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Abstract. Action refinement provides a mechanism to design a
complex reactive system hierarchically. This paper is devoted to
action refinement from a logical point of view, and to combining the
hierarchical implementation of a complex system with the hierarchical
specification of the system in order to verify it in an easy way. To this
end, we use a TCSP-like language with an action refinement operator
as a modeling language, and an extension of the modal µ-calculus,
called FLC (Fixpoint Logic with Chop) [18], as a specification language.
Specifications in FLC can be refined via a mapping that takes as
arguments an abstract specification φ for the process P , an action a of P
and a specification ψ for the process Q that may refine a and produces
a refined specification. We prove under some syntactical conditions:
if Q |= ψ then P |= φ iff P [a � Q] satisfies the refined specification.
Therefore our approach supports ‘a priori’ verification in system design
and can be used to decrease substantially the complexity of verification.

Keywords: action refinement, modal logics, specification, verification,
reactive systems

1 Introduction

Generally speaking, it is not easy, even impossible to capture a complex system
at the beginning. The hierarchical development methodology is useful to under-
stand a complex system. It has made a great success in sequential programming,
and is known as top-down system specification and analysis technique. [3,9,20]
introduced this method into process algebraic settings, called action refinement,
that provides a mechanism to hierarchically develop concurrent systems. In this
method, how to relate a hierarchical specification of a complex system with its
hierarchical implementation (abstraction) in order to simplify verification is a
challenging problem. In the literature, some first attempts to solve this problem
are given, for example in [12,14,15].

The main results obtained in [12,14,15] are as follows: A model of a system is
represented by processes or synchronization structures, and a specification of a
system is given in terms of modal logic formulae. Then define action refinement
both for the model and specification by refinement of a primitive of the abstract
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model. [12] coped with action refinement for models from a semantic point of
view, whereas [14,15] dealt with it from a syntactic point of view, but they both
considered action refinement for the specification as a form of syntactical trans-
formation. In detail, let P stand for a high level system, φ for its specification,
Q for the refinement of an abstract action a in P , � for refinement relations
both for the model and the specification. Then the main result of [12,14,15] can
be re-illustrated as follows:

P |= φ

�
P [a � Q] |= φ[a � Q]

where φ[a � Q] stands for substituting 〈a〉 and [a] in φ by some formulae of forms
〈a1〉〈a2〉 . . . 〈an〉 and [a1][a2] . . . [an] respectively, where a1a2 . . . an is a run of Q.
These results support ‘a priori’ verification in the following sense: Assume that
P |= φ has been established and φ is refined to φ[a � Q] then we automatically
obtain a process satisfying φ[a � Q]. The analogous remark is true when we
refine P to P [a � Q]. Then we obtain automatically a refined formula that is
satisfied by the refined process.

In both approaches, the refinements of the specification are explicitly built on
the structure of Q. This restricts the refinement step in two ways: firstly, there
are properties of the refined system that cannot be deduced in the setting of [12,
14]. For example, let P = a; b+a; c, φ = 〈a〉, Q = a′; (c′; b′; d′+c′; b′). It’s obvious
that P |= φ and Q |= 〈a′〉[c′]〈b′〉. It is expected that P [a � Q] |= 〈a′〉[c′]〈b′〉. But
it cannot be derived using the approaches of [12,14]. Secondly, the refinement
step is restricted to one choice of Q for refining an action a, which appears both
in the refined process and the refined specification explicitly. In contrast to this
we allow action a in P , where P |= φ, to be refined by any process Q that
satisfies a specification ψ and show that the refined system P [a � Q] satisfies
the refined specification under some conditions.

In this paper, we propose a general approach to construct a specification of
a low-level complex reactive system based on a higher-level specification and the
properties of the refinement of an abstract action. To this end, we also model
processes by a TCSP-like language and use FLC as a specification language.
The basic idea of our work is to define a refinement mapping Ω which maps a
high-level specification φ and the properties ψ of the refinement of an abstract
action a to a lower-level specification by substituting ψ for 〈a〉 and [a] in φ.
For example, in the above example, we can get Ω(φ, 〈a′〉[c′]〈b′〉, a) = 〈a′〉[c′]〈b′〉
which is exactly what we expect.

A safety property stipulates that some ‘bad thing’ does not happen during
execution, whereas a liveness property stipulates that a ‘good thing’ eventually
happens during execution. Therefore safety properties are completely different
from liveness properties. [4] proved that every property can be represented as
the conjunction of a safety property and a liveness property in linear models, a
similar result for tree models was shown in [5]. On the other hand, the properties
of a system also can be classified into universal and existential. So by our intu-
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ition, a refinement mapping should be property-preserving, i.e. a safety property
should be refined to a safety property and similarly for the other properties.

We can show the following theorem, called Refinement Theorem, that says:
If Q |= ψ and some other conditions hold then

P |= φ

�
P [a � Q] |= Ω(φ, ψ, a)

To achieve the intended result, two tasks have to be done: the first one is to
select a specification language in which we can implement our idea of refinement.
The suitable candidate could be the µ-calculus since most modal and temporal
logics that are used as specification languages for concurrent systems can be
reduced to it. Unfortunately, the µ-calculus is not suitable for such a task. For
example, suppose that P |= 〈a〉φ1, and there is no occurrence of 〈a〉 or [a] in φ1,
and that Q |= ψ. After refining a by Q in P , a specification for the refined system
that one expects should be naturally ψ(φ1) which means that the behavior of
the system can be divided into two successive segments such that the former
satisfies ψ and the second one meets φ1. But this is no longer a formula of
the µ-calculus. Therefore, here we use an extension of the µ-calculus, FLC [18]
as a specification language. FLC has a sequential composition operator, called
‘chop’ operator (denoted by �). Informally, P |= φ�ψ means that there exists a
behaviour of P which can be divided into two successive segments such that the
first satisfies φ and the second meets ψ. Therefore, the idea of refinement can
be implemented as syntactical substitution in this logic. In the above example,
if 〈a〉�φ1 is a formula FLC, after substituting ψ for 〈a〉, the refined formula
ψ�φ1 is still a formula of FLC. Furthermore, the refined formula expresses the
expected meaning. In FLC, a safety property can be represented in the form
νX.([b]�false) ∧ ([a]�X) and a liveness property can be expressed in the form
µX.(〈a〉�true) ∨ (〈b〉�X) ( See [23]).

A second issue is the atomicity of action refinement for models. One of our
aims in this work is to establish a correspondence between hierarchical implemen-
tations and hierarchical specifications, but if we allow that the refining process
can be interleaved with others problems will arise. E.g. (a ‖{} b)[a � a1; a2]
means the parallel executions of a and b in which a is refined by a1; a2. It’s ob-
vious that a ‖{} b satisfies 〈a〉, and a1; a2 satisfies 〈a1〉�(〈a2〉∧ [b]�false) which
means that a1; a2 firstly performs a1, then follows a2 but cannot perform b. We
expect that a ‖{} b meets 〈a1〉�(〈a2〉∧ [b]�false) after refining a by a1; a2. This
is not true in the case of non-atomic action refinement since b can be performed
between the execution of a1 and a2, but it is valid if we assume that action
refinement is atomic [6,8]. So, in the sequel, we discuss action refinement for
models under the assumption of atomicity.

Due to the limitation of space, we will omit all proofs for the theorems and
lemmas in this paper. The detailed proofs can be found in [16].

The remainder of this paper is organized as follows: A modeling language is
defined in Section 2; Section 3 briefly reviews FLC. A refinement mapping for
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specifications is given in Section 4. The correspondence between the hierarchical
specification and the hierarchical implementation of a complex system is shown
in Section 5. Finally, a brief conclusion is given in Section 6.

2 Modeling Language – A TCSP-Like Process Algebra

2.1 Syntax

As in [14], we use a TCSP-like process algebra in combination with an action re-
finement operator as a modeling language. We use Act (ranged over by a, b, c, . . . )
to stand for an infinite set of (atomic) actions,

√
for a special terminating action

that only can be performed by the terminated process, A for a subset of Act.
Act ∪ {√} is ranged over by γ, . . . . Let X be a set of process variables (ranged
over by x, y, z, ...).

We consider to refine an action by a finite process. Furthermore, it is pro-
hibited to refine an action by a terminated process, which is not only counter-
intuitive but also technically difficult, as discussed, e.g. in [21]. Therefore, we
define two classes of process expressions. The first are finite and are used as
refining processes, the other represent processes that may be refined.
Definition 1. Let F be the set of finite processes (ranged by Q,Q′, Q1, ...) gen-
erated by the following grammar:

Q ::= a | (Q1 +Q2) | (Q;Q) | Q[a � Q′].

P be the set of all closed terms generated by the following grammar:

P ::= δ | nil | a | x | P1;P2 | P1 + P2 | P1 ‖A P2 | rec x.P | P [a � Q]

where Q ∈ F .
An occurrence of a process variable x ∈ X is called bound in a process expres-

sion P iff it does occur within a suberm of the form rec x.P ′, otherwise called
free. A process expression P is called closed iff all occurrences of all variables
occuring in it are bound, otherwise it is called open.

Intuitively, P [a � Q] means that the system replaces the execution of an
action a by the execution of the subsystem Q every time when the subsystem P
performs a. This operator provides a mechanism to hierarchically design reactive
systems. The other expressions of P can be understood as usual.

Sometimes, we abuse Act(P ) to stand for the set of actions which occur in P .
We use Fact(P ) to stand for the set of actions that is possibly performed by P im-
mediately, i.e. Fact(nil) = Fact(δ) = Fact(x) = ∅; Fact(a) = {a}; Fact(P1;P2) = if
Fact(P1) �= ∅ or P1 ≡ δ then Fact(P1) else Fact(P2); Fact(P1 + P2) = Fact(P1 ‖A
P2) = Fact(P1) ∪ Fact(P2); Fact(rex x.P ) = Fact(P ); Fact(P [a � Q]) = if
a �∈ Fact(P ) then Fact(P ) else Fact(P ) ∪ Fact(Q)− {a}.

Traces and runs of a process P are defined as in [11]. For example, the traces
of the process a; b + a; c are ε, a, a; b and a; c, whereas its runs are a; b and a; c,
where ε stands for empty trace. We use Tr(P ) to denote the set of traces of P ,
and Run(P ) the set of its runs. The standard operators on traces and runs of
processes will be used, e.g. ̂ for catenation, � for restriction.
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2.2 Operational Semantics

A transition system is a triple T = (S,A,→) where S is a set of states or
processes, A is a set of labels, and →⊆ S ×A× S. Sometimes we use transition
systems with initial states, (S,A,→, P0), where P0 ∈ S.

Here we define the operational semantics of the language by labeled transition
systems where

√
-labeled transitions are deterministic and final. The meaning

of the constructs can be defined in the standard way except for the refinement
operator. In order to guarantee the atomicity of the refinement, the basic idea is
to define a transition system for the process that maybe be refined, then replace
all transitions labeled by the action to be refined by the transition system for
the refinement.

Similar to [10], the above idea can be implemented by introducing an aux-
iliary operator ∗ to indicate that a process prefixed with it is the remainder of
some process, which has the highest execution precedence and must be executed
atomically. The operator is used to guarantee the atomicity of refinements of ac-
tions. The intermediate language, denoted by P∗, ranged over by s, . . . , is given
by:

s ::= nil | δ | a | x | ∗s | s; s | P + P | s ‖A s | s[a � Q] | rec x.P

where P ∈ P, Q ∈ F .

Definition 2. Let
√

and ab be the minimal relations on P∗ which satisfy the
following rules respectively:

√
(nil)

√
(s)√

(∗s)√
(rec x.s)√

(s[a � Q])

√
(s1)

√
(s2)√

(s1 ‖A s2)√
(s1; s2)

√
(s)

ab(s) ab(δ)
ab(a)
ab(x)

ab(s1) ab(s2)

ab(s1; s2)
ab(s1 + s2)
ab(s1 ‖A s2)

ab(s)

ab(s[a � Q])
ab(rec x.s)

where Q ∈ F .
Definition of

√
Definition of ab

Note that
√

(s) means that s terminates after executing the terminated action√
; ab(s) means that s is in the ∗-free fragment of P∗.

A process s is called abstract if ab(s), otherwise, called concrete . For tech-
nical reason, as in [10], we require the following well-formedness conditions on
P∗,P and F : None of operands of + meets the predicate

√
; Furthermore, re-

cursion is allowed on guardedness in the presence of ; only. ∗s behaves like s
except that the execution of ∗s can not be interleaved with others and it is to
be executed before abstract processes.
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An operational semantics of the process algebra is given by the following
inference rules:

Nil nil
√
→ δ Act a

a→ nil

Nd s1
a→s′1

s1+s2
a→s′1 and s2+s1

a→s′1
Seq-1 s1

a→s′1
s1;s2

a→s′1;s2

Seq-2 s1

√
→s′1 s2

a→s′2
s1;s2

a→s′2
Ref-1 s

b→s′
s[a�Q] b→s′[a�Q]

a �= b

Ref-2 s
a→s′ Qa

′
→Q′

s[a�Q]a
′→(∗Q′);s′[a�Q]

Rec s1[rec x.s1/x] a→s′1
rex x.s1

a→s′1

S-1 s
a→s′

∗s a→∗s′ Syn1 s1

√
→s′1 and s2

√
→s′2

s1‖As2
√
→s′1‖As′2

S-2 s1
a→s′1

s1‖As2 a→s′1‖As2 and s2‖As1 a→s2‖As′1
a /∈ A ∧ ab(s2)

Syn2 s1
a→s′1 s2

a→s′2
s1‖As2 a→s′1‖As′2 and s2‖As1 a→s′2‖As′1

a ∈ A ∧ (ab(s1) ∧ ab(s2))

Syn3 s1
a→s′1 s2

a→s′2
s1‖As2 a→s′1‖As′2 and s2‖As1 a→s′2‖As′1

a ∈ A ∧ (¬ab(s1) ∧ ¬ab(s2))

Definition 3. – A binary symmetric relation R over the closed terms of P∗
is a strong bisimulation if for all (s1, s2) ∈ R and s1

γ→ s′1, there exists s′2
such that s2

γ→ s′2 and (s′1, s
′
2) ∈ R.

– s1 and s2 are strong bisimilar, denoted by s1 ∼= s2, if and only if there exists
a strong bisimulation R such that (s1, s2) ∈ R.

According to the above semantics, it is easy to show that

Lemma 1. For any closed term s ∈ P∗, s ∼= ∗s.
Since a concrete process can not communicate with an abstract process, so ∼=
is not preserved by ‖A in P∗. Even more ∼= is not a congruence relation over
the language P. For example, a1; a2 ∼= a[a � a1; a2], but (a1; a2) ‖{} b �∼= a[a �

a1; a2] ‖{} b. However, once we strengthen Definition 3 by adding the following
condition:

– If ab(s1) then ab(s2)

then the resulting largest bisimulation, denoted by ∼=ab, is a congruence relation
over P∗. Besides, obviously, ∼=ab is a proper subset of ∼=. That is,

Lemma 2. ∼=ab⊂∼=.

Theorem 1. ∼=ab is a congruence over P∗.

3 Specification Language – FLC

3.1 Syntax and Semantics of FLC

Let X,Y, Z, . . . range over an infinite set V ar of variables, p, q, r, . . . over an
assumed finite set Prop of atomic propositions, that contains true and false.
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The formulae of FLC are generated according to the following grammar:

φ ::= p | term | X | [a] | 〈a〉 | φ ∧ φ | φ ∨ φ | φ�φ | µX.φ | νX.φ,

where p ∈ Prop,X ∈ V ar and a ∈ Act.
In the later, a stands for 〈a〉 or [a], op for ∧ or ∨, and σ for µ or ν.
As in the modal µ-calculus, the two fixpoint operators µX and νX bind the

respective variable X and we will apply the usual terminology of free and bound
variables in a formula, closed and open formulae etc. term, p, 〈a〉 and [a] are
called atomic formulae. We say that X is guarded in φ if each occurrence of X
is within some sub-formula a �ψ. µX.X is equivalent to false and νX.X is
equivalent to true. It is easy to show that every closed formula is equivalent to
a formula in which all variables are guarded.

The FLC is interpreted over a given labeled transition system T = (S,Act,→
). Furthermore, an interpretation I ∈ (Prop �→ 2S) is assumed, which assigns
to each atomic proposition the set of states for which it is valid, and satisfies
that I(false) = ∅ and I(true) = S. The meaning of variables is given by an
environment 	 : V ar �→ (2S �→ 2S) that maps variables to monotonic functions
from sets to sets. 	[X �→ f ] agrees with 	 except for associating f with X. The
formulae of FLC are interpreted as monotonic predicate transformers that are
simply mappings f : 2S �→ 2S which are monotonic w.r.t. the inclusion ordering
on 2S . We use MPTT to represent all these monotonic predicate transformers
over S. MPTT together with the inclusion ordering defined by f ⊆ f ′ iff f(A) ⊆
f ′(A) for all A ⊆ S forms a complete lattice. We denote the join and meet
operators by � and �. By Tarski-Knaster Theorem [24], the least and greatest
fixed points of monotonic functions: (2S �→ 2S) �→ (2S �→ 2S) exist. They are
used to interpret the fixed point formulae.

The predicate transformer assigned to an formula φ, denoted by CIT (φ)(	), is
inductively constructed as follows:

CIT (p)(	)(E) = I(p)
CIT ([a])(	)(E) = {s | ∀s′ : s a→ s′ ⇒ s′ ∈ E}
CIT (〈a〉)(	)(E) = {s | ∃s′ : s a→ s′ ∧ s′ ∈ E}
CIT (φ1 ∧ φ2)(	)(E) = CIT (φ1)(	)(E) ∩ CIT (φ2)(	)(E)
CIT (φ1 ∨ φ2)(	)(E) = CIT (φ1)(	)(E) ∪ CIT (φ2)(	)(E)
CIT (X)(	) = 	(X)
CIT (µX.φ)(	) = �{f ∈MPFT | CIT (φ)(	[X � f ]) ⊆ f}
CIT (νX.φ)(	) = �{f ∈MPFT | CIT (φ)(	[X � f ]) ⊇ f}
CIT (term)(	)(E) = E

CIT (φ1�φ2)(	) = CIT (φ1)(	) · CIT (φ2)(	)

where · stands for the compositional operator over functions, \ for the comple-
mentary operator over sets.

The set of processes satisfying a given closed formula φ is φ(S). A process
P with associated rooted transition system ((SP , Act(P ),→P ), P ), where SP
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stands for the set of states in the transition system, is said to satisfy φ iff P ∈
CIT (φ)(	)(SP ) for some interpretation I and environment 	, denoted by P |=
φ. φ ⇔ ψ denotes that for any process P with associated rooted transition
system T = ((SP , Act(P ),→P ), P ), CIT (φ)(	)(E) = CIT (ψ)(	)(E) for any E ⊂
SP , interpretation I, and environment 	. The other notations can be defined in
a standard way.

[18] proved that FLC is strictly more expressive than the µ-calculus since
context-free processes can be characterized in it; FLC is decidable for finite-
state processes, undecidable for context-free processes, satisfiability and validity
of it are undecidable; And FLC does not enjoy the finite-model property. [13]
presented a model-checking algorithm of FLC for finite-state processes.

For the sake of proving technique, we introduce approximants of fixed point
formulae. Let α, β, λ ∈ On, the ordinals, there λ is a limit ordinal. Then
µ0X.φ1 = false, µα+1X.φ1 = φ1{µαX.φ1/X}, µλX.φ1 =

∨

α<λ µ
αX.φ1.

ν0X.φ1 = true, να+1X.φ1 = φ1{ναX.φ1/X}, νλX.φ1 =
∧

α<λ ν
αX.φ1. Note

that by Tarski and Knaster’s Theorem, µX.φ ⇔
∨

α∈On µ
αX.φ and νX.φ ⇔

∧

α∈On ν
αX.φ. If only finite state processes are considered On can be replaced

by ω, moreover, if P is a finite-state process then P |= σX.φ iff P |= σkX.φ
where σ ∈ {ν, µ}, and k is the number of the states or processes of the rooted
transition system associating with P . As shown in [7], we can show that On can
be replaced by ω1, where ω1 stands for the first uncountable limit ordinal.

Convention: In the sequel, we assume that the unary operators have the
highest precedence, � has a priority to other binary operators, ∨ and ∧ have the
same precedence too, but they have a priority over ⇒ and ⇔ in order to avoid
the excessive use of brackets and improve the readability.

3.2 Normal Form

In this subsection, we define a special subset of FLC, called normal form for-
mulae (nff for short). Intuitively, a normal form formula exactly corresponds
to a formula of the µ-calculus if we omit term and the ‘chop’ operator occur-
ring in it. [18] pointed out that the modal µ-calculus can be encoded into FLC
straightforwardly by replacing 〈a〉�φ and [a]�φ for 〈a〉φ and [a]φ respectively.
This implies that the expressiveness of the subset is at least as powerful as the
modal µ-calculus.

Definition 4. Given a formula φ ∈ FLC, we define its runs as follows:

Run(φ) =̂






{ε} if φ = p, term, or X

{a} if φ = a

Run(φ1) ∪Run(φ2) if φ = φ1 op φ2

{ŝt | s ∈ Run(φ1) ∧ t ∈ Run(φ2)} if φ = φ1�φ2
⋃

α<OnRun(σαX.φ1) if φ = σX.φ1
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where ε stands for the empty run that has the property ŝε = s = ε̂s for any
run s. The set of traces of φ is defined as Tr(φ)=̂{s | s ∈ Run(φ) ∨ ∃s′.ŝs′ ∈
Run(φ)}.
Definition 5. A formula which is of the following form is called normal form:

ψ ::= p | X | term | a | a �ψ | ψ opψ | σX.ψ.

The set of nffs is denoted by NF . For simplicity, we use cnff for closed normal
form formula.

Definition 6. Given a nff φ, we define its first non-trivial atomic sub-formula
as follows:

FSub(φ) =̂






{} if φ = p,X, or term
{〈a〉} if φ = 〈a〉 or 〈a〉�φ1

{[a]} if φ = [a] or [a]�φ1

FSub(φ1) ∪ FSub(φ2) if φ = φ1 op φ2

FSub(φ1) if φ = σX.φ1

The set of first actions of φ is defined as: Fact(φ)=̂{a | a ∈ FSub(φ)}. The set
of key actions of φ w.r.t. P , denoted by Kact(φ, P ), is defined as: Kact(φ, P )=̂{a |
∃s ∈ Tr(φ).s ∈ Run(P ) ∧ ŝa �∈ Run(P ) ∧ ŝa ∈ Tr(φ)}.
Example 1. Given a formula φ=̂〈a〉�〈b〉∧ [c]�〈e〉�[f ], FSub(φ) = {〈a〉, [c]}, the
set of its first actions is {a, c}, and the set of its key actions w.r.t. P =̂a; b+c; (e+d)
is {f}.
Remark 1. The intention of key actions is to avoid the case that P |= φ and Q |=
ψ, but P ;Q �|= φ�ψ, because φ concerned some execution of Q. For instance,
in the above example, let Q=̂f ; g and ψ=̂〈f〉�〈g〉. It’s obvious that P |= φ and
Q |= ψ, but P ;Q �|= φ�ψ since Kact(φ, P ) ∩ Fact(Q) �= ∅.
Definition 7. A formula φ ∈ NF is called existential formula if ∀a ∈ Act.[a] �∈
FSub(φ). We use ENF to stand for the set of existential formulae. Dually, a
formula φ ∈ NF is called universal formula if ∀a ∈ Act.〈a〉 �∈ FSub(φ). We
use UNF to stand for the set of universal formulae. For technical reasons, we
stipulate term �∈ UNF . A formula is called property formula if φ ⇔ φ1 ∧ φ2,
where φ1 ∈ ENF and φ2 ∈ UNF . The set of property formulae is denoted by
PNF . A formula φ is called pure path formula if all variables occurring in it
are guarded and no propositional letter occurs in it.

For NF , ENF ,UNF , we have
Theorem 2. NF , ENF ,UNF are closed under all operators of the logic. I.e.,
there exists a ψ ∈ NF(ENF ,UNF) which is equivalent to φ opϕ or σX.φ for
any closed φ and ϕ, if φ, ϕ ∈ NF(ENF ,UNF) where op ∈ {∨,∧,�}.

FLC does not have finite model property [18], i.e., not all of satisfiable for-
mulae of FLC have a finite model, but [13] showed that it has the tree model
property, that is
Theorem 3. If s1 ∼= s2, then for any closed formula φ, s1 |= φ iff s2 |= φ.
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4 Hierarchically Specifying Complex Reactive Systems

As the complexity of reactive system designs becomes overwhelming very quickly,
methods which allow to develop designs in a hierarchical fashion must be sup-
ported by the design formalisms employed. Such methods allow to develop a
design on different levels of abstraction thereby making the development proce-
dure more transparent and thus tractable: Most likely, a developer first divides
the intended (complex) design into various “sub-designs” to capture the abstract
overall structure of the complete design. Subsequently, the sub-designs will be
developed by enriching them step by step with details. This is the design tech-
nique usually encountered in practice, see e.g. in [22]. In the algebraic settings,
action refinement as introduced in Section 2 supports the hierarchical design. In
this section we investigate how to provide such technique in a logical framework.

To this end, we define a refining mapping which substitutes the properties of
the refinement of an abstract action for the ones of the abstract action in a high-
level specification and produces a lower-level specification. In a logical frame-
work, actions are addressed as modalities and descriptions of systems are repre-
sented by formulae. In most modal logics, there are two kinds of modalities, i.e.
〈a〉 and [a] which are used to express existential and universal properties respec-
tively. By our intuition, a refinement mapping should be property-preserving,
i.e. an existential property should be refined to an existential property and sim-
ilarly for the other properties. Otherwise, the mapping is meaningless since it’s
impossible to establish a correspondence between action refinement for models
and action refinement for specifications. For example, P =̂a; b + a; c |= 〈a〉�〈b〉,
a1; a2 |= [a1]�〈a2〉, but P [a � a1; a2] �|= ([a1]�〈a2〉)�〈b〉, since in the high-level
specification, 〈a〉�〈b〉 is an existential liveness property, however its refinement
becomes a universal liveness property.

To ensure the mapping is property-preserving, we partition the property ψ of
the refinement of a into two parts: existential property ψ1 and universal property
ψ2 i.e. ψ ∈ PNF . [a] will be replaced by ψ2, and 〈a〉 will be replaced by ψ1. This
is justified by the result shown in [5] that any property can be expressed as the
intersection of a liveness property and a safety property in branching temporal
logics. So, PNF is powerful enough to define the properties of reactive systems.

Therefore, we define the refinement mapping as follows:

Definition 8. Suppose φ ∈ NF is a high-level specification, a is an abstract
action to be refined, ψ ⇔ ψ1 ∧ψ2 ∈ PNF is the description of the refinement of
a where ψ1 ∈ ENF and ψ2 ∈ UNF . We define the refinement mapping, denoted
by Ω(φ, ψ, a), as φ{ψ1/〈a〉, ψ2/[a]}.

According to the above definition, we have the following results.

Lemma 3. Suppose X does not occur in ψ. Then

Ω(φ1{φ2/X}, ψ, a)⇔ Ω(φ1, ψ, a){Ω(φ2, ψ, a, )/X}.

Lemma 4. If φ⇔ φ′ then Ω(φ, ψ, a)⇔ Ω(φ′, ψ, a).
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Theorem 4 (Applicability). If φ ∈ NF and ψ ∈ PNF , then Ω(φ, ψ, a) ∈
NF ; If φ, ψ ∈ PNF , then Ω(φ, ψ, a) ∈ PNF .

We give the following example which is firstly given in [8] to demonstrate
how to use our approach to hierarchically specify a complex systems.
Example 2. Suppose that a salesman has to go by car from his office in Paris to
another office in London and work there for some time, and then has to go back
to Paris repeatedly. He takes a hovercraft to cross the Channel.

At the beginning, we can specify the system as:

φ=̂νX.





〈leave Paris〉�[fr through the Channel]
�〈arrive in London〉�〈work〉�〈leave London〉

�[gb through the Channel]�〈arrive in Paris〉�X



 .

Then, we can refine x through the Channel by a process with the property

ψx=̂
(

[x load]�[x departure]�〈cross the Channel〉
�〈x arrival〉�〈x unload〉 ∧ true

)

.

Further, we can refine x departure by a process with the property

ψ2=̂[finish loading]�〈engine on〉�〈bye− bye〉 ∧ true

where finish loading signals the end of loading, and cross the Channel by a
process with the property

ψ3=̂〈sit down〉�(
〈newspaper〉�(〈tea〉 ∨ 〈coffee〉)
∨ (〈tea〉 ∨ 〈coffee〉)�〈newspaper〉 )�〈stand up〉 ∧ true.

Hence, the final system should satisfy the specification given by

Ω(φ,Ω(Ω(ψ1, ψ2, x departure), ψ3, cross the Channel), x through the Channel).

Where x ∈ {fr, gb}, and if x = fr then x = gb else x = fr.

5 Hierarchically Verifying Complex Reactive Systems

In this section we establish a correspondence presented by the Refinement The-
orem below between action refinement for models and action refinement for
specification. It states that if Q |= ψ then under certain syntactical conditions
P |= φ iff P [a � Q] |= Ω(φ, ψ, a). This result supports ‘a priori’ verification.
In the development process we start with P |= φ and either refine P and ob-
tain automatically a (relevant) formula that is satisfied by P [a � Q]. Or, we
refine φ using Ω(φ, ψ, a) and obtain automatically a refined process P [a � Q]
that satisfies the refined specification. Of course such refinement steps may be
iterated.

It’s possible that ψ only describes the partial execution of Q, so the semantic
model of the refined specification cannot be simulated by the refined system.
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Therefore, P |= φ and Q |= ψ, but P [a � Q] �|= Ω(φ, ψ, a). For example, it’s
obvious that a; b+ a; c |= φ=̂〈a〉�〈b〉 and a1; a2 |= ψ=̂〈a1〉, but (a; b+ a; c)[a �

a1; a2] �|= 〈a1〉�〈b〉. In order to solve such a problem, we define a bridging formula
Br(ψ,Q) which depends on Q and ψ and will be appended to ψ such that
ψ�Br(ψ,Q) describes the full execution of Q, as follows:

Definition 9. Given a sequence of actions s and a set of sequences of actions
D, we define the distance from s to D, denoted by d(s,D), as d(s,D) = if s ∈ D
or ∃s1, s2.s = s1̂s2 ∧ s1 ∈ D or D = ∅ then 0 else min {|s2| | s1̂s2 ∈ D ∧∀1 ≤
i ≤ |s1|.s(i) = s1(i) ∧ |s| > |s1| ⇒ s2(1) �= s(|s1| + 1)}, where |s| stands for the
length of s, s(i) for the ith element of sequence s. Suppose B is another set of
sequences of actions, we define d(B,A) = max {d(s,A) | s ∈ B} ∪ {0}.

Definition 10. Given a process P and a formula φ, we define a bridging formula
as follows: Br(φ, P ) =̂ term∨µd(Run(φ),Run(P ))+1X.(term∨(

∨

a∈Act(P ) 〈a〉)�X).
For example, in the above example, Br(〈a1〉, a1; a2) = term ∨ 〈a1〉 ∨ 〈a2〉. It is
easy to show that (a; b+ a; c)[a � a1; a2] |= (〈a1〉�Br(〈a1〉, a1; a2))�〈b〉.

Lemma 5. P |= φ iff P |= φ�Br(φ, P ).

In the following Refinement Theorem, Act(P ) ∩Act(Q) = ∅ ensures that no
deadlock will be introduced or removed by action refinement.

For the first part of the theorem, it is possible that ψ describes some prop-
erties concerning some partial or full executions of P ′[a � Q], Q;P ′[a � Q] or
Q;Q but it is not satisfied by them, where P ′ is P itself or one of its derivatives.
For instance, let P =̂a; b; c, φ=̂〈a〉�〈b〉, Q=̂a1, and ψ=̂〈a1〉�[b]�〈d〉. It is obvious
that P |= φ and Q |= ψ but P [a � Q] �|= Ω(φ, ψ�Br(ψ,Q), a). Therefore, we
stipulate that Kact(ψ,Q)∩ (Act(P )∪Fact(Q)) = ∅ and Fact(ψ)∩Act(P ) = ∅ in
order to avoid such case.

For the second part of the theorem, it must be ensured that P performs
the action a according to φ iff P [a � Q] performs some actions of Q accord-
ing to ψ in Ω(φ, ψ, a). Otherwise, the converse is not true. For instance, let
P =̂a; b; c, φ=̂[a]�〈c〉, Q=̂d; e, ψ=̂true. It’s obvious that P [a � Q] |= Ω(φ, ψ, a),
but P �|= φ. So we require Run(ψ) ⊆ Tr(Q) �Act and ψ is a pure path formula.

Theorem 5 (Refinement Theorem).
If Q |= ψ and Act(P ) ∩Act(Q) = ∅ then

• if Kact(ψ,Q)∩ (Act(P )∪Fact(Q)) = ∅ and Fact(ψ)∩Act(P ) = ∅, then P |= φ
implies P [a � Q] |= Ω(φ, ψ�Br(ψ,Q), a);

• if Run(ψ) ⊆ Tr(Q) �Act, and ψ is a pure path formula then P [a � Q] |=
Ω(φ, ψ, a) implies P |= φ.

Where ψ ∈ PNF , φ ∈ NF .

Remark 2. Assume the number of actions and conbinators occuring in Q and
P are n and m respectively, the number of atomic formulae and connectives
occuring in ψ is l. Then the complexity of checking the syntactical constraints
is in O(ln2(m + n)). On the other hand, FLC model checking is in EXPTIME
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( See [13]). Therefore, using the above theorem, model-checking for a complex
reactive system will be reduced to model-checking of its simple abstraction and
the refinement of a primitive of the system, and this will indeed decrease the
complexity of verification of the system.

We will continue Example 2 to show how to apply the Refinement Theorem
to verify a complex system hierarchically.
Example 3. At the beginning, we can implement the system as

Sys =̂ fr Channel||{fr through the Channel}salesman
||{gb through the Channel}gb Channel.

Where

x Channel=̂rec y.x through the Channel; y,

and
salesman=̂ rec x.leave Paris; fr through the Channel; arrive in London;

work; leave London; gb through the Channel; arrive in Paris;x.
It’s obviously, Sys |= φ.
Then, x through the Channel is implemented by

subsysx=̂x load||{x load}Channel

where
Channel =̂ fr platform ||{fr arrival,fr departure}hovercraft

||{gb arrival,gb departure}gb platform
, where

hovercraft =̂ fr departure; cross the Channel; gb arrival+
gb departure; cross the Channel; fr arrival,

x platform =̂ x load;x departure+ x arrival;x unload.
It’s easy to show that subsysx |= ψx.
Further, we can refine x departure by subsys2 and cross the Channel by

subsys3, where,
subsys2 =̂ finishing loading; engine on; bye− bye,
subsys3 =̂ sit down; ((coffee+ tea)||{}newspaper); stand up.
Certainly, subsys2 |= ψ2 and subsys3 |= ψ3.
The final system is obtained as:

Sys[x through the Channel � subsysx[
x departure � subsys2,

cross the Channel � subsys3
]].

Where x ∈ {fr, gb}. According to the Refinement Theorem, the final system
satisfies the final specification.

6 Concluding Remarks

In this paper, we present an approach to refine an abstract specification by
defining a refinement mapping from a high-level specification and the properties
of the refined lower-level component to a lower-level specification. Furthermore,
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we show P |= φ iff P [a � Q] |= Ω(φ, ψ, a) provided Q |= ψ and some syntactical
conditions hold.

Similar results are shown in [12,14,15], but in their approaches, a refined
specification is obtained from the original specification and the refinement Q.
Therefore, some interesting expected properties of the refined system cannot be
derived using their approaches. Besides, we can show that their approaches can
be seen as a special case of our method presented in this paper from a construct-
ing specification point of view. [2] discussed composing, refining specifications
of reactive systems as some sound rules of a logic. [1] considered the problem
given a low-level specification and a higher-level specification, how to construct
a mapping from the former to the latter in order to guarantee the former imple-
ments the latter. Our refinement mapping Ω maps the abstract specification to
the detailed specification, i.e. we go the converse direction.

In our framework, composing specifications also can be dealt with, for ex-
ample, supposing P |= φ and Q |= ψ, we can get a composite specification like
φ�Br(φ, P )�ψ for P ;Q. We would like to leave more detailed discussion related
to this topic for the full version of this paper.

In this paper, we used the standard interleaving setting, so we only consider
the case of atomic action refinement. In fact, we believe our approach can be
applied to the case of non-atomic action refinement, too, if a suitable specification
language is available. For example, we can extend νTrPTL [19] with ‘chop’ and
its duality as a specification language.
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