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Motivation

Develop proof automation for verification of (sequential) imperative
programs in the interactive theorem prover Isabelle.
Goal: automate the mundane or technical parts of the proof, allowing
the user to focus on the main ideas. Make the proof scripts easier to
write, read, and maintain.
Why interactive theorem proving?

I Able to guide the computer through more complex reasoning.
I Make use of large library of background mathematics.
I Higher confidence in proofs due to small trusted kernel.
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Auto2 prover

Framework for proof automation implemented in Isabelle.
Saturation based proof search: starting from list of assumptions,
iteratively add derivable facts, until a contradiction is found.
Easily extensible by the user through adding proof steps that
represent reasoning rules and proof procedures.
Designed to work effectively with case-analysis, induction, and
equality reasoning.
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Imperative HOL and its separation logic

Imperative HOL in Isabelle: a simple language that represents
imperative programs as monads.
Separation logic for Imperative HOL, with several applications: work
by Peter Lammich and Rene Meis.
Ad-hoc refinement strategy: first verify a functional version of the
program, then show that the imperative version refines the functional
version using separation logic.

I Independent from the refinement framework by Peter Lammich.
Add proof steps to auto2 to support both stages of this process.
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Verification of functional programs

Directional use of lemmas.
Normalization on natural numbers.
Difference logic.
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Directional use of lemmas

In auto2, it is possible to register a lemma for use only in certain
directions.
Forward reasoning:

sorted (x # xs) =⇒ y ∈ set xs =⇒ x ≤ y

Backward reasoning:
sorted xs =⇒ j < length xs =⇒ i ≤ j =⇒ xs ! i ≤ xs ! j

Rewrite rules:
i < length xs =⇒
xs[i := x] ! j = (if i = j then x else xs ! j)
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Normalization on natural numbers

Subtraction is complicated because the intuitive normalization is
possible only if the expression is well-formed. For example

(a::nat) - b + c = a + c - b

does not hold in general in Isabelle (e.g. a = 0, b = c = 1).
Solution: normalize expressions together with their well-formedness
conditions (here a ≥ b for the term a − b).
Example:

(j::nat) - k + i = j - 1 - (k - (i + 1))

(under certain conditions. Used in the analysis of rev_swap).

Bohua Zhan (TU Munich) Verifying imperative programs using auto2 April 16, 2018 9 / 22



Difference logic

Work with inequalities of the form a ≤ b + n or a + n ≤ b on natural
numbers, where n is a constant.
Such inequalities can be encoded in a graph. They imply a
contradiction if and only if the graph contains a negative cycle.
We implement:

I Apply transitivity to pairs a ≤ b + m and b ≤ c + n.
I Contradiction from a + n ≤ a with constant n > 0.
I Use a ≤ b + n to justify a ≤ b + m for any m ≥ n.
I Use a + n ≤ b to justify a ≤ b + m for any m, and a + m ≤ b for any

m ≤ n.
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Set up for separation logic

Forward reasoning with Hoare triples.
Matching of inductively-defined assertions.
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Reasoning using Hoare triples

Reason about programs in the forward direction.
General form of a Hoare triple:
<p1 * · · · * pm * ↑ (a1) * · · · * ↑ (ak)>
cmd

<λr . ∃A~x . q1 * · · · * qn * ↑ (b1) * · · · * ↑ (bl)>

Steps for applying a single Hoare triple:
I Match cmd with current command.
I Frame inference with the spatial part p1 ∗ · · · ∗ pm of the precondition.
I Create case-analysis to check the pure part a1, . . . , ak of the

precondition.
I Apply the Hoare triple to produce assertion on the next heap. The pure

parts b1, . . . , bl are added as facts.
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Matching of inductively-defined assertions

Example for binary trees:
btree Tip p = ↑(p = None)
btree (tree.Node lt k v rt) (Some p) =

(∃Alp rp.p 7→r Node lp k v rp * btree lt lp * btree rt rp)
btree (tree.Node lt k v rt) None = false

For assertion on the current heap, always expand as much as possible.
Improve matching function so that

p 7→r Node lp k v rp * btree lt lp * btree rt rp

will match the pattern btree ?t p.
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Case studies

Union-find1.
Red-black tree.
Interval tree.
Rectangle intersection.
Indexed priority queue2.
Dijkstra’s algorithm3.

1Statement of definitions and lemmas from corresponding example in the AFP entry
“A Separation Logic Framework for Imperative HOL” by Peter Lammich and Rene Meis.

2Also formalized in the AFP entry “The Imperative Refinement Framework” by Peter
Lammich.

3Also formalized in the AFP entry “Dijkstra’s Shortest Path Algorithm” by Benedikt
Nordhoff and Peter Lammich.
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Case studies: statistics

#Imp #Def #Thm #Step Ratio #LOC
Union-find 49 7 26 42 0.86 244

Red-black tree 270 27 83 173 0.64 998
Interval tree 84 17 50 83 0.99 520

Rectangle intersection 33 18 31 111 3.36 417
Indexed priority queue 83 10 53 84 1.01 477
Dijkstra’s algorithm 44 19 62 150 3.41 549

#Imp: number of lines of imperative code.
#Def: number of definitions.
#Thm: number of lemmas and theorems.
#Step: number of “steps” in the proof.
Ratio: ratio between #Step and #Imp.
#LOC: total number of lines of code in the theories.
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Interval tree: search
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Interval tree: imperative search
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Sweep-line algorithm for rectangle intersection
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Dijkstra’s algorithm
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Future work

Support for while and for loops.
Decision procedures for linear arithmetic and for arrays.
Extend framework to verify running time (CADE 2018).
https://github.com/bzhan/auto2
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