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Two ways of solving with computer

Problems can be stated 
formally

• the user states the problem and 
the computer solves it by solving 
the mathematical problem.

Problems cannot be stated 
formally

• the user provides examples and the 
computer learns to solve it.

Typical Scenario：theorem proving Typical Scenario：face recognition
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Constraint Solving

solutionProblem
Mathematical 
sentence Φ

Modeling Solving

Restricted first order logic（SMT）
Logical structure + background theory
Φ = ((𝑦2 + 2𝑥𝑦 < 100) ∨ ((𝑓(𝑦) < 30)

→ ﹁(𝑥 − 𝑦 < 30) ∧ (𝑥 ≤ 60))

𝑦2 + 2𝑥𝑦 < 100
𝑥 − 𝑦 < 30
𝑥 ≤ 60

Mathematical Progamming（MP）
Numerical constraints

Constraint Programming（CSP）
various constraints

𝜓 = 𝐴𝑙𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑥𝑖 , 𝑥𝑗 ∧ 𝑥𝑖 − 𝑥𝑗 ≠ |𝑖 − 𝑗|

Boolean algebra （SAT）
logical structure

𝜑 = (𝑥1∨ ¬𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (¬𝑥1 ∨ ¬𝑥3 ∨ 𝑥4)



Hello, SAT!

• The first NP-Complete problem [Cook, 1971]
• Conceptually simple

• Many theoretical results

• Many important applications

• Open source benchmarks and solvers

• Annual competition
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Outline

• SAT Basis

• SAT Encoding

• CDCL 

• Local Search

• Hybrid SAT Solving
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SAT

Propositional Satisfiability (SAT)：Given a propositional formula φ, test 
whether there is an assignment to the variables that makes φ true.

e.g., a  CNF formula

𝜑 = (𝑥1∨ ¬𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (𝑥2 ∨ ¬𝑥4) ∧ (¬𝑥1 ∨ ¬𝑥3 ∨ 𝑥4)

• A core problem in computer science and a basic problem in logic

• Powerful SAT solvers widely used in industry and science
• To find a certain object (a combination, a matching, a  bug, a path… )
• To prove a theorem (  𝜙 is tautology   ↔ ¬𝜙 is UNSAT  )
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SAT 

•SAT solvers usually adopt the Conjunctive Normal Form (CNF):

e.g., 𝜑 = (𝑥1∨ ¬𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (𝑥2 ∨ ¬𝑥4) ∧ (¬𝑥1 ∨ ¬𝑥3 ∨ 𝑥4)

Every propositional formulas can be converted into CNF efficiently.

• Boolean variables: 𝑥1, 𝑥2, …

• A literal is a Boolean variable 𝑥 (positive literal) or its negation ¬𝑥 (negative literal)

• A clause is a disjunction (∨) of literals

𝑥2 ∨ 𝑥3, 

¬𝑥1 ∨ ¬𝑥3 ∨ 𝑥4

• A Conjunctive Normal Form(CNF) formula is a conjunction (∧) of clauses.



• A truth assignment 𝜑 assigns a truth value (True or False) to each Boolean variable 𝑥. 

• 𝜑 satisfies a clause if it satisfies at least one of its literals. 

• 𝜑 satisfies a CNF formula if it satisfies all of its clauses.

SAT Basis
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Tractable and intractable classes

• SAT is generally NP complete
• some classes of the problem can be solved within polynomial time (2SAT, Horn-SAT).

• Some classes are NP complete (3-SAT)

• Solving 2-SAT problem is easy

• For each clause 𝑙 ∨ 𝑘，produce two edges 
¬𝑙 → 𝑘, ¬𝑘 → 𝑙

Check whether there a variable x, such that 
there  is loop between x 𝑎𝑛𝑑 ¬ 𝑥.
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Dichotomy theorem of SAT

• Are there any criteria that would allow us to distinguish between tractable and 
intractable classes?

• A remarkable result was obtained by Schaefer in 1978.

• Loosely speaking, Schaefer’s dichotomy theorem states that there are only two 
possible cases: SAT(C) is either in P or NP-complete. 
• He considered Boolean constraint satisfaction problems SAT(C) where C is a set of constraints.

• Each set C determines a class of formulas such as 2-CNF, 3-CNF, Horn formulas, etc.
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Dichotomy theorem of SAT

• Are there any criteria that would allow us to distinguish between tractable and 
intractable classes?

Theorem (Schaefer, STOC 1978)

Given a Boolean constraint set C, SAT(C) is in P if C satisfies one condition below, 
and otherwise it is NP-complete: 

• 1. C is 0-valid (1-valid); 

• 2. C is  weakly positive (weakly negative);  // Horn, dual-Horn

• 3. C is bijunctive;  //2-SAT 

• 4. C is affine. //A system of linear equations

A CNF formula is Horn (dul-Horn, resp.) if every clause in this formula has at most one positive 
(negative, resp.) literal
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Hardness Assumptions

For 3-SAT, the best known algorithms run in exponential time in 𝑛, which motivates 
the hardness assumption that better algorithms do not exist.

• Exponential Time Hypothesis (ETH) 
• 3-SAT cannot be solved in 2𝑜(𝑛) time, 

• Strong Exponential Time Hypothesis (SETH). 
• nonexistence of  algorithms with running time bound 𝑂∗(𝑐𝑛) for some constant c < 2 for 𝑘-SAT 

with large 𝑘.
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Upper bounds for 3-SAT

• Randomized algorithms. 
• O(1.334𝑛), by Sch ሷoning’s multi-restart random walk algorithm. [Sch ሷoning,99FOCS]

• O(1.323𝑛) , by a combination of the above algorithm and the PPSZ algorithm [Rol06]. 

• Deterministic algorithms. 
• O(1.5𝑛), by the cube-covering-based algorithm 

[DantsinGoerdtHirschKannanKleinbergPapadimitriouRaghavanSch ሷoning,02TCS].

• O(1.473𝑛) The above bound can be improved using a pruning technique for search inside a ball. 
The currently best bound based on this method is O(1.473𝑛) . [BrueggemannKern,04TCS]

PPSZ: The current best algorithm for unique k-SAT with k>3
[PaturiPudlakSaksZane,05JACM]

Taken from 
“Handbook of 
Satisfiability”
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Phase transition of random k-SAT

The phase transition phenomenon in random 3-SAT. 

Top: the “easy-hard-easy” computational hardness w.r.t.
DPLL, peaks at α ≈ 4.26. 

Bottom: Formulas change from being mostly satisfiable to 
mostly unsatisfiable. The transitions sharpen as the 
number of variables grows.  

For general k, the threshold for random k-SAT is known 
to be in the range 2𝑘𝑙𝑛2 − 𝑂 𝑘 [Achlioptas, Naor, Peres. 
2005 Nature]

Solving hard phase transition random benchmarks 
becomes a major motivation on early the development of 
incomplete solvers, including stochastic local search (SLS) 
and survey propagation.
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Phase transition and Survey Propagation (SP)

• Survey propagation
• derived from the cavity method for spin glasses in statistical physics. [M ƴezardParisiZecchina, 2002 Science]

•𝐹 = 𝑣1 ∨ ¬𝑣2 ∧ ¬𝑣1 ∨ 𝑣2 ∨ 𝑣3 ∧ (𝑣2 ∨ ¬𝑣3)

• SP performs iterative calculations of messages

•Randomly and independently initialize 𝛿 𝑙, 𝑐 ∈ 0.0, 1.0 , then repeat:
• Update 𝜔 messages based on 𝛿 messages
• Update 𝛿 messages based on 𝜔 messages
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Phase transition and Survey Propagation (SP)

• The current best method for solving random satisfiable k-SAT close to phase 
transition is due to the combination  SP+SLS.
• SP is first called to simplify the original formula

• SLS is then activated to solve the sub-formula after simplification

• a study of SP+SLS is presented at [LuoCaiWuSu,13CP]

• Dimetheus [Gableske, 2016SAT],

• SP+SLS solves huge random 3-SAT instances (𝑟 = 4.2, #var = 107) 
within 2 hours [LuoCaiWuSu,13CP]
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Algorithm, Solver

Algorithms

vs.

Solvers
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SAT revolution

SAT solvers, 

programs that solve SAT formulas, 
have become extremely powerful over the last 
two decades.

Today's solvers can handle formulas with millions of 
variables, resulting in the SAT revolution
--- Solve problems in 3 steps:

S𝐴𝑇 𝑆𝑜𝑙𝑣𝑖𝑛𝑔S𝐴𝑇 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔 Decoding
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SAT revolution

xm + ym = zm (mod p)
Schur's Theorem

vdW(6) = 1132
Ramsey Theory

Pythagorean Tuples Conjecture

3n+1 Conjecture?

cryptography

EDA

Math

Program Analysis Planning

Resource Allocation
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Using SAT Solvers

c example 
p cnf 4 4
1 -4 -3 0 
1 4 0 
-1 0 
-4 3 0

lines starting ”c” are comments and are ignored by the 
SAT solver 
a line starting with ”p cnf” is the problem definition line 
containing the number of variables and clauses. 
the rest of the lines represent clauses, literals are integers 
(starting with variable 1), clauses are terminated by a zero.

Input file: DIMACS format.

c comments, usually stastitics about the 
solving 
s SATISFIABLE 
v 1 2 -3 -4  5 -6 -7 8 9 10
v -11 12 13 -14 15 0

the solution line (starting with ”s”) can 
contain SATISFIABLE, 
UNSATISFIABLE and UNKNOWN.
For SATISFIABLE case, the truth values 
of variables are printed in lines starting 
with ”v”, the last value is followed by 
a ”0”

Output format
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Outline

• SAT Basis 

• SAT Encoding

• CDCL 

• Local Search

• Hybrid SAT Solving
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SAT Encoding: graph coloring problem

A coloring is an assignment of colors to vertices such that no two adjacent vertices 
share the same color.

The Graph Coloring Problem (GCP) is to find a coloring of a graph while minimizing 
the number of colors. 

The decision version: given a positive number k, decide whether a graph can be 
colored with k colors.
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SAT Encoding: graph coloring problem

• 3-coloring problem:
• for each vertex, uses 3 variables (n vertices), 4 × 3 = 12 in all.

x11, x12, x13,  x21, x22, x23 , x31, x32, x33 , x41, x42, x43

• For each edge, produces 3 negative 2-clause

edge1-2: ¬𝑥11⋁¬𝑥21 , ¬𝑥12⋁¬𝑥22 , ¬𝑥13⋁¬𝑥23 ;

edge1-4: ¬𝑥11⋁¬𝑥41 , ¬𝑥12⋁¬𝑥42 , ¬𝑥13⋁¬𝑥43 ;

edge2-3: ¬𝑥21⋁¬𝑥31 , ¬𝑥22⋁¬𝑥32 , ¬𝑥23⋁¬𝑥33 ;

edge2-4: ¬𝑥21⋁¬𝑥41 , ¬𝑥22⋁¬𝑥42 , ¬𝑥23⋁¬𝑥43 ;

edge3-4: ¬𝑥31⋁¬𝑥41 , ¬𝑥32⋁¬𝑥42 , ¬𝑥33⋁¬𝑥43 ;

• For each vertex, produces a positive k-clauses

𝑥11⋁ 𝑥12⋁ 𝑥13 , 𝑥21⋁ 𝑥22⋁ 𝑥23 , 𝑥31⋁ 𝑥32⋁ 𝑥33 , 𝑥41⋁ 𝑥42⋁ 𝑥43
• Result:

x11, ¬ x12, ¬ x13, ¬x21, x22, ¬ x23 , x31, ¬ x32, ¬ x33 , ¬ x41, ¬ x42, x43

1

2

3

4

1

2

3

4

Color 1

Color 2

Color 3
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SAT Encoding: logic puzzle

• Question: at least one of them speak truth. ho speaks the truth?
• A: B is lying.

• B: C is lying.

• C:  A and B is lying.

• Encoding:
• 3 variables: a, b, c present A, B, C speak truth, while ¬a, ¬b, ¬c present lying.

• clauses: 

a ∨ b ∨ c ;                                 %at least one speak truth.

¬ a ∨ ¬ b;  a ∨ b;                      %a-> ¬b, ¬a -> b

¬ b ∨ ¬ c;  b ∨ c; %b-> ¬c, ¬b -> c

¬ c ∨ ¬ a; ¬c ∨ ¬b; c ∨ a ∨ b %c->(¬aꓥ ¬b), ¬c->¬ (¬aꓥ ¬b)

• Result: ¬a, b, ¬c
B speaks truth, A and C are lying



Encoding Sudoku to SAT

• A Sudoku puzzle is represented by a 99 grid made up of nine 33 blocks. Some of the 
81 cells of the puzzle are assigned one of the numbers 1,2, …, 9.

• Goal: assign numbers to each blank cell so that every row, column and block contains each 
of the nine possible numbers.

• Let p(i,j,n) denote the proposition that is true when the cell 
in the i-th row and the j-th column has number n.

• There are 99  9 = 729 such propositions.

• In the sample puzzle p(5,1,6) is true, but p(5,j,6) is false for 
j = 2,3,…9
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Encoding Sudoku to SAT

• For each cell with a given value, assert p(i,j,n), when the cell in row i and column j
has the given value.

• Assert that every row contains every number.

• Assert that every column contains every number.

26



Encoding Sudoku to SAT

• Assert that each of the 3 x 3 blocks contain every number.

• Assert that no cell contains more than one  number. 

27



28

Circuit to CNF
Tseitin Transformation
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SAT Encoding: Equivalence Checking

X X

…

N1 N2

M

Multi-output

N2N1

Inputs

Output

Single output

• Build a miter circuit

• Transform Miter Circuit to CNF

• Call a  SAT solver
If SAT，we find a counter-example

If UNSAT, N1=N2

N1 xor N2  →
CNF
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SAT Encoding: Equivalence Checking

A small example of EC
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SAT Encoding: ATPG

ATPG （Automatic Test Pattern Generation）

• After producing a chip the functional correctness of the integrated circuit has to be 
checked.
• Consider the stuck-at fault model

50 wires，
100 possible stuck-at 
faults
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SAT Encoding: ATPG

ATPG （Automatic Test Pattern Generation）

• After producing a chip the functional correctness of the integrated circuit has to be 
checked.



Encoding Planning to SAT

• Variables – For each location we have variable, the domain is WORKER, BOX, EMPTY

• Initial State – assign values based on the picture

• Goal – goal position variables have value BOX

• Actions – move and push for each possible location
• push(L1; L2; L3) 
= ({L1 = W; L2 = B; L3 = E}; {L1 = E; L2 = W; L3 = B}).
• move(L1; L2) = ({L1 = W; L2 = E}; {L1 = E; L2 = W})

• We cannot encode the existence of a plan in general

• But we can encode the existence of plan up to some length

[example taken from SAT lecture by Carsten Sinz, Toma´s Balyo]
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Encoding Planning to SAT

• A planning problem instance Π is a tuple (χ, 𝐴, 𝑆𝐼 , 𝑆𝐺) where

• 𝜒 is a set of multivalued variables with finite domains.

each variable 𝑥 ∈ 𝜒 has a finite possible set of values 𝑑𝑜𝑚 𝑥

• A   is a set actions. Each action 𝑎 ∈ 𝐴 is a tuple 𝑝𝑟𝑒 𝑎 , 𝑒𝑓𝑓 𝑎

𝑝𝑟𝑒(𝑎) is a set of preconditions of action 𝑎

𝑒𝑓𝑓(𝑎) is a set of effects of action 𝑎

both are sets of equalities of the form 𝑥 = 𝑣 where 𝑥 ∈ 𝜒 and 𝑣 ∈ 𝑑𝑜𝑚(𝑥)

• 𝑠𝐼 is the initial state, it is a full assignment of the variables in 𝜒

• 𝑠𝐺 is the set of goal conditions, it is a set of equalities(same as 𝑝𝑟𝑒(𝑎) and 𝑒𝑓𝑓(𝑎) )
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Encoding Planning to SAT

The task

• Given a planning problem instance Π = 𝜒, 𝐴, 𝑆𝐼 , 𝑆𝐺 and 𝑘 ∈ N construct a CNF 
formula 𝐹 sus that 𝐹 satisfiable if and only if there is plan of length 𝑘 for Π.

We need two kinds of variables
• Variables to encode the actions:

𝑎𝑖
𝑡 for each 𝑡 ∈ 1,… , 𝑘 and 𝑎𝑖 ∈ 𝐴

• Variables to encode the states:

𝑏𝑥=𝑣
𝑡 for each 𝑡 ∈ 1,… , 𝑘 + 1 , 𝑥 ∈ 𝜒 and 𝑣 ∈ 𝑑𝑜𝑚(𝑥)

• In total we have 𝑘 𝐴 + (𝑘 + 1)σ𝑥∈𝜒 𝑑𝑜𝑚(𝑥) variables

35



Encoding Planning to SAT

We will need 8 kinds of clauses

• The first state is the initial state

• The goal conditions are satisfied in the end

• Each state variable has at least one value

• Each state variable has at most one value

• If an action is applied it must be applicable

• If an action is applied its effects are applied in the next step

• State variables cannot change without an action between steps

• At most one action is used in each step

36



Encoding Planning to SAT

The first state is the initial state:

（𝑏𝑥=𝑣
1 ）

∀(𝑥 = 𝑣) ∈ 𝑠𝐼

The goal conditions are satisfied in the end:

（𝑏𝑥=𝑣
𝑘+1）

∀(𝑥 = 𝑣) ∈ 𝑠𝐺

37



Encoding Planning to SAT

Each state variable has at least one value:

(𝑏𝑥=𝑣1
𝑡 ⋁𝑏𝑥=𝑣2

𝑡 ⋁⋯𝑏𝑥=𝑣𝑑
𝑡 )

∀𝑥 ∈ 𝜒, 𝑑𝑜𝑚 𝑥 = 𝑣1, 𝑣1, . . . , 𝑣𝑑 , ∀𝑡 ∈ {1, . . . , 𝑘 + 1}

Each state variable has at most one value:

(¬𝑏𝑥=𝑣𝑖
𝑡 ⋁¬𝑏𝑥=𝑣𝑗

𝑡 )

∀𝑥 ∈ 𝜒, 𝑣𝑖 ≠ 𝑣𝑗 , {𝑣𝑖 , 𝑣𝑗} ⊆ 𝑑𝑜𝑚 𝑥 , ∀𝑡 ∈ {1, . . . , 𝑘 + 1}

38



Encoding Planning to SAT

If an action is applied it must be applicable:

(¬𝑎𝑡⋁ 𝑏𝑥=𝑣
𝑡 )

∀𝑎 ∈ 𝐴, ∀ 𝑥 = 𝑣 ∈ 𝑝𝑟𝑒 𝑎 , ∀𝑡 ∈ {1, . . . , 𝑘}

If an action is applied its effects are applied in the next step:

(¬𝑎𝑡⋁ 𝑏𝑥=𝑣
𝑡+1)

∀𝑎 ∈ 𝐴, ∀ 𝑥 = 𝑣 ∈ 𝑒𝑓𝑓 𝑎 , ∀𝑡 ∈ {1, . . . , 𝑘}

39



Encoding Planning to SAT

State variables cannot change without an action between steps.

If 𝑥 ≠ 𝑣 at t, but 𝑥 = 𝑣 at t+1, then some action supporting 𝑥 = 𝑣 must happen.

(¬𝑏𝑥=𝑣
𝑡+1 ⋁ 𝑏𝑥=𝑣

𝑡 ⋁ 𝑎𝑠1
𝑡 ⋁⋯⋁ 𝑎𝑠𝑗

𝑡 )

∀𝑥 ∈ 𝜒, ∀𝑣 ∈ 𝑑𝑜𝑚 𝑥 , 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑥 = 𝑣 = 𝑎𝑠1 , . . . , 𝑎𝑠𝑗 , ∀𝑡 ∈ {1, . . . , 𝑘}

By support(𝑥 = 𝑣) ⊆ 𝐴 we mean the set of supporting actions of the assignment 𝑥 =
𝑣,i.e., the set of actions that have 𝑥 = 𝑣 as one of their effects.

40



Encoding Planning to SAT

At most one action is used in each step:

(¬𝑎𝑖
𝑡 ⋁¬𝑎𝑗

𝑡)

∀ 𝑎𝑖 , 𝑎𝑗 ⊆ 𝐴, 𝑎𝑖 ≠ 𝑎𝑗 ∀𝑡 ∈ {1, . . . , 𝑘}

41
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SAT Solving Basis

Complete Solvers：conflict-driven clause learning

Incomplete Solvers：biased on satisfiable side

SAT Solving

Stochastic 
local search

CDCL

Reasoning Search
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SAT Solving Basis - Resolution

• Resolution.   If  two clauses A and B have exactly one pair of complementary literals a A

and ¬a  B, then the clause  A∪B\{a, ¬a} is called the resolvent of A and B (by a) and 
denoted by R(A, B).

• This algorithm is sound and complete – always terminates and answers correctly

• Has exponential time and space complexity (always for Pigeons)
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SAT Solving Basis - Resolution

Variable elimination by resolution

• Given a formula F and a literal 𝑎, the formula denoted 𝐷𝑃𝑎(F) is constructed from F
• by adding all resolvents by 𝑎

• and then removing all clauses that contain a or ¬a

Example. 𝐹 = ( 𝑥 ∨ 𝑒 ) ∧ ( 𝑦 ∨ 𝑒 ) ∧ ( 𝑥 ∨ 𝑧 ∨ 𝑒 ) ∧ ( 𝑦 ∨ 𝑒 ) ∧ ( 𝑦 ∨ 𝑧 )

Eliminating variable e by resolution:

• first add all resolvents upon e. 

{ 𝑥 ∨ 𝑒 , ( 𝑦 ∨ 𝑒 )} with { 𝑥 ∨ 𝑧 ∨ 𝑒 , (𝑦 ∨ 𝑒)}→ 4 resolvents

𝐹 ∧ ( 𝑥 ∨ 𝑥 ∨ 𝑧) ∧ ( 𝑥 ∨ 𝑦 ) ∧ ( 𝑦 ∨ 𝑥 ∨ 𝑧) ∧ (𝑦)

• remove all clauses that contain e to obtain

( 𝑦 ∨ 𝑧 ) ∧ ( 𝑥 ∨ 𝑥 ∨ 𝑧) ∧ ( 𝑥 ∨ 𝑦 ) ( 𝑦 ∨ 𝑥 ∨ 𝑧) ∧ (𝑦)



• Unit Clause:  A Clause that all literals are falsified except one unassigned literal.

• Unit Propagation (UP):  the unassigned literal in unit clause can only be assigned to 
single value to satisfy the clause.

SAT Solving Basis - Unit Propagation

46



• Unit Clause:  A Clause that all literals are falsified except one unassigned literal.

• Unit Propagation (UP):  the unassigned literal in unit clause can only be assigned to 
single value to satisfy the clause.

SAT Solving Basis - Unit Propagation
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SAT Solving Basis – DP Algorithm

Question: Can we do better than saturation-based resolution?

➔Davis-Putnam Algorithm [1960] % could find record in 1959

• Rule 1: Unit propagation

• Rule 2: Pure literal elimination

• Rule 3: Resolution at one variable

Apply deduction rules (giving priority to rules 1 and 2) until no further rule is applicable

Solver = Algorithmic framework + heuristics. [just a quick thinking, don’t quote me…]

48
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SAT Solving – Quest for Efficient SAT solving

Complete

Incomplete

S
c
h
ሷo

n
i
n
g

Lookahead 
(Bohm,1996)

march-eq
2003

Survey Propagation

Hybrid

S
c
h
ሷo

n
i
n
g

S
c
h
ሷo

n
i
n
g

Millions of variables 
solved in 1 hour



Davis-Putnam-Logemann-Loveland (DPLL, 1962)

• Chronological backtracking + UP + Decision heuristics

DPLL Algorithm

50

conditioning Δ on literal L: 



Davis-Putnam-Logemann-Loveland (DPLL, 1962)

• Chronological backtracking + UP + Decision heuristics

DPLL Algorithm

51

[ UP] Decide [UP] Decide [UP] ….

Level 0    Level 1

Decision level 



The first two conflicting 
clauses 
{¬𝐴,¬𝑋, 𝑌}, {¬𝐴, 𝑋, ¬𝑍}
do not involve B and C.

Chronological Backtracking Non-Chronological Backtracking

Backjumping
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CDCL – Implication Graph
[MarqueSilvaSakallah’96] 

Implication Graph describes the decision and reasoning path.

• Vertex: (decision variable = value @decision level)

• Edge : unit clause used in UP (Reason Clause) . 

• Conflict: all literals are falsified (under the current assignment).
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CDCL – Implication Graph

Implication Graph
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For variable x:

𝑣 𝑥 : 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒
𝛿 𝑥 : 𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙
𝛼 𝑥 : 𝑡ℎ𝑒 𝑟𝑒𝑎𝑠𝑜𝑛 𝑐𝑙𝑎𝑢𝑠𝑒
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CDCL – Conflict Analysis

Variables are analyzed in a first-in first-out fashion, starting 
from the conflict.

Any literals assigned at decision levels smaller than the 
current one are added to (i.e. recorded in) the clause being 
learned

unique implication point (UIP)
in step 3, there exists only one variable to trace, e, it is a 
UIP.
a UIP is a dominator of the decision variable with respect 
to the conflict node ⊥.
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CDCL – Conflict Analysis
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CDCL – Non-Chronological backtracking  with conflict analysis

NBC with first UIP learnt clause ℎ ∨ 𝑒 NBC with learnt clause ℎ ∨ 𝑏 ∨ 𝑎



Chronological Backtracking8. {¬𝐴,¬Y }

Conflicting Clause:{¬𝐴,¬Y , ¬𝑍}

Learnt Clause(1UIP):{¬𝐴,¬Y}

Conflict Analysis 

Clause Learning

CDCL – Non-Chronological backtracking  with conflict analysis
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Non-Chronological 
Backtracking



• Analyze-Conflict : non-chronological backtracking + clause learning + vivification

• Decide : Branching strategy and phasing  strategy

CDCL – Algorithm
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• Analyze-Conflict : non-chronological backtracking + clause learning + vivification

• Decide : Branching strategy and phasing  strategy

CDCL – Algorithm

60

• Clause learning
• Clause management
• Lazy data structures
• Restarting
• Branching 
• Phasing
• Mode Switching
• …



Efficient UP:  2 watched literals 

• In each non-satisfied clause "watch" 

two non-false literals

• For each literal remember all

the clauses where it is watched

CDCL – Lazy data structure
[ZhangStickel’00] [MoskewiczMadiganZhaoZhangMalik’01]
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• Static branching heuristic: e.g. Ordered BDDs

• Dynamic branching heuristic considering current partial assignment.

• dynamic literal individual sum heuristic (DLIS)

• Dynamic branching heuristic considering learning clauses

• Variants of DLIS

• Variable state independent decaying sum(VSIDS) and its variants

• Normalized VSIDS(NVSIDS) : exponential moving average

• Exponential VSIDS(EVSIDS) : proposed by MiniSAT

• Literal state independent decaying sum(LSIDS)

• Variable move to front(VMTF) [Ryan Thesis 2004] 

• Average conflict-index decision score(ACIDS)

• Reinforcement learning based branching heuristic: multi-armed bandit(MAB)

• Conflict history-based branching(CHB): 1 − 𝛼 𝑠 + 𝛼 ⋅ 𝑟, 𝑟 =
𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟

𝑛𝐶𝑜𝑛𝑓−𝑙𝑎𝑠𝑡𝐶𝑜𝑛𝑓𝑣+1

• Learning rate based branching(LRB)

• Dynamic switching between multiple heuristics

• Kissat-MAB switching between CHB and VSIDS by Upper Confidence Bound(UCB)

CDCL – Branching heuristics
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• Branching heuristics are used for deciding which variable to use when branching.

• Nowadays, solvers prefer the variable which may cause conflicts faster.

• Variable State Independent Decaying Sum (VSIDS) [MoskewiczMadiganZhaoZhangMalik’01]

• Compute score for each variable, select variable with highest score

• Initial variable score is number of literal occurrences.

• For a new conflict clause 𝑐: score of all variables in 𝑐 is incremented.

• Periodically, divide all scores by a constant. % forgetting previous effects

CDCL – Branching heuristics
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• Most popular: the exponential variant in MiniSAT (EVSIDS)

• The scores of some variables are 𝑏𝑢𝑚𝑝𝑒𝑑 with 𝑖𝑛𝑐, and 𝑖𝑛𝑐 decays after each 

conflict.

• Initialize 𝑠𝑐𝑜𝑟𝑒 to 0, the bump score 𝑖𝑛𝑐 default to 1.

• 𝑖𝑛𝑐 multiply 1/𝑑𝑒𝑐𝑎𝑦 after each conflict, 𝑑𝑒𝑐𝑎𝑦 initialized to 0.8, increased 

by 0.01 every [5k] conflicts, the maximum of 𝑑𝑒𝑐𝑎𝑦 is 0.95. 

• The score of variables in conflict clause 𝑐 are bumped with 𝑖𝑛𝑐.

+ the 𝑠𝑐𝑜𝑟𝑒 of the variables related with this conflict analysis are bumped 

with 𝑖𝑛𝑐/2 [reason side bump used in Maple].

CDCL – Branching heuristics
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• Learning rate based branching heuristic(LRB)[LiangGaneshPoupartCzarnecki,16SAT]

• Compute score 𝐴𝑣 for each variable 𝑣, select variable with highest score.

𝐴𝑣 = 1 − 𝛼 𝐴𝑣 + 𝛼 ⋅ (
P v, I

L I
+
A v, I

L I
)

•
P v,I

L I
and 

A v,I

L I
are called learning rate and reason side rate.

• 𝐼 is the interval of time between the assignment of 𝑣 until 𝑣 transitions back to being unassigned.
• P(v,I) is the number of learnt clauses in which 𝑣 participates during I.
• V(v,I) is the number of learnt clauses which 𝑣 reasons in generating in I.
• L(I) is the number of learnt clauses generated in I.

• VMTF [Ryan Thesis 04]

• Using a priority queue for select variables.

• Move the variables in the conflict clause to the front of the queue.

CDCL – Branching heuristics
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Phase saving [PipatsrisawatDarwiche,07SAT]

• Phase : the value which variable should assign when branching.

• Phase saving (progress saving):  Save assignments when backtracking.

• returns the phase of a variable x corresponding to the last time x was assigned.

• Reason why phase saving: Avoid too many useless erasures and decisions. 

• reusing the trail can reduce the cost of restarts [RamosVanDerTakHeule,11JSAT]

CDCL – Phase Saving
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• Reason why Clause Database Reduction:

• Not all of them are helpful;  

• UP gets slower with memory consumption.

• Measurement criteria of clauses:

• least recently used (LRU) heuristics: discard clauses not involved in recent conflict clause generation

• Literal Block Distance(LBD): number of distinct decision levels in learnt clauses, proposed in glucose. 

[AudemardSimon,09IJCAI]

• 3-tired clause Learned clause management : 𝑐𝑜𝑟𝑒 are clauses with LBD≤ 3; 𝑚𝑖𝑑_𝑡𝑖𝑟𝑒 retain recently used clause 

with LBD up to 6; 𝑙𝑜𝑐𝑎𝑙 saving other clauses. [Chanseok Oh, 15SAT]

• Reduction Method in 3-tier method:

• 𝑐𝑜𝑟𝑒 never be removed;    

• Periodically remove half 𝑙𝑜𝑐𝑎𝑙 clauses based on score.

• Periodically move some recently not used clauses in 𝑚𝑖𝑑_𝑡𝑖𝑟𝑒 to 𝑙𝑜𝑐𝑎𝑙. 

• move clauses encounter in 𝑙𝑜𝑐𝑎𝑙 many times to 𝑚𝑖𝑑_𝑡𝑖𝑟𝑒, and same from 𝑚𝑖𝑑_𝑡𝑖𝑟𝑒 to 𝑐𝑜𝑟𝑒.

CDCL – Learnt Clause Removal
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• Periodical traceback to 0 decision level.

• clause learning and search restarts correspond to a proof system as powerful as general 

resolution, and stronger than DPLL proof system; practically effective.

• Restart policies:

• Luby series:  1 1 2 1 1 2 4 1 1 2 1 1 2 4 8 …

• Glucose restart (rapid) : When average LBD of some  current learnt clauses is great than the 

average LBD of  all learnt clauses. [AudemardSimon,12CP]

• A conjecture: rapid restarts generally helps deriving a refutation proof, while remaining in the 
current branch increases the chance of reaching a model

• interleave “stabilizing” mode (no restarts) and “focused” mode [Chanseok Oh,15SAT]

CDCL – Effective Restart
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• Remove some literals which can be conducted by another literal in the clause.

CDCL – Clause Simplification
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• Remove some literals which can be conducted by other literals in the clause.

CDCL – Clause Simplification
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• Preprocessing / Inprocessing (Interleave search and preprocessing)

• Bounded Variable Elimination

• Variable Elimination with “AND” Gates

• Blocked Clauses

• Parallel SAT Solving

• Divide and Conquer – explicit search space partitioning

• Cube and Conquer – implicit load balancing

• Diversify and Conquer – portfolio search

• Portfolios

• Pure portfolios

• Portfolios with Clause Learning

• Incremental SAT Solving

SAT solving – Others
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Outline

• SAT Basis

• SAT Encoding

• CDCL 

• Local Search

• Hybrid SAT Solving
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Local Search - Basis

Stochastic local search (SLS) for SAT
• Begin with a complete assignment

• Iteratively modify the assignment by flipping a variable picked by heuristics.

𝛼

𝛼′

Geometrical view: as a walk in the space of 2𝑛 assignment



search space S
(SAT: set of all complete truth assignments to propositional 

variables)

solution set S′ ⊆ S
(SAT: models of given formula)

neighbourhood relation N ⊆ S × S
(SAT: neighbouring variable assignments differ in the truth value of 

exactly one variable)

evaluation function g : S → R+

(SAT: number of clauses unsatisfied under given assignment)
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Local Search - Basis



Local Search - Basis
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Scoring
functions

Search 
strategies



Run a small example

• Neighbourhood relation: two assignments are neighbors if and only if they differ 
in the truth value of exactly one variable

• S=<000>, N(S)={S1,S2,S3}={<100>,<010>,<001>}

• g(S)=2

• g(S1) =1

• g(S2) =1

• g(S3) = 2

F={x1 \/ ~x2,   x1 \/ x2,  x2,  ~x1 \/ x2 \/~x3}

assignment unsatisfied clauses

S 000 x1 \/ x2,   x2
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Score of variables

• Instead of using evaluation functions on assignments, we usually define  scoring 
functions for variables.

• Under assignment S, score(x) = g(S)-g(S'), where S' differs from S only in the value of 
x. This is a scoring function of variables.

• score(x1)=g(000) - g(100)=2-1=1

• score(x2)=g(000) - g(010) = 2-1=1

• score(x3)=g(000) - g(001) = 2-2=0

F={x1 \/ ~x2,   x1 \/ x2,  x2,  ~x1 \/ x2 \/~x3}

assignment unsatisfied clauses

S 000 x1 \/ x2,   x2
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Invariant of Iterative Improvement for SAT

GSAT [Selman et al, AAAI 1992]

• S := a random complete assignment;

• while (!termination condition)

• if (S is a solution) return S;

• x := a variable with the best score;

• S := S with x flipped;

• return S;
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Iterative improvement 



• In this type of random walk step, first a random unsatisfied constraint c is selected. 

• Then, one of the variable appearing in c is randomly selected and flip ( thus forces c to become satisfied).
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Focused random walk (WalkSAT)



• Date back to the Breakout method (1993): increases the weight of each unsatisfied clause 
by one when reaching local optima.

Modern clause weighting usually have a “smoothing” mechanism to decrease weights.

• discrete Lagrangian method (DLM): DLM follows Breakout’s weight increment scheme, but 
additionally decrements clause weights by a constant amount after a fixed number of increases;

• pure additive weighting scheme (PAWS)[Thornton+05]

• PAWS updates clause weights in local optima as follows. First, the clause weights of all unsatisfied clauses 
are increased by one; then, all clause weights are decreased by one after a fixed number of increases.[]

• the scaling and probabilistic smoothing (SAPS) [HutterHoos+,02]

• when reaching a local optimum, with some probability  𝑤 𝑐 = 𝜌𝑤 𝑐 + 1 − 𝜌 𝑤

• Smoothed Weighting based on Threshold (SWT)[CaiSu,13]

• When 𝑤 reaching a threshold, smooth the weights by 𝑤 𝑐 = 𝜌𝑤 𝑐 + 𝑞𝑤
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Clause weighting for SAT



Scoring functions

A basic Scoring Function 

• A common scoring function for SAT, which is named ‘score’.

• Under assignment S, score(x) = cost(S)-cost(S’), where S’ differs from S 
only in the value of x, cost(S) is the number of unsatisfied clauses under S.

• Score(x)=make(x)-break(x)

• Efficient implementation: caching or non-caching, depends..
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Scoring functions

A Scoring Function can be:
• a property of the variable, such as score, age, frequency …

• any mathematical expression with one or more properties.

Other Scoring functions 
• age(x) = the number of steps since x has changed value

• frequency(x) = a count on how many times x changes its value

• wscore(x) = the weighted version of score, using clause weighting 
techniques

• Score(x)+age(x)/T, where T is a parameter
• Ascore(x)

• score(x)B

• …

Dynamic Scoring functions 
• Change the parameters or the expression of the scoring function during the 

search
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Scoring Functions - Probability based scoring functions

• Sparrow (2010) [BalintFröhlich,2000SAT]

• probSAT(2011) [Balint Schöning:,2001SAT]

• Focused random walk algorithm

• In each step, probSAT computes f(x) for each variable x in the clause for a given scoring 
function f(·), 

• and then chooses a random variable x according to probability ∑ f(x) z∈C f(z) . 

• several functions f(·) for probSAT, mainly including exponential and polynomial 
functions of the break property.
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Scoring functions - Satisfaction degree

84

Both clauses are satisfied.

But c1 is a 4-satised clause, while c2 has 1-satised.

1-satised clauses are the most endangered satisfied 
clauses. →critical clauses

• Given an assignment S={𝑥1 =1, 𝑥2 =0, 𝑥3 =0, 𝑥4 =1, 𝑥5 =1}

• c1=𝑥1 ∨ 𝑥2 ∨ ¬𝑥3 ∨ 𝑥4 ∨ ¬𝑥5
• c2=𝑥1 ∨ ¬𝑥2 ∨ 𝑥3 ∨ ¬𝑥4 ∨ ¬𝑥5



Scoring functions - Second level scoring functions

• Second Level Scoring Functions [Cai+, 13AAAI/AIJ ]

• 𝑚𝑎𝑘𝑒2(x) is the number of 1-satifised clauses that would become 2-satised by flipping x.

• 𝑏𝑟𝑒𝑎𝑘2(x) is the number of 2-satifised clauses that would become 1-satised by flipping x.

• 𝑠𝑐𝑜𝑟𝑒2 𝑥 = 𝑚𝑎𝑘𝑒2 𝑥 − 𝑏𝑟𝑒𝑎𝑘2 𝑥

• Use 𝑠𝑐𝑜𝑟𝑒2
• Break ties

• Hybrid scoring functions
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Analysis on second level score

• Proposition: For a random 3-SAT formula F(n,m), under any solution s to the formula, the number 
of 1-satised clauses is more than m/2.

• Proof: Since half literals are positive and half are negative, for any complete assignment, the 

number of true literals is half of all literals    𝑇 𝛼 =
𝑚𝑘

2
(k=3) 

• Now we calculate T(α) in another way, by adding up true literals in the i-satisfied clauses(0≤i ≤k)

𝑇 𝛼 =

𝑖=0

𝑘

𝑖𝑚𝑖 =

𝑖=1

𝑘

𝑖𝑚𝑖

= 𝑚1 + σ𝑖=2
𝑘 𝑖𝑚𝑖

≥ 𝑚1+ 2σ𝑖=2
𝑘 𝑖𝑚𝑖

= 𝑚1+2(m- 𝑚1)

= 2𝑚 −𝑚1
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Analysis on second level score
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Together, we have

𝑚𝑘

2
≥ 2𝑚 −𝑚1

Which yields a lower bound of the number of 1-satisfied clauses as

𝑚1 ≥ 2 −
𝑘

2
𝑚

Suitable for formulas with long clauses (k>3). 



The cycling problem of local search

• Cycling problem, i.e., revisiting candidate solutions

• A key factor to bad performance
• wastes time

• prevents it from getting out of local minima

• Cycling is an inherent problem of local search
• local search does not allow to memorize all previously visited parts of the search space.
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Methods to deal with cycling

• Naive methods
• Random walk

• Non-improving search

• Restart

• The tabu mechanism 
• forbids reversing the recent changes, where the strength of forbidding is controlled by a 

parameter called tabu tenure [Glover, 1989].

• Configuration checking [CaiSu 2011, 2012]

• Initially for vertex cover, then SAT/MaxSAT, among many others

• Considers the circumstance of the variables, a variable is allowed to flip if its circumstance has 
changed since its last flip.
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• An FIFO queue: tabuList[]

• Each step
• a variable x not in tabuList is chosen to flip the value

• Add x to tabuList

• If (tabulist.size > tt) remove the first element of tabuList

• Think: how to check whether a variable is tabu, by the age of a variable (so that we 
do not need tabuList)? (age(x): the number of steps since the last time x changed 
its value).
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Tabu for SAT



Note: Cycles of length at most m can be prevented by 
tabu mechanism with tabu tenure tt=m.

Trade-off of choosing tt:
• tt too low -> fail to prevent cycling

• tt too high -> an excessive restriction of neighborhoods

Advanced TS methods:
• Tabu with Aspiration

a variable can be chosen if its score is very large, regardless of whether 
it is forbidden by Tabu strategy;

• Robust Tabu Search [Taillard, 1991]:

repeatedly choose tt from given interval;

• Reactive Tabu Search [Battiti and Tecchiolli, 1994]:

dynamically adjust tt during search;
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Tabu for SAT



Configuration Checking (CC)

• Address cycling problem by Configuration Checking (CC) [2011].

• CC is found effective for the following types of problems:
• Assignment Problems: to find an assignment to all variables such that satifises the constraints 

(and optimized).

• Subset Problems: to find a subset from a universe set such that satisfies the constraints (and 
optimized).
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A simple CC for SAT

• 𝑵 𝒙 = {𝑦|𝑦 𝑎𝑛𝑑 𝑥 𝑜𝑐𝑐𝑢𝑟 𝑖𝑛 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑐𝑙𝑎𝑢𝑠𝑒}

• configuration: the configuration of a variable 𝑥 is a vector 𝐶𝑥 consisting of truth value of 
all variables in 𝑁(𝑥) under current assignment s (i.e., 𝐶𝑥 = 𝑠|𝑁(𝑥)).

• A simple CC for SAT: if the configuration of 𝑥 has not changed since 𝑥's last flip, then it 
should not be flipped.
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The Use of CC

• Use CC
• to filter candidate variables

• to give preference to CC variables

• Used in many successful local search SAT and MaxSAT algorithms.
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Naïve Implementation of CC

• An accurate implementation of CC
• Store the configuration (i.e., truth values of all its neighbors) for a variable x when it is flipped

• Check the configuration when considering flipping a variable

• For a formula F, let Δ 𝐹 = max{#𝑁 𝑥 : 𝑥 ∈ 𝑉(𝐹)}

• It needs O(Δ 𝐹 ) for both storing and checking the configuration for a variable.

• Thus, the worst case complexity of CC in each step is O(Δ 𝐹 ) + O(Δ 𝐹 𝑛)
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Efficient Implementation of CC

• Observation: when a variable is flipped, the configuration of all its neighboring 
variables has changed.

• Efficient Implementation:

• Auxiliary data structure --- CC array 
• CC[x] = 1 means the configuration of x has been changed since x's last flip;

• CC[x] = 0 on the contrary. 

• Maintain the CC array
• Rule 1: In the beginning, for each variable x, CC[x] is initialized as 1.

• Rule 2: When flipping x, CC[x] is reset to 0, and for each 𝑦 ∈ N 𝑥 , CC[y] is set to 1.
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Efficient Implementation of CC

• Complexity of the approximate implementation
• O(1) for checking whether a variable is configuration changed (check whether CC[x]=1).

• update CC values for N(x).

• Thus, the worst case complexity of CC in each step is 

O(𝑛) + O(Δ 𝐹 )

• Indeed, the number of candidate variables for flipping is much smaller than n.

97



On the analysis of CC

• When it works? When it does not work?

• The effectiveness of CC is related to the neighborhood of variables.
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On the analysis of CC

99



On the analysis of CC

100



On the analysis of CC
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When CC Becomes Ineffective on random k-SAT
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Variants of CC for SAT

• The typical CC strategy for SAT is Neighboring Variables based CC.

• We can have different CC  variants by defining different configuration and checking 
methods.
• In Clause States based CC (CSCC), the configuration of a variable x is a vector that consists of the 

states of all the clauses in which x appears.

• Quantitative CC, the CC value is an integer.

• Dynamic Threshold CC, a dynamic checking mechanism

• Double CC, combining NVCC and CSCC
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• Configuration checking (CC)

• Smoothed Weighting (SW)

• Aspiration

• Score: weighted version

• configuration changed decreasing(CCD): 
score>0 and configuration is modified.

• significant decreasing(SD) : score > 𝑤

Local Search Solver - CCAnr
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Outline

• SAT Basis

• SAT Encoding

• CDCL 

• Local Search

• Hybrid SAT Solving
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Challenge 7: Demonstrate the successful combination of stochastic search and
systematic search techniques, by the creation of a new algorithm that outperforms the
best previous examples of both approaches.

---AAAI 1997 , Bart Selman, Henry Kautz and David McAllester

Hybrid Solving – The 7th Challenge of SAT
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Hybrid Solving – Related works

• Use a local search solver as the main body solver.

➢hybridGM （SAT 2009）, SATHYS （LPAR 2010）

➢GapSAT: use CDCL as preprocessor before local search (SAT 2020)

➢Use resolution in local search (AAAI 1996, AAAI 2005)

• DPLL/CDCL as the main body solver

➢HINOTOS: local search finds subformulas for CDCL to solve (SAT 2008)

➢WalkSatz: calls WalkSAT at each node of a DPLL solver Satz (CP 2002)

➢CaDiCaL and Kissat: a local search solver is called when the solver resets the saved phases and is 

used only once immediately after the local search process (2019)

• Sequential call local search and CDCL

➢Sparrow2Riss, CCAnr+glucose, SGSeq (SAT Competitions 2014,2015)
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Hybrid Solving – A turning point 

It has been a long belief that SLS is good at solving random formulas, while CDCL is powerful at 
solving structured formulas.

The emerging modern SLS solvers, particularly Sattime (Li, 11SAT), probSAT(BalintSchoning,11SAT), CCAnr
(CaiLuoSu,15SAT), YalSAT (Biere,17),show that SLS can be competitive on hard combinatorial instances.

Exapmles of CCA solvers on solving structured benchmarks.

• a variant of CCASat used in FCC projects, solving more SAT instances then CDCL solvers (Kevin 
Brown et al, AAAI 2016, PNAS 2017), 

• CCAnr showed good performance in software testing benchmark from Microsoft (Armin Biere, SAT 
2015)

• specified SLS solver in matrix multiplication (Marijn, SAT 2009),  

• CCAnr solving more instances from PTN problem (CaiZhangLuo, CP 2021) than state of the art 
CDCL solvers except one .

• …
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A Quest on efficient hybrid solvers

1. Sequential calling SLS and CDCL solvers

SAT

From SAT Competition 2014 From Sparkle SAT Challenge 2018
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A Quest on efficient hybrid solvers
UP based Initialization

2. Trying to utilize reasoning to improve SLS

Thinking: 

The power of CDCL mainly comes from reasoning techniques: Unit Propagation, 
Clause learning

Attempts:

Using unit propagation

• during local search

• initialization√

[UP]decision[UP]decision….→ complete assignment

Using resolution  

• during search
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A Quest on efficient hybrid solvers
UP based construct-and-cut Initialization

UP-based Assigning 
Procedure 

Evaluation of 
Assignment

UP-based Assigning 
Procedure 

Evaluation of 
Assignment

Provide a complete assignment

• Maintain cost* as upper bound

• Provide variable assignment order  

Provide a complete assignment

• Use #(𝑒𝑚𝑝𝑡𝑦_𝑐𝑙𝑎𝑢𝑠𝑒) as 
its cost

• Use #(𝑒𝑚𝑝𝑡𝑦_𝑐𝑙𝑎𝑢𝑠𝑒) as 
its cost

1ST CONSTRUCTION TRY

2ND CONSTRUCTION TRY

Cut unpromising construction 

when its cost>cost*

ꓫ

S. Cai, C. Luo, X. Zhang, J. Zhang: Improving Local Search for Structured SAT Formulas via Unit Propagation Based 
Construct and Cut Initialization (Short Paper). CP 2021: 5:1-5:10
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A Quest on efficient hybrid solvers
UP based construct-and-cut Initialization

• Improving SLS in solving some mathematical and industrial benchmarks

S. Cai, C. Luo, X. Zhang, J. Zhang: Improving Local Search for Structured SAT Formulas via Unit Propagation Based 
Construct and Cut Initialization (Short Paper). CP 2021: 5:1-5:10
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A Quest on efficient hybrid solvers
Cooperation Between UP-Construction and SLS

3. From UP-based Decimation to SLS and Back

S. Cai, C. Luo, H. Zhang: From Decimation to Local Search and Back: A New Approach to MaxSAT, IJCAI, 571-577
(2017).
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A Quest on efficient hybrid solvers
Cooperation Between UP-Construction and SLS

S. Cai, C. Luo, H. Zhang: From Decimation to Local Search and Back: A New Approach to MaxSAT, IJCAI, 571-577
(2017).
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Plug SLS into a CDCL solver

• Calling SLS on promising branches

• Filter similar branches

CDCL searches in the space of partial assignments 
-->Better to integrate reasoning techniques

SLS walks in the whole search space of all complete assignments
-->Better at sampling

SLS sampling → CDCL solving
Boosting CDCL with SLS information

A Quest on efficient hybrid solvers 
Deep cooperation between CDCL Solving + SLS Sampling

S. Cai, X. Zhang: Deep Cooperation of CDCL and Local Search for SAT, SAT 2021 (best paper).
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(1) Exploring Promising Branches by Local Search

A Quest on efficient hybrid solvers 
Deep cooperation between CDCL Solving + SLS Sampling

S. Cai, X. Zhang: Deep Cooperation of CDCL and Local Search for SAT, SAT 2021 (best paper).

Identify which branches deserve exploration

|𝛼|

|𝑉|
> 𝑝 and there is no conflict under 𝛼. 𝑝 = 0.4

|𝛼|

|𝛼_𝑚𝑎𝑥|
> 𝑞 and there is no conflict under 𝛼. 𝑞 = 0.6

• Explore the branch by firstly extend it to a complete
assignment, and then call SLS search nearby.

• The cutoff of each Local Search process： certain
amount of memory accesses (5 × 107)
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(2) Rephasing with Local Search Assignments
note that rephasing has been used in Kissat [biere 2019]

A Quest on efficient hybrid solvers 
Deep cooperation between CDCL Solving + SLS Sampling

S. Cai, X. Zhang: Deep Cooperation of CDCL and Local Search for SAT, SAT 2021 (best paper).

Resets the saved phases of all variables with assignments produced by local search.
• After each time the CDCL is restarted [NewTechRelaxed in SAT2020]
• Fixed frequency [lstechMaple in SAT 2021]

𝛼_𝑚𝑎𝑥_𝐿𝑆 and 𝛼_𝑏𝑒𝑠𝑡_𝐿𝑆 serve for the aim to maximize the depth of the branch
𝛼_𝑙𝑎𝑡𝑒𝑠𝑡_𝐿𝑆 adds diversification
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(3) Improve Branching with Conflict Frequency in Local Search
This idea has been used in NewTechRelaxed and CryptoMiniSAT-CCAnr [SoosCaiDevriendt, Gocht, 

Shaw, Meel] in SC2020

A Quest on efficient hybrid solvers 
Deep cooperation between CDCL Solving + SLS Sampling

S. Cai, X. Zhang: Deep Cooperation of CDCL and Local Search for SAT, SAT 2021 (best paper).

• CDCL is a powerful framework owing largely to the utilization of the conflict information
branching heuristics aim to promote conflicts.
• Can information from SLS be used to enhance branching heuristics?

𝑙𝑠_𝑐𝑜𝑛𝑓𝑙_𝑓𝑟𝑒𝑞 (x) = #(steps in which x appears in unsatisfied clauses) / #total_local_search_steps
multiply 𝑙𝑠_𝑐𝑜𝑛𝑓𝑙_𝑓𝑟𝑒𝑞(x) with 100 , resulting 𝑙𝑠_𝑐𝑜𝑛𝑓𝑙_𝑛𝑢𝑚(x).

LS Enhanced VSIDS: for each variable 𝑥, its activity is increased by 𝑙𝑠_𝑐𝑜𝑛𝑓𝑙_𝑛𝑢𝑚(𝑥)

LS Enhanced LRB: for each variable 𝑥, the number of learnt clause during its period 𝐼 is creased
by 𝑙𝑠_𝑐𝑜𝑛𝑓𝑙_𝑛𝑢𝑚(𝑥).
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A Quest on efficient hybrid solvers 
Deep cooperation between CDCL Solving + SLS Sampling

• The hybrid method improves 3 typical CDCL solvers 
on benchmarks from SAT Competitions 2017-2020.

S. Cai, X. Zhang: Deep Cooperation of CDCL and Local Search for SAT, SAT 2021 (best paper).

20 51

9 24

21 62

9 67

3 17

5 10
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A Quest on efficient hybrid solvers 
Deep cooperation between CDCL Solving + SLS Sampling

• The hybrid solvers in our team achieved good results in recent SAT/MaxSAT/SMT 
competitions.

SAT Competitions

• Main track SAT 1st ，2020

• Incremental track 1st ，2020

• Planning track 2nd ， 2020

• Main track SAT/UNSAT 2nd 2021

SMT Competition 2021

QF_IDL 1st, 2021 

MaxSAT Evaluation 2021  

Complete track: unweighted 1st , weighted 2nd

Incomplete track: unweighted 1st , weighted 1st

The ongoing trend:
Most (if not all) top-3 winners of SAT Competition 2021 are based on hybrid solvers.
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Thank you!

Welcome to visit us in Beijing! ☺

Email: caisw@ios.ac.cn


