Formalization of the fundamental group in untyped set theory using auto2

Bohua Zhan

Massachusetts Institute of Technology

bzhan@mit.edu

September 29, 2017

Contribution

- Using Isabelle/FOL, we develop mathematics starting from the ZFC axioms, up to the definition of the fundamental group.
- Approx. 13,000 lines of theory files, 3,500 lines of ML code. 5 months of work.
- Need to work with:
 - Algebraic and topological structures.
 - Quotients.
 - Induction (e.g. on natural numbers, finite sets, etc).
 - Arithmetic (e.g. for constructing the real numbers).

Motivation

- Auto2 is a proof automation tool for Isabelle, introduced at ITP 2016.
- In the previous paper, several case studies are given, but they are all fairly short, and the use of auto2 is mixed with the use of other automation tools in Isabelle.
- In the present work, we demonstrate that auto2 can work independently to support formalizations on a relatively large scale.

Why set theory?

- Set theory is the standard foundation for modern mathematics. A system based on set theory can use definitions very close to standard mathematical practice.
- Certain advanced constructions in mathematics are done in a particularly "type-free" way (e.g. algebraic closure of an arbitrary field). Types can get in the way when formalizing such constructions.
- We demonstrate that, with proper automation, it is no more difficult to formalize mathematics in set theory than in type theories.

Comparison to other systems

- Compared to Isabelle/ZF and IsarMathLib:
 - Formalized deeper mathematics.
 - ▶ Use auto2 exclusively for proofs. More succinct proof scripts.
- Compared to Mizar:
 - Simple underlying logic. Many constructions added outside the kernel.
 - Emphasis on powerful, extensible automation.

Introduction to Isabelle/FOL + ZFC axioms

- Primitive types: *i* for sets and *o* for propositions.
- Function types: $i \rightarrow o$, $i \rightarrow i$, $(i \rightarrow o) \rightarrow o$, etc.
- Enough higher-order features to state and use induction rules.
- However, no equality except for types i and o. Any functions that we
 wish to consider as first-class objects should be defined as
 set-theoretic functions.
- Similar statement of ZFC axioms as in Isabelle/ZF and IsarMathLib.

Introduction to auto2

- Saturation-based prover for classical logic.
- Independent from existing automation in Isabelle, such as Sledgehammer or the usual Isabelle tactics.
- Proof state consists of a list of items (derived facts, terms, etc), as well as several data structures (e.g. congruence closure of the known equalities).
- Proof steps are functions for producing new items from existing ones.
 They can be as simple as applying a single lemma, or implement more complex proof procedures.

Proof scripts for auto2

- Declarative style: consists solely of intermediate goals with hierarchical structure.
- Compared to Mizar/Isar:
 - No labeling of intermediate goals.
 - No names of tactics.
 - No names of previous lemmas.

Techniques for working with set theory

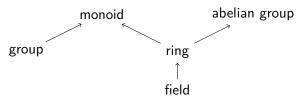
- Abstraction of definitions.
- Properties.
- Well-formed terms and conversions.

Abstraction of definitions

- Many concepts, such as ordered pairs or natural numbers, are represented as sets, but we never make use of their representations except to prove basic facts about these concepts.
- We can abstract away the underlying representation using the following procedure:
 - ▶ Step 1: define the concept, add definition as a rewrite rule to auto2.
 - ▶ Step 2: prove basic facts, add them as appropriate reasoning rules.
 - ▶ Step 3: delete the rewrite rule for the definition from auto2.
- At the end of this procedure, the original definition is effectively hidden away from proof automation, and only the derived facts will be used.

Properties

- Concepts such as group, ring, and field, which may be declared as type-classes in Isabelle/HOL or similar systems, are represented as predicates (terms of type $i \rightarrow o$).
- There may be extensive dependencies between such predicates:



 In auto2, we can register any predicate as a property. During proof, the property table maintains the list of known properties about existing terms. Dependency relations between properties are automatically propagated.

Well-formed terms

- We define a concept of well-formed terms for use in automation only.
- For any meta-function, we can register well-formedness conditions.
 These are conditions that should be satisfied by the arguments of the function. For example:

Term	Conditions
$\bigcap A$	$A eq \emptyset$
$a +_R b$	$a\in carrier(R), b\in carrier(R)$
inv(R,a)	$a\inunits(R)$
subgroup(G, H)	$is_subgroup_set(G, H)$
$quotient_group(G, H)$	$is_normal_subgroup_set(G, H)$

 During proof, the well-form table maintains the list of known well-formedness conditions of existing terms.

Well-formed conversions

- In an untyped theory, algebraic normalization is more complex, since the relevant rewriting rules have extra conditions.
- E.g.: rule for associativity of addition:

```
"is_abgroup(G) \Longrightarrow x \in . G \Longrightarrow y \in . G \Longrightarrow z \in . G \Longrightarrow x +_6 (y +_6 z) = (x +_6 y) +_6 z"
```

- A well-formed conversion takes a term s with well-formedness conditions, and produces an equation s=t, together with well-formedness conditions on t. They can be composed just like regular conversions.
- By composing well-formed conversions, one can implement normalization in groups, rings, etc. in a way analogous to that in typed theories.

Examples

- Definition of the fundamental group.
- Rempe-Gillen's challenge.
- Schroeder-Bernstein Theorem.

Definition of the fundamental group

- Given topological space X and a point x on X, the group $\pi_1(X,x)$ is defined on the set of loops based at x modulo path homotopy. The identity element is given by the constant loop at x, and multiplication is given by adjoining paths.
- Formal definition:

• Fundamental group is a group:

```
lemma fundamental_group_is_group:

"is top space(X) \implies x \in X \implies is group(\pi_1(X,X))"
```

Rempe-Gillen's challenge

Let f be a continuous real-valued function on the real line, such that f(x) > x for all x. Let x_0 be a real number, and define the sequence x_n recursively by $x_{n+1} := f(x_n)$. Then x_n diverges to infinity.

```
lemma rempe_gillen_challenge:
   "real_fun(f) \Longrightarrow continuous(f) \Longrightarrow incr_arg_fun(f) \Longrightarrow x0 \in . \mathbb{R} \Longrightarrow
     S = Seq(\mathbb{R}, \lambda n. nfold(f, n, x0)) \implies \neg upper bounded(S)"
@proof
   @contradiction
   @have "seq incr(S)" @with @have "\forall n \in \mathbb{N}. S`(n +_{\mathbb{N}} 1) \geq_{\mathbb{R}} S`n" @end
   @obtain x where "converges to(S,x)" @then
   @let "T = Seq(\mathbb{R}, \lambdan. f`(S`n))" @then
   @have "converges to(T,f`x)" @then
   @have "converges to(T,x)" @with
      @have "\forall r >_{\mathbb{R}} 0_{\mathbb{R}}. \exists k \in . \mathbb{N}. \forall n \geq_{\mathbb{N}} k. |T`n -_{\mathbb{R}} x|_{\mathbb{R}} <_{\mathbb{R}} r" @with
          Qobtain "k \in \mathbb{N}" where "\forall n >_{\mathbb{N}} k. |S \cap -\mathbb{R}| x|_{\mathbb{R}} <_{\mathbb{R}} r" Qthen
          @have "\foralln≥_{\mathbb{N}}k. ¦T`n -_{\mathbb{R}} x¦_{\mathbb{R}} <_{\mathbb{R}} r" @with @have "T`n = S`(n +_{\mathbb{N}} 1)" @end @end
   @end
@qed
```

Schroeder-Bernstein Theorem

Given two sets X and Y. If there is an injection f from X to Y and an injection g from Y to X, then there exists a bijection between X and Y.

```
lemma schroeder_bernstein:

"injective(f) \implies injective(g) \implies f \in X \rightarrow Y \implies g \in Y \rightarrow X \implies equipotent(X,Y)"

@proof

@let "X_A = lfp(X, \lambdaW. X - g`(Y - f`W))" @then

@let "X_B = X - X_A" "Y_A = f``X_A" "Y_B = Y - Y_A" @then

@have "X - g``Y_B = X_A" @then

@have "g``Y_B = X_B" @then

@let "f' = func_restrict_image(func_restrict(f,X_A))" @then

@let "g' = func_restrict_image(func_restrict(g,Y_B))" @then

@have "glue_function2(f', inverse(g')) \in (X_A \cup X_B) \cong (Y_A \cup Y_B)"

@qed
```

Conclusion

- We created a new library of mathematics based on Isabelle/FOL, showing the feasibility of formalizing advanced mathematics on this logical foundation, and using auto2 exclusively for automation.
- Code available at: https://github.com/bzhan/auto2
- Future work:
 - Still a lot of room for performance improvements.
 - Develop the library in other areas of mathematics.