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Abstract
We formalize the definition and basic properties of smooth
manifolds in Isabelle/HOL. Concepts covered include parti-
tion of unity, tangent and cotangent spaces, and the funda-
mental theorem for line integrals. We also construct some
concrete manifolds such as spheres and projective spaces.
The formalization makes extensive use of the existing li-
braries for topology and analysis. The existing library for
linear algebra is not flexible enough for our needs. We there-
fore set up the first systematic and large scale application of
“types to sets”. It allows us to automatically transform the
existing (type based) library of linear algebra to one with
explicit carrier sets.

Keywords Isabelle, Manifolds, Formalization of Mathemat-
ics

1 Introduction
Smooth manifolds is one of the most important concepts in
modern mathematics and physics. Its definition opens up
large areas of study such as differential topology, Riemann-
ian geometry (leading to general relativity), and symplectic
geometry (leading to the modern theory of classical mechan-
ics). It also plays important roles in the theory of dynamical
systems and partial differential equations. Formalization of
the theory of smoothmanifolds in a proof assistant, therefore,
is an important step towards making interactive theorem
proving applicable to many areas of study.

In addition to its importance in mathematics, formalizing
smooth manifolds is also interesting as a difficult test case for
proof assistants. Reasoning about smooth manifolds requires
large libraries in both mathematical analysis and linear al-
gebra. Moreover, the prevalent use of subsets and partial
functions, as well as constructions depending on dimension
or points in the manifold, offer a rigorous test of the proof
assistant’s type system.

In this paper, we describe how to formalize the basic con-
cepts of smoothmanifolds in Isabelle/HOL.We largely follow
chapters 1, 2, 3, and 11 of the textbook Introduction to Smooth

CPP 2019, January 14–15, Cascais/Lisbon, Portugal
2019.

Manifolds by Lee [11], formalizing about one half of the ma-
terial in these chapters. Occasionally, we also refer to other
textbooks such as [5] and [18].

Our developments are submitted1 to the Archive of Formal
Proof and consist of about 11k lines of code.

We emphasize that we are formalizing in this paper mani-
folds with a smooth structure, not just topological manifolds,
a simpler concept that has already been formalized in sys-
tems such as Mizar [15]. Moreover, we treat manifolds as
abstract topological spaces endowed with compatible charts,
rather than as subspaces of some Euclidean space, as is done
in, for example, Spivak’s Calculus on Manifolds [17]. The
abstract definition of manifolds can be conceptually more
difficult to understand at first, and makes definition of con-
cepts such as tangent spaces more involved. However, it is
more natural when it comes to the more advanced applica-
tions, such as the construction of the projective space. To our
knowledge, this is the first formalization of abstract smooth
manifolds in any proof assistant.
Part of the difficulty with formalizing smooth manifolds

is that the theory makes extensive use of subsets and partial
functions. In particular, we will need to work frequently with
vector spaces defined on a subset of some type. The existing
Isabelle library on linear algebra has theorems mostly about
vector spaces defined on the entire type. To deduce theorems
about vector spaces defined on subsets in a mostly automatic
manner, we make use of the “types to sets” mechanism devel-
oped by Kunčar and Popescu [10]. This is the first systematic
and large scale application of this mechanism.
We now give an outline for the rest of this paper. In Sec-

tion 2, we give a brief introduction to Isabelle/HOL and
explain some basic constructions that are used in this paper.
In Section 3, we summarize the concepts in smooth man-
ifold theory that have been formalized, and how they are
expressed in Isabelle/HOL. In Section 4, we focus on the
types to sets technique for obtaining results in linear algebra.
In Section 5, we discuss various problems encountered dur-
ing the formalization, both in mathematics and in working
with Isabelle/HOL’s simple type theory. Finally, we conclude
and suggest directions of future work in Section 6.

1https://ci.isabelle.systems/afp-submission/browser_info/
20180928-202315_4765/AFP/Smooth_Manifolds/

1

https://ci.isabelle.systems/afp-submission/browser_info/20180928-202315_4765/AFP/Smooth_Manifolds/
https://ci.isabelle.systems/afp-submission/browser_info/20180928-202315_4765/AFP/Smooth_Manifolds/
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2 Preliminaries in Isabelle/HOL
Isabelle [12] is an interactive theorem prover based on higher
order logic. Isabelle/HOL is the main instantiation of Isabelle.
It has a large library in analysis and linear algebra, which
makes extensive use of Isabelle’s type class and locale mech-
anisms. We base our work on this existing library, and will
also make frequent use of type classes and locales. See [3, 6]
for more background information.
In the remainder of this section, we discuss two basic

constructions in Isabelle/HOL that are used in this paper.

2.1 Partial Functions
In this paper, we will frequently need to consider a collection
C of functions of type ’a ⇒ real, where the intended domain
of each f ∈ C is some subset X of ’a, and wish to make C
into a vector space. Usually, a function f from domain X is
represented by setting f to some arbitrary value outside X .
In this case, it is best to set the value of f to 0 outside X , so
the usual addition and scalar multiplication on functions can
be used for vector space operations. The relevant definitions
and results are as follows.

Check whether f represents a function with domain A:

definition extensional0 where
extensional0 A f = (∀x. x < A → f x = 0)

Given any f , get the restriction of f to domain A:

definition restrict0 where
restrict0 A f x = (if x ∈ A then f x else 0)

Two functions with domain A are equal if they are equal
on every point in A:

lemma ext_extensional0:
"f = g" if "extensional0 S f" "extensional0 S g"

and "
∧
x. x ∈ S ⇒ f x = g x"

2.2 Euclidean Space Rn

To work with the Euclidean spaces Rn , the Isabelle/HOL
library follows an approach by Harrison [4], with some mod-
ifications. In Isabelle/HOL, a Euclidean space is a type ’a

satisfying the type class euclidean_space, which asserts the
existence of a finite set Basis::’a set, as well as the usual
vector space operations (including the inner product) and
linearity conditions on these operations. Results that are
valid for all Euclidean spaces can then be stated in terms of
an arbitrary type ’a of type class euclidean_space.

Following this approach, we avoid the need to define the
type Rn parametrized by a natural number n, which is im-
possible in Isabelle/HOL’s simple type theory. This suffices
for all of the results presented in this paper, including exam-
ples of spheres and projective spaces in Section 3.8. How-
ever, there are potential difficulties with expressing more
advanced results, as we will discuss in Section 5.3.

3 Formalization of Smooth Manifolds
In this section, we summarize the mathematical concepts for-
malized in our work, and give the corresponding statements
in Isabelle/HOL for some of these concepts. Some informa-
tion (e.g. type classes) may be omitted from the displayed
code when they are not the focus of the presentation.

3.1 Topological Manifold
Given a topological spaceM , and a Euclidean space E of fixed
dimension n, a chart is a homeomorphism from a subset of
M to a subset of E. In Isabelle/HOL, we define charts as a
type parametrized by the types ofM and E:
typedef (overloaded)
(’a::topological_space, ’e::euclidean_space) chart =
"{(d::’a set, d’::’e set, f, f’).

open d ∧ open d’ ∧ homeomorphism d d’ f f’}"

Notewe require both themapping f and the inversemapping
f ′ to be provided when creating a chart. Furthermore, only
the value of f (resp. f ′) within its domain d (resp. d ′) will
be important. Values outside the domain can be given as
undefined.

A topological manifold of dimensionn is a second-countable
Hausdorff space, where each point in the carrier set has a
neighborhood that is homeomorphic to an open subset of
Rn . In Isabelle/HOL, we express the concept of topological
manifold as a locale:
locale manifold =

fixes charts::
"(’a::{second_countable_topology, t2_space},

’e::euclidean_space) chart set"

The carrier set of the manifold, which is not necessarily all
of ’a, is simply defined to be the union of the domains of all
charts.

We prove a lemma stating that there exists a locally finite
cover of the carrier set by precompact sets. This is a technical
property of topological spaces, taking about 200 lines of Isar
text to prove (about 20 lines in Lee’s textbook [11]), and
makes use of the second-countability condition.
lemma precompact_locally_finite_open_coverE:

obtains W::"nat ⇒ ’a set"
where "carrier = (

⋃
i. W i)" "

∧
i. open (W i)"

"
∧
i. compact (closure (W i))"

"
∧
i. closure (W i) ⊆ carrier"

"locally_finite_on carrier UNIV W"

3.2 Higher Differentiability
Next, we defineCk -differentiability and smoothness for func-
tions in several variables. One immediate issue that arises is
that the k-th partial derivatives of a function from Rn form a
multilinear map from the k-fold tensor product of Rn , which
is difficult to express within the current Isabelle library. We
avoid this problem by defining Ck -differentiability by induc-
tion, quantifying over all directions for the partial derivative
in the inductive step:

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Smooth Manifolds and Types to Sets for Linear Algebra in Isabelle/HOL CPP 2019, January 14–15, Cascais/Lisbon, Portugal

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

fun higher_differentiable_on ::
"’a set ⇒ (’a ⇒ ’b) ⇒ nat ⇒ bool" where
"higher_differentiable_on S f 0 ←→

continuous_on S f"
| "higher_differentiable_on S f (Suc n) ←→

(∀x∈S. f differentiable (at x)) ∧
(∀v. higher_differentiable_on S

(λx. frechet_derivative f (at x) v) n)"

Then, smoothness is defined parametrized by an extended
natural number k::enat, including the C∞ case for k = ∞,
as follows:
definition "k-smooth_on S f =

(∀n≤k. higher_differentiable_on S f n)"

abbreviation "smooth_on S f ≡ ∞-smooth_on S f"

3.3 Smooth Manifold
Given two charts (U1, c1) and (U2, c2) of a topological mani-
fold M , we say c1 and c2 are Ck -compatible if the composi-
tions c2 ◦c−11 and c1 ◦c−12 areCk -differentiable on c1(U1 ∩U2)

and c2(U1 ∩U2), respectively. With this, we can express the
concept of Ck -differentiable manifolds by extending the lo-
cale for topological manifolds:
locale c_manifold = manifold +
fixes k::enat
assumes "c1 ∈ charts =⇒ c2 ∈ charts =⇒

k-smooth_compat c1 c2"

Note we do not require charts to be the maximal compati-
ble set. In many situations, however, the maximal compatible
set is needed. We define it separately as the atlas of the man-
ifold:
definition "atlas =

{c. domain c ⊆ carrier ∧
(∀c’ ∈ charts. k-smooth_compat c c’)}"

To define Ck -differentiable functions between two mani-
foldsM and N , we first declare a locale for two differentiable
manifolds:
locale c_manifolds =
src: c_manifold charts1 k +
dest: c_manifold charts2 k for k charts1 charts2

Then we extend this locale with a function f and the fol-
lowing differentiability condition: for any point x in the
carrier set of M , there exists charts (U ,ϕ) for M and (V ,ψ )
for N , such that x ∈ U , f (U ) ⊆ V , and ψ ◦ f ◦ ϕ−1 is Ck -
differentiable on the codomain of ϕ. This condition is ex-
pressed in Isabelle/HOL as follows:
"x ∈ src.carrier =⇒
∃c1∈src.atlas. ∃c2∈dest.atlas.
x ∈ domain c1 ∧
f ‘ domain c1 ⊆ domain c2 ∧
k-smooth_on (codomain c1) (c2 ◦ f ◦ inv_chart c1)"

The composition of two differentiable functions is dif-
ferentiable. The Euclidean spaces Rn are themselves Ck -
manifolds, with the identity function as the only element

in chart. Then atlas consists precisely of Ck -differentiable
functions Rn → Rn , and differentiable functions from a
manifold M to R1 = R satisfy our usual notion of a scalar
differentiable function onM .

3.4 Partition of Unity
The existence of partition of unity by differentiable functions
is an important property of differentiable manifolds. It allows
one to make global constructions on an entire manifold by
reducing them to local constructions (e.g. within the domain
of a single chart). A standard application (which we do not
formalize) is the definition of the integral of a differential
form (see [11, Chapter 16]).

The first step in the proof of existence of partition of unity
is the construction of a smooth bump function. This proceeds
by a series of function definitions, concluding with a smooth
function H : Rn → R satisfying the property that H = 1
on the closed ball of radius 1, and H = 0 outside the open
ball of radius 2. This step requires a well-developed library
on smoothness of functions (about 1500 lines) from which
bump functions can be constructed in about 500 lines (about
60 lines in Lee’s textbook [11]).
The existence of the bump function is combined with re-

sults about locally finite covers (see Section 3.1) to prove the
existence of the partition of unity. Informally, this result is
stated as follows: given any open cover X indexed by an ar-
bitrary index set I , there exists a family of functions φi , such
that 0 ≤ φi ≤ 1 for all i , the support of each φi is contained
in Xi , the collection of supports of φi is locally finite, and
the sum

∑
i ∈I φi (well-defined due to locally-finiteness) is

equal to the constant function 1. The formal statement in
Isabelle/HOL is as follows:
lemma partitions_of_unityE:

fixes A::"’i set" and X::"’i ⇒ ’a set"
assumes "carrier ⊆ (

⋃
i∈A. X i)"

assumes "
∧
i. i ∈ A ⇒ open (X i)"

obtains φ::"’i ⇒ ’a ⇒ real"
where "

∧
i. i ∈ A ⇒ diff_fun k charts (φ i)"

and "
∧
i x. i ∈ A =⇒ x ∈ carrier =⇒ 0 ≤ φ i x"

and "
∧
i x. i ∈ A =⇒ x ∈ carrier =⇒ φ i x ≤ 1"

and "
∧
x. x ∈ carrier =⇒
(
∑
i∈{i∈A. φ i x , 0}. φ i x) = 1"

and "
∧
i. i ∈ A =⇒
csupport_on carrier (φ i) ∩ carrier ⊆ X i"

and "locally_finite_on carrier A
(λi. csupport_on carrier (φ i))"

This is a highly technical result, taking about 350 lines of
Isar text to prove (35 lines in Lee’s textbook [11]) and is based
on about 350 lines of lemmas about regular covers. The main
result immediately implies the following two corollaries:

Bump function for general subsets. Given A ⊆ U , where
A is closed andU is open, there exists a differentiable function
ϕ such that 0 ≤ ϕ ≤ 1, ϕ = 1 on A, and the support of ϕ is
contained inU .

3
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Extension lemma. Given A ⊆ U , where A is closed and U
is open, and a differentiable function f on A, there exists a
differentiable function f ′ agreeing with f on A, and where
the support of f ′ is contained inU .

3.5 Tangent Space
Intuitively, the tangent space at a point x in a manifold M
is the set of directions emanating from x . IfM is embedded
in a Euclidean space of larger dimension, then the tangent
space at x can be defined as the subspace tangent toM at x .
In general, however, we are dealing with abstract manifolds
without a specified embedding. This makes the definition
of the tangent space particularly tricky. There are several
options for defining the tangent space, none of which are
simple. In our work, we chose the definition of the tangent
space via derivations, which is perhaps the easiest to formal-
ize, as it does not involve taking quotients. One issue that
arises is that the basic version of the definition only works
in the C∞ case (see Section 5.2 for an in-depth discussion).
Hence, we will assume the C∞ (smooth) case from now on.

The space of smooth functions on a manifoldM is a subset
of the function spaceM → R, defined as follows. Note the
condition extensional0 carrier f, which indicates that f
represents a partial function from the carrier set ofM (and
equals 0 outside the carrier set).
definition diff_fun_space :: "(’a ⇒ real) set" where

"diff_fun_space =
{f. diff_fun k charts f ∧ extensional0 carrier f}"

Given a mappingX from the space of smooth functions on
M to real numbers, we say X is a derivation at a point p ∈ M
if it is linear, and satisfies the product rule for derivatives:
X (f д) = f (p)X (д) + X (f )д(p). This is stated formally as
follows.
definition is_derivation

:: "((’a ⇒ real) ⇒ real) ⇒ ’a ⇒ bool" where
"is_derivation X p ←→ (linear_diff_fun X ∧
(∀f g. f ∈ diff_fun_space −→

g ∈ diff_fun_space −→
X (f * g) = f p * X g + g p * X f))"

The tangent space at a pointp (denotedTp (M)) is the vector
space of derivations at p:
definition tangent_space

:: "’a ⇒ ((’a ⇒ real) ⇒ real) set" where
"tangent_space p = {X. is_derivation X p ∧

extensional0 diff_fun_space X}"

Tangent space is covariant in the sense that, given a dif-
ferentiable map M → N and a point p in M , there is a
push-forwardmapTp (M) → Tf (p)(N ). Push-forward respects
identity and function composition. In particular, a diffeomor-
phismM → N induces canonical isomorphisms of tangent
spaces.

A key result is that the tangent space of an n-dimensional
manifold is a vector space of dimension n. This is shown by
the following steps:

1. LetU be a neighborhood ofp, then the tangent space of
p inM is canonically isomorphic to the tangent space
of p inU (with submanifold structure). This makes use
of the extension lemma mentioned in Section 3.4.

2. The tangent space of any point p in the manifold Rn
is canonically isomorphic to Rn . This makes use of a
multivariate Taylor’s theorem, and requires the C∞
case for our definition of the tangent space.

3. Putting all this together: given anyn-dimensional man-
ifoldM and a point p inM , let (U ,ϕ) be a chart contain-
ing p, with codomain V ⊆ Rn , then Tp (M) � Tp (U ) �
Tϕ(p)(V ) � Tϕ(p)(R

n) � Rn .
For this proof, we require some basic facts about vector

spaces. In particular, if there is an isomorphism between two
finite-dimensional vector spaces V andW , then the dimen-
sions of V andW are the same. There is one peculiar detail
about these basic facts: the tangent space tangent_space p is
formalized as a set, whereas the library for linear algebra in
Isabelle/HOL requires vector spaces to be a type. The partic-
ular difficulty here is that the underlying function space (’a

⇒ real) ⇒ real is not finite dimensional, but the tangent
space itself is supposed to be finite dimensional. We will
address this issue in Section 4.

3.6 Cotangent Space
To define the cotangent space, we first need the more general
concept of the dual of a vector space. Given a real vector
space S , the dual space S∗ is the set of linear functions from
S to the real numbers:
definition "dual_space S =

{E. linear_fun_on S E ∧ extensional0 S E}"

If S has finite dimension, then the dual space of S has
the same dimension as S . The dual space construction is
contravariant in the sense that given a linear map f : V →
W , there is an induced map f ∗ : W ∗ → V ∗, defined by
function composition. This is formalized as follows:
definition "dual_map f y = restrict0 S (λx. y (f x))"

The cotangent space at a point p (denoted by T ∗p (M)) is
then defined as the dual space of the tangent space at p:
definition

"cotangent_space p = dual_space (tangent_space p)"

Cotangent space is contravariant in the sense that, given
a differentiable map M → N and a point p in M , there is
a pull-back map T ∗f (p)(N ) → T ∗p (M). As with push-forward,
the pull-back respects identity and function composition,
and induces isomorphism on cotangent spaces when f is a
diffeomorphism.

3.7 Fundamental Theorem for Line Integrals
As an application of the definition of tangent and cotangent
spaces, we state and prove the fundamental theorem for line
integrals. This can be viewed as the one-dimensional version
of the general Stokes’ theorem.

4
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For this, we need to make two more definitions. Given a
real-valued function f onM , we associate a cotangent-field
to f . With our definition of tangent vectors as derivations,
the definition of the cotangent field is particularly simple:
definition "cotangent_field f p =

restrict0 (tangent_space p) (λX. X f)"

Given a path c on M (a mapping from a closed interval
[a,b] toM), the tangent field of c is defined in terms of the
ordinary derivative:
definition "tangent_field c x =

restrict0 diff_fun_space
(λf. frechet_derivative (f ◦ c) (at x) 1)"

The fundamental theorem for line integrals can be stated
informally as follows [11, Theorem 11.39]: given a function
f and a path c onM , the integral over [a,b] of the cotangent
field of f applied to the tangent field of c can be evaluated
as the difference f (c(b)) − f (c(a)). In Isabelle/HOL, this be-
comes:
lemma fundamental_theorem_of_path_integral:

"((λx. (cotangent_field f (c x))
(tangent_field c x))

has_integral f (c b) - f (c a)) {a..b}"
if ab: "a ≤ b" and f: "f ∈ diff_fun_space"
and c: "diff k charts_eucl charts c"
and k: "k , 0"

There are other ways to define the tangent and cotangent
fields (in particular as push-forward and pull-back of the
trivial tangent and cotangent field on the real line). We chose
the definition that makes the fundamental theorem for line
integrals most accessible.

3.8 Examples of Smooth Manifolds
In addition to formalizing the abstract theory, we also con-
struct several concrete manifolds, to demonstrate that the
theory can be instantiated to real examples.

The simplest kind of manifolds is subsets of the Euclidean
space. Given any open set U of Rn , we can put a smooth
manifold structure on U consisting of just one chart — the
inclusion map into Rn .

Given two manifoldsM and N , we can construct the prod-
uct manifold M × N . It is defined by charts of the form
(U ×V , f ×д) for every pair of charts (U , f ) forM and (V ,д)
for N .

Next, we describe two non-trivial examples of manifolds:
spheres and projective spaces.

3.8.1 Sphere
Given any n ≥ 1, the sphere Sn of dimension n consists of
the set of points ®x in Rn+1 satisfying x21 +x

2
2 + · · ·+x

2
n+1 = 1.

This can be given a smooth manifold structure with two
charts using stereographic projection. The first chart maps
Sn − (0, . . . , 0, 1) to Rn using the equations

Xi =
xi

1 − xn+1
for i = 1, . . . ,n,

where Xi are the coordinates on Rn . The second chart maps
Sn − (0, . . . , 0,−1) to Rn using the equations

Xi =
xi

1 + xn+1
for i = 1, . . . ,n.

In Isabelle/HOL, one issue that has to be resolved is that
the concept of an n-dimensional space parametrized by a
natural numbern is not available. Instead, we only have types
’a::euclidean_space with the dimension implicit. Hence, it
is difficult to express arithmetic operations such as n + 1 on
dimensions in a natural way.

In the case of spheres, the fact that one of the dimensions
should be treated specially in the definition of charts is very
convenient. Indeed, we separate out one dimension as special
from the very beginning in the definition of spheres:
typedef (overloaded) (’a::real_normed_vector) sphere =

"(a::’a) × real. norm a = 1"

where ’a represents a Euclidean space of dimension n. Here,
we take advantage of the fact that the product of two types of
type class real_normed_vector (and later euclidean_space)
has already been shown to satisfy the same type class. The
two stereographic projections are expressed as follows.
lift_definition st_proj1

:: "(’a::real_normed_vector) sphere ⇒ ’a" is
"λ(x,z). x /R (1 - z)" .

lift_definition st_proj2
:: "(’a::real_normed_vector) sphere ⇒ ’a" is
"λ(x,z). x /R (1 + z)" .

Notex represents a vector of lengthn in the above definitions,
and /R represents division of a vector by a scalar.
It remains to write down the inverse maps (also in vec-

tor notation), and show that various composition maps are
smooth on the appropriate domains.
One special case of spheres is the circle. With product

manifolds also defined, we can construct torus T n = S1 ×
· · · × S1 of any fixed dimension as a smooth manifold.

3.8.2 Projective Space
The projective space Pn for n ≥ 1 forms another interesting
class of smooth manifolds. The projective space P2 cannot
be embedded in R3, and indeed, the most natural definition
of projective spaces is as abstract manifolds, rather than in
terms of some embedding in Euclidean space. Hence, this
example demonstrates the power of the abstract definition
of manifolds.

An informal definition of the projective space is as follows:
the underlying set of Pn is the quotient of the nonzero vectors
in Rn+1, under the equivalence relation ®v ∼ c · ®w for all c , 0.
The topological structure on Pn comes from taking subspace
and then quotient topology, starting from the topology on
Rn+1. The smooth structure on Pn can be described using
n + 1 charts, one for each coordinate in Rn+1. The chart for
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the coordinate i is given by:

[x0, . . . , xn+1] →

(
x0
xi
, . . . ,

xi−1
xi
,
xi+1
xi
, . . . ,

xn
xi

)
.

It is clear that this map from Rn+1 − {®x : xi , 0} to Rn
respects the equivalence relation ®v ∼ c · ®w , and hence induces
a chart on Pn . The domains of the n + 1 charts cover all of
Pn .

In this definition, no coordinate is special. However, due
to the unavailability of arithmetic on dimensions, we must
still rely on taking one coordinate as special in our formal
definition in Isabelle/HOL. The definition consists of several
steps. First, we construct the subtype of nonzero elements:
typedef (overloaded) ’a::euclidean_space nonzero =

"UNIV - {0::’a::euclidean_space}"

Next, the quotient type by the given equivalence relation:
inductive proj_rel
:: "’a nonzero ⇒ ’a nonzero ⇒ bool" for x where
"c , 0 =⇒ proj_rel x (c *R x)"

quotient_type (overloaded) ’a proj_space =
"(’a::euclidean_space × real) nonzero" / proj_rel

Because one dimension is considered to be special, we will
need two cases for the charts, rather than one case in the
informal definition. The case for the n + 1’th coordinate is
simple:
lift_definition chart_last_nonzero
:: "(’a × real) nonzero ⇒ ’a" is
"λ(x,c). x /R c" .

For the other cases, some thought is required to write down
the equation in vector notation. The result is as follows:
lift_definition chart_basis_nonzero
:: "’a ⇒ (’a × real) nonzero ⇒ ’a" is
"λb. λ(x,c). (x + (c - x · b) *R b) /R (x · b)" .

Again, it remains to write down the inverse maps, and
show the smooth compatibility of all pairs of charts. Further-
more, ’a proj_space needs to be instantiated as Hausdorff
and second-countable space (these are requirements on topo-
logical manifolds). We achieve this by proving basic results
about quotient topologies: the quotient of a Hausdorff space
is Hausdorff if the quotient map is open and the quotient
relation is closed in the product topology.

4 Types to Sets for Linear Algebra
There are two different ways to represent the carrier set in
formalizations of mathematical structures. A formalization
can be either type based, where the carrier consists of all
elements of a type ’a, or set based, where the carrier is some
subset ’a set of an underlying type ’a. There is some trade-
off between these approaches. A set based formalization is
more flexible, but more verbose and therefore complicates
statements and proofs. A type based formalization is more
concise, proofs are more direct (membership to carrier is

established via type checking), but more rigid in the sense
that the carrier needs to be a type.

This rigidity set us back in the formalization of the tangent
space. The library for linear algebra in Isabelle/HOL is a type
based formalization, whereas our formalization of tangent
space would have required a set based one: We formalized
the tangent space as a set tangent_space p::((’a => real)

=> real) set. We cannot define a type for the tangent space
at a point p because of the dependency on the term p::’a.
Therefore we need a set based library for linear algebra.

We do not want to rewrite the existing formalization, this
would be a dull task yielding a cluttered and verbose formal-
ization. Instead, our approach is to keep the formalization as
it is and provide automatic tools that obtain set based theo-
rems from the type based formalization. We build on recent
work (dubbed “Types to Sets”) by Kunčar and Popescu [10],
which provides the theoretical and some technical founda-
tions. The central theoretical foundation is an extension of
the logic of Isabelle/HOL with an axiom scheme for “local
type definitions”.

Overview. On a high level, the process for obtaining set
based results from type based formalizations is as follows:

1. Fix a set S.
2. Locally (in the context with fixed S) define a type ’s

that is isomorphic to S.
3. Then take the type based theorems (instantiated with

’s) and translate them according to the isomorphism
between ’s and S to set based theorems (on S).

This translation is mainly driven by the transfer package, the
relevant features of which we introduce in Section 4.2. We
will start by briefly describing the type based formalization
of linear algebra (Section 4.1). The infrastructure for local
type definitions is explained (specific for vector spaces) in
Section 4.3. Special care is required to deal with axiomatic
type classes (Section 4.4). Note that most of the ideas pre-
sented in this section have been described already by Kunčar
and Popescu [10], we present them along the lines of our
concrete application. Where Kunčar and Popescu present
examples for single theorems as a proof-of-concept, our con-
tribution is that we implemented their ideas on a larger scale,
namely on a scale that allows us to translate Isabelle/HOL’s
library of linear algebra in an automated way to a set based
library.

4.1 Linear Algebra Library
The formalization of linear algebra in Isabelle/HOL is type
based and makes extensive use of type classes.

The library originates from John Harrison’s formalization
of Euclidean space [4], which considered linear functions
between Euclidean spaces Rn . This has been generalized to
a formalization based on the type class [6] of real vector
spaces real_vector. First, a real vector space depends on a
group with addition ab_group_add. For a type ’a, the type
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class judgment ’a::ab_group_addmeans that the group oper-
ations (+)::’a=>’a=>’a, (-)::’a=>’a=>’a, -::’a=>’a, 0::’a
are defined and satisfy the properties of an abelian group.
class real_vector = ab_group_add +
fixes · ::"real => ’a => ’a"
assumes scaleR_add_right: "a · (x + y) = a · x + a · y"
and scaleR_add_left: "(a + b) · x = a · x + b · x"
and scaleR_scaleR: "a · (b · x) = (a * b) · x"
and scaleR_one: "1 · x = x"

This presentation is a bit simplified in the sense that we
restrict ourselves to real vector spaces. Large parts of the
library are currently formalized for modules, vector spaces,
and finite dimensional vector spaces over arbitrary fields.
The formalization over arbitrary fields is done in a hierarchy
of locales, it originates from generalizations by Divasón and
Aransay [2] and has been continued by Johannes Hölzl. The
final integration and incorporation into the Isabelle distribu-
tion has been completed as part of this present work.

4.2 Transfer
The main tool for proving theorems along isomorphisms
is the transfer package [9]. We recall the functionality as
required for our work here. The central element for setting
up transfer are relations, formalized as predicates ’a ⇒ ’b

⇒ bool and usually denoted by a capital letter R. Essential
properties of relations R::’a ⇒ ’b ⇒ bool for transferring
from types ’b to subsets of type ’a are right total (i.e., every
element of the type ’b can be transferred) and bi-uniqueness
(i.e., the relation is functional and injective).
definition right_total :: "(’a ⇒ ’b ⇒ bool) ⇒ bool"
where "right_total R ←→ (∀y. ∃x. R x y)"

definition bi_unique :: "(’a ⇒ ’b ⇒ bool) ⇒ bool"
where "bi_unique R ←→

(∀x y z. R x y → R x z → y = z) ∧
(∀x y z. R x z → R y z → x = y)"

The subset of the type ’a is denoted by the domain of the
relation.
lemma Domain_iff: "a ∈ Domain R ←→ (∃y. R a y)"

Therefore, a right total and bi-unique relation R::’a ⇒ ’b

⇒ bool characterizes a bijection between the type ’b and
the subset Domain R of type ’a.

4.2.1 Relators
Relators are used to modularly express transfer relations
for compound types. The function relator rel_fun with infix
syntax ===> relates functions f and g that yield S-related
results f x, g x for R-related arguments x, y.
definition rel_fun ::

"(’a ⇒ ’c ⇒ bool) ⇒
(’b ⇒ ’d ⇒ bool) ⇒
((’a ⇒ ’b) ⇒ (’c ⇒ ’d) ⇒ bool)"

where "(R ===> S) ←→
(λf g. ∀x y. R x y −→ S (f x) (g y))"

The set relator rel_set relates sets whose elements are point-
wise related one-on-one.
definition rel_set ::

"(’a ⇒ ’b ⇒ bool) ⇒ ’a set ⇒ ’b set ⇒ bool"
where "rel_set R =

(λA B. (∀x∈A. ∃y∈B. R x y) ∧ (∀y∈B. ∃x∈A. R x y))"

4.2.2 Transfer Rules
The transfer package is set up by a set of transfer rules. These
are theorems that relate one constant (in our case usually a
type based one) to another constant (in our case usually a
set based one). For example, the transfer rule that relates a
forall-quantifier (a type based constant, as it quantifies over
all elements of a type) to its set based variant – bounded
forall-quantification, would look like this:
lemma right_total_All_transfer:
assumes "right_total R"
shows "((R ===> (=)) ===> (=))

(λQ. ∀x∈Domain R. Q x)
(λP. ∀x. P x)"

Given a type based theorem and set up with a suitable
set of transfer rules, the transfer package will automatically
prove the corresponding set based theorem.

4.3 Local Type Definition
Kunčar and Popescu [10, Section 3] proposed a new rule for
the logic underlying Isabelle/HOL, that

• [. . . ] enables type definitions to be emulated
inside proofs while avoiding the introduction
of dependent types by a simple syntactic check
• [and] is natural and sound w.r.t. the standard
HOL semantics à la Pitts [14], as well as con-
sistent with the logic of Isabelle/HOL.

The rule asserts that, if the type variable σ is fresh for a
set S :: β set , a proposition φ, and a context Γ, then in order
to prove φ in Γ, one may assume the existence of a type σ
that is isomorphic to the nonempty set S . The isomorphism
is expressed by β (σ ≈ S)AbsRep := (∀x :: σ . Rep x ∈ S) ∧ (∀x ::
σ . Abs(Rep x) = x) ∧ (∀y :: β .y ∈ A −→ Rep(Abs y) = y).
We call the rule the local typedef (LT) rule.

Γ ⊢ S , ∅ Γ ⊢ (∃Abs Rep. β (σ ≈ S)AbsRep ) −→ φ
(LT)

Γ ⊢ φ

For our endeavor of obtaining set based theorems from
a type based formalization, Step 1 (from the Overview at
the beginning of this section) is to assume a subspace S of a
vector space given by a type ’b::ab_group_add and scaling
operation scale::real ⇒ ’b ⇒ ’b. We then assume an
isomorphism to a “local” type variable ’s. The Isabelle syn-
tax for the above isomorphism ≈ is type_definition. This
assumption will later be discharged with the local typedef
rule LT.
assumes Ex_type_definition_S:
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"∃(Rep::’s ⇒ ’b) (Abs::’b ⇒ ’s).
type_definition Rep Abs S"

Under the assumption Ex_type_definition_S we can ob-
tain (via Hilbert choice SOME) witnesses for the existentially
quantified representation and abstraction functions estab-
lishing the isomorphism.
definition "Rep = fst (SOME (Rep::’s =⇒ ’b, Abs).

type_definition Rep Abs S)"
definition "Abs = snd (SOME (Rep::’s =⇒ ’b, Abs).
type_definition Rep Abs S)"

The transfer relation that expresses the connection be-
tween the local type ’s and the representing set S is given
by cr_S.
definition cr_S where "cr_S s b = (s = Rep b)"

This relation is right total and bi-unique, properties that
follow immediately from type_definition Rep Abs.
lemma right_total_cr_S: "right_total cr_S"
lemma bi_unique_cr_S: "bi_unique cr_S"

These were the common assumptions mentioned as require-
ments for the tranfer package to transfer between types and
sets. Therefore cr_S can be used for transferring from the
type ’s to the set S.

Morally, we would like to instantiate ’s to be an instance
of the type class ab_group_add, but this is not supported by Is-
abelle, because one cannot overload constants locally (’s be-
ing a local type variable). We will show how to work around
this in Section 4.4. Nevertheless, our next steps consist in
defining addition, subtraction, additive inverse and neutral
element on the type ’s. We make the definitions by lifting
the corresponding operations on the representing type ’b

to ’s. The assumption that S is a subspace of ’b ensures that
the following definitions are well defined. The map function
for functions map_fun with infix syntax ---> helps to write
down such lifted definitions in a structured way2.
definition map_fun ::
"(’c ⇒ ’a) ⇒ (’b ⇒ ’d) ⇒ (’a ⇒ ’b) ⇒ ’c ⇒ ’d"

where "(f ---> g) h = g ◦ h ◦ f"

definition plus_S::"’s ⇒ ’s ⇒ ’s"
where "plus_S = (Rep ---> Rep ---> Abs) (+)"

definition minus_S::"’s ⇒ ’s ⇒ ’s"
where "minus_S = (Rep ---> Rep ---> Abs) (-)"

definition uminus_S::"’s ⇒ ’s"
where "uminus_S = (Rep ---> Abs) uminus"

definition zero_S::"’s" where "zero_S = Abs 0"

These definitions immediately yields transfer rules for the
group operations on ’s, e.g., addition plus_S on type ’s can

2For global constants, the command lift_definition provides some au-
tomation, and one should be able to extend this to the kind of definitions
we require for our work.

be transferred to the regular, overloaded addition (+) on type
’b::ab_group_add.
lemma plus_S_transfer:

"(cr_S ===> cr_S ===> cr_S) (+) plus_S"
lemma minus_S_transfer:

"(cr_S ===> cr_S ===> cr_S) (-) minus_S"
lemma uminus_S_transfer:

"(cr_S ===> cr_S) uminus uminus_S"
lemma zero_S_transfer: "cr_S 0 zero_S"

It is less straight-forward to define concepts that involve
e.g., Hilbert choice. A suitable condition to transfer Hilbert
choice on a type (SOME x. g x) to Hilbert choice restricted
to a set (SOME x. x ∈ Domain A ∧ f x) is given below. It
assumes that f is related to g, that the choice is defined on
the set (holds), uniquely determined (unique_g), and used in
a related context (f’, g’).
lemma Eps_unique_transfer_lemma:
"f’ (SOME x. x ∈ Domain A ∧ f x) = g’ (SOME x. g x)"
if "right_total A"
and "(A ===> (=)) f g"
and "(A ===> (=)) f’ g’"
and holds: "∃x. x ∈ Domain A ∧ f x"
and unique_g: "∀x y. g x −→ g y −→ g’ x = g’ y"

Another aspect of transferring Hilbert choice is to default
to some arbitrary, but transferable value when the element
to choose is not unique. For the definition of dimension,
we default to 0 (which is related to zero_S according to the
transfer rule zero_S_transfer):
definition dim :: "’b set ⇒ nat"
where "dim V =

(if ∃b⊆S. ¬ dependent b ∧ span b = span V
then card
(SOME b. b ⊆ S ∧ ¬ dependent b ∧ span b = span V)

else 0)"

This definition of dim makes it possible to define and prove
dim_S related to dim with the transfer rule for Hilbert choice
(Eps_unique_transfer_lemma) from types to sets.
lemma transfer_dim:

"(rel_set cr_S ===> (=)) dim dim_S"

4.4 Local Overloading
One particular feature of Isabelle/HOL is its axiomatic type
classes. For each type class, there is a corresponding pred-
icate capturing the assumptions of that type class. For the
“types to sets” mechanism, these predicates need to be trans-
ferred as well. According to Kunčar and Popescu [10, Section
6.2] the only way to emulate overloading of constants for
a local type is to compile out dependencies on overloaded
constants. For the present work, we did this manually for
each constant. This manual effort was still bearable (there
are far less constants than theorems that use them). More-
over, if one would like to extend this approach to libraries
with more constants, the potential for automation is appar-
ent: The transfer package can be used to synthesize related
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statements. Currently we use the automation of the transfer
package only to automatically prove the manually crafted
statements.

Abelian group. The predicate corresponding to the type
class semigroup_add states that an operation pls is associa-
tive on the type:
lemma class.semigroup_add_def:
"class.semigroup_add pls ←→
∀ a b c. pls (pls a b) c = pls a (pls b c)"

We define the relativized (to a set S) version of this predi-
cate with bounded forall-quantification and the additional
assumption that S is closed under pls, i.e. ∀a∈S. ∀b∈S. pls

a b ∈ S.
definition "semigroup_add_on_with S pls ←→
(∀a∈S. ∀b∈S. ∀c∈S.

pls (pls a b) c = pls a (pls b c)) ∧
(∀a∈S. ∀b∈S. pls a b ∈ S)"

The following transfer rule expresses that the set based ver-
sion of class.semigroup_add is semigroup_add_on_with.
lemma right_total_semigroup_add_transfer:
assumes "right_total R" "bi_unique R"
shows "((R ===> R ===> R) ===> (=))

(semigroup_add_on_with (Domain R))
class.semigroup_add"

We provide similar, set based definitions for all type class
predicates in the hierarchy up to abelian additive groups. Fi-
nally, the set based version of an abelian group with addition
pls, neutral (zero) element z, subtraction mns and additive
inverse (unary minus) um is the following.
definition "ab_group_add_on_with A pls z mns um ←→
comm_monoid_add_on_with A pls z ∧
(∀a∈A. pls (um a) a = z) ∧
(∀a∈A. ∀b∈A. mns a b = pls a (um b))"

The corresponding transfer rule connects this to the type
class predicate class.ab_group_add.
lemma ab_group_add_transfer:
includes lifting_syntax
assumes "right_total R" "bi_unique R"
shows
"((R ===> R ===> R) ===>

R ===>
(R ===> R ===> R) ===>
(R ===> R) ===>
(=))
(ab_group_add_on_with (Domain R))
class.ab_group_add"

Vector space. The notion of vector space in the Isabelle/HOL
analysis library (Section 4.1) relies on a type class constraint
’b::ab_group_add. Therefore, the set based (and with ex-
plicit parameters) formulation for vector spaces assumes
an ab_group_add_on_with along with the usual distributivity
laws and closure of scaling S under scl, namely ∀a. ∀x∈S.
scl a x ∈ S.

definition
"vector_space_on_with S pls mns um zero scl ←→

ab_group_add_on_with S pls zero mns um ∧
((∀a. ∀x∈S. ∀y∈S.
scl a (pls x y) = pls (scl a x) (scl a y)) ∧

(∀a b. ∀x∈S.
scl (a + b) x = pls (scl a x) (scl b x))) ∧

(∀a b. ∀x∈S. scl a (scl b x) = scl (a * b) x) ∧
(∀x∈S. scl 1 x = x) ∧
(∀a. ∀x∈S. scl a x ∈ S)"

The transfer package proves automatically that this can
be transferred from types to sets:
lemma vector_space_on_with_transfer:
assumes "right_total R" "bi_unique R"
shows

"(rel_set R ===>
(R ===> R ===> R) ===>
(R ===> R ===> R) ===>
(R ===> R) ===>
R ===>
((=) ===> R ===> R) ===>
(=))

vector_space_on_with
vector_space_on_with"

Linear map. The notion of a linear map from a type ’a to
a type ’b involves two vector spaces, which are implicitly
given (by the types of) the corresponding scaling functions
s1::real ⇒ ’a ⇒ ’a and s2::real ⇒ ’b ⇒ ’b.
definition "linear s1 s2 f =

(vector_space s1 ∧
vector_space s2 ∧
(∀x y. f (x + y) = f x + f y) ∧
(∀c x. f (s1 c x) = s2 c (f x)))"

The corresponding set based version involves explicit men-
tion of all the (previously overloaded) group operations:
definition
"linear_on_with S1 S2

plus1 minus1 uminus1 zero1 scale1
plus2 minus2 uminus2 zero2 scale2
f
←→

vector_space_on_with
S1 plus1 minus1 uminus1 zero1 scale1 ∧

vector_space_on_with
S2 plus2 minus2 uminus2 zero2 scale2 ∧

(∀x∈S1. ∀y∈S1.
f (plus1 x y) = plus2 (f x) (f y)) ∧

(∀s. ∀x∈S1. f (scale1 s x) = scale2 s (f x))"

4.4.1 Example of Translating from Types to Sets
In order to illustrate the whole chain of steps that are per-
formed when translating a theorem from the type based
library of linear algebra to a set based statement, we will
work step by step through one example. The type is a finite

9



991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

CPP 2019, January 14–15, Cascais/Lisbon, Portugal Fabian Immler and Bohua Zhan

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

dimensional vector space ’a::euclidean_space set, and we
will be translating it to a set based theorem on some set
S::’b::real_vector for which we assume a finite Basis:
assumes "finite_dimensional_vector_space_on_with

S (+) (-) uminus 0 (·) Basis"

1. We start with a theorem from the type based library.
As example, we choose dim_sums_Int, it is phrased for
finite dimensional vector spaces (as type with class
constraint euclidean_space) and expresses the rela-
tionship between the dimensions of the direct sum
and intersection of two vector spaces S and T and their
respective dimensions.
subspace T −→ subspace U −→
dim {x + y |x y. x ∈ T ∧ y ∈ U} + dim (T ∩ U) =
dim T + dim U
for T U::"’a::euclidean_space set"

2. The next step consists of compiling out dependencies
on overloaded constants. This is a prerequisite for the
subsequent step.
subspace_with (+) 0 (·) T −→
subspace_with (+) 0 (·) U −→
dim_on_with UNIV (+) 0 (·)

{x + y |x y. x ∈ T ∧ y ∈ U} +
dim_on_with UNIV (+) 0 (·) (T ∩ U) =
dim_on_with UNIV (+) 0 (·) T + dim_on_with UNIV
(+) 0 (·) U
for T U::"’a::euclidean_space set"

3. Local overloading: in this step, the sort constraint
::euclidean_space is being internalized, yielding an
additional assumption involving
finite_dimensional_vector_space_on_with

and a statement that is generalized over all overloaded
constants (plus, minus, uminus, zero, s are now free
variables and not overloaded constants).
finite_dimensional_vector_space_on_with

UNIV plus minus uminus zero s Basis −→
subspace_with plus zero s T −→
subspace_with plus zero s U −→
dim_on_with UNIV plus zero s

{plus x y |x y. x ∈ T ∧ y ∈ U} +
dim_on_with UNIV plus zero s (T ∩ U) =
dim_on_with UNIV plus zero s T + dim_on_with UNIV
plus zero s U
for T U::"’a::type set"

4. Local typedef: assume a local type ’s isomorphic to
S (c.f. Section 4.3). This leaves us with an additional
assumption ∃Rep Abs. type_definition Rep Abs S, but
alsowith vector space operations on ’s, namely plus_S,
minus_S, uminus_S, zero_S, scale_S, Basis_S defined in
terms of Abs and Rep. Our initial assumption that S
posesses a finite basis yields
finite_dimensional_vector_space_on_with

UNIV plus_S minus_S uminus_S zero_S scale_S
Basis_S

which we can use to discharge the first assumption of
the previous step:

(∃Rep Abs. type_definition Rep Abs S) −→
subspace_with plus_S zero_S scale_S T −→
subspace_with plus_S zero_S scale_S U −→
dim_S {plus_S x y |x y. x ∈ T ∧ y ∈ U} + dim_S
(T ∩ U) = dim_S T + dim_S U
for T U::"’s::type set"

5. Now we can transfer (using the transfer rules from
Section 4.3) the type based (on the local type ’s) theo-
rem of the previous step to a set based theorem on S

(this adds closure properties to sets).

(∃Rep Abs. type_definition Rep Abs S) −→
∀x∈T. x ∈ S −→
∀x∈U. x ∈ S −→
subspace_with (+) 0 (·) T −→
subspace_with (+) 0 (·) U −→
dim
{x + y |x y. x ∈ S ∧ y ∈ S ∧ x ∈ T ∧ y ∈ U)} +

dim (T ∩ U) = dim T + dim U
for T U::"’b::real_vector set"

6. Because we have transferred the operations on S back
to overloaded constants on the underlying type ’b, we
can sort of undo Step 2. and make type class operations
implicit:

(∃Rep Abs. type_definition Rep Abs S) −→
∀x∈T. x ∈ S −→
∀x∈U. x ∈ S −→
subspace T −→
subspace U −→
dim
{x + y |x y. x ∈ S ∧ y ∈ S ∧ x ∈ T ∧ y ∈ U)} +

dim (T ∩ U) = dim T + dim U
for T U::"’b::real_vector set"

7. After the transfer, the only occurrence of the local
type ’s is in the first assumption. It can therefore
be discharged with the LT rule from Section 4.3. S
is nonempty because as a subspace S contains 0.

∀x∈T. x ∈ S −→
∀x∈U. x ∈ S −→
subspace T −→
subspace U −→
dim
{x + y |x y. x ∈ S ∧ y ∈ S ∧ x ∈ T ∧ y ∈ U)} +

local.dim (T ∩ U) = local.dim T + local.dim U
for T U::"’b::real_vector set"

Note how the final theorem depends only on a real_vector
space, whereas the initial theorem assumed a (finite dimen-
sional) euclidean_space. In other words, we moved the as-
sumption of a finite Basis from the type class level (namely
the euclidean_space constraint) to the level of sets (namely
the initial assumption that S has a finite Basis).
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4.5 Transfering the Library
The procedure sketched for the example in Section 4.4.1 is
implemented in Isabelle20183 for modules, vector spaces, fi-
nite dimensional vector spaces and pairs of such spaces. This
enables the automatic translation of most (205 out of 240)
theorems about these spaces and linear maps between them.
The ones that we currently do not translate are inherently
hard to transfer (e.g., because of non-unique Hilbert choice),
but only used for intermediate constructions that one could
hide from the interface of the linear algebra library.

5 Discussion
In this section, we discuss some of the difficulties and lessons
learned during our work. We divide this into two parts: math-
ematical difficulties related to imprecise exposition in text-
books, and difficulties related to limitations of Isabelle/HOL’s
simple type theory.

Since the concept of smooth manifolds is long established
in mathematics, we do not expect to discover any problems
with the foundations during the formalization process. How-
ever, we did encounter some imprecisions in exposition in
some of the well-known textbooks in this area. We give two
examples in the first two parts of this section. While none
of the problems are serious, it still shows that in advanced
mathematics, definitions of even basic concepts can be sub-
tle, and formalization can serve as a stringent check on the
correctness of these definitions.

5.1 Definition of differentiable functions
Following [5, 11], we defined a function f : M → N to
be Ck -differentiable if for every x ∈ M , there exists charts
(U ,ϕ) for M and (V ,ψ ) for N , such that x ∈ U , f (U ) ⊆ V ,
and ψ ◦ f ◦ ϕ−1 is Ck -differentiable on the codomain of ϕ.
The condition f (U ) ⊆ V is crucial in this definition.

Some other textbooks follow an alternative approach to
defining differentiable functions. In this approach, f : M →
N is Ck -differentiable if for every pair of charts (U ,ϕ) for
M and (V ,ψ ) for N , the composition ψ ◦ f ◦ ϕ−1 is Ck -
differentiable on the region where it is defined, which is
ϕ(U ∩ f −1(V )). However, with this definition, it is not imme-
diately clear why f is continuous. The crux of the problem
is that without assuming continuity of f , one cannot show
thatU ∩ f −1(V ) is an open set ofM . This problem is noted in
[16], where it is suggested that continuity should be assumed
in the definition of differentiability following this approach.
In Spivak’s textbook [18, Chapter 2, page 31], this approach
is used without the continuity assumption. In fact, the text
incorrectly claims thatψ ◦ f ◦ ϕ−1 is defined on all of Rn . In
O’Neill’s textbook [13, Chapter 1, Definition 6] (mentioned in
[16]), an additional condition is added stating thatψ ◦ f ◦ϕ−1
defined on an open set of Rn . In both textbooks, it is claimed
3http://isabelle.in.tum.de/
in theory src/HOL/Types_To_Sets/Examples/Linear_Algebra_On.thy

that continuity follows immediately from differentiability,
without discussing the potential issues.

5.2 Definition of the tangent space
The definition of the tangent space for an abstract mani-
fold (in contrast to a manifold defined as a subset of Rn)
is particularly tricky. There are several possible definitions,
including as equivalence classes of paths, using coordinate
charts, and as derivations on the space of germs. Our choice
of definition, as derivations on the usual space of functions,
is not the most intuitive, but perhaps the easiest to formalize,
as it does not involve taking quotients.
One subtle point, however, is that this definition only

works in the C∞ case, not in the Ck case where k < ∞. In
all cases, every tangent vector corresponds to a derivation.
However, in the Ck case where k < ∞, there are derivations
which do not correspond to any tangent vector. See [7] and
[8] for discussions on this topic.

Of the three textbooks we used, none addressed this sub-
tlety. In [5], which treats the general Ck case, the tangent
space is defined only using coordinate charts. In [18] and
[11], several definitions of the tangent space are given, in-
cluding that using derivations. However, only theC∞ case is
considered. While none of the three books made claims that
are clearly wrong on this point, it can be quite misleading to
not address this subtlety (such issues are mentioned briefly
in some other textbooks, for example [1, Section 2.5]).

5.3 Problems with simple type theory
In the previous two sections, we described some problems
with writing down definitions that are due to unclear ex-
position in the mathematics textbooks. In this section, we
turn to situations where the mathematical definition is quite
clear, but extra difficulties arise due to the type system used
in Isabelle/HOL.

Subtyping and partial functions In Isabelle/HOL (as in
most type theories), it can be inconvenient to directly work
with subtypes and partial functions defined using subtypes.
Hence, extensions by some default value is often used to
simulate a partial function, as discussed in Section 2.1. This
means operations such as restrict0 and extensional0 must
be inserted in many of the definitions. In Section 3 we al-
ready see examples such as the definitions of dual_space and
dual_map. Another example occurs in the definition of push-
forward on tangent spaces, where two restrict0 operations
are needed:
definition "push_forward f X =

restrict0 dest.diff_fun_space
(λg. X (restrict0 src.carrier (g ◦ f)))"

Here the informal definition would simply be f∗(X )(д) =
X (д◦ f ), where each function involved has a well-defined do-
main and codomain that is clear from context. Systematically
translating such definitions to those involving restrict0 and
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extensional0 can be tedious and error-prone, especially for
mathematicians who are unfamiliar with the library.

Dimensions in Euclidean space In Isabelle/HOL, Euclid-
ean spaces Rn are defined as types satisfying a certain type
class, in particular asserting the existence of a finite basis of
cardinalityn. There is no “dependent types” that would allow
us to talk about the Euclidean space for an arbitrary natural
number n. This poses difficulties in performing arithmetic
on dimensions. We already encountered this difficulty when
constructing spheres and projective spaces in Section 3.8. In
both cases, we employed the trick of using an arbitrary type
’a to represent Rn and then use ’a × real to represent Rn+1.
In the case of spheres, we are lucky in that the definition of
charts for spheres also take one dimension as special. In the
case of projective spaces, however, no dimension is special in
the usual definition of charts, and hence, we have to divide
the charts into two cases while the usual definition has only
one. In both spheres and projective spaces, representingRn+1
as ’a × real can pose problems when they need to be used
in further formalizations. Finally, it would be more tedious
to formalize more advanced constructions in this manner,
for example the orthogonal groupsO(n) (of dimension n(n −
1)/2), or the Grassmann manifolds (of dimension k(n − k))
[11, Example 1.36]. In both cases, the arithmetic will be more
involved.

6 Future Work
6.1 Formalization of Manifolds
On the mathematics side, possible directions of future work
include extending the definition of the tangent and cotangent
space to the definition of tensors and differential forms on a
manifold. Another direction is to formalize manifolds with
boundary. Both will be needed to state and prove the general
Stokes’ theorem, one of the major results in the theory of
smooth manifolds.

6.2 Types To Sets
“Types to sets” would certainly profit from a better inte-
gration into the Isabelle/Isar infrastructure. A local typedef
would look more natural to a user if it would simply augment
the Isar context. Moreover, implementing a means to provide
the illusion of locally overloading constants and instantiat-
ing type classes (instead of the verbose detour via compiling
out overloaded constants) could make “Types to Sets” more
natural to use.

6.3 Porting
The problems discussed in Section 5.3 suggest that it would
be an interesting experiment to port our formalization to

different theorem provers and type systems. Our formaliza-
tion is well structured (see its documentation4) and most
proofs are structured and written in the declarative style of
Isabelle/Isar. This should help to port the formalization on
the level of intermediate statements of the proofs and filling
the gaps with automated tools in the target system.

Acknowledgments
Both authors were supported by Deutsche Forschungsge-
sellschaft under DFG Kosseleck Grant No. NI 491/16-1. The
first author was supported by the Air Force Office of Sci-
entific Research under Grant No. FA9550-18-1-0120. Any
opinions, finding, and conclusion or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Air Force.
We would like to thank the Leibniz Zentrum für Infor-

matik and the organizers of the Dagstuhl Seminar 18341,
during which we completed parts of this work. At Dagstuhl,
Johannes Hölzl provided helpful input concerning the for-
malization of quotient topologies and the projective space.

The “Linear Algebra in Isabelle/HOL” meeting in Logroño,
its organizers Jesús Aransay and Jose Divasón as well as
the participants Manuel Eberl, Johannes Hölzl, Angeliki
Koutsoukou-Argyraki, Larry Paulson, and René Thiemann
shaped many ideas for relativizing linear algebra to a set
based formalization.

References
[1] Glen E. Bredon. 1993. Topology and Geometry. Springer, New York.
[2] Jose Divasón and Jesús Aransay. 2013. Rank-Nullity Theorem in Linear

Algebra. Archive of Formal Proofs (Jan. 2013). http://isa-afp.org/entries/
Rank_Nullity_Theorem.html, Formal proof development.

[3] Florian Haftmann and Makarius Wenzel. 2009. Local Theory Spec-
ifications in Isabelle/Isar. In Types for Proofs and Programs, Stefano
Berardi, Ferruccio Damiani, and Ugo de’Liguoro (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 153–168.

[4] John Harrison. 2005. A HOL Theory of Euclidean Space. In Theorem
Proving in Higher Order Logics, Joe Hurd and Tom Melham (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 114–129.

[5] Morris W. Hirsch. 1976. Differential Topology. Springer, New York.
[6] Johannes Hölzl, Fabian Immler, and Brian Huffman. 2013. Type Classes

and Filters for Mathematical Analysis in Isabelle/HOL. In Interactive
Theorem Proving, Sandrine Blazy, Christine Paulin-Mohring, and David
Pichardie (Eds.). Springer, Berlin, Heidelberg, 279–294.

[7] Alexei Averchenko (https://math.stackexchange.com/users/3793/alexei
averchenko). 2011. An example of a derivation at a point on a
Ck -manifold which is not a tangent vector. Mathematics Stack
Exchange. https://math.stackexchange.com/q/73677

[8] Pedro (https://math.stackexchange.com/users/9921/pedro). 2014. Ck -
manifolds: how and why? Mathematics Stack Exchange. https://math.
stackexchange.com/q/914790

[9] Ondřej Kunčar. 2016. Types, Abstraction and Parametric Polymorphism
in Higher-Order Logic. Dissertation. Technische Universität München,
München. http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:
91-diss-20160408-1285267-1-5

4https://ci.isabelle.systems/afp-submission/browser_info/
20180928-202315_4765/AFP/Smooth_Manifolds/outline.pdf

12

http://isa-afp.org/entries/Rank_Nullity_Theorem.html
http://isa-afp.org/entries/Rank_Nullity_Theorem.html
https://math.stackexchange.com/q/73677
https://math.stackexchange.com/q/914790
https://math.stackexchange.com/q/914790
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20160408-1285267-1-5
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20160408-1285267-1-5
https://ci.isabelle.systems/afp-submission/browser_info/20180928-202315_4765/AFP/Smooth_Manifolds/outline.pdf
https://ci.isabelle.systems/afp-submission/browser_info/20180928-202315_4765/AFP/Smooth_Manifolds/outline.pdf


1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Smooth Manifolds and Types to Sets for Linear Algebra in Isabelle/HOL CPP 2019, January 14–15, Cascais/Lisbon, Portugal

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

[10] Ondřej Kunčar and Andrei Popescu. 2018. From Types to Sets by
Local Type Definition in Higher-Order Logic. Journal of Automated
Reasoning (04 Jun 2018). https://doi.org/10.1007/s10817-018-9464-6

[11] John M. Lee. 2012. Introduction to Smooth Manifolds. Springer, New
York.

[12] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Is-
abelle/HOL - A Proof Assistant for Higher-Order Logic. Lecture Notes in
Computer Science, Vol. 2283. Springer.

[13] Barrett O’Neill. 1983. Semi-Riemannian geometry, with applications to
relativity. Academic Press, San Diego.

[14] Andrew M. Pitts. 1993. The HOL Logic. In Introduction to HOL: A
Theorem Proving Environment for Higher Order Logic, M. J. C. Gordon
and T. F. Melham (Eds.). Cambridge University Press, New York, NY,
USA, 191–232.

[15] Karol Pąk. 2014. Topological Manifolds. Formalized Mathematics 22, 2
(2014), 179 – 186.

[16] Randy Randerson. 2015. Smooth maps (between manifolds) are con-
tinuous (comment in Barrett O’Neill’s textbook). Mathematics Stack
Exchange. https://math.stackexchange.com/q/1234599

[17] Michael Spivak. 1965. Calculus on Manifolds: A Modern Approach to
Classical Theorems of Advanced Calculus. Addison-Wesley, Reading,
Massachusetts.

[18] Michael Spivak. 1999. A Comprehensive Introduction to Differential
Geometry, Volume One. Publish or Perich Inc., Houston.

13

https://doi.org/10.1007/s10817-018-9464-6
https://math.stackexchange.com/q/1234599

	Abstract
	1 Introduction
	2 Preliminaries in Isabelle/HOL
	2.1 Partial Functions
	2.2 Euclidean Space R^n

	3 Formalization of Smooth Manifolds
	3.1 Topological Manifold
	3.2 Higher Differentiability
	3.3 Smooth Manifold
	3.4 Partition of Unity
	3.5 Tangent Space
	3.6 Cotangent Space
	3.7 Fundamental Theorem for Line Integrals
	3.8 Examples of Smooth Manifolds

	4 Types to Sets for Linear Algebra
	4.1 Linear Algebra Library
	4.2 Transfer
	4.3 Local Type Definition
	4.4 Local Overloading
	4.5 Transfering the Library

	5 Discussion
	5.1 Definition of differentiable functions
	5.2 Definition of the tangent space
	5.3 Problems with simple type theory

	6 Future Work
	6.1 Formalization of Manifolds
	6.2 Types To Sets
	6.3 Porting

	Acknowledgments
	References

