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Abstract. Tiwari proved that the termination of a class of linear programs is decidable in Tiwari (Proceedings of
CAV’04. Lecture notes in computer science, vol 3114, pp 70–82, 2004). The decision procedure proposed therein
depends on the computation of Jordan forms. Thus, people may draw a wrong conclusion from this procedure, if
they simply apply floating-point computation to compute Jordan forms. In this paper, we first use an example to
explain this problem, and then present a symbolic implementation of the decision procedure. Thus, the rounding
error problem is therefore avoided. Moreover, we also show that the symbolic decision procedure is as efficient
as the numerical one given in Tiwari (Proceedings of CAV’04. Lecture notes in computer science, vol 3114, pp
70–82, 2004). The complexity of former is max{O(n6),O(nm+3)}, while that of the latter is O(nm+3), where n is
the number of variables of the program and m is the number of its Boolean conditions. In addition, for the case
when the characteristic polynomial of the assignment matrix is irreducible, we design a more efficient symbolic
algorithm whose complexity is max(O(n6),O(mn3)).

Keywords: Linear programs, Termination, Symbolic computation, Numerical computation

1. Introduction

Floating-point computation is a source of run-time errors of embedded software. The stories of the Ariane 5
launcher [Ari96] and the Patriot missile [Ske92] are evidence for this. Therefore verification of embedded soft-
ware has to take into account the rounding error issue of floating-point computation. The well-known static
program analyzer, ASTRÉE, meets this challenge, includes rounding error analysis in its abstract interpretations
[Min05], and achieves success to some extent. However there are many interesting verification algorithms and
techniques which have not paid to this issue sufficient attention yet. For example, Tiwari in [Tiw04] proved that
the termination of the following loops on the reals is decidable.

P1 : while (Bx > b) {x :� Ax + c },
where A is an n × n matrix, B is an m × n matrix, and x, b and c are vectors. Bx > b is a conjunction of strict
linear inequalities which is the loop condition, while x :� Ax + c is interpreted as updating the values of x by
Ax + c simultaneously and not in any sequential order. We say P1 terminates if it terminates on all initial values.

Correspondence and offprint requests to: B. Xia, E-mail: xbc@math.pku.edu.cn
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172 B. Xia et al.

The termination problem of P1 is reduced to that of the following homogeneous loop in [Tiw04]

P2 : while (Bx > 0) {x :� Ax }.
A key step of the decision procedure in [Tiw04] is to compute the Jordan form of the matrix A so that one can

have a diagonal description of An . In [Tiw04] it was proved that if the Jordan form of A is A∗ � Q−1AQ and
B∗ � BQ , then P2 terminates if and only if

P∗
2 : while (B∗x > 0) {x :� A∗x}

terminates. This idea is natural, but, if we use floating-point computation routines to calculate the Jordan form in
a conventional way, the errors of floating-point computation may lead to a wrong conclusion. To see this point,
let us consider the following example.

Example 1 Let

A �
[

2 −3
−1 2

]
, B �

[
1 b

−1 b

]
,

where b � −1127637245
651041667

� −√
3 + ε ≈ −1.732050807, with ε � √

3 − 1127637245
651041667

> 0. Determine whether

Q1 : while (Bx > 0) {x :� Ax}
is terminating.

According to the conventional method, in order to compute the Jordan form of A we have to calculate the
eigenvalues of A by using floating-point computation, say, through the package linalg (or LinearAlgebra) in
Maple 11. The approximate eigenvalues of A are 3.732050808 and 0.267949192 (both take 10 decimal digits of
precision). Hence, the Jordan form of A is

A∗ � Q−1AQ �
[

3.732050808 0
0 0.267949192

]

where

Q �
[

0.5 0.5
−0.2886751347 0.2886751347

]
.

Use the same package of Maple 11 to calculate

B∗ � BQ �
[

1.0 0.0
0.0 −1.0

]
.

Then, the loop Q1 is terminating if and only if the following loop Q2 terminates,

Q2 : while (B∗x > 0) {x :� A∗x}.

Obviously, (A∗)n �
[

3.732050808n 0
0 0.267949192n

]
. If we let x � [1,−1]T, after n times of iteration,

(A∗)nx � [3.732050808n ,−0.267949192n ],

where vT stands for the transpose of the vector v. And the loop condition is

B∗(A∗)nx � [3.732050808n , 0.267949192n ] > [0, 0],

which is always true for all n. Therefore, Q1 is not terminating.
However, this conclusion is not correct. Let us see how the floating-point computation leads us to the wrong

result. The Jordan form of A is indeed (by symbolic computation)

J � P−1AP �
[

2 +
√

3 0
0 2 − √

3

]
,
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where

P �

⎡
⎢⎢⎣

1
2

1
2

−1
6

√
3

1
6

√
3

⎤
⎥⎥⎦

and, in order to obtain B∗, we should compute BP instead of BQ symbolically as

BP �

⎡
⎢⎢⎣

1
2

− b
6

√
3

1
2

+
b
6

√
3

−1
2

− b
6

√
3 −1

2
+

b
6

√
3

⎤
⎥⎥⎦ �

⎡
⎢⎣

1 − ε

6

√
3

ε

6

√
3

−ε

6

√
3 −1 +

ε

6

√
3

⎤
⎥⎦

�
[
m11 m12
m21 m22

]
.

Therefore m12 > 0, m21 < 0. However, when we use floating-point computation, these two entries (m12 and m21)
are evaluated to 0 (in Maple 11 with Digits 10). That is why we obtain wrong result by floating-point computation.

One may guess that if we evaluate BP rather than BQ through floating-point computation routines, we may
obtain a more precise approximation. Unfortunately, it is not true. In fact using floating-point computation to
compute BP we will still get some strange results. For example, computing BP by Maple 11 with Digits 10 outputs
the following matrix[

1.0 −1.0 · 10−10

1.0 · 10−10 −1.0

]
.

It is totally wrong, because, comparing with the signs of m12 and m21 in the above, m12 is negative and m21
positive.

To handle the above problem, in this paper, we develop a symbolic decision procedure for the termination
of linear programs P1. The general framework of our procedure is quite similar to that of [Tiw04], but we re-
implement the two key steps, i.e., computing Jordan normal form of A and generating linear constraints. In
Tiwari’s decision procedure, the two steps are implemented numerically, in contrast that in this paper we will give
different algorithms based on symbolic computation to implement the two steps. Thus, our decision procedure
can avoid errors caused by floating-point computation. According to [Tiw04], it is easy to reduce the termination
problem of P1 to that of P2, therefore we only concentrate on P2 instead of P1 in the rest. The basic idea of our
approach is: Firstly, classify and then represent eigenvalues of A symbolically, afterwards symbolically compute
a set of eigenvectors and generalized eigenvectors of A, which can form an invertible matrix P such that P−1AP
is the Jordan normal form of A.1 Thus, the termination problem of P2 is symbolically reduced to that of P∗

2.
Secondly, we present a symbolic decision procedure to determine whether ∃x∀n ∈N.B∗(A∗)nx > 0, i.e., whether
P∗

2 terminates. Furthermore, by complexity analysis, we show that our symbolic decision procedure is as efficient
as the one given in [Tiw04]. The complexity of the algorithm is max{O(n6),O(nm+3)}, where n is the number of
variables of P2 and m is the number of the Boolean conditions of P2. In contrast, the complexity of the decision
procedure developed in [Tiw04] is O(nm+3).

In addition, we also consider the case when the characteristic polynomial of A is irreducible. A much simpler
and more efficient decision algorithm is invented by solving a univariate semi-algebraic system. The complexity
of the algorithm for this case is max(O(n6),O(mn3)).

For saving space, we assume the reader is familiar with linear algebra; otherwise, please refer to [HoK71].
In order to improve the readability, we adopt the following convention on the use of variables: In what follows,

we use J ,B, . . . possibly with subscripts to stand for sets of matrices; A,B , . . . possibly with subscripts for matri-
ces; x,y, z,a,b, c,u,v, . . . possibly with subscripts for vectors; and x , y, z , a, b, c, . . . possibly with subscripts
for reals or integers.

The paper is organized as follows: Sect. 2 reviews basic theories of semi-algebraic systems and the tool DIS-
COVERER, which are used in the paper; Sect. 3 is devoted to designing a symbolic decision algorithm for P2
which is demonstrated by an example; We prove the correctness of the algorithm in Sect. 4; Sect. 5 analyzes

1 Precisely, we do not calculate a complete invertible transition matrix of A, just its sub-matrix related to the positive eigenvalues of A.
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174 B. Xia et al.

the complexity of the symbolic decision procedure, and concludes that the symbolic decision procedure is as
efficient as the numerical one given in [Tiw04]; In Sect. 6, we establish a necessary and sufficient condition for the
termination of programs P2 when the characteristic polynomial of A is irreducible, and then design a symbolic
decision algorithm with the complexity max(O(n6),O(mn3)); Finally we conclude the paper and discuss related
issues in Sect. 7.

2. Semi-algebraic systems and DISCOVERER

In this section, we will briefly review semi-algebraic systems and the tool DISCOVERER, which will be used in
the later.

Definition 1 A semi-algebraic system (SAS) is a system of⎧⎪⎨
⎪⎩

p1(u,x) � 0, . . . , pr (u,x) � 0,
g1(u,x) ≥ 0, . . . , gk (u,x) ≥ 0,
gk+1(u,x) > 0, . . . , gt (u,x) > 0,
h1(u,x) 
� 0, . . . , hm (u,x) 
� 0,

(1)

where u � (u1, . . . , ud ),x � (x1, . . . , xs ), r , s ≥ 1, d ,m ≥ 0, t ≥ k ≥ 0 and all pi ’s, gi ’s and hi ’s are polyno-
mials over Q, the set of rationals. An SAS of the form (1) is called parametric if d 
� 0, otherwise constant.

For a constant SAS S , interesting questions are how to compute the number of real solutions of S , and if the
number is finite, how to compute these real solutions. For a parametric SAS, the interesting problem is so-called
real solution classification, that is to determine the condition on the parameters such that the system has the
prescribed number of distinct real solutions, possibly infinite.

Yang et al. developed theories on how to classify real roots of parametric SASs in [YHZ96, Yan99, YaX05]
and isolate real roots of constant SASs in [XiY02]. The core of the theories is the generalized Complete Discrim-
ination System (CDS) in [YHZ96]. A computer algebra tool named DISCOVERER [Xia07] has been developed
using Maple to implement these theories. Comparing with other well-known computer algebra tools for solving
problems in real algebra like REDLOG [DoS97] and QEPCAD [CoH91], DISCOVERER has distinct features
in the above two aspects.

The main features of DISCOVERER include

Real Solution Classification of Parametric Semi-algebraic Systems

For a parametric SAS S of the form (1) and an argument N , where N is one of the following three forms:

• a non-negative integer b;
• a range b..c, where b, c are non-negative integers and b < c;
• a range b.. + ∞, where b is a non-negative integer,

DISCOVERER provides tofind and Tofind to determine the conditions on u such that the number of the distinct
real solutions of S equals to N if N is an integer, otherwise falls in the scope N .

Real Solution Isolation of Constant Semi-algebraic Systems
For a constant SAS S of the form (1), if S has only a finite number of real solutions, DISCOVERER can deter-
mine the number of distinct real solutions of S , say n, and moreover, can find out n disjoint cubes with rational
vertices in each of which there is only one solution. In addition, the width of the cubes can be less than any given
positive real. The two functions are realized by calling nearsolve and realzeros, respectively.

Since Maple 13, DISCOVERER has been integrated into the RegularChains [CLL08] package of Maple.
Please see the corresponding help pages of Maple for how to call the functions of DISCOVERER in Maple.

3. A symbolic decision procedure

In this section, we present a symbolic decision procedure for the termination of P2. The procedure consists of two
steps: Firstly, we symbolically determine the real eigenvalues of matrix A and represent them symbolically too.
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Then compute a set of eigenvectors and generalized eigenvectors in terms of its eigenvalues. These eigenvectors
and generalized eigenvectors form a matrix P such that A∗ � P−1AP is the Jordan normal form of A. Thus,
the termination problem of P2 is reduced to that of P∗

2; Secondly, we design a symbolic procedure to determine
if P∗

2 terminates. According to Tiwari’s result, the termination behavior of P∗
2 is determined in the state space

corresponding to the positive eigenvalues of A. So, in the first step, we only need to consider the problems related
to the positive eigenvalues of A.

3.1. Computing (generalized) eigenvectors symbolically

It is well-known that each column of the transition matrix of A (i.e., P in the above) is either an eigenvector or a
generalized eigenvector of A, see for instance pp. 82–86 of [MiM82]. In the following, we develop an algorithm
for computing (generalized) eigenvectors of A in terms of its symbolic eigenvalues.

Let D(λ) � f1(λ)i1 · · · fk (λ)ik be the characteristic polynomial of A, where each fj is an irreducible polynomial2

in Q[λ], ij > 0 and dj � degree(fj ) (deg(fj ) for short) for j � 1, . . . , k , and d1i1 + · · · + dk ik � n. Suppose λ is a
real root of f1 (i.e., a real eigenvalue of A) and v � (v1, . . . , vn )T is an eigenvector corresponding to λ, then

(A − λ I )v � 0. (2)

Without loss of generality, we assume d1 > 1, i.e., λ is an algebraic number of degree greater than 1.3 By
applying the so-called fraction-free Gaussian elimination (FFGE) to A − λI with modulus f1(λ) � 0, (2) can be
solved symbolically. We will demonstrate the procedure via the following example.

Example 2 Let A �

⎡
⎢⎢⎢⎣

0 1 1 0 0
3 0 0 −3 0
0 1 0 3 0
0 0 1 0 0
0 0 0 0 1

⎤
⎥⎥⎥⎦. Thus, the characteristic polynomial of A is D(λ) � (λ−1)(λ2 −3)2.

Denote the unique irrational positive root of D(λ) by λ0. Applying FFGE to the following matrix (mod λ
2
0 −3 � 0)⎡

⎢⎢⎢⎣
− λ0 1 1 0 0

3 − λ0 0 −3 0
0 1 − λ0 3 0
0 0 1 − λ0 0
0 0 0 0 1 − λ0

⎤
⎥⎥⎥⎦

an eigenvector related to λ0 in terms of λ0 is computed as follows: Firstly, we replace the second row by the first
row multiplied by 3 plus the second row multiplied by λ0 and obtain⎡

⎢⎢⎢⎣
− λ0 1 1 0 0

0 0 3 −3 λ0 0
0 1 − λ0 3 0
0 0 1 − λ0 0
0 0 0 0 1 − λ0

⎤
⎥⎥⎥⎦ .

Then, we exchange the second and the third rows, subsequently replace the fourth row by the fourth row plus the
third row multiplied by −1/3 and obtain⎡

⎢⎢⎢⎣
− λ0 1 1 0 0

0 1 − λ0 3 0
0 0 3 −3 λ0 0
0 0 0 0 0
0 0 0 0 1 − λ0

⎤
⎥⎥⎥⎦ .

2 A polynomial is said to be irreducible over a field, say rational numbers, if it cannot be factorized into non-trivial polynomials over the
field. Otherwise reducible. In general, we can check whether a rational polynomial is reducible over rational numbers by computer algebra
tools such as Maple and Mathematica.
3 If d1 � 1, λ is a rational number and thus the (generalized) eigenvectors corresponding to λ can be solved easily.
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176 B. Xia et al.

One can easily obtain the solutions of v to (A − λ0 I )v � 0 in terms of λ0 as v1 � v4, v2 � 0, v3 � λ0 v4,
v4 � v4, v5 � 0. If let v4 � 1, we get an eigenvector v � [1, 0, λ0, 1, 0]T.

From the above example, it is easy to see that, for a given A and an eigenvalue λ such that fj (λ) � 0, we can
use the FFGE algorithm to compute a set of linear independent eigenvectors that form a base of the eigenspace
related to λ . We denote the algorithm by EV(A, fj , λ).

A vector v is called a generalized eigenvector of rank j of A related to λ if

(A − λ I )jv � 0, (A − λ I )j−1v 
� 0, j ≥ 1. (3)

Computing a generalized eigenvector is obviously a similar problem as solving (2) and can also be solved by the
FFGE algorithm. For a given A and an eigenvalue λ, the algorithm for computing a generalized eigenvector of
rank j related to λ is denoted by GEV(A, fi , λ, j ), where fi (λ) � 0.

For a square matrix A with all entries in R, in [MiM82] an algorithm is presented on how to numerically
compute A’s eigenvalues, their relevant eigenvectors and generalized eigenvectors, and A’s invertible transition
matrix P such that P−1AP is its Jordan normal form. Similarly, by exploiting FFGE we can extend the algorithm
to symbolically compute A’s eigenvalues, their relevant eigenvectors and generalized eigenvectors, and A’s invert-
ible transition matrix P such that P−1AP is its Jordan normal form. We will denote the resulting algorithm by
JordanBlocks in this paper. Thus, using JordanBlocks, one can compute the set of Jordan blocks [J1, . . . , Jk ]
related to λ, denoted by Jλ. Accordingly, one can find a related block set [B1,B2, . . . ,Bk ] which is a submatrix
of B that corresponds to the block set Jλ, denoted by Bλ, called condition block set related to λ.

3.2. Main algorithm

In this subsection, we shall give a symbolic algorithm to determine whether P2 terminates symbolically.
First of all, we outline the decision procedure for P2 given in [Tiw04] in order to not only ease the reader

to understand the difference between the two decision procedures, but also facilitate us to present our symbolic
algorithm as the algorithm adopts the skeleton of Tiwari’s procedure.

The first step is to reduce the termination problem of P2 to that of P∗
2.

Suppose the Jordan blocks of A are J1, . . . , Jl and therefore BP is divided into B∗ � [B1, . . . ,Bl ] accordingly.
Thus, P∗

2 can be reformulated as

P3 : while (B1y1 + B2y2 + · · · + Blyl > 0){y1 :� J1y1; . . . ; yl :� Jlyl }.
Let S+ � {i | 1 ≤ i ≤ l ∧ Ji is a Jordan block corresponding to a positive eigenvalue}.
The second step of the procedure given in [Tiw04] is to prove that P3 terminates iff the program

P4 : while

(∑
i∈S+

Biyi > 0

)
{yi :� Jiyi ; for i ∈ S+}

terminates.
For brevity, we assume all the eigenvalues of A are positive in the above. Therefore, the k th loop condition

of P4 is b1ky1 + b2ky2 + · · · + blkyl > 0, where bik stands for the k th row of Bi . Given an input y(0) with
y(0)T � (y1(0)T , . . . ,yl (0)T ), the requirement that the k th condition still holds after the nth iteration for y(0)
can be expressed as

b1ky1(n) + b2ky2(n) + · · · + blkyl (n) > 0,

where yj (n) � J n
j yj (0). After expanding and collecting the above formula, let Ckijy(0), a linear expression

of y(0), denote the coefficient of the term
(

n
j−1

)
λ
n−(j−1)
i , the k th loop condition after the nth iteration can be

rewritten as

Ck11y(0) λ
n
1 +Ck12y(0)n λ

n−1
1 + · · · + Ck1n1y(0)

(
n

n1−1

)
λ
n−(n1−1)
1 + · · · +

Ckl1y(0) λ
n
l +Ckl2y(0)n λ

n−1
l + · · · + Cklnl

y(0)
(

n
nl−1

)
λ
n−(nl−1)
l > 0,

(4)

whose left side is denoted as Condk (y(n)).
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If two eigenvalues λi and λj are the same, then it is assumed that the corresponding coefficients (of(
s
t

)
λ
s−t
i and

(
s
t

)
λ
s−t
j ) have been merged in the above expression. Therefore, it is assumed 0 < λ1 < λ2 < · · · < λl

in what follows. In [Tiw04], an order among
(
n
j

)
λn−j
r is defined as follows: If λi < λj , then

(
n
t1

)
λ
n−t1
i <

(
n
t2

)
λ
n−t2
j

for any t1, t2. If t1 < t2, then
(
n
t1

)
λ
n−t1
i <

(
n
t2

)
λ
n−t2
i . W.r.t. the order, the biggest non-zero term of Condk (y(n))

is called its leading term or dominant term, whose coefficient is called its leading coefficient. Obviously, the sign
of Condk (y(n)) is dominated by its leading term (dominant term) as n increases. For example, if Cklnl

y(0) 
� 0,
then the leading term (dominant term) of Condk (y(n)) is Cklnl

y(0)
(

n
nl−1

)
λ
n−(nl−1)
l and its leading coefficient is

Cklnl
y(0), and the sign of Condk (y(n)) is determined by this term as n is large enough.

Thus, the third step is to non-deterministically construct a set of linear constraints which contains at most
nm linear equalities and inequalities from (4) w.r.t. the order. The total number of such sets is at most nm , where
n is the number of program variables and m is the number of conditions. Then

∃y(0)∀n ∈N.

m∧
k�1

Condk (y(n)) > 0 (5)

is reduced to whether there exists such a set which is satisfiable.
So, we can see the procedure given in [Tiw04] depends on numerical computation, otherwise it is impossible

to generate a set of linear constraints from (4). In addition, according to [Tod92], the cost for solving a set of mn
linear equalities and inequalities is O(n3), so the complexity of the procedure is O(n3) × nm , i.e., O(nm+3), as
the costs for steps 1 & 2 are so small that it can be ignored.

While, our approach consists two steps: The first step is equivalent to the first step together the second step
described above. But we symbolically compute the eigenvalues and a transition matrix P of A. In fact, we only
need to consider the positive eigenvalues of A and the sub-matrix of P corresponding to these positive eigen-
values; The second step is on how to symbolically determine whether P3 terminates, which is quite different from
the above third step, we will explain in detail later.

In order to implement our algorithm, we need the following notions.
Let Jλ � [J1, . . . , Jk ] be the Jordan blocks and Bλ � [B1,B2, . . . ,Bk ] the condition blocks related to λ.

Choose the first column from each Bi for i � 1, . . . , k and form the following matrix

Bλ �

⎡
⎢⎢⎣

b111 b211 . . . bk11
b121 b221 . . . bk21

...
... . . .

...
b1m1 b2m1 . . . bkm1

⎤
⎥⎥⎦ , and let u �

⎡
⎢⎢⎣

u1
u2
...

uk

⎤
⎥⎥⎦ .

Definition 2 Call Jλ � [J1, J2, . . . , Jk ] a candidate block set if Bλu ≥ 0 has non-zero solutions.

Intuitively, Jλ being a candidate block set implies that there must exist an eigenvector v related to λ such that
BAnv ≥ 0, for any n ∈N. More detailed discussion can be found later in Lemma 3.

Definition 3 Given a candidate block set Jλ � [J1, J2, . . . , Jk ], the subexpression of the loop condition related
to λ is

∑k
i�1 BiJ n

i xi . A valuation a � [a1,a2, . . . ,ak ] of x � [x1,x2, . . . ,xk ] is called possible non-termination
input (PNI) w.r.t. (Bλ,Jλ), if for each component of

∑k
i�1 BiJ n

i ai , either it is zero or its leading coefficient is
positive. For a PNI a w.r.t. (Bλ,Jλ), the maximal omissible set w.r.t. (Bλ,Jλ,a), denoted by E (Bλ,Jλ,a), is the
set of all the indices of the elements of

∑k
i�1 BiJ n

i ai whose leading coefficients are positive.
Given Jλ and Bλ, where Jλ is a candidate block set, if c1 and c2 both are PNIs w.r.t. (Bλ,Jλ), so is c1 + c2.

Furthermore, E (Bλ,Jλ, ci ) ⊆ E (Bλ,Jλ, c1 + c2) � E (Bλ,Jλ, c1) ∪ E (Bλ,Jλ, c2), for i � 1, 2. Thus, we can find
a PNI a such that E (Bλ,Jλ,b) ⊆ E (Bλ,Jλ,a) for any PNI b. E (Bλ,Jλ,a) is called the maximal omissible set
(MOS) w.r.t. (Bλ,Jλ), denoted by E (Bλ,Jλ).

For completeness, we stipulate that E (Bλ,Jλ) � ∅ if Jλ is not a candidate block set. Its correctness will be
shown later.

Intuitively, for each element k0 ∈ E (Bλ,Jλ), if λ is the biggest positive eigenvalue, then the k0th loop condition
(i.e., the k0th inequality) holds when n is large enough. So, the k0th row of B can be deleted.
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For convenience, for a matrix D , we denote by O(D) the order of D , i.e., the number of its rows, by C(D) the
set of all its column indices, and by R(D) the set of all its row indices in what follows.

Now, we present our symbolic decision procedure DecTerm(B ,A) for deciding whether a linear program P2
represented by two matrices A and B terminates. In DecTerm(B ,A), IB is a set variable, with initial value R(B ),
which is used to indicate which conditions are still unsatisfiable so far. While TA with initial value ∅ is used to
indicate which eigenvalues of A have been taken into account. The algorithm also calls a subroutine FMOS which
computes the maximal omissible set E (Bλ,Jλ) for a given positive eigenvalue λ of A.

Procedure DecTerm(B ,A)

/* Recall that it is assumed that A and B are n × n and m × n matrices, respectively. */

Step 1: 1.1 Find all the positive eigenvalues of A symbolically and represent them by λ1, . . . , λl in increase
order;

1.2 For each λi , i � 1, . . . , l , compute Jordan block set Jλi
� [Ji1, . . . , Jisi ] by JordanBlocks;

1.3 Compute si linear independent eigenvectors vi1, . . . ,visi related to λi , for i � 1, . . . , l by EV. Thus,
we can obtain the eigenspace 〈vi1, . . . ,visi 〉 related to λi , written as Vi ;

1.4 Let eij �O(Jij ) − 1. For i �1, . . . , l and j �1, . . . , si , by GEV we can obtain eij linear independent
generalized eigenvectors uij1, . . . ,uijeij

related to Jij . Let

P � [v11,u111, . . . ,u11e11 , . . . ,v1s1 ,u1s11, . . . ,u1s1e1s1
, . . . ,vl1,ul11, . . . ,ul1el1

, . . . ,vlsl ,ulsl 1, . . . ,ulsl elsl
],

then P is a matrix such that AP � PDiag(J11, . . . , J1s1 , . . . , Jl1, . . . , Jlsl ).
4

1.5 According to [J11, . . . , J1s1 , . . . , Jl1, . . . , Jlsl ], partition BP into blocks [B11, . . . ,B1s1 , . . . ,Bl1, . . . ,
Blsl ]. Denote by Bλi

[Bi1, . . . ,Bisi ] the condition block set related to λi , where i � 1, . . . , l .
Step 2: Set i :� l , TA :� ∅, IB � R(B ) � {1, . . . ,m}.
Step 3: 3.1 Set j :� i . Check whether there is an eigenvector v in V1,V2, . . . ,Vi s.t.

∧
k∈IB

bkv > 0, where bk

stands for the k th row of B . If ∃1 ≤ r ≤ i ∃v ∈ Vr .
∧

k∈IB
bkv > 0, then set TA :� TA ∪ {λr } and

E (Bλj
,Jλj

) :� IB , and goto 3.4.

3.2 Check whether there is an eigenvector v in Vj s.t. Bv ≥ 0. If no then if j � 1 then E (Bλj
,Jλj

) :� ∅
and goto 3.4; otherwise set j :� j − 1 and goto 3.2;

3.3 Compute E (Bλj
,Jλj

) by FMOS(Bλj
,Jλj

, λj ), which will be given later;

3.4 1. If E (Bλj
,Jλj

) � IB then return non-terminating;

2. If j � 1 then return terminating; otherwise,

(a) SayE (Bλj
,Jλj

) � {c1, . . . , cr }, where r ≤| IB |. IB :� IB−E (Bλj
,Jλj

) (remove c1, . . . , cr
from IB ) and i :� j − 1;

(b) goto 3.1.

Step 1 is to symbolically reduce the termination problem of P2 to that of P4 via P3; while Step 2 is quite
simple, just to initialize the variables. Note that IB is a global variable, will be used in the subroutine FMOS.
Step 3 is to symbolically determine whether P4 terminates. The basic idea is: Firstly, according to the result
given in the previous section, we calculate m conditions also with form (4), but in which all expressions are
symbolic. Note that in our case the coefficients of

(
n
j

)
λn−j
r in (4) may contain λ1, . . . , λl too, but their degrees

are fixed and independent of n, and the order among
(
n
j

)
λ
n−j
r still holds; Secondly, in order to check if (5)

holds, we consider these positive eigenvalues in turn from the biggest one to the smallest one. Consider λh ,
where 1 ≤ h ≤ l . If there is an eigenvector v related to some λi for some 1 ≤ i ≤ l , such that for each
remained condition k ∈ IB , bkv > 0, then return the program does not terminate and the algorithm stops;
otherwise, check whether Jh is a candidate block set. This is equivalent to check whether there is an eigen-
vector vh ∈ Vh such that Bvh ≥ 0. If not, then go to λh−1; otherwise, we focus on the subexpressions of

4 Since A may have non-positive eigenvalues, the resulting matrix P is just a submatrix of some transition matrix P∗ of A such that
(P∗)−1AP∗ is the Jordan normal form of A. In addition, sub-steps 1.3 and 1.4 can be removed in fact as the functions of EV and GEV are
included in JordanBlocks. For clarity, we keep them here.
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Condk only related to λh for all k ∈ IB and symbolically determine which conditions indexed in IB always keep
positive after iterating n times when n is large enough by solving SASs. If all remained conditions hold, then
return the program is non-terminating and the algorithm stops; otherwise, update IB by removing the indices of
which conditions are positive when n is big enough and go to λh−1. The algorithm starts the above procedure
from λl and repeat it until λ1. Finally, if there still are some conditions remained unsatisfiable, i.e., IB 
� ∅, then
the program terminates; otherwise, the program does not terminate.

It is not hard to prove the following equation

BijJ n
ij xij �

⎡
⎢⎢⎣

bij11 bij12 . . . bij1(eij +1)
bij21 bij22 . . . bij2(eij +1)

...
... . . .

...
bijm1 bijm2 . . . bijm(eij +1)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

λ
n
i n λ

n−1
i . . .

(
n
eij

)
λ
n−eij

i

0 λn
i . . .

(
n

eij −1

)
λ
n−(eij −1)
i

...
... . . .

...
0 0 . . . λ

n
i

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

xij1
xij2

...
xij (eij +1)

⎤
⎥⎥⎦

� Bij

⎡
⎢⎢⎢⎢⎣

xij1
xij2

...
xijeij

xij (eij +1)

⎤
⎥⎥⎥⎥⎦ λ

n
i +Bij

⎡
⎢⎢⎢⎢⎣

xij2
xij3

...
xij (eij +1)

0

⎤
⎥⎥⎥⎥⎦n λ

n−1
i + · · · + Bij

⎡
⎢⎢⎢⎢⎣

xij (eij +1)
0
...
0
0

⎤
⎥⎥⎥⎥⎦
(

n
eij

)
λ
n−eij

i , (6)

where i � 1, . . . , l and j � 1, . . . , si , and eij � O(Jij ) − 1.
We can present the procedure FMOS, to compute E (Bλ,Jλ), as follows:

function FMOS(Bλj
,Jλj

, λj )

Step 1: Compute
∑sj

k�1 BjkJ n
jkxjk and collect all the coefficients of

(
n
f

)
λ
n−f
j . Then the k th component can be rep-

resented by Condkj � Ckj1 λn
j +Ckj2n λn−1

j + · · · + Ckjej

(
n

ej −1

)
λ
n−(ej −1)
j , for k ∈ IB , where ej � max{O(Jjt )

| 1 ≤ t ≤ sj };
Step 2:

for I �|IB | down to 1 do
for each {c1, . . . , ci } ∈ Qi do

for each (d1, . . . , di ) ∈ {1, . . . , ej }i do

1. Construct an SAS as follows:{Ccr jh � 0 for dr < h ≤ ej , r � 1, . . . , i ,
Cer jdr

> 0, for r � 1, . . . , i ,
Cejd � 0, for e ∈ IB \ {c1, . . . , ci }, d � 1, . . . , ej .

2. If the above SAS has solutions, then

(a) Set E (Bλj
,Jλj

) :� {c1, . . . , ci };
(b) return E (Bλj

,Jλj
).

where Qi � {{c1, . . . , ci } | {c1, . . . , ci } ⊆ IB }.

3.3. Example

We use the following example to illustrate the procedure of DecTerm.

Q3 while (Bx > 0) {x :� Ax},
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where A �

⎡
⎢⎢⎢⎣

0 1 1 0 0
3 0 0 −3 0
0 1 0 3 0
0 0 1 0 0
0 0 0 0 1

⎤
⎥⎥⎥⎦ and B �

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎦ .

Step 1: 1.1 The characteristic polynomial of A is D(λ) � (λ−1)(λ2 −3)2. We know that A has two positive
eigenvalues, i.e., λ1 � 1 with multiplicity 1 and λ2 which is the positive root of λ

2 −3 with multi-
plicity 2. By DISCOVERER, a possible interval containing λ2 is [1, 2].5

1.2 Let’s see how JordanBlocks works. From Example 2, we know that rank (A−λ2 I ) � 4. By FFGE,
we can find that rank ((A − λ2 I )2) � 3 and rank ((A − λ2 I )3) � 3. Then, A has a Jordan block

related to λ2 with order 2. Since the multiplicity of λ2 is 2, we have Jλ2
� [J21], where J21 �

[
λ2 1
0 λ2

]
.

Since the multiplicity of λ1 is 1, Jλ1
� [J11], where J11 � [λ1].

1.3 Compute a generalized eigenvector of rank k � 2 as follows: By FFGE, solve (A − λ2 I )2v � 0
subject to (A − λ2 I )v 
� 0 and obtain v22 � [2, 2 λ2, 1, 0, 0]T . So, the related eigenvector is v21 �
(A − λ2 I )v22 � [1, 0, λ2, 1, 0]T . Since there is only one Jordan block related to λ2, the eigenspace
related to λ2 is V2 � 〈v21〉. It’s easy to find that the eigenvector related to λ1 is v11 � [0, 0, 0, 0, 1]T

and the related eigenspace is V1 � 〈v11〉.
1.4 Let e11 � O(J11) − 1 � 0 and e21 � O(J21) − 1 � 1. One generalized eigenvector related to λ2 is

computed in Step 1.3, so P � [v11, v21, v22]. Accordingly, BP �

⎡
⎢⎢⎢⎣

0 1 2
0 0 2 λ2
0 λ2 1
0 1 0
1 0 0

⎤
⎥⎥⎥⎦.

1.5 According to [J11, J21], we have B11 �

⎡
⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎦ and B21 �

⎡
⎢⎢⎢⎣

1 2
0 2 λ2
λ2 1
1 0
0 0

⎤
⎥⎥⎥⎦. Thus, Bλ1

� [B11] and

Bλ2
� [B21].

Step 2: Set i :� 2,TA :� ∅, and IB :� R(B ) � {1, 2, 3, 4, 5}.
Step 3: 3.1 Set j :� 2. We can find that there is no eigenvector v in V1 and V2 s.t. Bv > 0.

3.2 We can find that Bv21 ≥ 0, therefore TA � TA

⋃{λ2}.
3.3 By calling FMOS(Bλ2

,Jλ2
, λ2), we get E (Bλ2

,Jλ2
) � {1, 2, 3, 4}.

3.4 Since E (Bλ2
,Jλ2

) 
� IB and j 
� 1, IB :� IB − Eλ2
� {5}.

3.1 Since Bv11 > 0, TA :� TA

⋃{λ1} and E (Bλ1
,Jλ1

) � IB � {5}.
3.4 Since E (Bλ1

,Jλ1
) � IB , return non-terminating.

4. Correctness

In this section, we will prove the correctness of the algorithm DecTerm(B ,A).

Lemma 1 Assume Jλ � [J1, J2, . . . , Jt ] and Bλ � [B1,B2, . . . ,Bt ] are the Jordan block set and condition block set
related to eigenvalue λ, respectively. The loop

P5 while (Bλx > 0){x :� Diag(Jλ)x}
does not terminate if and only if Jλ is a candidate block set and E (Bλ,Jλ) � {1, 2, . . . ,O(B1)}.
Proof. ⇒ Let s1 � O(J1), . . . , st � O(Jt ). Without loss of generality, assume s1 < s2 < · · · < st−1 � st . Since
the loop is non-terminating, there exists y � [y1, . . . ,yt ]T s.t. the leading coefficient of Condk (y(n)) is positive

5 Using DISCOVERER, one can get an interval containing λ2 with arbitrarily small length.
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for k ∈ {1, . . . ,O(B1)}, where y1 � [y11, . . . , y1s1 ]T ,y2 � [y21, . . . , y2s2 ]T , . . . ,yt � [yt1, . . . , ytst ]
T . According

to (6), we expand B1J n
1 y1 + B2J n

2 y2 + · · · + BtJ n
t yt and denote the resulting expression by f (λ).

Suppose Jλ is not a candidate block set, that is
⎡
⎢⎢⎣
b111 b211 . . . bt11
b121 b221 . . . bt21

...
... . . .

...
b1l1 b2l1 . . . btl1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1
x2
...
xt

⎤
⎥⎥⎦ ≥ 0 (7)

has no non-zero solutions by Definition 2.
Consider first

(
n

st−1

)
λn−(st−1) that is the biggest among of

(
n
j

)
λn−j w.r.t. the order. Its coefficient must be

greater than or equal to 0, otherwise, it is easy to see that P5 terminates, i.e.,

Bt−1

⎡
⎢⎢⎣
y(t−1)st−1

0
...
0

⎤
⎥⎥⎦ + Bt

⎡
⎢⎢⎣
ytst
0
...
0

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣
b(t−1)11 bt11
b(t−1)21 bt21

...
...

b(t−1)l1 btl1

⎤
⎥⎥⎦
[
y(t−1)st−1

ytst

]
≥ 0. (8)

By (7), (8) has no non-zero solution, otherwise it is easy to construct a non-zero solution for (7). Thus,
y(t−1)st−1 � ytst � 0.

Now, let us consider
(

n
st−2

)
λn−(st−2) in f (λ). Similarly, its coefficient is no less than 0,6 i.e.,

Bt−1

⎡
⎢⎢⎣
y(t−1)st−1−1
y(t−1)st−1

...
0

⎤
⎥⎥⎦ + Bt

⎡
⎢⎢⎣
ytst−1
ytst

...
0

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣
b(t−1)11 bt11
b(t−1)21 bt21

...
...

b(t−1)l1 btl1

⎤
⎥⎥⎦
[
y(t−1)st−1−1

ytst−1

]
≥ 0. (9)

Similarly, it results that y(t−1)st−1−1 � ytst−1 � 0 as (7) has no non-zero solution.

Repeat the procedure, we can obtain y � [y1,y2, . . . ,yt ] � [

s1+···+st︷ ︸︸ ︷
0, 0, . . . , 0], which contradicts to that the lead-

ing coefficient of Condk (y(n))(k ∈ {1, . . . ,O(B1)}) is positive. This concludes that Jλ � [J1, J2, . . . , Jm ] is a
candidate block set.

If E (Bλ, Jλ) 
� {1, . . . ,O(B1)}, then for any input c, the omissible set of c is a proper subset of E (Bλ, Jλ), so
c must make the loop terminate, which contradicts to P5 does not terminate. Thus, E (Bλ, Jλ) � {1, . . . ,O(B1)}.

⇐ If Jλ is a candidate block set and E (Bλ,Jλ) � {1, 2, . . . ,O(B1)}, then there exists a PNI c0 such that
E (Bλ,Jλ,Aic0) � E (Bλ,Jλ) when i is large enough according to Definition 3. Consequently, the loop is therefore
non-terminating on input Aic0. �

Remark 1 Similar to the proof of the if part of Lemma 1, we can prove that if Jλ is not a candidate block set, then
in order to ensure that all the leading coefficients of BλJ n

λ z are non-negative, z must be zero. This guarantees the
correctness of the definition of E (Bλ,Jλ) in the case when Jλ is not a candidate block set. We shall prove later
that Jλ � [J1, J2, . . . , Jt ] is a candidate block set if and only if there is an eigenvector v related to λ such that
Bv ≥ 0.

Lemma 2 If there is an eigenvector v related to a positive eigenvalue λ s.t. Bv > 0, then E (Bλ,Jλ) � R(B ).

Proof. Let v be an eigenvector, Jλ the Jordan block set and Bλ the condition block set related to λ. Ji ∈
Jλ,Bi ∈ Bλ. Suppose v1, . . . ,vj are the generalized eigenvectors related to Ji . Since Bi � [Bv,Bv1, . . . ,Bvj ], it

follows that each component of the first column of Bi is positive. Let ci � [1,

O(Ji )−1︷ ︸︸ ︷
0, . . . , 0]T and cr � [

O(Jr )︷ ︸︸ ︷
0, . . . , 0]T

for 1 ≤ r ≤ t ∧ r 
� i . Thus, B1J n
1 c1 + B2J n

2 c2 + · · · + BtJ n
t ct � BiJ n

i ci . It’s easy to see that the leading

6 For simplicity, we here only consider the case when st−2 < st−1. For the case st−2 � st−1, it can be handled similarly.
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coefficient of each loop condition is positive, and the omissible set of c � (c1, . . . , ci , . . . , ct ) consists of all the
row indices of B . Thus, E (Bλ,Jλ) � R(B ) from Definition 3. �

Remark 2 The above lemma ensures the correctness of Step 3.1.

The following lemma indicates the relation between a candidate block set and the eigenvectors for a given
positive eigenvalue.

Lemma 3 Given a positive eigenvalue λ, Jλ � [J1, J2, . . . , Jt ] is a candidate block set if and only if there is an
eigenvector v related to λ such that Bv ≥ 0.

Proof. ⇒ Let s1, . . . , st be the orders of J1, . . . , Jt respectively, and y � [y1, y2, . . . , yt ] a non-zero vector over

R such that

⎡
⎢⎢⎣
b111 b211 . . . bt11
b121 b221 . . . bt21

...
... . . .

...
b1l1 b2l1 . . . btl1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
y1
y2
...
yt

⎤
⎥⎥⎦ ≥ 0. Let

v1 � [1,

s1+···+st−1︷ ︸︸ ︷
0, . . . , 0 ]T ,v2 � [

s1︷ ︸︸ ︷
0, . . . , 0, 1,

s2+···+st−1︷ ︸︸ ︷
0, . . . , 0 ]T , . . . ,vt � [

s1+···+st−1︷ ︸︸ ︷
0, . . . , 0, 1,

st−1︷ ︸︸ ︷
0, . . . , 0]T

that are the standard orthogonal basis of the eigenspace related to λ. Let v � y1v1 + y2v2 + · · · + ytvt . It gives

[B1,B2, . . . ,Bt ]v �

⎡
⎢⎢⎣
b111 b211 . . . bt11
b121 b221 . . . bt21

...
... . . .

...
b1l1 b2l1 . . . btl1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
y1
y2
...
yt

⎤
⎥⎥⎦ ≥ 0. (10)

Obviously, v is a non-zero eigenvector satisfying Bv ≥ 0.
⇐ Let v1, . . . ,vt be the eigenvectors corresponding to J1, . . . , Jt respectively. Suppose v is an eigen-

vector related to λ such that Bv ≥ 0, therefore there exist y1, . . . , yt such that v � y1v1 + · · · + ytvt and
| y1 | + · · · + | yt |
� 0. It follows that y � [y1, . . . , yt ] is a non-zero solution of (10). This ensures Jλ is a
candidate block set according to Definition 2. �

Theorem 1 If P2 is non-terminating, then there must be a positive eigenvalue λ such that Jλ � [J1, J2, . . . , Jt ] is a
candidate block set.

Proof. For brevity, assume that A has two distinct positive eigenvalues 0 < λ1 < λ2. The other cases can be
proved similarly. Therefore, let Jλ1

� [J11, J12, . . . , J1t1 ] and Jλ2
� [J21, J22, . . . , J2t2 ] be the Jordan block sets

related to λ1 and λ2 respectively. Then BAnx � (B11J n
11x11 + · · · + B1t1J

n
1t1

x1t1 ) + (B21J n
21x21 + · · · + B2t2J

n
2t2

x2t2 ).
Because P2 is non-terminating, there exists a PNI y � [y11, . . . ,y1t1 ,y21, . . . ,y2t2 ]T such that the leading coeffi-
cient of Condk (y(n)) for k � 1, . . . ,O(B ) is positive. If Jλ2

� [J21, J22, . . . , J2t2 ] is not a candidate block set, then
E (Bλ2

,Jλ2
) � ∅. It follows y21 � · · · � y2t2 � 0, otherwise there must be some loop condition whose leading

coefficient is negative. Thus, BAny � B11J n
11y11 + · · · + B1m1J

n
1m1

y1t1 for any n > 0. This means that

while (Bλ1
x > 0) {x :� Diag(Jλ1

)x}
does not terminate. According to Lemma 1, Jλ1

is a candidate block set. �

From Lemma 3 and Theorem 1, it is easy to prove the following result which was first proved in [Tiw04].

Corollary 1 If the program P2 is non-terminating, then there must be a real eigenvector v of A corresponding to a
positive eigenvalue such that Bv ≥ 0.

A direct corollary of Corollary 1 is

Corollary 2 Assume that for every real eigenvector v of A corresponding to a positive eigenvalue, every element of
Bv is not zero. Then, program P2 is non-terminating if and only if there is a real eigenvector v of A corresponding
to a positive eigenvalue such that Bv > 0.

Author's personal copy



Symbolic decision procedure for termination of linear programs 183

Theorem 2 P2 is non-terminating if and only if
⋃

λ∈T ′
A
E (Bλ,Jλ) � R(B ), where T ′

A is the final value of TA when
DecTerm (B ,A) terminates.

Proof. Consider the following cases:

(i) A has no positive eigenvalue;

(ii) A has only one positive eigenvalue;

(iii) A has more than one positive eigenvalues.

The theorem holds obviously in the case (i). In addition, Lemma 1 guarantees the theorem holds in the case
(ii) also. In the following, we only focus on the last case. Suppose all the distinct positive eigenvalues of A are
λ1 < λ2 < · · · < λl , where l > 1.

⇒ Suppose P2 is non-terminating. By Theorem 1 there exists a positive eigenvalue λ such that Jλ �
[J1, J2, . . . , Jt ] is a candidate block set. Furthermore, there exists an input c s.t. all the dominant terms of
Condk (c(n)) for 1 ≤ k ≤ m are related to the positive eigenvalues and their coefficients are positive. From the
basics of Linear Algebra, the space consisting of all the eigenvectors and the generalized eigenvectors of A in
R

n related to all its eigenvalues is the whole space R
n . Suppose v1, . . . ,vs ,vs+1, . . . ,vn are a base of the space,

where v1,v2, . . . ,vs are related to the positive eigenvalues and vs+1, . . . ,vn are related to the other eigenvalues
of A. Therefore, c � c1v1 + c2v2 + · · · + csvs + cs+1vs+1 + · · · + cnvn , where ci ∈ R for i � 1, . . . ,n. Let
y � c1v1 + c2v2 + · · · + csvs . It can be shown that the dominant term of Condk (c(�)) must be same as that
of Condk (y(�)); moreover, its coefficient must be positive, for k ∈ {1, . . . ,m}. Suppose y � y1 + y2 + · · · + yl ,
where yi is a non-zero linear combination of the components of [v1, . . . ,vs ] related to λi , for i � 1, . . . , l , where
l ≤ s ≤ n.

Firstly, compute E (Bλl
,Jλl

) that contains E (Bλl
,Jλl

,yl ) and then delete the rows of B whose indices are
contained in E (Bλl

,Jλl
); Subsequently, repeat the above procedure until λ1. Since all the leading coefficients of

Condk (y(�)) for 1 ≤ k ≤ m are positive,
⋃l

i�1 E (Bλi
,Jλi

,yi ) � R(B ), so
⋃l

i�1 E (Bλi
,Jλi

) � R(B ) according to
Definition 3.

On the other hand, by induction on the execution of DecTerm (mainly on Step 3), we have
⋃

λ∈TA

E (Bλ,Jλ) ⊇
⋃

λ′≥min(TA)

E (Bλ′ ,Jλ′) (11)

⋃
λ∈TA

E (Bλ,Jλ) ∪ IB � R(B ). (12)

Suppose
⋃

λ∈T ′
A
E (Bλ,Jλ) 
� R(B ). According to (12), we have E (Bλ1

,Jλ1
) ⊂ IB , that is,

⋃
λ∈T ′

A

E (Bλ,Jλ) ⊂ R(B ). (13)

However, by (11), we have

⋃
λ∈T ′

A

E (Bλ,Jλ) ⊇
⋃

λ′≥λ1

E (Bλ′ ,Jλ′) ⊇
l⋃

i�1

E (Bλi
,Jλi

) � R(B ) (14)

(13) contradicts to (14), therefore,
⋃

λ∈T ′
A
E (Bλ,Jλ) � R(B ).

(⇐) Suppose
⋃

λ∈T ′
A
E (Bλ,Jλ) � R(B ). For each λTi

∈ T ′
A, where 1 ≤ i ≤ h � |T ′

A|, according to
Definition 3, there exists a vector ci such that E (Bλi

,Jλi
) � E (Bλi

,Jλi
, ci ). Without loss of generality, assume

λT1
< · · · < λTh

. For 1 ≤ i ≤ l , if there exists 1 ≤ j < h such that λi � λTj
, then bi � cj ; otherwise, let

bi � [

O(Diag(Jλi ))︷ ︸︸ ︷
0, 0, . . . , 0, 0]. Let b � [bT

1 , . . . ,bT
l ]T. It can be proved that all the leading terms of Condk (b(�)) are related

to the positive eigenvalues and their coefficients are positive. Consequently, the loop is non-terminating. �
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According to the above results, we can claim

Theorem 3 (Correctness) The algorithm DecTerm is correct.

Proof. First of all, since each procedure (function) called in DecTerm terminates, thus the first two steps terminate
and the third step terminates in at most n steps. That is, DecTerm itself terminates.

Soundness and completeness of DecTerm is guaranteed by Theorem 2. �

5. Complexity

Recall that n � O(A) and m � O(B ).
The complexity analysis for 1.1 in Step 1 is as follows. Let D(λ) � f1(λ)i1 . . . fk (λ)ik be the characteristic poly-

nomial of A, where fj is an irreducible polynomial over Q of degree dj for j � 1, . . . , k , and d1i1 + · · · + dk ik � n
where ij > 0. We can first isolate all the real roots of D(λ), i.e., compute a sequence of disjoint intervals with
rational endpoints such that each interval contains one and only one real root of D(λ). Using the well known
result on the computing time for root-isolation [CoL83, Joh98], we know that the computing time for isolating
the roots of D(λ) is bounded by O(n6) if we assume that the cost for an arithmetic operation on rational numbers
is a time unit.7 Furthermore, for a given interval [ai , bi ] that contains one root of D(λ), λi , the cost for computing
the multiplicity of λi is O(n5). Thus, the total cost of 1.1 is O(n6).

The complexity analysis for 1.2 in Step 1 is as follows. Let λj be a positive root of fj . Consider the cost
for JordanBlocks. Since the multiplicity of λj is ij , according to the algorithm in [MiM82] it needs to compute
rank (A−λj I )q , where q ≥ 1, at most 2ij times in order to obtain the Jordan blocks of A related to λj . To compute
rank (A − λj I )q , we need to take at most n(n − 1)/2 row transformations with FFGE on (A − λj I )q modulated
by fj (λj ) � 0 to triangularize (A−λj I )q , where each row transformation costs at most 2d2

j n multiplications. So,
the cost for computing the rank of (A − λj I )q (1 ≤ q ≤ 2ij ) is O(n3d2

j ij ). Finally, the cost for computing the

Jordan blocks of A is
∑k

j�1 O(n3d2
j ij ) ≤ O(n6).

The complexity analysis for 1.3 and 1.4 in Step 1 is as follows. We can analyze 1.3 and 1.4 at the same time
because an eigenvector can be seen as a generalized eigenvector of rank 1. Since the Jordan blocks related to the
positive eigenvalues are computed in 1.2, let us assume that the number of the Jordan blocks related to some
positive eigenvalue λj with order oj1, . . . , ojwj

are n j1, . . . ,n jwj
respectively, where

∑wj

h�1 ojhnjh � ij . Then we
need to compute njh generalized eigenvectors of rank ojh of A related to λj by solving (A−λj I )ojhx � 0 subject
to (A − λj I )ojh−1x 
� 0 for (1 ≤ h ≤ wj ), which are linearly independent.8 Its complexity is O(wjn3d2

j ). If we
have had the generalized eigenvectors vi1, . . . ,vinji

whose ranks are oji for 1 ≤ i ≤ wj , then we can get all the
generalized eigenvectors related to λj like this:

vj � [(A − λj I )g11v11, . . . , (A − λj I )g1nj1 v1nj1 , . . . , (A − λj I )gwj 1vwj 1, . . . , (A − λj I )
gwj njwj vwjnjwj

],

where (0 ≤ gefe ≤ (oje − 1)), for 1 ≤ e ≤ wj and 1 ≤ fe ≤ n je . Its complexity is O(
∑wj

h�1 n3d2
j n jh (ojh − 1) ≤

n3d2
j ij ). Thus, the total complexity for 1.3 and 1.4 is

∑k
j�1 O(wjn3d2

j ) + O(n3d2
j ij ) ≤ O(n6).

The complexity analysis for Step 1 is as follows. Since the complexity of 1.5 is linear, the total complexity for
Step 1 is O(n6).

7 Generally, the quantity should be multiplied by a factor L(d)2 where d is the sum of the absolute values of D(λ)’s coefficients and L(d) is
the number of digits of d .
8 In fact they must exist because of the Jordan blocks’ structure of A.
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Before analyzing the complexity of Step 3, we point out that the algorithm proposed in [Tod92] for solving
constant linear system still works for linear system with coefficients in Q[λ0]. This is because all the computation
in the algorithm are basic algebraic operations and the loop conditions in the algorithm can be re-formulated by
determining whether the following SAS has real solutions

{
f (λ0) � 0, g(λ0) > 0, a ≤ λ0 ≤ b} , (15)

where a, b are rational numbers and f , g are some polynomials of degrees dj and dj − 1, respectively. We can
check whether the above SAS is satisfiable as follows. First, construct Sturm–Tarski sequence of f w.r.t. g with
Euclidean division

G0(x ) � f ,G1(x ) � rem(f ′g(x ), f (x )),
G2(x ) � −rem(G0(x ),G1(x )),

. . . ,

Gk+1(x ) � −rem(Gk−1(x ),Gk (x )),
. . . ,

Gs+1(x ) � −rem(Gs−1(x ),Gs (x )) � 0,

where s is less than or equal to dj . Then, by Sturm–Tarski’s theorem, if V (f , f ′g ; a) − V (f , f ′g ; b) � 1, then
(15) is satisfiable; otherwise, it is unsatisfiable, where V (f , f ′g ; r ) stands for the number of sign changes in the
sequence G0(r ),G1(r ), . . . ,Gs (r ). Since the complexity of computing rem(Gk−1(x ),Gk (x )) is O(d2

j ), the com-
plexity of constructing the Sturm–Tarski sequence is O(d3

j ). The complexity of computing V (f , f ′g ; r ) is O(d2
j ).

It follows that the complexity of checking whether the above SAS is satisfiable is O(d3
j +d2

j ) � O(d3
j ). Because the

coefficients are polynomials in Q[λ0] with degrees less than dj , the complexity of multiplication of the coefficients
should be multiplied by a factor d2

j at most. Thus, the complexity for symbolically solving linear system in our
problem is O(i3

j (d2
j + d3

j )) � O(i3
j d

3
j ).9

The complexity analysis for 3.1 and 3.2 in Step 3 is as follows. We still use the notations in the complexity
analysis for 1.3 and 1.4 in Step 1. It is not difficult to see that the complexity of 3.1 and 3.2 are the same because
they need to symbolically check whether some linear SASs is satisfiable and the two linear SAS are of the same
number of variables. In fact the number of variables are the dimension of Vj which is

∑wj

h�1 njh . According to
the above discussion, we know that the complexity for symbolically checking whether a linear SAS containing λ
is satisfiable is O(n3

vd
3
λ ), where nv is the number of the variables and dλ is the degree of the minimal polynomial

of λ. It follows that the total complexity of 3.1 and 3.2 are
∑

j≥1 O(2(
∑wj

h�1 njh )3d3
j ) ≤ ∑

j≥1 O(i3
j d

3
j ) ≤ O(n3).

The complexity analysis for 3.3 and 3.4 in Step 3 is as follows. First let us analyze the complexity of 3.3
which is, in fact, the complexity of FMOS. Obviously, we only need to analyze the complexity of Step 2 in FMOS. Let

rλj
� max{O(Jjk ) | Jjk ∈ Jλj

} and lλj
is the order of Bλj

. In the worst case, we need to solve r
lλj
λj

+
(lλj

1

)
r
lλj −1
λj

+ · · ·+(lλj
lλj

) � (rλj
+1)lλj linear SASs, each of which contains at most ij variables with

∑
j≥1 ij ≤ n and a symbol, λj , rep-

resenting a specific eigenvalue. According to the above discussion, we know that the complexity for symbolically
checking whether a linear SAS containing λj is satisfiable is O(i3

j d
3
j ), so the total complexity of Step 2 in FMOS is

at most O((rλj
+ 1)lλj × i3

j d
3
j ). The loop in Step 3 is executed at most k times and therefore the total complexity of

Step 3 is
∑k

j�1 O((rλj
+ 1)lλj × i3

j d
3
j ) ≤ O(nm+3). Furthermore, if k � 1, then

∑k
j�1(rλj

+ 1)lλj × i3
j d

3
j � nm+3.

Since the complexity of 3.4 is linear, the total complexity of 3.3 and 3.4 is O(nm+3).
Finally the complexity of DecTrem is max{O(n6),O(nm+3)}.

9 In [Tod92], the complexity of solving a linear programming problem is O(n3L), where n is the number of variables and L is the number
of bits in the input. In this paper, we assume unit cost for arithmetic operations, so we omit L herein and hereafter.
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6. The irreducible case

In this section, we will prove a sufficient and necessary condition (Theorem 4) for the termination of P2 under
the assumption that the characteristic polynomial of A is irreducible. Based on the theorem a very simple and
efficient symbolic decision procedure for termination of P2 can be easily invented.

6.1. A necessary and sufficient condition

Theorem 4 Suppose A and B are both matrices on the rational numbers Q and the characteristic polynomial D(λ) of
A is irreducible in Q[λ], the set of univariate polynomials with rational coefficients. The program P2 is non-terminating
if and only if there is a real eigenvector v of A corresponding to a positive eigenvalue such that Bv > 0.

Proof. The sufficiency is obvious, so we only prove the necessity. The irreducibility of the characteristic polynomial
D(λ) of A implies that the eigenvalues of A are pairwise distinct. Otherwise, set

D1 � gcd
(

D(λ),
d

d λ
D(λ)

)
, D2 � D(λ)

gcd(D(λ), d
d λ

D(λ))
,

then D(λ) � D1D2 is reducible over Q. Here, gcd stands for the greatest common divisor.
Suppose λ1, . . . , λn are the eigenvalues of A. Set

A(λ) � A − λ I �

⎡
⎢⎢⎣

a11 − λ a12 · · · a1n
a21 a22 − λ · · · a2n
...

... · · · ...
an1 an2 · · · ann − λ

⎤
⎥⎥⎦ ,

and denote the (i , j ) algebraic complement minor of A(λ) by Aij (λ) for i � 1, . . . ,n and j � 1, . . . ,n.10

Obviously, A11(λ) is a non-zero polynomial in λ of degree n−1 because its leading monomial is (− λ)n−1. Then
for any eigenvalue λβ (β � 1, . . . ,n), A11(λβ) 
� 0 since λβ is a root of D(λ) which is an irreducible polynomial
of degree n. For each β � 1, . . . ,n, set

vβ � [A11(λβ), A12(λβ), . . . ,A1n (λβ)]T.

It is clear that each vβ is non-zero and Avβ − λβ vβ � A(λβ)vβ � 0. Thus vβ is exactly the unique eigenvector
(up to a scale multiplier) of A, related to λβ .

Now that if P2 is non-terminating, by Corollary 1, there exists a real eigenvector vα of A corresponding to a
positive eigenvalue such that Bvα ≥ 0. That is to say, if we denote the k th row of B by bk � (bk1, . . . , bkn ) and
set uk � bk · vα, then uk ≥ 0 (k � 1, . . . ,m). We need only to show that each uk is non-zero. Set

v(λ) � [A11(λ), A12(λ), . . . ,A1n (λ)]T,

and uk (λ) � Bk · v(λ), (k � 1, . . . ,m). Then uk � uk (λα).
Note that, unless uk (λ) is a zero polynomial, uk (λ) does not equal to zero at λα because it is a polynomial in

λ of degree at most n − 1 but λα is a root of an irreducible polynomial of degree n. We continue to show that
uk (λ) is not a zero polynomial either.

If some uk (λ) is a zero polynomial, then for all β � 1, . . . ,n, uk (λβ) � 0, i.e., bk · v1 � 0, bk · v2 �
0, . . . ,bk · vn � 0. Thus v1, . . . ,vn are linear dependent. However, these eigenvectors must be linear indepen-
dent because their eigenvalues are pairwise distinct. This is a contradiction. �

By a similar proof as above, we can obtain the following result.

Corollary 3 If A and B are both matrices on a field of numbers (e.g., the second extension of the field of rational
numbers) and the characteristic polynomial of A is irreducible on this field, then the program P2 is non-terminating
if and only if there exists a real eigenvector v of A, corresponding to a positive eigenvalue λ, such that Bv > 0. In
other words, iff

∃λ ∃v. λ ∈ R
+ ∧ v ∈ R

n ∧ Av � λv ∧ Bv > 0. (16)

10 Aij (λ) is (−1)i+j times the determinant of the sub-matrix obtained from A(λ) by deleting the ith row and j th column.
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6.2. Algorithm

Based on Theorem 4, we design the following algorithm IrrDec to determine the termination of P2 with the
assumption that the characteristic polynomial of A is irreducible.

Procedure IrrDec(B ,A)

Step 1: Compute the characteristic polynomial of A and denote it by D(λ).
Step 2: Compute the algebraic complement minor of every element in the first (or a fixed) row of A − λ I (the

characteristic matrix of A), respectively and denote them by A1i (1 ≤ i ≤ n).
Step 3: For each row of B , compute uj � ∑n

k�1 bjkA1k (1 ≤ j ≤ m).
Step 4: Construct a semi-algebraic system11

S : {D(λ) � 0, λ > 0, u1u2 > 0, u2u3 > 0, . . . , um−1um > 0}.
Note that it is easy to see that S is another presentation of the body of Formula (16) in terms of semi-
algebraic system.

Step 5: By computer algebra tools, determine whether S has real solutions, i.e., whether Formula (16) holds. If
yes, P2 is not terminating. Otherwise, it terminates.

Notice that in this paper we will apply to S the computer algebra tool DISCOVERER [YaX05, Xia07]. For
other applications of DISCOVERER to problems in program verification, please refer to [YZX05].

6.3. Examples

We first demonstrate how by the above algorithm to determine the termination of the loop in Example 1.

Example 3 It is easy to compute that

D(λ) � λ
2 − 4 λ +1,

v � (A11, A12)T � (2 − λ, 1)T,

Bv � (u1, u2) � (2 − λ + b, λ −2 + b),

and to see that D(λ) is irreducible. Then we use DISCOVERER to determine whether the following system has
real solutions

D(λ) � 0, λ > 0, (2 − λ +b)(λ −2 + b) > 0.

The problem can be solved by several symbolic algorithms and functions in DISCOVERER. Say, by applying
nearsolve for this constant SAS, we get that the number of real solutions of the above system is 0. Thus the loop
in Example 1 terminates.

We further illustrate how to use Theorem 4 to decide the termination of linear programs by the following
example.

Example 4 Consider the termination of the program while (Bx > 0) {x :� Ax }, where

A �

⎡
⎢⎢⎢⎣

3 1 4 1 5
9 2 6 5 3
5 8 9 7 9
3 2 3 8 4
6 2 6 4 3

⎤
⎥⎥⎥⎦ , B �

[
3 −8 3 2 −7
1 −4 1 4 −2
4 −2 8 −5 7

]
.

11 If you like, you can construct two semi-algebraic systems. One has all ui positive, and the other has all ui negative.
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The characteristic polynomial of A is also irreducible. By Theorem 4, we first compute the algebraic comple-
ment minors as follows

A11(λ) � −48 + 313 λ + 8 λ
2 − 22 λ

3 + λ
4
,

A12(λ) � 381 + 243 λ − 117 λ
2 + 9 λ

3
,

A13(λ) � 74 − 539 λ + 82 λ
2 + 5 λ

3
,

A14(λ) � 144 − 60 λ + 15 λ
2 + 3 λ

3
,

A15(λ) � −498 + 204 λ − 54 λ
2 + 6 λ

3
.

Construct v(λ) � (A11(λ), . . . ,A15(λ))T, where λ is an eigenvalue of A. Compute the uk in Theorem 4 as follows

u1 � 3A11(λ) − 8A12(λ) + 3A13(λ) + 2A14(λ) − 7A15(λ) � 804 − 4170 λ + 1614 λ2 − 159 λ3 + 3 λ4,

u2 � A11(λ) − 4A12(λ) + A13(λ) + 4A14(λ) − 2A15(λ) � 74 − 1846 λ + 726 λ2 − 53 λ3 + λ4,

u3 � 4A11(λ) − 2A12(λ) + 8A13(λ) − 5A14(λ) + 7A15(λ) � − 4568 − 1818 λ + 469 λ2 − 39 λ3 + 4 λ4 .

By Theorem 4, the program is non-terminating if and only if the following semi-algebraic system has real
solutions

{D(λ) � 0, λ > 0, u1u2 > 0, u2u3 > 0}, (17)

where D(λ) is the characteristic polynomial of A.
Using DISCOVERER, say nearsolve again, we can conclude that the system (17) has no real solutions.

Therefore, the program is terminating. If we delete a constraint and set

B �
[

3 −8 3 2 −7
1 −4 1 4 −2

]
,

by calling DISCOVERER, we can conclude that the system {D(λ) � 0, λ > 0, u1u2 > 0} has 2 distinct real
solutions. That is to say, the resulting program is non-terminating.

6.4. Complexity analysis

In this subsection we will show that the complexity of IrrDec is polynomial in n and m, where n is the number
of variables of P2 and m is the number of its Boolean conditions.

In step 1, D(λ) can be computed by at most O(n3) multiplications.
In step 2, all the algebraic complement minors can be computed by at most O(n4) multiplications.
Step 3 needs at most n2m multiplications because each ui is of degree at most n − 1 and thus has at most n

terms.
For steps 4 and 5, we shall analyze the complexity of determining whether the semi-algebraic system

S : {D(λ) � 0, λ > 0, u1u2 > 0, u2u3 > 0, . . . , um−1um > 0}
has real solutions. Because D(λ) (of degree n) is irreducible and each ui is of degree at most n − 1, D(λ) has no
common roots with each ui .

First, we obtain the isolated intervals, [aj , bj ], of the positive roots of D(λ), where j is at most n. From Sect. 5,
we know that the complexity for this step is O(n6).

Second, as in Sect. 5, we take use of Sturm–Tarski sequences to determine the signs of ui at those zeros,
respectively. For each ui , we compute the Sturm–Tarski sequence of D(λ) w.r.t. ui that, as shown in Sect. 5, costs
O(n3). So, for all uis, the cost is O(mn3). To check the sign changes of those Sturm–Tarski sequences and thus
the signs of all uis at the zeros, we need O(mn) operations for each interval [aj , bj ] and, obviously, O(mn2)
operations for all the intervals. Therefore, the complexity for this sub-step is O(mn3) + O(mn2)= O(mn3).

Now, we can see that the cost of determining whether S has real solutions dominates the computational
complexity of the above procedure, which is max(O(n6),O(mn3)). It’s clear that the complexity of IrrDec is
much lower than that of the decision procedure given in [Tiw04] which is O(nm+3), and that of DecTerm given in
this paper which is max{O(n6),O(nm+3)}.
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7. Conclusions and discussion

This paper present a symbolic decision procedure for the termination of a class of linear programs that was first
proved to be decidable by Tiwari in [Tiw04]. In our approach, rounding errors caused by floating-point compu-
tation is therefore avoided. We also analyze that the complexity of the new procedure is max{O(n6),O(nm+3)},
where n is the number of variables of the program and m is the number of its Boolean conditions. Our algorithm
is as efficient as Tiwari’s and can be seen as a cute symbolic implementation of Tiwari’s decision procedure. In
addition, we invent a more efficient symbolic algorithm for the case when the characteristic polynomial of the
assignment matrix is irreducible, whose complexity is max(O(n6),O(mn3)).

Discussion

1. In fact, it is not hard to invent a symbolic decision procedure for P1 directly from Tiwari’s procedure. This
can be done via: Firstly, in his first step, we replace numerically computing eigenvalues and eigenvectors of
assignment matrix A with a symbolic computation procedure; Secondly, in his third step, non-deterministi-
cally generate a set of non-linear symbolic constraints instead of a set of linear constraints. The big problem
with such a symbolic procedure is the high complexity to solve the resulting non-linear symbolic constraints
which is at least double exponential in m and n.

2. Any decision procedure that involves floating-point calculation may be not sound at implementation level.
This paper, based on [Tiw04], develops a fully symbolic decision procedure for the termination of linear pro-
grams, so that we can avoid floating-point computations in termination analysis. Another interesting issue is
how to guarantee a (proved) terminating linear program will indeed terminate, when it runs under a compiler
with certain precision of floating point computation. Theoretically, if Q2 in Example 1 does not terminate
for an input x , then Q2 will not terminate for the input Qx either. In Example 1 we use Maple 11 with Digits
10 to calculate A∗ and B∗ and find Q2 does not terminate for input x � (1,−1). We should have assumed
that Qx can show a run-time non-terminating error in 10 decimal digits of precision for Q1 that is proved
terminating in Example 3. However, when we run it, it surprisingly terminates in the presumed precision.
Avoiding run-time errors is very interesting but seems hard to be manipulated. It deserves further and deeper
investigation.

3. One may ask whether the assumption in Theorem 4 (“the characteristic polynomial of A is irreducible”) can
be removed or weakened like “the characteristic polynomial of A is square-free”. The following example
gives a negative answer.

Example 5 Given a program as follows

Q4 while (Bx > 0) {x :� Ax }.

where A �
[

4 5 2
9 −1 −8
3 2 3

]
,B �

[
7 −7 −6
1 5 1

]
,

The characteristic polynomial of A is λ3 −6 λ2 − 30 λ + 161 � (λ−7)(λ2 + λ −23) which is reducible with
eigenvalues λ1 � 7, λ2 � − 1

2 +
√

93
2 and λ3 � − 1

2 −
√

93
2 . The corresponding eigenvectors are

v1 � [8, 2, 7]T,v2 � [14, −17 +
√

93, 11 +
√

93]T,v3 � [14, −17 − √
93, 11 − √

93]T,

where v1, v2 correspond to positive eigenvalues λ1 and λ2, respectively. Please note that the characteristic
polynomial of A is square-free and A is non-singular. It is easy to check that (Bv1 > 0) ∧ (Bv2 > 0) does
not hold and nor (−Bv1 > 0) ∧ (−Bv2 > 0). So we may draw a conclusion according to Theorem 4 that the
program terminates. Unfortunately the conclusion is wrong, and we can prove the program non-terminating
by the algorithm given in Sect. 3.

4. It is quite interesting to investigate whether our approach can be applied to other algorithms that are also
suffered from rounding error problems of floating-point computation. We would like to take such a problem
as our future work.
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