
Program Verification by Using DISCOVERER ?

Lu Yang1, Naijun Zhan2, Bican Xia3, and Chaochen Zhou2

1 Software Engineering Institute, East China Normal University
2 Laboratory of Computer Science, Institute of Software, Academia Sinica

3 LMAM & School of Mathematical Sciences, Peking University

Abstract. Recent advances in program verification indicate that vari-
ous verification problems can be reduced to semi-algebraic system (SAS
for short) solving. An SAS consists of polynomial equations and poly-
nomial inequalities. Algorithms for quantifier elimination of real closed
fields are the general method for those problems. But the general method
usually has low efficiency for specific problems. To overcome the bot-
tleneck of program verification with a symbolic approach, one has to
combine special techniques with the general method. Based on the work
of complete discrimination systems of polynomials [33, 31], we invented
new theories and algorithms [32, 30, 35] for SAS solving and partly im-
plemented them as a real symbolic computation tool in Maple named
DISCOVERER. In this paper, we first summarize the results that we
have done so far both on SAS-solving and program verification with
DISCOVERER, and then discuss the future work in this direction, in-
cluding SAS-solving itself, termination analysis and invariant generation
of programs, and reachability computation of hybrid systems etc.

K
¯
ey words: semi-algebraic systems, DISCOVERER, program verifica-

tion, termination, invariant generation, reachability computation

1 Introduction

In the last decades, since the first modern computer was invented, the perfor-
mances of computer hardware have been multiplied by 1013 or even more. This is
a technical revolution. The immediate consequence is that the size of programs
executed on these computers has grown in similar proportions. On the other
hand, neither the intellectual capacities of programmers nor the sizes of design
and maintenance teams can grow in similar proportions. This results in most
software products containing many bugs. For example, we are often told that
Microsoft Company releases bug repairing programs for its merchandized prod-
ucts on the website of the company. Some of these errors may cause catastrophic
consequences which are very costly and sometimes inadmissible (e.g., nuclear
control systems). The difficulty to prevent and find errors grows faster than the

? This work is supported in part by NKBRPC-2002cb312200, NKBRPC-
2004CB318003, NSFC-60273022, NSFC-60493200, NSFC-60421001, NSFC-
60573007, and NKBRPC-2005CB321902.

size of programs which can now be really huge. Classical software verification
methods like code reviews, simulations, tests and so on do not scale up. The
production of reliable software, their maintenance and their evolution over long
periods of time has become a fundamental concern to computer scientists.

Exploiting mathematical methods to strictly prove that a computer program
does exactly what is stated in the program specification has been recognized as
an effective and efficient approach to produce reliable softwares and in fact has
been made lots of achievements, for example applying model-checking techniques
[4–6, 24] to the design of hardware. Since the total program verification problem
is undecidable, it is doomed to be impossible to find an universal approach to
mechanically verify the correctness of programs without any simplification or re-
striction. This implies that the possible solution to program verification problem
is either by abstract interpretation to simplify the given proof obligation, or by
interactive manner to acquire some oracles during verification, or by developing
specific methods for specific verification problems which are decidable. Following
the above three lines, there are various techniques to program verification that
have been well established so far, e.g., the abstraction-based techniques [11] such
as static program analysis [12, 16] and program typing [13, 19], theorem-proving
based deductive methods [20, 21], model-checking [4–6, 24], etc. The main dis-
advantage of the abstraction-based techniques is that complicated properties
cannot be dealt with well because complicated properties closely interwind with
the actual executions of a program, but normally in abstract executions of the
program lots of useful information will be lost. The shortcomings of theorem-
proving based deductive methods lie in the following three aspects. First, it is
semi-automatic and we cannot get anything if theorem provers fail for the given
problem. Second, it is not easy to master theorem provers because they are
driven by unformalized heuristics, and these heuristics and their interaction are
changed often for improving proof strategies. Third, compatibility with other
formal methods is somewhat difficult. By contrast, designing a specific full auto-
matic computer-aided method for some specific problems will be more effective
and efficient.

Recent advances in program verification indicate that various verification
problems of programs, for instance, termination analysis of programs [28, 3],
reachability computation of linear hybrid systems [18], and invariant genera-
tion [9, 25, 26], can be reduced to SAS solving. Lots of well-known real symbolic
computation tools such as REDLOG [15] and QEPCAD [8] have therefore been
applied to program verification [18, 9].

Most of the well-known real symbolic computation tools for solving SASs are
fundamentally based on the techniques concerning quantifier elimination of real
closed fields using the cylindrical algebraic decomposition (CAD) method due to
Collins [7], and thus the complexity of the algorithms adopted in these tools is
at least double exponential in the number of variables [14]. In order to improve
the efficiency of such tools, special methods may be combined with the CAD for
specific targets.

Based on the work in [36, 33, 31], two kinds of specific problems of SASs are
studied in [32, 30, 35]. Reference [30] presented an algorithm to isolate the real so-
lutions of constant SASs, while references [32, 35] proposed practical algorithms
for real solution classification of parametric SASs. We have partly implemented
the theory and algorithms as a Maple package named DISCOVERER which has
been successfully used to address many problems studied by other researchers
[32, 30, 35, 29]. Specifically, when DISCOVERER is applied to program verifica-
tion, we found that many verification problems can be more effectively solved. In
what follows, we will report some of the results, including termination condition
generation of linear loop programs and reachability computation of linear hybrid
systems.

2 DISCOVERER

In this section, we will give a brief description on DISCOVERER and refer the
reader to [32, 35] for details.

All the polynomials discussed in this section are in Q[u1, ..., ud, x1, ..., xs],
the ring of polynomials in indeterminates u1, ..., ud, x1, ..., xs with rational coef-
ficients, where s > 0, d ≥ 0, u = (u1, ..., ud) are parameters and x = (x1, ..., xs)
variables. The following system

p1(u, x) = 0, ..., ps(u, x) = 0,
g1(u, x) ≥ 0, ..., gr(u, x) ≥ 0,
gr+1(u, x) > 0, ..., gt(u, x) > 0,
h1(u, x) 6= 0, ..., hm(u, x) 6= 0,

is called a semi-algebraic system and is denoted shortly by

[[P], [G1], [G2], [H]] (1)

where P,G1, G2 and H represent the sets of polynomials {p1(u, x), ..., ps(u, x)}
(= 0), {g1(u, x), ..., gr(u, x)} (≥ 0), {gr+1(u, x), ..., gt(u, x)} (> 0) and {h1(u, x),
..., hm(u, x)} (6= 0), respectively. An SAS is called parametric if d > 0 and
constant otherwise.

Based on the theory of complete discrimination systems for polynomials [33,
31], which is a set of explicit expressions in terms of the coefficients of a given
polynomial that are sufficient for determining the numbers and multiplicities of
the real and imaginary roots of the polynomial, and the RSD algorithm [36],
which enables us to transform equations into triangular form with good proper-
ties, we proposed new algorithms for solving SASs which have been implemented
partly in DISCOVERER. Our algorithms and DISCOVERER have been applied
to many problems such as automated theorem discovering and proving involving
inequalities, computer vision, stability analysis etc., e.g., see [32, 35, 29].

For a constant SAS, T , of the form (1), DISCOVERER can determine the
number of distinct real solutions of T , say n, and compute n disjoint cubes with
rational vertices. Each of the cubes contains one and only one solution to T and

the width of the cubes can be less than any given positive real. The two functions
are realized through calling

nearsolve([P], [G1], [G2], [H], [x1, ..., xs])

and

realzeros([P], [G1], [G2], [H], [x1, ..., xs], w),

respectively, where w is optional and used to indicate the maximum length of
the edges of the output cubes.

For a parametric SAS, T , of the form (1) and any integer N ≥ 0, DISCOV-
ERER can determine the conditions on u such that T has exactly N distinct
real solutions for x. The conditions can be obtained by combining two functions
of DISCOVERER: tofind and Tofind. First, by calling

tofind([P], [G1], [G2], [H], [x1, ..., xs], [u1, ..., ud], N),

one obtains the border polynomial BP in u of the system T and the necessary
and sufficient conditions for T to have N distinct real solutions provided BP6= 0.
Second, to determine the situation when parameters are on the “boundary”, i.e.,
BP= 0, one need to call Tofind. Suppose R is a factor of BP, one can call

Tofind([P,R], [G1], [G2], [H], [x1, ..., xs], [u1, ..., ud], N)

to obtain conditions when the parameters are on R = 0.
The last argument of tofind and Tofind is one of the following three forms:

– a non-negative integer b, to indicate that T has exactly b distinct real solu-
tions;

– a range b..c, where b, c are non-negative integers and b < c, to indicate that
T has b to c distinct real solutions;

– a range b..w, where b is a non-negative integer and w a name, to indicate T
has more than or equal to b distinct real solutions.

3 Termination Analysis and Reachability Computation
with DISCOVERER

In this section, we summarize the work that we have achieved so far on termi-
nation condition generation of linear programs and reachability computation of
linear hybrid systems with DISCOVERER.

3.1 Termination Criterion Generation of Linear Programs

The well-known method for establishing termination of programs is the use of
well-founded domains together with so-called ranking functions that map the
state space of a program to a well-founded domain. Clearly, the existence of

such a ranking function implies termination. Some heuristics on generating linear
ranking functions for linear programs have been proposed, e.g. [10, 23].

Generally speaking, the cost for synthesizing linear ranking functions is very
high, for example, the complexity of the algorithm in [10] is exponential and
that of the algorithm in [23] could be double exponential. Besides, it is not
easy to characterize programs to which such an algorithm can be applied. If
the algorithm fails for a given program, we can conclude nothing about the
termination of the program. The ideal solution to termination problem is to
establish a criterion for each class of programs whose termination problem is
decidable so that for a given program contained in the class, it can be decided if
the program terminates trivially by computing the criterion, although the cost
for generating such a criterion is also expensive.

Reference [28] made an attempt towards the direction by showing the decid-
ability of a class of programs of the form, called linear loop programs,

P1: while (Bx > b) {x := Ax + c},

by relating the termination of P1 to the positive eigenvalues of A, where A and B
are N ×N and N ×M matrices respectively, Bx > b represents a conjunction of
linear inequalities in the program variables and x := Ax+c represents the linear
assignments to each of the variables. In order to establish criteria for termination
of P1 based on Tiwari’s work, theories and tools concerning root classification of
parametric SASs on an interval are demanded.

Based on Tiwari’s work, we used DISCOVERER and established termination
conditions for programs of the following form:

P11 : while (
∑n

i=1 cixi > 0) {x := Ax}.

For example, suppose the dimension of x is specified, say, three, setting A =
(aij)3×3, we have:

Theorem 1. Provided the polynomial system {(a11−λ)x1+a12x2+a13x3, a21x1+
(a22−λ)x2 +a23x3, a31x1 +a32x2 +(a33−λ)x3, c1x1 +c2x2 +c3x3} has no non-
trivial solutions, the program P11 terminates if and only if the following formula
is satisfied:

(p ≥ 0 ∧ q ≥ 0 ∧ r ≥ 0) ∨ (D3 < 0 ∧ r ≥ 0), (2)

where

p = −a11 − a22 − a33,
q =− a21a12 + a11a33 − a31a13 + a22a33 + a11a22 − a23a32,
r = −a11a22a33 + a31a13a22 + a21a12a33 + a11a23a32

−a31a12a23 − a21a13a32,
D3 = −4 q3 + 18 p q r + p2q2 − 4 p3r − 27 r2.

One can use various algebraic tools, such as multivariate resultant methods,
to check whether a certain polynomial system has a non-trivial solution or not.

4 Reachability Computation of Linear Hybrid Systems

Reachability and safety are now being recognized as central problems in design-
ing hybrid and dynamical systems. Contrast with issues of stability and control-
lability of hybrid systems which are well-studied in control theory, there are not
many results on reachability of those systems in computer science. Known classes
of hybrid systems for which the reachability problem is decidable are timed au-
tomata [2], multirate automata [1], rectangular hybrid automata [22, 17], etc.
Recently a most general decidability result of three families of linear hybrid sys-
tems whose differential equations of the form ξ̇ = Aξ+Bu was obtained in [18],
where ξ(t) ∈ Rn is the state of the system at time t, A ∈ Rn×n, B ∈ Rn×m are
the system matrices, and u : R → Rm is a piecewise continuous function which
is called the control input.

Roughly speaking, computing a reach set in [18] is via the following two
steps: firstly, purely mathematically transform a problem of reachability com-
putation to an SAS and therefore the decidability is obtained according to the
famous Tarski’s results [27]; then use the well-known computer algebra programs
REDLOG and QEPCAD to solve the resulting SAS.

Using DISCOVERER instead of REDLOG and QEPCAD in the second step,
we found that the results reported in [18] can be much improved. This can be
justified by revisiting the examples in [18] that are not dealt well with REDLOG
and QEPCAD. We list two of them below.

Example 1 (Example 3.5 of [18]). Consider the linear control vector field given
by the diagonal matrix A ∈ Q2×2 and U = {u} defined as follows:

A =
[

2 0
0 −1

]
, u(t) =

[
u1(t)
u2(t)

]
=

[
−ae

1
2 t

aet

]
, with a ≥ 0.

Let the initial set be X = {(0, 0)}. Then, after mathematical transformation,
we get the reach set from X forwards as:

Post(X) = {(y1, y2) ∈ R2 | ∃a∃z : 0 ≤ a ∧ z ≥ 1 ∧ h1 = 0 ∧ h2 = 0} (3)

where

h1 = y1 −
2
3
a(−z4 + z), h2 = y2z

2 − 1
2
a(z4 − 1).

Since the quantifiers in (3) cannot be eliminated using REDLOG or QEPCAD
alone, reference [18] applied REDLOG to eliminate a first and then using QEP-
CAD to eliminate z, and thus obtained Post(X) is

{(y1, y2) ∈ R2 | (y2 > 0 ∧ y1 + y2 ≤ 0) ∨ (y2 < 0 ∧ y1 + y2 ≥ 0)
∨ 4y2 + 3y1 = 0} (4)

With DISCOVERER, (3) can be solved by calling first

tofind([h1, h2], [a, z − 1], [], [], [z, a], [y2, y1], 1..n);

and we get that the system has real solutions if and only if

y2 > 0 ∧ y1 + y2 < 0

provided that

y1 6= 0, y2 6= 0, y1 + y2 6= 0 and R 6= 0

where

R = 192y3
2y2

1 − 63y3
1y2

2 + 112y1y
4
2 − 6y4

1y2 + 3y5
1 + 16y5

2 .

Further considering (y1, y2) on the “boundaries” with DISCOVERER (by calling
Tofind), we get that the system has real solutions if and only if

(y2 > 0 ∧ y1 + y2 < 0) ∨ (y1 = y2 = 0) ∨
(y1 < 0 ∧ (y2 is the smallest root of R = 0 when y1 is specified)). (5)

The whole computation costs no more than 30 seconds on a PC (Pentium III/800
GHz cpu, 256M main memory, Windows XP) with Maple 9.

Note that (5) is inconsistent with (4). We give the following counter-examples
by DISCOVERER to show that (4) is not correct. Suppose y2 = −1, y1 = 2, thus
y2 < 0∧y1 +y2 ≥ 0. It is easy to see that the system has no real solutions under
a ≥ 0 and z ≥ 1. Another two counter-examples are y2 = 1, y1 = −1 and
y1 = 4, y2 = −3.

Example 2 (Example 3.7. of [18]). Consider the control linear vector field given
by the matrix A ∈ Q2×2 and U defined as follows:

A =
[

0 −1
1 0

]
, u(t) =

[
u1(t)
u2(t)

]
=

[
a cos (2t)

−a−1 sin (2t)

]
, with a > 0.

Let the initial set be X = {(0, 0)} and the final set be Y = {(−1, 1)}. Then,
after some mathematical transformation, Y is reachable from X if and only if
the following formula holds:

∃w∃z∃a : a > 0 ∧ g1 = 0 ∧ g2 = 0 ∧ g3 = 0, (6)

where g1 = w2 + z2− 1, g2 = w((4a2− 2)z +2−a2)+3a and g3 = (a2− 2)(w2−
z2 + z)− 3a.

The solution to (6) in [18] with REDLOG and QEPCAD is as follows: Elim-
inate w with REDLOG first and then obtain

∃z∃a : a > 0
∧16a6z4 − 24a6z3 + 9a6z2 − a6z + 48a5z2 − 24a5z + 3a5 − 48a4z4

+84a4z3 − 42a4z2 + 6a4z − 9a4 − 48a3z2 + 60a3z − 12a3 + 36a2z4

−84a2z3 + 60a2z2 − 12a2z + 18a2 + 12az2 − 24az + 12a− 8z4

+24z3 − 24z2 + 8z = 0 ∧
16a4z4 − 8a4z3 − 15a4z2 + 8a4z − a4 − 16a2z4 + 20a2z3 + 12a2z2

−20a2z + 13a2 + 4z4 − 8z3 + 8z − 4 = 0 (7)

with the assumption that 4a2z − a2 − 2z + 2 6= 0. The resulting formula is so
complex that the quantifiers cannot be automatically eliminated using either
REDLOG or QEPCAD. Thus z = 0 is assumed and it results that (6) holds
provided that

∃a : a > 0 ∧ (a2 6= 2) ∧
3a4 − 9a3 − 12a2 + 18a + 12 = 0 ∧ −a4 + 13a2 − 4 = 0 (8)

which is found to be true using QEPCAD. Alternatively, reference [18] also
used REDUCE to derive the roots of the polynomials in a of (8) and found the
common root r = 1

2 (
√

17 + 3) ≈ 3.56156 satisfying r > 0 and r2 6= 2. Hence,
y = (−1, 1) is reachable from x = (0, 0) by taking a = r.

In contrast, we solve (6) using DISCOVERER simply by executing the fol-
lowing command

realzeros([g1, g2, g3], [], [a], [], [w, z, a], 1/1000000)

and get the following three solutions within 0.3 seconds on the same machine

[[−3786927439
4294967296 , −30295419511

34359738368], [1659951619997335184372088832 , 33199032472081
70368744177664], [938055701268435456 , 938055737

268435456]],
[[−2797709061

4294967296 , −699427265
1073741824], [−6517535813

8589934592 , −6517535651
8589934592], [70273639

134217728 , 281094637
536870912]],

[[1, 1], [0, 0], [149382354194304 , 29876471
8388608]],

which approximates to

[[−.8817127531,−.8817127531], [.4717866261,.4717866271], [3.494529802,3.494529936]],
[[−.6513924014,−.6513924012], [−.7587410292,−.7587410103], [.5235794112,.5235795621]],
[[1.,1.], [0.,0.], [3.561552763,3.561552882]].

It is easy to see that the solution given in [18] with REDLOG,QEPCAD and
REDUCE is just one of the three solutions we got above using DISCOVERER.

5 Future Work

In this paper, it has been shown that the theory for isolating real solutions of
a constant SAS and classifying real solutions of a parametric SAS and the tool
DISCOVERER invented in [32, 30, 35] can indeed improve program verification,
e.g., termination condition generation of linear programs and reachability com-
putation of linear hybrid systems. But all what we have done up to now is just
a first step, as there are still many challenging problems left in this field from
the theory on SASs itself to program verification.

As for future work on program verification, we think that it is worth in-
vestigating the following issues: Firstly, as termination condition generation for
the simple linear loop programs with DISCOVERER, it deserves to apply this
method to more general linear programs or even non-linear programs. In addi-
tion, it is also a challenging problem to study reachability for more complicated

hybrid systems with DISCOVERER. Finally, we believe that it is possible to pro-
duce interesting results by applying the theory and DISCOVERER to invariant
generation of programs. The dominant method on finding invariants of a pro-
gram is by abstract interpretation [11], but this method suffers from the problem
of overshooting invariants. With comparison to the abstract interpretation based
techniques, references [9, 25, 26] proposed a new technique for invariant genera-
tion by reducing this problem to SAS solving so that the new approach can avoid
weak invariant generation. However, the high complexity of the well-known tech-
niques and tools for non-linear constraint solving limits the applicability of this
approach, for example, in order to avoid producing non-linear constraints [25, 26]
had to sacrifice the completeness of the method. Additionally, using the approach
of [25, 26] all the resulting invariants can only consist of polynomial equations
but reject polynomial inequalities, this may thus restrict the expressiveness of
resulting invariants.

Regarding future work on DISCOVERER itself, all theories and algorithms
implemented in DISCOVERER only concern SASs with 0-dimensional solutions
(the number of solutions is finite) until now. But, in fact, many problems in
program verification may be reduced to SASs with positive dimensional solutions
(the number of solutions is infinite). This demands us to extend the established
theories and tool in order that SASs with positive dimensional solutions can
be also well addressed. Furthermore, we shall develop special tools based on
DISCOVERER for program verification.

Finally, we have to point out that up to now we have no idea on how to
generalize our approach to non-numerical problems like determining termination
for term-rewriting systems. It seems difficult (impossible) because the set of
symbols of a term-rewriting system that play as coefficient in SASs does not
satisfy required algebraic properties such as the axioms for field.

Acknowledgement

The authors sincerely thank the anonymous referees for their useful comments
which are helpful for improving the presentation of this paper.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(3):3-34, 1995.

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

3. A.R. Bradley, Z. Manna, H.B. Sipma. Termination of Polynomial Programs. In
Proc. of Verification, Model Checking and Abstract Interpretation (VMCAI’05),
LNCS 3385, 2005.

4. E.M. Clark, A. Emerson and A.P. Sistla. Automatic verification of finite-state con-
current programs using temporal logic. ACM Transaction on Programming Lan-
guages and Systems, 8(2):244-263, 1986.

5. E.M. Clarke and E.A. Emerson. Synthesis of synchronization skeletons for branch-
ing time temporal logic. In IBM Workshop on Logics of Programs, LNCS 131,
1981.6.

6. E.M. Clarke, O. Grumberg and D.A. Peled. Model Checking. MIT Press, 1999.
7. G.E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic

decomposition. Automata Theory and Formal Languages, LNCS 33, pp. 134–183,
1975.

8. G. E., Collins and H. Hong. Partial cylindrical algebraic decomposition for quan-
tifier elimination. J. of Symbolic Computation, 12:299–328, 1991.

9. M. colón, S. Sankaranarayanan and H.B. Sipma. Linear invariant generation using
non-linear constraint solving. In CAV’03, LNCS 2725, pp. 420–432, 2003.

10. M. colón and H.B. Sipma. Synthesis of linear ranking functions. In TACAS’01,
LNCS 2031, pp. 67–81, 2001.

11. P. Cousot and R. Cousot. Abstraction interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In ACM
POPL’77, pp. 238–252, 1977.

12. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
ACM POPL’79, pp. 269-282, 1979.

13. L. Damas and R. Milner. Principal type-schemes for functional programs. In ACM
POPL’82, pp.207-212, 1982.

14. J. H., Davenport and J. Heintz. Real Elimination is Doubly Exponential. J. of
Symbolic Computation, 5:29–37, 1988.

15. A. Dolzman and T. Sturm. REDLOG: Computer algebra meets computer logic.
ACM SIGSAM Bulletin, 31(2):2–9.

16. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretation com-
plete. J. ACM, 4792:361-416,2000.

17. T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata? J. of Computer Science and System Sciences, 57:94-124, 1998.

18. G. Lafferrierre, G.J. Pappas and S. Yovine. Symbolic reachability computaion for
families of linear vector fields. J. of Symbolic Computation 11:1–23, 2001.

19. R. Milner. A theory of polymorphism in programming. J. Computer System Sci-
ence, 17(3):348-375, 1978.

20. S. Owre, J.M. Rushby and N. Shankar. PVS: A protype verification system. In
CADE’92, LNCS 607, pp. 748-752, 1992.

21. C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system Coq.
J. Symbolic Logic, 15(5/6):607-640, 1993.

22. A. Puri and P. Varaiya. Decidability of hybrid systems with rectangular differential
inclusions. In CAV’94, LNCS 818, pp. 95-104, Springer-Verlag, 1994.

23. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear
ranking functions. In VMCAI’04, LNCS 2937, pp. 239–251, 2004.

24. J.-P. Queille and J. Sifakis. Verification of concurrent systems in CESAR. In Int.
Symp. On Programming, LNCS 137, pp.337-351, 1982.

25. S. Sankaranarayanan, H.B. Sipma, and Z. Manna. Non-linear loop invariant gen-
eration using Gröbner bases. In ACM POPL’04, pp. 318–329, 2004.

26. S. Sankaranarayanan, H.B. Sipma, and Z. Manna. Constructing invariants for hy-
brid systems. In HSCC’04, LNCS 2993, pp. 539–554.

27. A. Tarski. A Decision for Elementary Algebra and Geometry. University of Cali-
fornia Press, Berkeley, May. 1951.

28. A. Tiwari. Termination of linear programs. In CAV’04, LNCS 3114, pp. 70–82,
2004.

29. D. Wang and B. Xia. Stability analysis of biological systems with real solution
classification. In: Proceedings of the 2005 International Symposium on Symbolic
and Algebraic Computation (ISSAC 2005) (M. Kauers, ed.), pp. 354–361. ACM
Press, New York (2005).

30. B. Xia and L. Yang. An algorithm for isolating the real solutions of semi-algebraic
systems. J. Symbolic Computation, 34:461–477, 2002.

31. L. Yang. Recent advances on determining the number of real roots of parametric
polynomials. J. Symbolic Computation, 28:225–242, 1999.

32. L. Yang, X. Hou and B. Xia. A complete algorithm for automated discovering of
a class of inequality-type theorems. Sci. in China (Ser. F) 44: 33–49 (2001).

33. L. Yang, X. Hou and Z. Zeng. A complete discrimination system for polynomials.
Science in China (Ser. E), 39:628–646, 1996.

34. L. Yang and B.C. Xia, An explicit criterion to determine the number of roots of a
polynomial on an interval. Progress in Natural Science, 10(12):897–910, 2000.

35. L. Yang and B. Xia. Real solution classifications of a class of parametric semi-
algebraic systems. In Proc. of Int’l Conf. on Algorithmic Algebra and Logic, pp.
281–289, 2005.

36. L. Yang, J. Zhang and X. Hou. A criterion of dependency between algebraic equa-
tions and its applications. In Proceedings of International Workshop on Mathe-
matics Mechanization 1992, Wu, Wen-tsun & Cheng, Min-de (eds.). International
Academic Publishers, Beijing, pp. 110–134, 1992.

