
Unified Graphical Co-Modelling of Cyber-Physical
Systems using AADL and Simulink/Stateflow

Haolan Zhan1,2, Qianqian Lin1,2, Shuling Wang1, Jean-Pierre Talpin3?,
Xiong Xu1, and Naijun Zhan1,2(B)

1 State Key Lab. of Computer Science, Institute of Software, CAS, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China

3 Institut National de Recherche en Informatique et en Automatique (INRIA) Rennes, France
{zhanhl,linqq,wangsl,xux,znj}@ios.ac.cn,

jean-pierre.talpin@inria.fr

Abstract. The efficient design of safety-critical embedded systems involves, at
least, the three modelling aspects common to all cyber-physical systems (CPSs):
functionalities, physics and architectures. Existing modelling formalisms cannot
provide strong support to take all of these three dimensions into account uni-
formly, e.g., AADL is a precise formalism for modelling architecture and pro-
totyping hardware platforms, but it is weak for modelling physical and software
behaviours and their interaction. By contrast, Simulink/Stateflow is strong for
modelling physical and software behaviour and their interaction, but weak for
modelling architecture and hardware platforms. To address this issue, we con-
sider the combination of AADL and Simulink/Stateflow, two widely used graph-
ical modelling formalisms for CPS design in industry. This combination provides
a unified graphical co-modelling formalism supporting the design of CPSs from
all three software, hardware and physics perspectives uniformly. This paper fo-
cuses on the required concepts to combine them, and outlines how to verify and
simulate a system model defined using the combined graphical views of its con-
stituents, by considering the case study of an Isollete System.

Keywords: AADL · Simulink/Stateflow · Co-simulation · Code generation ·
Analysis

1 Introduction

Cyber-physical systems (CPSs), networked embedded systems (e.g., IoT, sensor net-
works), exploit computing units to monitor and control physical processes via wired or
wireless communication. CPSs are omnipresent, from high-speed train control systems,
power and control grids, automated plants and factories, transportations, to ground, sea,
air and space. Most CPSs are entrusted with mission- and safety-critical tasks. There-
fore, the efficient and verified development of safe and reliable embedded systems is
a priority mandated by many standards, yet a notoriously difficult and challenging do-
main.

? Jean-Pierre Talpin is partially supported by Nankai University

2 H. Zhan et al.

As to standards, model-based design (MBD) has become a predominant develop-
ment approach in the embedded system industry. In the MBD methodology, the devel-
opment of a system starts with a model, based on which extensive analysis and verifi-
cation are conducted, so that errors can be identified and corrected as early as possible,
and ideally before the system is implemented or built. Subsequently, abstract system-
level models are refined to semantically more concrete models and to source code, by
model-transformation.

The merits of MBD hence include at least the following:

– Complexity becomes tractable and controllable, thanks to system level abstraction.
– Errors can be identified and corrected at the very early stages of system design.
– Correctness and reliability can be guaranteed by refinement.
– Developers can fully reuse existing components and/or systems, to improve devel-

opment efficiency even more.

Unsurprisingly, available formalisms and environments for CPS design are numer-
ous, e.g., hybrid automata [8], Hybrid CSP (HCSP) [22,44], dynamic differential logic [33],
hybrid Event-B [10,11], Ptolemy [34], Metropolis [9], Crescendo [21], C2E2 [18], etc.
in academia; Simulink/Stateflow [1,2], Modelica [39], SCADE [3], Labview, etc., in
industry; UML, SysML [4], MARTE [38] and so on, for MBD. Because of the tight
coupling of hardware, software, and physics in CPS design, one has to model a com-
plex CPS from the perspectives of functionality (software), physicality (physical envi-
ronment and hardware platform), and architecture uniformly, but unfortunately, most
of existing modelling techniques do not support all of these three aspects well and uni-
formly.

For instance, the Architectural Analysis & Design Language (AADL) [20] is an
architectural-centric model-based language developed by SAE International. It features
strong capabilities to describe the architecture of a system due to the pragmatic (and
practice-inspired) effectiveness of combining software and hardware component mod-
els. Meanwhile, it also supports the formal description of discrete behaviour using its
BLESS Annex. Thanks to its succinct syntax, effective functionality and facilitated ex-
tensibility (by annexes i.e. plugins), AADL has been widely exploited in various em-
bedded system domains, e.g., avionics, automotive. However, the core of the AADL
only supports modelling of embedded system hardware structures and abstraction of its
relevant discrete behaviour relevant to verification. It does not support the description
of the continuous physical processes to be controlled by the embedded system and its
combination with software, although some attempts have been made [7,6].

By contrast, Simulink [1] is the de facto standard toolbox that has demonstrated
strong capabilities for model-based analysis and design of signal processing systems. It
contains a large palette of functional blocks and supports their composition by continuous-
time synchronous data-flow, as well as an intuitive graphical modelling language remi-
niscent of circuit diagrams. It is thus appealing to practitioners and engineers for whom
it is designed. Moreover, Stateflow [2] is a toolbox adding facilities for modelling and
simulating reactive systems by means of hierarchical statecharts, extending Simulink’s
scope to event-driven and hybrid forms of embedded control.

However, Simulink/Stateflow can hardly model system architectures and hardware
platforms. To address this issue, we complement Simulink with AADL to provide a

A Unified Graphical Modelling Formalism for CPSs 3

unified graphical modelling formalism to support all the three perspectives of CPS de-
sign uniformly. An overview of the combination is given in Fig. 1. For each CPS system
to be modelled, it will be characterized from three different layers: architecture layer,
software layer and physical layer. The modelling process is sketched as follows:

Fig. 1: An overview of the combination of AADL and Simulink

System architecture and hardware platform: are given as AADL components in the
architecture layer.

Software behaviour: is modelled either as AADL components or Simulink/Stateflow
diagrams in the software layer.

Physical processes and its interaction with software: are modelled as Simulink/State-
flow diagrams in the physical layer.

Type classifier for Simulink/Stateflow diagrams: are generated as AADL components
in the architecture layer. Given a Simulink/Stateflow diagram, a type classifier ab-
stracts away the implementation details, and instead, defines the port declarations
and the constraints for the behavior. The AADL abstract type classifier will be
combined with the other AADL components to form the whole system in the archi-
tecture layer.

First, we translate Simulink/Stateflow diagrams into HCSP to obtain a formalisation
of their port declarations [47,42,46]. Second, we use Daikon [19], or invariant genera-
tion [28] or, possibly, compositional proof tactics [30] to associate type classifiers with
formal contracts.

Simulation of the whole graphical model, defined by the combination of AADL and
Simulink views, amounts to coordinating code generated by both AADL and Simulink
model simulators through effective port communications. Verification of the combined

4 H. Zhan et al.

models is performed by translation to HCSP [27,47,41,14]. Similar to the translation
from Simulink/Stateflow to HCSP and the inverse [47,46,42], the correctness of the
translation can be guaranteed using Unifying Theories of Programming (UTP) [15,42].

Contribution. In this paper, we propose a unified graphical framework using AADL
and Simulink/Stateflow to model, simulate and verify cyber-physical systems. This
framework depicts a methodology to design and simulate CPSs in a unified graphical
environment while supporting formal verification of its functional, physical and struc-
tural artifacts uniformly using HCSP. Our graphical framework consists of AADL, its
BLESS Annex and Simulink/Stateflow. It is implemented by a simulation environment
called AADLSim, which integrates a set of tools, including an automatic translator
from AADL into C, and a simluation engine combining AADL and Simulink/Stateflow
models. To demonstrate the above framework and tool, the case study of an Isolette
System is provided.

Paper Organization. The rest of the paper is organized as follows. Sect. 2 provides an
overview of AADL, Simulink/Stateflow, and the notion of design by contract. Sect. 3
presents the Isollete case study, which will be used as a running example throughout
the paper. Sect. 4 depicts our combined framework composed of AADL and Simulink/
Stateflow, especially how to compute the type classifiers and define the contracts for
Simulink/Stateflow diagrams. Sect. 5 presents in detail how to implement the co-modelling
and co-simulation in the unified framework. Sect. 6 gives the related work and Sect. 7
concludes this paper and discusses some future work.

2 Preliminaries

In this section, we first provide an overview of the AADL standard, by highlighting its
structure and BLESS Annex, then introduce Simulink/Stateflow and its most relevant
features. Finally, we briefly introduce the notion of design by contract.

2.1 AADL

AADL provides means to specify both the application software and the execution hard-
ware of an embedded system, and supports textual, graphical and XML Metadata Inter-
change (XMI) specification formats. Components with type and implementation clas-
sifiers are instantiated and connected together to structure the system architecture. The
AADL core language constructs are categorised into application software, execution
platform and composite components. A system component represents a composite en-
tity containing software, execution platform and system components.

Components and Connections The execution platform category represents computa-
tion and communication resources including processor, memory, bus and device com-
ponents. A processor component represents the hardware and software responsible for
scheduling and executing task threads. Properties can be assigned to a processor com-
ponent to specify scheduling policies, high-level operating system services and commu-
nication protocols. A memory component is used to represent storage entities for data

A Unified Graphical Modelling Formalism for CPSs 5

and code. A device component can model a physical entity in the external environment:
a plant or the software simulation of the plant. It can also be used as an interactive com-
ponent like sensor or actuator. A bus component represents the physical connections
among execution platform components.

The application software category includes process, data, subprogram, thread, and
thread group components. A process component represents the protected address space,
which is bound to a memory component. A data component can be used to abstract data
type, local data or parameter of a subprogram. A subprogram models executable code
that is called, with parameters, by thread and other subprograms. Thread is the only
schedulable component with execution semantics to model system execution behav-
ior. A thread represents sequential flow of the execution and the associated semantic
automation describes life cycle of the thread.

A component type declaration defines interface elements and may contain features.
Features comprise data, event and event data ports to transmit and receive data, control,
and data/control respectively. Port communication is typed and directional. An in port
receives data/control and an out port sends data/control while an in out port can send and
receive data/control. Communication is realized through connections between ports,
parameters and access to shared data.

BLESS Annex. The Behavior Language for Embedded System with Software (BLESS)
is a standardised annex independent of the core AADL language. BLESS extends AADL
with the ability of specifying behaviour of component interfaces, providing formal se-
mantics for AADL behavioural descriptions and automatically generating verification
conditions to be proven. BLESS models state machines using guards and actions to
give precise specifications of discrete hardware/software behaviours. BLESS also in-
troduces assert and invariant sections in AADL to specify assertions and predicates
that behavioural models must satisfy.

We refer to AADL standard document AS5506-B [36] for further details.

2.2 Simulink/Stateflow

Simulink is an environment for model-based design of dynamical systems, and has
become a de facto standard in the embedded systems industry. It provides an extensive
library of pre-defined blocks for building and managing block diagrams, and also a
rich set of fixed-step and variable-step solvers for simulating dynamical systems. It also
provides features such as subsystems for building large systems in a hierarchical way.
Stateflow is a toolbox adding facilities for modelling and simulating reactive systems by
means of hierarchical statecharts. It extends Simulink scope to event-driven and hybrid
forms of embedded control.

A Simulink model contains a set of blocks, subsystems, and wires, where blocks
and subsystems cooperate by dataflow through the connecting wires. An elementary
block receives input signals and computes output signals according to user-defined pa-
rameters altering its functionality. One typical parameter is sample time, which defines
how frequently the computation is performed. Blocks are classified into two types: con-
tinuous blocks with sample time 0, and discrete blocks with positive sample time. For

6 H. Zhan et al.

continuous blocks, the continuous state changes over time continuously, e.g. the posi-
tion or the speed of a moving car. It is usually represented by an ordinary differential
equation (ODE). Simulink provides an amount of ODE solvers for solving ODEs based
on the numerical integration methods.

Stateflow offers the modelling capabilities of statecharts for reactive systems. It can
be defined as Simulink blocks, fed with Simulink inputs and producing Simulink out-
puts. A stateflow diagram is composed of transitions, states and junctions. Each transi-
tion connects a source state to a destination state. It it is labelled withE[C]{cAct}/tAct,
where E is an event, C is the condition, cAct the condition action, and tAct the transi-
tion action. The eventE triggers the transition to take place, provided that the condition
C is true. As soon as C evaluates to true, the action cAct will be executed immediately,
while tAct will be left pending and put in a queue first, and will be executed until a valid
transition path is completed. A state is labelled by three optional types of actions: entry
action, during action, and exit action.

Stateflow supports to construct flow charts using connective junctions and transi-
tions, which can be used between states to specify decision logics to form transition
networks. The Stateflow states can be composed to form hierarchical diagrams: Or di-
agram, for which the states are mutually exclusive and only one state becomes active at
a time, and And diagram, for which the states are parallel and all of them become active
simultaneously.

Being based on a large palette of individually simple function blocks and their com-
position by continuous-time synchronous dataflow as well as the modelling capabili-
ties of statecharts for reactive systems, Simulink/Stateflow offers an intuitive graphi-
cal modelling language of CPSs for practicing engineers. Ordinary users can quickly
build the model’s framework by connecting the corresponding graphical modules and
defining interfaces. Therefore, it is convenient and efficient to design and analyse the
components using Simulink/Stateflow for co-simulation.

2.3 Design by Contract

Design by contract (DbC) is an engineering methodology whereby system designers
should define semantically founded, precise and verifiable interface specifications for
hardware and software components. These specifications extend the ordinary notion of
abstract data type with logical properties describing the pre-conditions, post-conditions
and invariants of a software function or of a hardware block.

The term design-by-contract is due to Bertrand Meyer in connection with the defini-
tion of the Eiffel programming language and his book Object-Oriented Software Con-
struction [31]. It is rooted in Hoare logic, where the contract (A,G) of a program P
naturally corresponds to the provable assertion C ` {A}P{G} in some logical context
C. Contracts have been algebraically meta-theorized by Benveniste et al. [13], system-
atically applied to model-based design frameworks like BIP [12].

Recently, [30] extended the reach of design-by-contract to the case of modularly
verifying hybrid system models by the introduction of contracts in a compositional
design methodology for Differential dynamical Logic (ddL) [33]. In this context, and
by contrast, the contract of a given model Γ ` [α]φ consists of the evolution domain H
of the specification α, as assumption, and differential invariant φ, as guarantee.

A Unified Graphical Modelling Formalism for CPSs 7

3 Isollete System: A Running Example

In this section, we introduce the Isolette System which we use as a running example.
Isolette is an infant incubator described by the Federal Aviation Administration (FAA)
in the Requirement Engineering Management Handbook (REMH) [26]. This example
is concise but rich enough to contain both discrete control behaviour and continuous
plants, as a classical hybrid system [7]. We will first introduce the system and then the
design requirements.

3.1 Isollete System

The isollete example has been widely used to explain the detailed behaviour of AADL-
based development and new annexes, such as the BLESS Annex and the Error Model
Annex [17]. The isollete system is used to maintain the temperature of the isollete box,
a physical environment, within a desired range that is beneficial to an infant.

Fig. 3 depicts the AADL graphical model of the isollete system. The architecture
of the system includes a processor, a bus, a sensor, an actuator, a controller, and a
controlled process with internal threads. The software level defines the implementation
of the controller, which obtains the temperature inside the box through the sensor, then
computes an appropriate command to control the temperature through the actuator to
switch on or off the heater combined with the isollete box. The physical layer defines
the continuous behavior of the plant, i.e. the isollete box.

Fig. 2: AADL graphical model of Isolette system

The continuous evolution of temperature depends on the current status of the actua-
tor. If the heater is on, the temperature will increase, otherwise decrease. According to

8 H. Zhan et al.

the specification in the Section A.5.1.3 of the REMH [26], when the isolette is properly
switched on, the temperature of the heater will change at a rate of no more than 1 ◦F
per minute. Based on this specification, the temperature of the isollete box (denoted by
c) and the temperature of the heater (denoted by q) are formally modelled by the ODEs
(1) below. ċ = −0.026 · (c− q)

q̇ = 1 if heater is on
q̇ = −1 if heater is off

(1)

The constant 0.026 stands for the thermal conductivity. When the controller commands
the actuator to switch the heater on, the rise in temperature q will result in c going up. In
this specification, we assume that the room temperature outside the box to be constant
at 73 ◦F, although its variations could also be modelled.

3.2 Requirements

Referring to environmental assumptions provided in the REMH, the following safety
should be satisfied.

– Safety: The temperature inside the isollete box should be kept in between 97 ◦F
and 100 ◦F, i.e., 97 ◦F ≤ c ≤ 100 ◦F.

Moreover, considering the uncertainties from initial states, sensor errors, disturbance of
dynamics, and numerical error caused by floating-point calculation, etc., it is required
that:

– Stability and Robustness: The inside temperature c will be finally steered towards
the valid range after some time.

At this point, it is obviously hard to specify this physical model using AADL and
its annexes alone, notwithstanding its interaction with the digital controller, hence the
question mark in Fig. 2 needs a complementary hybrid annex.

4 Combination of AADL and Simulink/Stateflow

The combination of AADL and Simulink/Stateflow aims at providing a unified graphi-
cal co-modelling formalism for CPSs, with which software, physical environment and
execution hardware of a CPS can be modelled in a uniform framework. Sect. 4.1 presents
a general explanation of the combined framework, Sect. 4.2 and Sect. 4.3 define the type
classifiers for given Simulink/Stateflow diagrams, including the port declarations and
contracts, respectively.

4.1 General Framework

As shown in Fig. 1, we describe the high-level architecture of the proposed unified
graphical framework together with the connection among the three different physical,

A Unified Graphical Modelling Formalism for CPSs 9

hardware and software layers. The architecture layer, described as AADL system com-
posite components, specifies the types of hardware and software components, and (part
of) their implementation (an abstraction of their actual implementation), as well as their
composition. It usually consists of a central processor unit classifier with several sub-
component devices (like sensor, controller, and actuator etc.). Each of these classifiers
has its own type and implementation. For software functionality and physical processes,
the architecture layer usually needs their abstractions, i.e., the type classifiers of these
software and physical components. The type classifier of a component declares the set
of input and output ports, specifies the contract of its behaviour, that are accessible
from outside. By contrast, the implementation classifier of a component binds its type
classifier with a concrete implementation in the software and physical layers.

Our framework provides two methods to describe the type classifier of a given
Simulink/Stateflow model. The first one is to derive a type classifier, which is satis-
fied by the Simulink/Stateflow diagram, directly from its behaviour; see Sect. 4.2; the
other is to define a contract in the style of an assume/guarantee pair, and then prove the
given Simulink/Stateflow diagram satisfying this contract; see Sect. 4.3.

In the software layer, software components are defined by their functionality, which
can be done using either AADL or Simulink/Stateflow. In AADL, the functionality is
defined by processes, and in each process, one or more threads may exist to describe
specific controlling behaviours. The BLESS Annex can further be employed to spec-
ify the behavior of the system precisely. In order to establish a stable communication
between different processes, a port declaration must be defined. The AADL implemen-
tation in this layer binds to the corresponding software and hardware components in the
architecture layer.

In the physical layer, the continuous behaviour of physical processes is implemented
as Simulink/Stateflow diagrams. In order to integrate the Simulink/Stateflow diagrams
for implementing software or physical processes into the architectural layer, we need to
define a type classifier for each Simulink/Stateflow diagram so that it can be assembled
with other abstract components to form the architecture of the whole system at the
architecture layer. We will explain the details of this process in the rest of this section.

Example 1. Now we can build a complete graphical model of the Isollete system with
the combination as shown in Fig. 3, in which the Simulink/Stateflow diagram is given
as Fig. 4.

Fig. 4 implements the ODEs defined in (1). It receives the heat command from the
actuator, depending on which the heater temperature q is implemented by an integrator
block. The other integrator block computes the temperature c for the isollete box, which
will be sent back to the sensor of the controller. This implementation will be abstracted
as a AADL type classifier, to fill the definition of the isollete box in the physical layer
in Fig. 3.

Simulation. To simulate the graphical model with the combination of AADL and
Simulink, we propose a cross-layer co-simulation framework, in which the hardware
platform, control software, and physical dynamics in the designed CPS can be taken
into account uniformly. We will explain the details of such specification in Sect. 5.

10 H. Zhan et al.

Fig. 3: AADL graphical model of Isolette system

Fig. 4: Simulink model of Isollete box

Verification. To further verify a graphical model given by the AADL-Simulink combi-
nation, we translate it into HCSP, which is an extension of CSP introducing differential
equations to model the continuous evolution of the plant and three types of interrupts to
model the interaction between continuous and discrete behaviours [22,44]. The formal
verification of HCSP can be done along the lines of our previous work [27,45,41,14].
Moreover, the correctness of the translation from Simulink/Stateflow to HCSP can be
strictly proved using higher-order UTP [15], which extends the classic Unifying Theo-
ries of Programming (UTP) [23] to hybrid systems by introducing higher-order quan-
tifications and differential relations. The technical details of this part will be reported in
another paper.

4.2 Computing Type Classifier for Simulink/Stateflow Diagrams

As we explained above, when combining Simulink/Stateflow with AADL, we need
to provide an abstraction for each Simulink/Stateflow diagram, i.e., its type classifier,

A Unified Graphical Modelling Formalism for CPSs 11

so that it can be assembled with other components to form the whole system at the
architecture layer, while the diagram itself will be used as the implementation classifier
of the component. Normally, the type classifier of a component consists of two parts:
port declaration and constraints.

The port declaration declares a set of ports used to input and output data between
the component and other ones. However, Simulink diagrams can be hierarchical, and
hence its external ports can sometimes not be extracted directly. For example, consider
the triggered subsystems in a Simulink diagram, they do not have any input and output
ports, but are triggered by events. Therefore, we need to analyse the whole system in
detail in order to obtain all external ports, particular, event ports. Moreover, this often
gets worse when Stateflow models are additionally considered.

To address this problem, we exploit the tool Sim2HCSP, a component in our toolkit
MARS [14], which can translate a Simulink/Stateflow diagram into a formal HCSP
process. By applying Sim2HCSP, all external ports of a Simulink/Stateflow diagram
can now be translated, and exposed, by a set of channels in the corresponding HCSP
model, which is stored in a separate file. In the case of the Simulink diagram in Fig. 4,
we can for instance obtain the following port declaration:

heatCommand?q; · · · ;boxTemp!c

from which the abstract type for babybox can be defined correspondingly:

abstract babybox
features
heatCommand: in data port;
boxTemp: out data port;

end babybox;

The reminder of the specification defines the contract of the component. It specifies
the properties that should be satisfied by any execution of the component. In this paper,
we adopt two approaches to generate the constraints for a given Simulink/Stateflow di-
agram. The first one uses Daikon [19]. The basic idea is to simulate the given Simulink/
Stateflow diagram, and then run Daikon to generate a candidate invariant which is sat-
isfied by all simulation runs. The more simulations are performed the more refined the
generated invariant becomes. For example, considering the Simulink diagram in Fig. 4,
by applying Daikon, we can obtain the following type classifier:

assert
<<TIME: :(t >= 0.1)>>
<<HEAT_T: :

((1.35107*10**15)*t-(1.35107*10**15)*q+9.862881*10**16=0)>>
<<H_VAR: :

((2.111*10**13)*q-(2.111*10**13)*orig(q)+1.056*10**12=0)>>
<<TEMP_VAR: :

((2.463*10**11)*c-(2.744*10**11)*orig(c)+2.055*10**12=0)>>
invariant
<<TIME() and H_VAR() and H_VAR() and TEMP_VAR()>>

12 H. Zhan et al.

Alternatively, we can generate invariants directly from the Simulink/Stateflow dia-
gram, or the translated HCSP process, by using techniques for invariant generation for
hybrid systems, e.g., [28]. Consider again the Simulink diagram in Fig. 4. By using
invariant generation, we can instead obtain the following type classifier:

assert
<<L_LIMIT: : ((q-c)*e**(-0.026*t)+q*(c-97)<=0)>>
<<H_LIMIT: : ((q-c)*e**(-0.026*t)+q*(100-c)>=0)>>

invariant
<<L_LIMIT() and H_LIMIT()>>

The efficiency of the first approach is much higher, but the generated invariant (ap-
proximation) can only be linear. Moreover, it may not become an actual invariant, even
by conducting enough runs to refine it. By contrast, the second approach can gener-
ate more expressive and semantically correct invariants, but the efficiency is normally
very low. Improving the efficiency of invariant generation for hybrid systems is still a
challenging problem.

4.3 Defining Type Classifier as Contracts

Our goal is to exploit the HCSP model provided by Sim2HCSP [14] to support modu-
lar, component-wise analysis and verification of system models combined from archi-
tectures described in AADL and hybrid systems in Simulink/Stateflow.

For HCSP models, our definition of contracts will naturally follow along the lines
proposed by Lunel et al. for differential dynamic logic [30,29]. In that context, the
contract of a specification α is defined by a pair (A,G) of properties.A, the assumption,
is a formula defining the evolution domain of α and G, the guarantee, is a formula
stating its differential invariant.

An alternative approach is to use the Hybrid Hoare Logic of HCSP [27,40]. In the
HHL, the contract of an HCSP processP can be defined by the term {Pre}P {Post;HF},
where Pre,Post represent the pre- and post-conditions of P using first-order logic and
HF its history formula using the duration calculus. This not only allows to express
properties upon start and finish but also real-time and continuous invariants on the exe-
cution of P , resulting in an undoubtedly more expressive framework, however probably
challenging for proof automation.

In either approaches, it is hence tempting to investigate an adaptation of the compo-
sition theorem proposed in [30] to the HCSP framework, as it provides a methodology
to automate the proof of a system contract, e.g. (A1 ∧A2, G1 ∧G2), from the (possibly
tedious) proofs that its components, e.g. C1,2 satisfy the differential invariant G1,2 in
the evolution domains A1,2, respectively.

This theorem is obtained using the parallel composition defined in [30, Def. 7],
which amounts to decomposing the components Ci =̂ disci ∪ cont∗i into discrete and
continuous specifications disci and conti, and recompose them as:

C1 ⊗ C2 =̂ (disc1 ∪ disc2 ∪ (cont1, cont2)
∗)

Assuming proof trees Γi ` [Ci]Gi, stating that theGis are invariants of the components
Cis in contexts Γi, for all i = 1, 2, and assuming non-interference of the definitions

A Unified Graphical Modelling Formalism for CPSs 13

between the Cis nor with the guarantees of the Gjs (i 6= j), [30, Th. 2] exhibits the
derivation of a contract for the composed components: Γi=1,2 ` [⊗i=1,2Ci](∧i=1,2Gi),
yielding an automated proof tactic.

This model of compositional contracts can be employed to implement Sangiovanni-
Vincentelli’s “meet in the middle” design methodology [37] to mitigate software, hard-
ware and physics constraints at system architecture level. In the case of the isolette, for
instance, it can be used to verify the safety requirement of the isollette in nominal mode,
Sec. 3.2 (i.e. after an initialization period) by cross-validating the differential invariant
of the physical model with the (adequate) operations of its controller on the sensors and
actuators, all four expressed by separate logical contracts. A use case of this method
with KeymaeraX, concerning the well-known controlled water-tank problem, is given
in Lunel’s PhD Thesis [29].

5 Co-Modelling and Co-Simulation

This section details the implementation of the unified framework introduced in Sub-
sec. 4.1 for designing and analyzing CPSs. The design flow of the framework is shown
in Fig. 5. It consists of three stages: co-modelling, model translation, and co-simulation.

Fig. 5: Co-modelling and co-simulation of AADL and Simulink/Stateflow

In the co-modelling stage, designers can exploit the toolkit OSATE/AADL and Mat-
lab/Simulink/Stateflow to model different parts of systems. Port definitions are required
in each of the separate parts in order to establish the connection between AADL and
Simulink/Stateflow models. Then, in the model translation stage, in order to integrate
the two separate models and analyse them as a whole, we translate both the AADL

14 H. Zhan et al.

and Simulink/Stateflow models into C code. For AADL, we developed a toolkit named
AADL2C Translator, a novel code generation plugin to parse the AADL standard textual
file and translate it into C code. Auto generation of C code from Matlab/Simulink/S-
tateflow models is done directly by using the Real Time Workshop (RTW) toolbox of
Matlab. In the co-simulation stage, the translated C code from AADL and Simulink will
be combined at first by performing integration and parameter configuration. After that,
the generated model code will be compiled by a C compiler, with the co-simulation
results produced. The co-simulation results provide a feedback for engineers to analyse
and revise their original designs in the modelling stage. All three stages are introduced
in detail in the subsequent subsections.

5.1 Co-Modelling in AADL and Simulink/Stateflow

AADL modelling The OSATE platform provides two different approaches for engi-
neers to build AADL models: graphical models and textual code. To exploit the internal
mechanism of AADL, we choose the textual form to build our system. With the BLESS
Annex, AADL is also able to specify the discrete behaviour of components. AADL
adopts a top-down pattern to build a system: a system classifier is defined at the be-
ginning, and then all its hardware and software subcomponents are declared in system
implementation. For the Isollete example, the type classifier and implementation for the
whole system shown in Fig .3 are given as follows:

system isollete
end isollete;
system implementation isollete.impl
subcomponents
heatCPU: processor heatCPU;
heatSW: process heatSW.impl;
babybox: abstract babybox.impl;

connections
cnx1: port heatSW.heatCommand -> babybox.heatCommand;
cnx2: port babybox.boxTemp -> heatSW.boxTemp;

properties
......

end isollete.impl;

The heatCPU element defines the central processor. The heatSW element, the
central process for specifying the functionality of the sensor, the actuator and the con-
troller. The babybox stands for the isollete box. In the connections section, the ports of
heatSW and the ports of babybox are connected, for transferring the heat command
(representing the off or on status of the controlled variable) and the box temperature
respectively. The properties section stipulates a binding relationship between the soft-
ware and hardware subcomponents. We omit the details of it here. The behaviours of
the sensor, actuator and the controller are implemented as threads in AADL.

In particular, the model of the controller is defined as follows:

A Unified Graphical Modelling Formalism for CPSs 15

thread controller
features
measuredTemp: in data port;
diff: out data port;

end controller;
thread implementation controller.impl
properties
Dispatch_Protocol => Periodic;
Priority => 10;
Deadline => 20ms;
Period => 20ms;

annex BLESS {**
invariant <<true>>
variables: gain ;
states s : initial complete final state;
transition t : s -[on dispatch]-> s
{ gain := 10;

if(measuredTemp > 100) diff := gain*(measuredTemp - 100);
elsif(measuredTemp < 97) diff :=gain*(measuredTemp - 97);
else diff :=0; end if; };

**};
end controller.impl;

The controller receives the measured temperature of the isollete box from the sensor
via the input port measuredTemp, and sends the difference between the temperature
and the threshold to the actuator via output port diff. As defined in the implementa-
tion, the controller is executed periodically every 20ms, with the deadline and priority
defined; Its functionality is defined using the BLESS Annex. The local variable gain
defines the gain coefficient for computing the difference, and the transition system of the
controller includes one state and one transition, which computes the difference diff
depending on the measured temperature. After receiving the value of diff, the actuator
will decide whether to turn on or off the heat.

Simulink/Stateflow modelling We use Simulink/Stateflow to model the continuous
behaviour of the CPS under design. For the Isollete box, we need to model the con-
tinuous behaviour defined by the ODE (1). The Simulink diagram has been given in
Fig. 4.

Combination of models After building the models separately in AADL and Simulink/S-
tateflow, we combine them to form the whole system. Our approach is to define abstract
components in AADL and connect each of them to the corresponding Simulink/State-
flow models. For each abstract component, the type classifier declares all the ports
connecting AADL and Simulink/Stateflow models, and the constraints for the actual
behaviour. The abstract AADL type classifier of the isollete box is given in Sec. 4.2.

16 H. Zhan et al.

5.2 Model Translation to C

Translating the AADL model The translation from AADL to C is the most crucial part
in the unified framework. It uses a collection of mapping rules from AADL concepts
to C implemented by the compiler AADL2C Translator. Fig. 6 illustrates the model
translation flow from AADL to C. A graphical model only describes the high-level ar-
chitecture, while a textual model includes the details such as the functional behaviours.

Fig. 6: An example illustrating the model translation flow from AADL to C

The compiler AADL2C Translator receives a source file as input and automatically
generates the corresponding C code. According to the AADL grammar, a model is
usually composed of several components, each with two parts: type declaration and im-
plementation. The AADL2C Translator creates a struct object for each type declara-
tion, e.g..system, process, thread, etc., and defines a collection of properties of the cor-
responding type classifiers. The implementation classifier is translated into individual
sub-functions, associated with relevant type classifiers and specific names. Especially,
for a thread implementation, two extra functions are specified for thread scheduling:
create thread() and thread scheduling(). The create thread() function adds a thread to
a thread queue for dispatch, while thread scheduling() is designed to execute threads ac-
cording to the scheduling protocol specified in the AADL model, e.g., Rate-Monotonic
Scheduling (RMS), Highest Priority First (HPF), etc.

In order to implement the port communications between different components effi-
ciently, an additional Global Port Data Management (GPDM) unit is introduced in the
target C code. The GPDM will store all of the output ports as global variables, with
names of the form componentType componentName outputPortName. In each simula-
tion cycle, the values of these variables will be updated once.

Translating Simulink/Stateflow model Matlab provides an automatic code generation
tool that helps to translate Simulink/Stateflow models into C code. It greatly improves
the quality and efficiency of development and simulation. To apply the code generation
tool provided by Matlab, we need to set some configuration parameters, such as the
model solver, the format of the generated code, etc.

A Unified Graphical Modelling Formalism for CPSs 17

Co-simulation requests a starting point of program execution so that we specify a
main method as an interface to connect the C code generated from Simulink/Stateflow
model with the C code interface generated from AADL model.

5.3 Co-simulation

Now all the different parts of the system, including hardware components, application
softwares and physical processes modelled in AADL and Simulink/Stateflow, have been
translated into C code separately. In the co-simulation stage, we need to integrated all
the separate C code files by defining the communication between them. The communi-
cation of distributed parts is implemented through the GPDM block mentioned above,
which can be regarded as a global data memory storing all the data interfaces (external
in/out ports) information of each component, such as AADL thread components and
Simulink/Stateflow models. Local variables inside components are not considered by
the GPDM block.

After the C code files are integrated, the simulation of the whole system can be
performed. At the beginning of the simulation, we need to set some configuration pa-
rameters, including the global simulation clock, the periodical simulation clock, the
initial values of the system variables, and so on.

Simulation results of Isollete For the Isollete case study, we check whether it fulfils
the requirements mentioned in Sec. 3.2 by simulation. We first translate the AADL and
Simulink model of the Isollete to C code, then consider two cases by setting different
initial values for the variables. In the first case, both the temperature inside isollete box
and heat actuator are initially set as 73 ◦F, same as the general room temperature. In
the second case, the initial temperature inside the isollete box is set as 115 ◦F (higher
than the maximum safety temperature), and the temperature for the heat actuator is still
set as 73 ◦F. For both of them, the simulation period is set to 0.1 s, and the simulation
time is set to 300s. Fig. 7(a) and Fig. 7(b) show the simulation results for the two
cases respectively, where the blue solid curve and yellow dashed curve represent the
trajectories for continuous variables c (for box temperature) and q (for heat temperature)
respectively. The simulation results show that, under the control of heat actuator, the
temperature inside the isollete box will finally reach a stable state, within the safety
range between 97 ◦F and 100 ◦F. The requirement defined in Sect. 3.2 is satisfied.

6 Related Work

AADL provides the notion of annex to support extensions to its core language. The
key standardized annexes include the Behaviour Annex (BA) which extends AADL
with the ability of defining component behaviour via state machines, and the BLESS
Annex[25], which improves the state transition formalism by introducing assertions for
supporting contract-based specifications. The simulation and analysis of AADL models
have also been explored a great deal. ADeS is a simulation tool that considers the envi-
ronment in which the system evolves. AADL Inspector, produced by the Ellidiss com-
pany, is a powerful software that encompasses various features including schedulability

18 H. Zhan et al.

(a) Initial stage: c=73 ◦F, q=73 ◦F (b) Initial stage: c=115 ◦F, q=73 ◦F

Fig. 7: Results of co-simulation from different inital stages

analysis and dynamic simulation. There have also been some works on translation of
AADL to other languages for analysis and simulation, e.g. AADL to BIP [16], AADL
to Sync [24], AADL to Maude [32] and so on. However, most of them focus on the
discrete-time behaviours.

There have been some works on the extension of AADL for hybrid systems. [43]
models hybrid systems with AADL based on networks of timed automata, and uses the
model checker UPPAAL for property analysis. [35] discusses a sublanguage extension
to AADL to describe continuous behaviour, but it has difficulty in modelling complex
continuous behaviour expressed with differential equations. In [5], a Hybrid Annex is
presented, which is much more expressive in its ability to specify hybrid systems, yet it
lacks relevant tools for further simulation and analysis of the hybrid models.

Compared with the above mentioned works, our proposed AADLSim framework
coalesces AADL with Simulink for modelling of both discrete and continuous be-
haviours, and the flexible interaction between them. Moreover, it also provides exten-
sive support for the analysis and simulation of the combined models through translating
them into the same target language.

7 Conclusion and Future work

In this paper, we propose an unified graphical co-modelling and co-simulation frame-
work for the design of cyber-physical systems. This proposed framework combines
AADL and Simulink/Stateflow with which the gap between discrete control and con-
tinuous plant can be filled. The combined models are translated into C code for further
analysis by co-simulation. Throughout the paper, we clarify the main concepts of the
framework, outline the specific co-simulation flow and the verification process of the
combined models. An Isollete system case study is provided to illustrate the frame-
work.

For future work, we will investigate the translation of the combination into HCSP,
a formal modelling language encoding hybrid system dynamics by means of an ex-
tension of CSP. Formal verification of HCSP is supported by an interactive Hybrid
Hoare Logic prover based on Isabelle/HOL. As a consequence, the combined AADL
and Simulink/Stateflow models can be verified. To make sure that the generated HCSP

A Unified Graphical Modelling Formalism for CPSs 19

model is correct, the consistency between observational behaviours of the models at
AADL and Simulink/Stateflow, and HCSP must be guaranteed in a rigorous way. This
question, however, is known to be difficult, due to the inherent complexity of hybrid
systems. To solve this problem, we consider to define the semantics of all the sepa-
rate models in higher-order UTP [15], which extends the classic Unifying Theories of
Programming (UTP) [23] to hybrid systems by introducing higher-order quantifications
and differential relations. Moreover, we need to show that the domain of hybrid designs
proposed in [15] together with the operations over hybrid designs forms a complete
partial order (CPO), therefore can be used as a semantic domain.

References

1. Simulink User’s Guide, 2013. http://www.mathworks.com/help/pdf doc/
simulink/sl using.pdf.

2. Stateflow User’s Guide, 2013. http://www.mathworks.com/help/pdf doc/
stateflow/sf ug.pdf.

3. Esterel Technologies, SCADE suite, 2018. http://www.esterel-technologies.
com/products/scade.

4. SysML 1.6 Beta Specification, 2019. http://www.omg.org/spec/SysML.
5. E. Ahmad, Y. Dong, B. Larson, J. Lü, T. Tang, and N. Zhan. Behavior modeling and veri-

fication of movement authority scenario of chinese train control system using aadl. Science
China Information Sciences, 58(11):1–20, 2015.

6. E. Ahmad, Y. Dong, S. Wang, N. Zhan, and L. Zou. Adding formal meanings to AADL with
hybrid annex. In International Conference on Formal Aspects of Component Software, pages
228–247. Springer, 2014.

7. E. Ahmad, B. R. Larson, S. C. Barrett, N. Zhan, and Y. Dong. Hybrid annex: An AADL
extension for continuous behavior and cyber-physical interaction modeling. In ACM SIGAda
Ada Letters, volume 34, pages 29–38, 2014.

8. R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An algorithmic
approach to the specification and verification of hybrid systems. In Hybrid Systems, volume
736 of LNCS, pages 209–229. Springer, 1993.

9. F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-
Vincentelli. Metropolis: an integrated electronic system design environment. Computer,
36(4):45–52, 2003.

10. R. Banach, M. Butler, S. Qin, N. Verma, and H. Zhu. Core Hybrid Event-B I: Single Hybrid
Event-B machines. Science of Computer Programming, 105:92–123, 2015.

11. R. Banach, M. Butler, S. Qin, and H. Zhu. Core hybrid event-b ii: Multiple cooperating
hybrid event-b machines. Science of Computer Programming, 139:1–35, 2016.

12. A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T. Nguyen, and J. Sifakis. Rigorous
component-based system design using the BIP framework. IEEE Software, 28(3):41–48,
2011.

13. A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J. Raclet, P. Reinkemeier, A. L.
Sangiovanni-Vincentelli, W. Damm, T. A. Henzinger, and K. G. Larsen. Contracts for system
design. Foundations and Trends in Electronic Design Automation, 12(2-3):124–400, 2018.

14. M. Chen, X. Han, T. Tang, S. Wang, M. Yang, N. Zhan, H. Zhao, and L. Zou. MARS: A
toolchain for modelling, analysis and verification of hybrid systems. In Provably Correct
Systems, pages 39–58. Springer, 2017.

http://www.esterel-technologies.com/products/scade
http://www.esterel-technologies.com/products/scade
http://www.omg.org/spec/SysML

20 H. Zhan et al.

15. M. Chen, A. P. Ravn, S. Wang, M. Yang, and N. Zhan. A two-way path between formal and
informal design of embedded systems. In UTP’16, volume 10134 of LNCS, pages 65–92.
Springer, 2016.

16. M. Chkouri, A. Robert, M. Bozga, and J. Sifakis. Translating AADL into BIP - application
to the verification of real-time systems. In MODELS’08, volume 5421 of LNCS, pages 5–19.
Springer, 2008.

17. J. Delange and P. Feiler. Architecture fault modeling with the AADL error-model annex. In
40th EUROMICRO Conference on Software Engineering and Advanced Applications, pages
361–368. IEEE, 2014.

18. P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. C2E2: A verification tool for
annotated Stateflow models. In TACAS 2015, volume 9035 of LNCS, pages 68–82, 2015.

19. M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and C. Xiao.
The Daikon system for dynamic detection of likely invariants. Science of Computer Pro-
gramming, 69(1–3):35–45, 2007.

20. P. H. Feiler and D. P. Gluch. Model-Based Engineering with AADL: An Introduction to the
SAE Architecture Analysis & Design Language. Addison-Wesley Professional, 2012.

21. J. Fitzgerald, P. G. Larsen, and M. Verhoef, editors. Collaborative Design for Embedded
Systems: Co-modelling and Co-simulation. Springer, 2014.

22. J. He. From CSP to hybrid systems. In A Classical Mind, Essays in Honour of C.A.R. Hoare,
pages 171–189. Prentice Hall International (UK) Ltd., 1994.

23. C. A. R. Hoare and J. He. Unifying theories of programming. Prentice Hall, 1998.
24. E. Jahier, N. Halbwachs, P. Raymond, X. Nicollin, and D. Lesens. Virtual execution of

AADL models via a translation into synchronous programs. In EMSOFT’07, pages 134–
143. ACM, 2007.

25. B. R. Larson, P. Chalin, and J. Hatcliff. BLESS: Formal specification and verification of
behaviors for embedded systems with software. In NFM’13, volume 7871 of LNCS, pages
276–290. Springer, 2013.

26. D. L. Lempia and S. P. Miller. Requirements engineering management handbook. National
Technical Information Service (NTIS), 2009.

27. J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou, and L. Zou. A calculus for hybrid CSP.
In APLAS’10, volume 6461 of LNCS, pages 1–15. Springer, 2010.

28. J. Liu, N. Zhan, and H. Zhao. Computing semi-algebraic invariants for polynomial dynamical
systems. In Proceedings of the ninth ACM international conference on Embedded software,
pages 97–106. ACM, 2011.

29. S. Lunel. Parallelism and modular proof in differential dynamic logic. (Parallélisme et
preuve modulaire en logique dynamique différentielle). PhD thesis, University of Rennes
1, France, 2019.

30. S. Lunel, B. Boyer, and J. Talpin. Compositional proofs in differential dynamic logic dL. In
ACSD’17, pages 19–28, 2017.

31. B. Meyer. Object-oriented Software Construction (2Nd Ed.). Prentice-Hall, Inc., 1997.
32. P. Ölveczky, A. Boronat, and J. Meseguer. Formal semantics and analysis of behavioral

AADL models in real-time Maude. In Formal Techniques for Distributed Systems, volume
6117 of LNCS, pages 47–62. Springer, 2010.

33. A. Platzer. Logical Foundations of Cyber-Physical Systems. Springer, 2018.
34. C. Ptolemaeus, editor. System Design, Modeling, and Simulation using Ptolemy II.

Ptolemy.org, 2014.
35. Y. Qian, J. Liu, and X. Chen. Hybrid AADL: A sublanguage extension to AADL. In Inter-

netware ’13. ACM, 2013.
36. SAE International Standards. Aarchitecture analysis & design language (AADL), Revision

B. 2012.

A Unified Graphical Modelling Formalism for CPSs 21

37. A. Sangiovanni-Vincentelli. Quo vadis, sdl: Reasoning about trends and challenges of
system-level design. Proceedings of the IEEE, 95(3), 2007.

38. B. Selic and S. Gerard. Modeling and Analysis or Real-Time and Embedded Systems with
UML and MARTE: Developing Cyber-Physical Systems. The MK/OMG Press, 2013.

39. M. Tiller. Introduction to Physical Modeling with Modelica. The Springer International
Series in Engineering and Computer Science. Springer, 2001.

40. S. Wang, N. Zhan, and D. Guelev. An assume/guarantee based compositional calculus for
hybrid CSP. In TAMC’12, volume 7287 of LNCS, pages 72–83. Springer, 2012.

41. S. Wang, N. Zhan, and L. Zou. An improved HHL prover: an interactive theorem prover for
hybrid systems. In ICFEM’15, volume 9407 of LNCS, pages 382–399. Springer, 2015.

42. N. Zhan, S. Wang, and H. Zhao. Formal Verification of Simulink/Stateflow Diagrams.
Springer, 2017.

43. Y. Zhang, Y. Dong, F. Zhang, and Y. Zhang. Research on modeling and analysis of CPS.
In International Conference on Autonomic and Trusted Computing, pages 92–105. Springer,
2011.

44. C. Zhou, J. Wang, and A. P. Ravn. A formal description of hybrid systems. In Hybrid
systems, volume 1066 of LNCS, pages 511–530, 1996.

45. L. Zou, J. Lv, S. Wang, N. Zhan, T. Tang, L. Yuan, and Y. Liu. Verifying chinese train
control system under a combined scenario by theorem proving. In VSTTE’13, volume 8164
of LNCS, pages 262–280, 2013.

46. L. Zou, N. Zhan, S. Wang, and M. Fränzle. Formal verification of Simulink/Stateflow dia-
grams. In ATVA’15, volume 9364 of LNCS, pages 464–481. Springer, 2015.

47. L. Zou, N. Zhan, S. Wang, M. Fränzle, and S. Qin. Verifying Simulink diagrams via a hybrid
Hoare logic prover. In EMSOFT’13, pages 1–9. IEEE, 2013.

	*-.9cm Unified Graphical Co-Modelling of Cyber-Physical Systems using AADL and Simulink/Stateflow

