
CScoreSAT2013
Shaowei Cai

Griffith University
shaoweicai.cs@gmail.com

Chuan Luo
Peking University

chuanluosaber@gmail.com

Kaile Su
Griffith University

k.su@griffith.edu.au

Abstract—This note describes the SAT solver “CScore-
SAT2013”, which is a local search solver, especially designed for
random instances.

I. INTRODUCTION

Recently, we proposed a new variable property called
subscore [1], which shares the same spirit with the commonly
used property score. While score measures the increment of
satisfied clauses by flipping a variable, subscore does that of
clauses with more than one true literal. Further, we design a
scoring function called comprehensive score [2], which is a
linear combination of score and subscore. We also define a
new type of “decreasing” variables namely comprehensively
decreasing variables [2].

Based on the notions of comprehensive score and compre-
hensively decreasing variable, we develop an SLS algorithm
called CScoreSAT (comprehensive score based SAT algo-
rithm) [2]. The SAT solver CScoreSAT2013 adopts WalkSAT
to solve random instances whose maximum clause length
(denoted by k) is greater than 3, and adopts CScoreSAT to
solve instances with k > 3.

II. MAIN TECHNIQUES

Main techniques in CScoreSAT include: configuration
checking [3], [4] and comprehensive score [2].

A. Configuration Checking

To avoid blind search, we utilize the configuration checking
(CC) strategy . The configuration checking (CC) strategy was
proposed to handle the revisiting problem in local search [5],
and has proved effective in SLS algorithms for SAT [4]. In the
context of SAT, the CC strategy forbids flipping a variable if
since its last flip, none of its neighboring variables has been
flipped. A variable is configuration changed if since its last
flip, at least one of its neighboring variables has been flipped.

B. Comprehensive Score and Comprehensively Decreasing
Variables

We consider the number of true literals in a clause, which
can be regarded as the degree of being satisfied of the clause.
The more true literals a clause contains, the less likely it would
become unsatisfied in the following flips.

Definition 1: Given a CNF formula F and an assignment
α to its variables, the satisfaction degree of a clause C, is
defined as the number of true literals in C under α. A clause
with a satisfaction degree of δ is said to be a δ-satisfied clause.

Among satisfied clauses, 1-satisfied clauses are the most
unstable, as they can become unsatisfied by flipping only one
variable. It is beneficial for SLS algorithms to take into account
the transformations between 1-satisfied and 2-satisfied clauses.

Based on the above considerations, the variable property
subscore is defined as follows.

Definition 2: For a variable x, subscore(x) is defined as
submake(x) minus subbreak(x), where submake(x) is the
number of 1-satisfied clauses that would become 2-satisfied
by flipping x, and subbreak(x) is the number of 2-satisfied
clauses that would become 1-satisfied by flipping x.

When considering clause weights in DLS algorithms,
submake(x) measures the total weight of the 1-satisfied
clauses that would become 2-satisfied by flipping x, and
subbreak(x) does that of the 2-satisfied clauses that would
become 1-satisfied by flipping x.

Based on the above considerations, By combining score and
subscore, we design a scoring function named comprehensive
score, which is formally defined as follows.

Definition 3: For a CNF formula F , the comprehensive
score function, denoted by cscore, is a function for variables
such that cscore(x) = score(x) + bsubscore(x)/dc, where d
is a positive integer parameter.

In the following, we define a new type of “deceasing”
variables based on the cscore function.

Definition 4: Given a CNF formula F and its cscore
function, a variable x is comprehensively decreasing if and
only if score(x) ≥ 0 and cscore(x) > 0.

Comprehensively decreasing variables are considered to
be the flip candidates in the greedy search phases of our
algorithm. We utilize the configuration checking (CC) strategy
to identify the “good” comprehensively decreasing variables
which are configuration changed. For convenience, such vari-
ables are further referred to as CDCC (Comprehensively
Decreasing and Configuration Changed) variables.

III. THE CSCORESAT ALGORITHM

This section presents the CScoreSAT algorithm, which
utilizes two key notions: comprehensive score and compre-
hensively decreasing variable.

For the sake of diversification, CScoreSAT also employs
the PAWS clause weighting scheme [6]. All clause weights
are initiated as 1. When a local optimum is reached, with
probability sp, for each satisfied clause whose weight is larger
than one, its weight is decreased by one; with probability (1−
sp), the weights of all unsatisfied clauses are increased by one.



We first introduce the two scoring functions used in
CScoreSAT. For the greedy search, CScoreSAT adopts the
cscore function. When reaching a local optimum, CScoreSAT
makes use of a hybrid scoring function (denoted by hscore),
which combines cscore with the diversification property age:
hscore(x) = cscore(x)+bage(x)/βc, where β is a (relatively
large) positive integer parameter.

Algorithm 1: CScoreSAT
Input: CNF-formula F , maxSteps
Output: A satisfying assignment α of F , or “unknown”
begin1

α := randomly generated truth assignment;2
for step := 1 to maxSteps do3

if α satisfies F then return α;4
if ∃ CDCC variables then5

v := the CDCC variable with the greatest cscore,6
breaking ties in favor of the oldest one;

else7
update clause weights according to PAWS;8
pick a random unsatisfied clause C;9
v := the variable in C with the greatest hscore,10
breaking ties in favor of the oldest one;

α := α with v flipped;11

return “unknown”;12
end13

CScoreSAT works in two modes, i.e., the greedy mode
or the diversification mode. If there exist CDCC variables,
CScoreSAT works in the greedy mode. It picks the CDCC
variable with the greatest cscore value to flip, breaking ties
by preferring the oldest one. If no CDCC variable is present,
which means a local optimum is identified, then CScoreSAT
switches to the diversification mode. It first updates clause
weights according to the PAWS scheme. Then it randomly
selects an unsatisfied clause C, and picks the variable from C
with the greatest hscore value to flip, breaking ties by favoring
the oldest one.

IV. MAIN PARAMETERS

We combine the WalkSAT and CScoreSAT algorithms,
leading to an SLS solver also called CScoreSAT2013, which
adopts WalkSAT to solve instances with k ≤ 3, and adopts
CScoreSAT to solve instances with k > 3.

WalkSAT has one parameter, namely the noise parameter
wp. In CScoreSAT2013, wp is set to 0.567 when r ≤ 4.22,
0.777-0.05r when r ∈ (4.22, 4.23], 1.553-0.23r when r ∈
(4.23, 4.26) and 2.261-0.4r when r ≥ 4.26, where r is the
clause-to-variable ratio.

CScoreSAT has three parameters, namely d, β and sp.
Fortunately, d is simply defined as 13−k, and β is a constant
(2000) for any instance. The sp parameter for PAWS is set to
0.62 for k = 4, 0.045r − 0.29 for k = 5, 0.9 for k = 6, and
0.92 for k > 6.

V. IMPLEMENTATION DETAILS

CScoreSAT2013 is implemented in C++. The CScore-
SAT algorithm is implemented based on the codes of

CCASat solver [7], which can be downloaded from
www.shaoweicai.net/research.html, while the WalkSAT algo-
rithm is implemented from scratch.

VI. SAT COMPETITION 2013 SPECIFIES

CScoreSAT2013 is submitted to “Core solvers, Sequential,
Random SAT” and “Core solvers, Parallel, Random SAT”
tracks. It is compiled by g++ with the ’O2’ optimization
option. It is a 32-bit binary.

Its running command is:
CScoreSAT2013 <instance file name> <random seed>.

REFERENCES

[1] S. Cai and K. Su, “Local search for boolean satisfiability with configu-
ration checking and subscore,” submitted to Artif. Intell., 2013.

[2] ——, “Comprehensive score: Towards efficient local search for sat with
long clauses,” in Proc. of IJCAI-13, 2013, p. to appear.

[3] ——, “Local search with configuration checking for SAT,” in Proc. of
ICTAI-11, 2011, pp. 59–66.

[4] ——, “Configuration checking with aspiration in local search for SAT,”
in Proc. of AAAI-12, 2012, pp. 334–340.

[5] S. Cai, K. Su, and A. Sattar, “Local search with edge weighting and
configuration checking heuristics for minimum vertex cover,” Artif. Intell.,
vol. 175, no. 9-10, pp. 1672–1696, 2011.

[6] J. Thornton, D. N. Pham, S. Bain, and V. F. Jr., “Additive versus
multiplicative clause weighting for SAT,” in Proc. of AAAI-04, 2004,
pp. 191–196.

[7] S. Cai, C. Luo, and K. Su, “CCASat: Solver description,” in Proc. of SAT
Challenge 2012: Solver and Benchmark Descriptions, 2012, pp. 13–14.


