOREM 1.

Termination From the complexity analysis, we can see that the
on-the-fly procedure in UPPAAL has at mostO(|SA|2 + |SA|
xb) transitions to handle. Moreover, no action is needed for
any transition in the first phase, and each transition in the sec-
ond phase is contained in an execution of BMC-DC, which is
certain to terminate (Lemma 3(1)). Thus, our approach is also
certain to terminate.

Soundness If none of the failure states is reachable, BMC-DC al-
ways returns true. The first phase of the on-the-fly checking
can stay on any location of the original automaton, and the
second phase checks each execution segment from that loca-
tion with the length bounded by b, so all the ELDI models
of A have been considered and they all satisfy the formula
Φ according to Lemma 3(2). Therefore, Φ is satisfied by the
original automaton, which guarantees the soundness of our
approach.

Completeness If some failure states are reachable, BMC-DC re-
turns false at some time, so according to Lemma 3(3), the
current execution segment does not satisfy Φ and a counterex-
ample is found. As the current execution segment is an ELDI
model of the original automaton, Φ is not satisfied by the o-
riginal automaton. That guarantees the completeness of our
approach.

222

