IARCS

SAT + SMT

December 10-12,
2021

An |IARCS Winter School

A Tutorial on SAT Solving

Shaowei Cai

Institute of Software, Chinese Academy of Sciences
2021.12.12

Two ways of solving with computer

Problems can be stated
formally

* the user states the problem and
the computer solves it by solving
the mathematical problem.

a2+b2=c2 . 4-Colour

Theorem
C
a Kepler
b Conjecture

AUTOMATED

THEOREM
PROVING

#theorems
#logic

Typical Scenario: theorem proving

Problems cannot be stated
formally

* the user provides examples and the
computer learns to solve it.

Typical Scenario: face recognition

Constraint Solving

‘Mathematical
sentence @

g A Modeling

‘ Solving ‘ solution

Boolean algebra (SAT) Constraint Programming (CSP)
logical structure various constraints
© = (x1Vxy) A (x; Vx3z) A(—xq V—x3Vxy) Y = AllDifferent(xi,xj) A |xl- — xj| * i —j|

Mathematical Progamming (MP) Restricted first order logic (SMT)

Numerical constraints Logical structure + background theory
y? + 2xy < 100 ® = ((y* + 2xy < 100) v ((f () < 30)
x —y <30 - —(x—y<30) A(x £60))

x < 60

Hello, SAT!

* The first NP-Complete problem [Cook, 1971]

* Conceptually simple

« Many theoretical results
« Many important applications

* Open source benchmarks and solvers

« Annual competition

NEWLY AVAILABLE SECTION OF

THE CLASSIC WORK

The Art of
Computer

Programming

VOLUME 4
Satisfiability FASCICLE

'he SAT problem is @‘v‘l[fpﬂﬂ‘y’ a killer
app, because 't IS Key 3.; the solutio
f so many other problems bAl
solving techniques are am :..r‘; com-
puter science's best success stories
so far, and these volumes tell that
scinating '..;ale n lr.u words of the
lé;‘fiiiirlfg SAT exper
Donald Knuth

Clearly, efficient SAT solving is
a Key Zf-}ri"‘.' J]t-»-}'y' for 21st century
computer science. | expect this col
lection s on
and .I-_:":V_"Cfil:;.-_j ,_‘1:"»:,.- ts of SAT so
ing will be extremely useful to t::;‘:_n
Stl.-’::‘r:‘f‘t":; and re:b'-_‘.,{:,}f:}“(;;r: —.7‘—1‘ .,v,_|
lead to manv further advances

ead to many further advances in

the field

of papers on all theoretic "I

al - J -
E }r)‘U"L' Llarxke

4

Outline

« SAT Basis

SAT

Propositional Satisfiability (SAT): Given a propositional formula ¢, test
whether there is an assignment to the variables that makes ¢ true.

e.g., a CNF formula

@ = (x1Vx3) A (xo VX3) A (X V=xs) A(—xq VX3 Vxy)

A core problem in computer science and a basic problem in logic

« Powerful SAT solvers widely used in industry and science
« To find a certain object (a combination, a matching, a bug, a path...)
* To prove a theorem (¢ is tautology < —¢ is UNSAT)

SAT

*SAT solvers usually adopt the Conjunctive Normal Form (CNF):
e.g., 0 = (x1Vx) AN (X Vx3)A(xX; Vxy) A(mxy VX3 VX,
Every propositional formulas can be converted into CNF efficiently.
* Boolean variables: x{, x,, ...
* A literal is a Boolean variable x (positive literal) or its negation —x (negative literal)
* A clause is a disjunction (V) of literals
Xy V X3,

_le V —|x3 V X4

» A Conjunctive Normal Form(CNF) formula is a conjunction (A) of clauses.

SAT Basis

* A truth assignment ¢ assigns a truth value (True or False) to each Boolean variable x.

* ¢ satisfies a clause if it satisfies at least one of its literals.

* ¢ satisfies a CNF formula if it satisfies all of its clauses.

{x1—1, 22— 0, z4— 1},

(z1V x3V 24) is satisfied,
(—zq V x2o) is conflicting,
(—x1 Vx4V x3) is unit,

(—z1 V3V xs) is unresolved.

Tractable and intractable classes

* SAT is generally NP complete
« some classes of the problem can be solved within polynomial time (2SAT, Horn-SAT).
» Some classes are NP complete (3-SAT)

Y=(axvy) aAlayvz)alxvaz)alzvy)

e Solving 2-SAT problem is easy

* For each clause [V k, produce two edges
=l -k, =k -1

Check whether there a variable x, such that /
there is loop between x and — x.

Dichotomy theorem of SAT

* Are there any criteria that would allow us to distinguish between tractable and
intractable classes?

« A remarkable result was obtained by Schaefer in 1978.

* Loosely speaking, Schaefer’s dichotomy theorem states that there are only two
possible cases: SAT(C) is either in P or NP-complete.
» He considered Boolean constraint satisfaction problems SAT(C) where C is a set of constraints.
» Each set C determines a class of formulas such as 2-CNF, 3-CNF, Horn formulas, etc.

10

Dichotomy theorem of SAT

* Are there any criteria that would allow us to distinguish between tractable and
intractable classes?

Theorem (Schaefer, STOC 1978)

Given a Boolean constraint set C, SAT(C) is in P if C satisfies one condition below,
and otherwise it is NP-complete:

* 1. Cis o-valid (1-valid);

« 2. Cis weakly positive (weakly negative); // Horn, dual-Horn

* 3. Cis bijunctive; //2-SAT

* 4. Cis affine. //A system of linear equations

A CNF formula is Horn (dul-Horn, resp.) if every clause in this formula has at most one positive
(negative, resp.) literal

11

Hardness Assumptions

For 3-SAT, the best known algorithms run in exponential time in n, which motivates
the hardness assumption that better algorithms do not exist.

« Exponential Time Hypothesis (ETH)

« 3-SAT cannot be solved in 2°™ time,

* Strong Exponential Time Hypothesis (SETH).

 nonexistence of algorithms with running time bound 0*(c™) for some constant ¢ < 2 for k-SAT
with large k.

12

Upper bounds for 3-SAT

« Randomized algorithms.

* O(1.334™), by Schoning’s multi-restart random walk algorithm.
* O(1.323™), by a combination of the above algorithm and the PPSZ algorithm

 Deterministic algorithms.
* O(1.5™), by the cube-covering-based algorithm

* O(1.473™) The above bound can be improved using a pruning technique for search inside a ball.
The currently best bound based on this method is O(1.473™) .

Theorem ([PPSZ05]). The PPSZ algorithm solves k-SAT in time
Taken from
‘F|O(l) X 211(1—%—%—0(1)) “Handbook of
Satisfiability”

with error probability o(1), where p. is an increasing sequence with pz ~ 1.227
and limy_, o px = 72 /6.

PPSZ: The current best algorithm for unique k-SAT with k>3

13

Phase transition of random k-SAT

The phase transition phenomenon in random 3-SAT.

Top: the “easy-hard-easy” computational hardness w.r.t.
DPLL, peaks at a = 4.26.

Bottom: Formulas change from being mostly satisfiable to
mostly unsatisfiable. The transitions sharpen as the
number of variables grows.

For general k, the threshold for random k-SAT is known
to be in the range 2%in2 — 0(k) [Achlioptas, Naor, Peres.
2005 Nature]

Solving hard phase transition random benchmarks
becomes a major motivation on early the development of
incomplete solvers, including stochastic local search (SLS)
and survey propagation.

Fagion of unsafs fable formulbe

08 |

0E

04

0z

L

npl‘_ ':__
-] o
. @
q
5
: B
; =
0 B
; B
H B
; o
=]
! : o,
- .""4-'
o b] T, “'E'un R
LY T, E‘“una
E .
- H_. - —— GGEE’E-B-M
o i ot S)
L PR
LI:E..-«' g% -t & -
Threshold far ISAT
- ——
= e
¥
; ;
S -
.'l & f-'
; ,;'I. / p
w iF ﬂ
Piodd
a‘ iF
Do JF
e
i
[S
il _.'I.‘
o
Vo
e/
e
f
b
A i i L L
35 4.5 5 55 6 B.5

14

Phase transition and Survey Propagation (SP)

 Survey propagation
* derived from the cavity method for spin glasses in statistical physics.

o F = (Vl VvV _IVZ) N (_Iv]_ VvV (%) VvV v3) N (vz VvV _Ivg)
* SP performs iterative calculations of messages

d(v,c) ‘ w(cw)
’ - 1

C1 Co C3

* Randomly and independently initialize § (I, c) € (0.0, 1.0), then repeat:
« Update w messages based on § messages

« Update § messages based on w messages
15

Phase transition and Survey Propagation (SP)

 The current best method for solving random satisfiable k-SAT close to phase
transition is due to the combination SP+SLS.

 SP is first called to simplify the original formula
» SLS is then activated to solve the sub-formula after simplification

» a study of SP+SLS is presented at
* Dimetheus

« SP+SLS solves huge random 3-SAT instances (r = 4.2, #var = 107)
within 2 hours

16

Algorithm, Solver

ial Intellig nd Applica

HANDBOOK

co of satisfiability
o

0000 cdiors:
® ® @® ArminBiere
® ® ® Marijn Heule
@® @ Hans van Maaren

® O® O® ® Toby\Walsh

[0N
Press

Algorithms
VS.

Solvers

17

SAT revolution

SAT solvers,

programs that solve SAT formulas,
have become extremely powerful over the last
two decades.

The Science of Brute Force

By Marijn J. H. Heule, Oliver Kullmann
Communications of the ACM, August 2017, Vol. 60 No. 8, Pages 70-79

Today's solvers can handle formulas with millions of
variables, resulting in the SAT revolution
--- Solve problems in 3 steps:

SAT Encoding - SAT Solving - Decoding

18

SAT revolution

cryptography

original C code optimized C code
if(!'a && !'b) h(); if(a) £Q);
else if('a) g(); else if(b) g();
else f(); else h();

4 f

if(la) { if(a) £0);

if(!'b) h(); = else {

else g(); if(!'b) h();
} else f(); else g(); }

How to check that these two versions are equivalent?

Program Analysis

XM+ ym = zm (mod p) vdW(6) = 1132
Schur's Theorem Ramsey Theory

Pythagorean Tuples Conjecture

3n+1 Conjecture?

Math

Resource Allocation

19

Using SAT Solvers

Input file: DIMACS format.
c example

p cnf 4 4
1-4-30
140
-10
430

» _»

lines starting ”¢” are comments and are ignored by the
SAT solver

a line starting with ”p cnf” is the problem definition line
containing the number of variables and clauses.

the rest of the lines represent clauses, literals are integers

(starting with variable 1), clauses are terminated by a zero.

Output format

c comments, usually stastitics about the
solving

s SATISFIABLE

vi2-3-4 5-6-78910

V-111213-14 150

the solution line (starting with ”s”) can
contain SATISFIABLE,
UNSATISFIABLE and UNKNOWN.

For SATISFIABLE case, the truth values
of variables are printed in lines starting

»__»

with ”v”, the last value is followed by

» \»

a o

20

Outline

* SAT Encoding

21

SAT Encoding: graph coloring problem

A coloring is an assignment of colors to vertices such that no two adjacent vertices

share the same color.

The Graph Coloring Problem (GCP) is to find a coloring of a graph while minimizing
the number of colors.

The decision version: given a positive number Kk, decide whether a graph can be
colored with k colors.

22

SAT Encoding: graph coloring problem

* 3-coloring problem:
« for each vertex, uses 3 variables (n vertices), 4 X 3 = 12 in all.

1

Xi1, Xiz, Xi3, Ko1, Koo Xog, Xy Xgp Xgg Xyp Xyo Xys

» For each edge, produces 3 negative 2-clause
edgel'2: _lelv_IX21 5 _IX12V_IX22 5 _IX13V_Ix23)
edgel—4: _lelv_IX41 ’ _IX12V_IX42 ’ _legv_lx43 5 O Color 1
edge2-3: —|x21V—|x31 ; —|x22V—|x32) _I.ngv_lx:gg 5 . Color 2
edge2'4: —|x21V—|x41 R _Ixzzv_IX42 5 ﬂngV_IX43 5 . Color 3
edg63-4: ﬁXglv_l.X}l,l) _Ix32V_Ix42 ; _IX33V_IX43 5

» For each vertex, produces a positive k-clauses 1

X11V %12V X13, %21V X22V X33, x31V X35V X33, X491V X425V X453
e Result:

T Xyp, 1 Xyg Xy, Xpp 71X 1 Xgp X

, 1 Xog oy T Xgp T Xge Xy Xy Xys

5

23

SAT Encoding: logic puzzle

 Question: at least one of them speak truth. ho speaks the truth?
» A: B is lying.
» B: Cis lying.
* C: Aand B is lying.

* Encoding;:
3 variables: a, b, c present A, B, C speak truth, while -a, -b, -c present lying.
* clauses:

avbvece; %at least one speak truth.

—aV-ab; avb; %a-> -b, -a->b

-bV-c bve; %b-> ¢, -b -> ¢

-CcV-a;-CcV —lb; cvavb %c->(—-al —lb), =c->- (=a =b)

e Result: —a, b, —c
B speaks truth, A and C are lying

24

Encoding Sudoku to SAT

« A Sudoku puzzle is represented by a 9x9 grid made up of nine 3x3 blocks. Some of the

81 cells of the puzzle are assigned one of the numbers 1,2, ..., 9.

 Goal: assign numbers to each blank cell so that every row, column and block contains each

of the nine possible numbers.

* Let p(i,j,n) denote the proposition that is true when the cell
in the i-th row and the j-th column has number n.

» There are 9x9 x 9 = 729 such propositions.

 In the sample puzzle p(5,1,6) is true, but p(5,j,6) is false for
J=2,3,...9

(&)

25

Encoding Sudoku to SAT

 For each cell with a given value, assert p(i,j,n), when the cell in row i and column j
has the given value.

» Assert that every row contains every number.
9 9
« Assert that every column contains every number. 4|2

9 9 9
A AV ptiin ZEEE NN

j=1n=1i=1 1 9

p(i,7,n 2]9 4

||<©

(&)

Encoding Sudoku to SAT

» Assert that each of the 3 x 3 blocks contain every number.

2 2 9 3 3
/\ /\ /\ p(3r +1i,3s+j,n)
r=0 s=0 n=1 i=1 j=1

e Assert that no cell contains more than one number.

n #n'

p(ia j: ‘I’L) — _'p(?:,j, TL’)

(&)

27

Circuit to CNF

Tseitin Transformation

Type

=pie
)) NAND

Operation

C=A-B

CNF Sub-expression

(AVBVC)A(AVC)A(BVC)

(AVBVC)A(AVC)A(BVC)

(AVBVC)A(AVC)A(BVC)

(AVBVC)A(AVC)A(BVC)

(AVC)A(AVC)

(AVBVC)A(AVBVC)A(AVBVC)A(AVBVCO)

SAT Encoding: Equivalence Checking

Qutput

N1

N2

Inputs

Single output

N1 xor N2 -

CNF

Multi-output

e Build a miter circuit
e Transform Miter Circuit to CNF
e (Call a SAT solver

If SAT, we find a counter-example
If UNSAT, N1=N2

29

SAT Encoding: Equivalence Checking

A small example of EC
—D
N e (x < aAc) A
(y & bVvx) A
jD_E (u <+ avh
a T\H (v ¢ bve
h rid A (we uMy
AN w (0 > yDw
C {/F

oAN(x s a)A(x = c)A(x—aAc)A ...

oNA(XVa)A(XVc)A(xVAave)A ...

SAT Encoding: ATPG

ATPG (Automatic Test Pattern Generation)

« After producing a chip the functional correctness of the integrated circuit has to be

checked.

» Consider the stuck-at fault model

To be justified

Propagate
D=1/0

YalYy21n
> ToI

13 agzd)

I;IJ;I tIJg tIJ]

C3 C2 C)

<5 24 23 29 £1

50 wires,

100 possible stuck-at

faults

31

SAT Encoding: ATPG

ATPG (Automatic Test Pattern Generation)

« After producing a chip the functional correctness of the integrated circuit has to be
checked.

£
| Vg
|«
.

Y

32

Encoding Planning to SAT

 Variables — For each location we have variable, the domain is WORKER, BOX, EMPTY

» Initial State — assign values based on the picture
 Goal — goal position variables have value BOX

 Actions — move and push for each possible location
e push(L1; L2; L3)
=({L1=W;L2=B; L3 =E}; {L1=E; L2 =W; L3 = B}).
e move(L1; L2) =({L1=W; L2 =E}; {L1=E; L2 = W})

« We cannot encode the existence of a plan in general
* But we can encode the existence of plan up to some length

B4

33

Encoding Planning to SAT

A planning problem instance II is a tuple (x, 4, S;, S;) where
* ¥ is a set of multivalued variables with finite domains.
each variable x € y has a finite possible set of values dom(x)

- A is aset actions. Each action a € A is a tuple (pre(a), ef f(a))
pre(a) is a set of preconditions of action a
eff(a) is a set of effects of action a
both are sets of equalities of the form x = v where x € y and v € dom(x)
* 5; is the initial state, it is a full assignment of the variables in y
* s is the set of goal conditions, it is a set of equalities(same as pre(a) and ef f(a))

34

Encoding Planning to SAT

The task

 Given a planning problem instance Il = (y,4,S,,S;) and k € N construct a CNF
formula F sus that F satisfiable if and only if there is plan of length k for II.

We need two kinds of variables
 Variables to encode the actions:
al foreacht € {1,..,k}andq; € A
« Variables to encode the states:
bl_, foreacht € {1,..,k + 1}, x € y andv € dom(x)
- In total we have k[A| + (k + 1) Y, dom(x) variables

35

Encoding Planning to SAT

We will need 8 kinds of clauses
» The first state is the initial state
 The goal conditions are satisfied in the end

» Each state variable has at least one value
e Each state variable has at most one value

e If an action is applied it must be applicable
e If an action is applied its effects are applied in the next step

» State variables cannot change without an action between steps

» At most one action is used in each step

36

Encoding Planning to SAT

The first state is the initial state:

(bx=v)

V(x =v) € s
The goal conditions are satisfied in the end:

(bk+1

V(x =v) € s¢

37

Encoding Planning to SAT

Each state variable has at least one value:
(bley, VDEoy,V -+ biy,)
Vx € y,dom(x) = {v{,vq,...,v4 }, Vt € {1,
Each state variable has at most one value:
(mbley,V=biey)

Vx € x,v; # vj,{v;, v} € dom(x),Vt € {1,

ok + 1)

k+1)

38

Encoding Planning to SAT

If an action is applied it must be applicable:
(ma'V by=y)
Va € A, V(x =v) € pre(a),Vt € {1,...,k}
If an action is applied its effects are applied in the next step:
(matV bitl)

Va€eAV(x=v)€eff(a),Vt €{1,...,k}

39

Encoding Planning to SAT
State variables cannot change without an action between steps.

If x # v att, but x = v at t+1, then some action supporting x = v must happen.

(~bLEL V bEL,V ab,V -V at)
Vx € x,Vv € dom(x), support(x = v) = {asl,...,asj},‘v’t e{l,...,k}

By support(x = v) € A we mean the set of supporting actions of the assignment x =
v,1.e., the set of actions that have x = v as one of their effects.

40

Encoding Planning to SAT

At most one action is used in each step:
(—laf V—ua]’-f)

V{ai,aj} CAa #aVte{l,... kj}

41

Outline

* CDCL

42

SAT Solving Basis

-

SAT Solving

~

‘0

/ Complete Solvers: conflict-driven clause learning \

CDCL

/

/k
N

Incomplete Solvers: biased on satisfiable side

Stochastic
local search

~

43

SAT Solving Basis - Resolution

Algorithm 1: Saturation Algorithm

(=201 B NV

7
8
9

10

Input: CNF formula F
Output: SAT,UNSAT
1 while true do

R = resolve All(F)
if RN F # R then
| F=FUR

else
L break

if 1€ F then

e

return UNSAT

Ise
return SAT

CV xV D
R Res]

CVD

* Resolution. If two clauses A and B have exactly one pair of complementary literals ae A

and -~a € B, then the clause AU B\{a, ~a} is called the resolvent of A and B (by a) and
denoted by R(A, B).

» This algorithm is sound and complete — always terminates and answers correctly

« Has exponential time and space complexity (always for Pigeons)

44

SAT Solving Basis - Resolution

Variable elimination by resolution

 Given a formula F and a literal a, the formula denoted DP,(F) is constructed from F

by adding all resolvents by a
 and then removing all clauses that contain a or -~a

Example. F=(xVe)A(yVe)A(xVzV e)A(yV e)A(yV z)
Eliminating variable e by resolution:

« first add all resolvents upon e.

{(xVve)(yve)lwith{(x vzVv e) (yV e)}-> 4resolvents
FA(xV xVZOAXxVY)A(YV xV 2)A(Y)

* remove all clauses that contain e to obtain
(yVZIA(xV x VIOA(x VY)YV xV 2)A®)

45

SAT Solving Basis - Unit Propagation

 Unit Clause: A Clause that all literals are falsified except one unassigned literal.

 Unit Propagation (UP): the unassigned literal in unit clause can only be assigned to
single value to satisfy the clause.

Example:
x; T X1 sat
X2 X; VX
Vars: X3 clauses: X; V Xq
X, Xy, V X3 V X4
Xs X, V X, V Xs
Xg Xy, V X4 V Xg

46

SAT Solving Basis - Unit Propagation

 Unit Clause: A Clause that all literals are falsified except one unassigned literal.

 Unit Propagation (UP): the unassigned literal in unit clause can only be assigned to
single value to satisfy the clause.

Example:
x; T X1 sat
X2 Xy Vox
Vars: X3 clauses: i V x_g
X, X, V x3 V x4
Xs X Vo X, VoXs

47

SAT Solving Basis — DP Algorithm

Question: Can we do better than saturation-based resolution?
= Davis-Putnam Algorithm [1960]

 Rule 1: Unit propagation
* Rule 2: Pure literal elimination
* Rule 3: Resolution at one variable

Apply deduction rules (giving priority to rules 1 and 2) until no further rule is applicable

Solver = Algorithmic framework + heuristics. [just a quick thinking, don’t quote me...]

48

SAT Solving — Quest for Efficient SAT solving

march-eq
Lookahead 2003
(Bohm,1996) ©
o C(\";{\ '\QC’
’a‘&% Q\c'o ’g\,\\m .6\5“/\ ° S\-\é\c’ N O-\Cb 2>
N QQ\r ,&,\@ ({i o) W oY N ¢ &
Complete o O 0 —— -0 - o ©O —— ——
YL & K& & % $ LD P
FFE L I S S F S S
VA TV % N~ A Y Hybrid
O) O) O) Q Q NS
L » LD
Incomplete -0 O Lj o— ﬂ« rﬂ
SN S &
¥ & & & N
NS
° < & Q/.Q‘o & é\,(’
‘ S
,5&‘@ O Millions of variables
° solved in 1 hour

Survey Propagation

DPLL Algorithm

Davis-Putnam-Logemann-Loveland (DPLL, 1962)
 Chronological backtracking + UP + Decision heuristics

STt ey P @ T (l) 1: (I,I") =UNIT-RESOLUTION(A)
@70 2: if I' = {} then

3 return I

I: else if {} € I" then

D return UNSATISFIABLE

6: else

7 choose a literal L in I’

8: if L =DPLL(I'|L) # UNSATISFIABLE then

9 return LUTU{L}

10 else if L =DPLL(I"|-L) #UNSATISFIABLE then

11: return LUIU {-L}
12: else

O 000006060 00O0DOGOODOOOGO . ,
13: return UNSATISFIABLE

conditioning Aon literal L: A|[L= {a—{-L} | a€ A, L& a}.

50

DPLL Algorithm

Davis-Putnam-Logemann-Loveland (DPLL, 1962)
 Chronological backtracking + UP + Decision heuristics

A
1. {A, B} i
2 (B} 7
3. {=A4,-X,Y} B [B=1]
1 {-A X, 2} 1
5. (=AY, 7} C/ \O\['Czﬂ

S X/ &x l

AL
Y=l iz » » X X

|

[z

Decision level

[UP] Decide [UP] Decide [UP]
) /

Level 0 Level 1

51

Backjumping

JA:

1. {A, B}

2. {B,C)

3. {~4,-X,Y)}
4. {~A, X, 7}

5. {~A, Y, Z}
6. {~A, X, -2}
7. {~A, Y, ~Z)

7Y,
C/ \O\[‘C=1]

VAR
KA AARA

l

[z

Chronological Backtracking

The first two conflicting C
clauses !
(=4, X, Y}, {=4, X, ~Z} X

do not involve B and C. y Y

[Y=11 [z=1, =0/

l

Z=1,z=0¥

Non-Chronological Backtracking

CDCL - Implication Graph

Implication Graph describes the decision and reasoning path.
» Vertex: (decision variable = value @decision level)
« Edge : unit clause used in UP (Reason Clause) .
» Conlflict: all literals are falsified (under the current assignment).

Y1 = w1 ANwa Awz Awg Aws A wsg
= (35'1 V T31 V _'.CCQ) N (35'1 V _|5E3) AN (332 V I3 V 5174)/\
(—'334 V —1$5) A\ (3.’321 V =24 V _'936) A (335 V :EG)

x31 =0@3
&
z2o =0@5 z5 =0@5
w/7 &A y K
r1=0@5 T4 =1@5
z3=0@5 g =0@5

53

CDCL - Implication Graph

Implication Graph

Fo=c1 Nea AcgAceg Ncs Acg
—(avbve)A(avd)A(evdve)AhVeEV FYAN(EV g A(fVT)

Level Dec. Unit Prop.

0 1]
1 h zeVU{L} | v()|d() | al) For variable x:
h 1 1| @
b 1| 2| 9 v(x): the value
2 b Y 1 | 3 | 0 6(x): the decision level
o 4 a L 1410 a(x): the reason clause
9 y c 1 4 €1
d 1 4 co
c3 e 1 4 c3
> e —:- f —:- 1 7 1 1 o
\ / \ - g 1 | 4 | ¢
1 — - R
(a) Implication graph (b) State of variables

54

CDCL - Conflict Analysis

ngflﬂfgﬂcgﬂ[:;;ﬁtﬁﬂtﬁ
=(avbve)A(avd)A(evdve)A(hVeVv fIA(EV g A(fV7)

Level Dec. Unit Prop.
First UIP clause lcarning

0 0
)) zeVU{L} [[v()[d()]e()] : : :
h 1 1 5 Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue
)) b 1| 2] o 0 - 1 6 0 {f.g}
y o [, 9] f 4 {h} {e}
a : =
. y €1 \ ; 1 o 2 (9. €] g € {h} 0
| d 1| 4| e 3 [e] € €3 {h, &} 0
T G € 6 e 1 4 €3 6 [l - - {ﬁ,é} -
a > C » € >/ > 1 f 1 4 | ca
\24 4/ \ , / ? e - Variables are analyzed in a first-in first-out fashion, starting
(a) Implication graph (b) State of variables from the ConﬂICt
unique implication point (UIP) Any literals assigned at decision levels smaller than the
in step 3, there exists only one variable to trace, e, it is a current one are added to (i.e. recorded in) the clause being
UIP learned

a UIP is a dominator of the decision variable with respect
to the conflict node L.

55

CDCL - Conflict Analysis

Fo=c¢i AcaANeg Ay Acs A cg
=(avbve)A(avd)A(evdve)A(hVeVv fIA(EV g A(fV7)

Level Dec. Unit Prop. First UIP clause learning
0]
1 h z€eEVU{L} ” v(:) | () I a() | Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue
h 1 1 0
b 1| 2| o 0 - 1 €6 0 {f g}
2 b v NERE 1 f. 9] f €4 {h} {e}
. s a 1 [4] 2 2 [g, €] g c5 {h}]
3 y ¢ L 14]a 3 [e] € €3 {h,&}]
d 1 4 Co B B = _ —
€1 c3 c4 G e 1 4 c3 6 H {h’ E}
a » C » ¢ > [—» | 7 I 1 o
N N A g RN (Fva) (evg) (Avev))
d g 1 - — G \ I
(a) Implication graph (b) State of variables -
(evf)
(hV &)

Resolution steps with first UIP learning

56

CDCL - Non-Chronological backtracking with conflict analysis

Fo=ci ANeaAcgAeg Acs Acg
=(avbve)A(avd)A(evdve)A(hVeVv fIA(EV g A(fV7)

Level Dec. Unit Prop. Level Dec. Unit Prop.

0 0 0 0
1 h j i 1 h\
*
2 b ‘. 2 p—>a
R }l
3 ‘ 3 ¥t
i -

NBC with first UIP learnt clause h v e NBC with learnt clause h v bV a

57

CDCL — Non-Chronological backtracking with conflict analysis

. {AvB} A = . 1A 0
{B,C} VAN ‘ AN
: e k Bet] B [Y=0] [B=1]

5. (=AY, Z} / Y
. c

[C=1]

7. {-A, Y, -7} 1 0
AN

L 14, B} & Conflict Analysis !
2.1B,C} 1‘/ \9 1/ \? 1/ \? Y "
BAASXYE oy oy oy # iy
4. {_'Aa X: Z} l COIlﬂiCtiIlg Clause:{—lA, Y, —|Z}> l
5. {~A, Y, Z}

6. (-4, X,~2} 2 Learnt Clause(1UIP):{—4, -V}
7. {=A,~Y, 2}

8.{—4,-Y} Chronological Backtracking Clause Learning

1
C [X=0]
1

X [Z=1, Z=0¥

Z=1,z=0l¥

Non-Chronological
Backtracking

58

CDCL - Algorithm

 Analyze-Conflict : non-chronological backtracking + clause learning + vivification

 Decide : Branching strategy and phasing strategy

= SAT

(07

L |

D e
ECIDE J all assigned
{}BACKqHRAC%}‘_—__

bl >

0

ANALYZE-
CONFLICT

UNSAT
bl <0

BCP conflict

Algorithm 1: Typical CDCL algorithm: CDCL(F, o)

1 dl +0; //decision level
2 if UnitPropagation(F,a)==CONFLICT then return UNSAT

3

R =R - B LY I -

while d unassigned variables do

/* PickBranchVar picks a variable to assign and
picks the respective value x/
(x,v) < PickBranchVar(F,a);
dl < dl +1;
a+—aU{(z,v)};
if UnitPropagation(F,a)==CONFLICT then
bl < Con flict Analysis(F, «);
if bl < 0 then
L return UNSAT;

else
BackTrack(F, a, bl);
dl + bl;

return SAT;

59

CDCL - Algorithm

 Analyze-Conflict : non-chronological backtracking + clause learning + vivification

 Decide : Branching strategy and phasing strategy

[|

= SAT

(07

\

V

—[BACKTRAC

\

V

all assigned

K}_

bl >

0

UNSAT
bl <0

conflict ANALYZE-
BCP CONFLICT

Algorithm 1: Typical CDCL algorithm: CDCL(F, o)

1 dl +0; //decision level
2 if UnitPropagation(F,a)==CONFLICT then return UNSAT

3 while d unassigned variables do

/* PickBranchVar picks a variable to assign and

picks the respective va
(x,v) < PickBranchVar(F, a);
dl < dl +1;
a+—aU{(z,v)};
if UnitPropagation(F,a)==CONFLIC
bl < Con flict Analysis(F, «);
if bl < O then
L return UNSAT;

else
BackTrack(F, a, bl);
dl + bl;

return SAT;

1ue

7" then

« Clause learning
Clause management
« Lazy data structures
» Restarting

* Branching

* Phasing

« Mode Switching

60

CDCL - Lazy data structure

Efficient UP: 2 watched literals b R
o | | @2 | @o @2 | a1
e In each non-satisfied clause "watch
two non-false literals | [
e For each literal remember all ez az)@s -
the clauses where it is watched - l T I oo
Y
: @EB @ﬂc @EL @Z'IP @4G @1H
@5A @ZB @(]C @QE @SF @4—G @1H
A B @ﬂc E F [@lH.

At DLevel 2: elause is unresolved

At DLevel 3: watched updated

At DLevel 4: watched updated

At DLevel 5: clause is unit

After backtracking to DLevel 1

61

CDCL - Branching heuristics

» Static branching heuristic: e.g. Ordered BDDs

» Dynamic branching heuristic considering current partial assignment.
* dynamic literal individual sum heuristic (DLIS)

« Dynamic branching heuristic considering learning clauses
 Variants of DLIS

 Variable state independent decaying sum(VSIDS) and its variants

« Normalized VSIDS(NVSIDS) : exponential moving average
« Exponential VSIDS(EVSIDS) : proposed by MiniSAT
« Literal state independent decaying sum(LSIDS)

* Variable move to front(VMTF) [Ryan Thesis 2004]
» Average conflict-index decision score(ACIDS)

» Reinforcement learning based branching heuristic: multi-armed bandit(MAB)

multiplier
ncConf—lastConf,+1

 Conflict history-based branching(CHB): (1 —a)s+ a - r,r =

 Learning rate based branching(LRB)
* Dynamic switching between multiple heuristics

« Kissat-MAB switching between CHB and VSIDS by Upper Confidence Bound(UCB)

62

CDCL - Branching heuristics

 Branching heuristics are used for deciding which variable to use when branching.
« Nowadays, solvers prefer the variable which may cause conflicts faster.

» Variable State Independent Decaying Sum (VSIDS)

« Compute score for each variable, select variable with highest score
 Initial variable score is number of literal occurrences.
e For a new conflict clause c: score of all variables in ¢ is incremented.

* Periodically, divide all scores by a constant. % forgetting previous effects

63

CDCL - Branching heuristics

« Most popular: the exponential variant in MiniSAT (EVSIDS)
 The scores of some variables are bumped with inc, and inc decays after each

conflict.
e Initialize score to 0, the bump score inc default to 1.

e inc multiply 1/decay after each conflict, decay initialized to 0.8, increased

by 0.01 every [5k] conflicts, the maximum of decay is 0.95.
 The score of variables in conflict clause ¢ are bumped with inc.

+ the score of the variables related with this conflict analysis are bumped

with inc/2 [reason side bump used in Maple].

64

CDCL - Branching heuristics

 Learning rate based branching heuristic(LRB)

« Compute score A, for each variable v, select variable with highest score.

P(v,I) N A(v, D
L(D) L(D)
. P(v,I) d XQ'A))

Ly and T are called learning rate and reason side rate.

I is the interval of time between the assignment of v until v transitions back to being unassigned.
P(v,I) is the number of learnt clauses in which v participates during I.

V(v,I) is the number of learnt clauses which v reasons in generating in I.

L(I) is the number of learnt clauses generated in I.

A, = (1—a)A, +a-(

* VMTF

 Using a priority queue for select variables.

« Move the variables in the conflict clause to the front of the queue.

65

CDCL - Phase Saving

Phase saving
 Phase : the value which variable should assign when branching.
 Phase saving (progress saving): Save assignments when backtracking.

* returns the phase of a variable x corresponding to the last time x was assigned.

« Reason why phase saving: Avoid too many useless erasures and decisions.

* reusing the trail can reduce the cost of restarts

‘ - Component 1 > ’<7 Component 2 —-—‘

| |] | I I I I N
Decision | 1 1| | N D
level 0\ 1 2 3 k=1 k k+l k42 k43 k+d!

Assertion level Erased assignments

66

CDCL - Learnt Clause Removal

» Reason why Clause Database Reduction:

 Not all of them are helpful;

« UP gets slower with memory consumption.
« Measurement criteria of clauses:

* least recently used (LRU) heuristics: discard clauses not involved in recent conflict clause generation

 Literal Block Distance(LBD): number of distinct decision levels in learnt clauses, proposed in glucose.

« 3-tired clause Learned clause management : core are clauses with LBD< 3; mid_tire retain recently used clause
with LBD up to 6; local saving other clauses.
* Reduction Method in 3-tier method:

* core never be removed;
 Periodically remove half local clauses based on score.
* Periodically move some recently not used clauses in mid_tire to local.

» move clauses encounter in local many times to mid_tire, and same from mid_tire to core.

67

CDCL - Effective Restart

» Periodical traceback to o decision level.
» clause learning and search restarts correspond to a proof system as powerful as general

resolution, and stronger than DPLL proof system; practically effective.

 Restart policies:

« Luby series: 112112411211248...

 Glucose restart (rapid) : When average LBD of some current learnt clauses is great than the

average LBD of all learnt clauses.

* A conjecture: rapid restarts generally helps deriving a refutation proof, while remaining in the
current branch increases the chance of reaching a model

* interleave “stabilizing” mode (no restarts) and “focused” mode

68

CDCL - Clause Simplification

« Remove some literals which can be conducted by another literal in the clause.

* reason(x;) = wy, reason(xg) = ws, ...

* Local / General implication graph

Learnt Conflict clause: (x;q, 124, %17)

Decision
.\'I= I @6

X10 ™ X11

x,=0@] 0@3 |
or, X11 ™ X10

Clause minimization: Drop x4

69

CDCL - Clause Simplification

« Remove some literals which can be conducted by other literals in the clause.

* More generally: if we haveac.c. ¢ = (xg V-V x,), and

» ... all reverse paths on the implication graph hit c literals...

conflict

% A% ATy -

o A (xi VXV xk)

-

Clause minimization: Drop x;

SAT solving — Others

 Preprocessing / Inprocessing (Interleave search and preprocessing)
* Bounded Variable Elimination
» Variable Elimination with “AND” Gates

 Blocked Clauses
« Parallel SAT Solving

 Divide and Conquer — explicit search space partitioning
* Cube and Conquer — implicit load balancing

* Diversify and Conquer — portfolio search
* Portfolios

 Pure portfolios

* Portfolios with Clause Learning
 Incremental SAT Solving

71

Outline

* L.ocal Search

72

Local Search - Basis

Stochastic local search (SLS) for SAT

» Begin with a complete assignment
» Iteratively modify the assignment by flipping a variable picked by heuristics.

Geometrical view: as a walk in the space of 2™ assignment

73

Local Search - Basis

search space S

(SAT: set of all complete truth assignments to propositional
variables)

solution set S’ c S
(SAT: models of given formula)

neighbourhood relation NS x S

(SAT: neighbouring variable assignments differ in the truth value of
exactly one variable)

evaluation function g : S — R*
(SAT: number of clauses unsatisfied under given assignment)

74

Local Search - Basis

Algorithm : Local Search Framework for SAT

1 begin

2 o <— a complete assignment;

3 while not reach terminal condition do

4 if o satisfies F' then return o)
5 pick a variable x; .
6 a < o with x flipped;

7 return “Solution not found™;

Scoring
functions

O Search

strategies

75

Run a small example

Neighbourhood relation: two assignments are neighbors if and only if they differ
in the truth value of exactly one variable

F={x; V/ %5 X1V %5, X5, "%\ X5 \/ ™%}
assignment unsatisfied clauses
S 000 X\ X, X,

e S=<000>, N(S)={S1,S52,S3}={<100>,<010>,<001>}

* g(8)=2
« g(S1) =1
« g(S2)=1

+ g(83)=2

Score of variables

« Instead of using evaluation functions on assignments, we usually define scoring
functions for variables.

* Under assignment S, score(x) = g(S)-g(S"), where S' differs from S only in the value of
X. This is a scoring function of variables.

F={x; V%5 X1V %5, X5, ™%V %5 \/ ™%}
assignment unsatisfied clauses
S 000 X\ %, X,

» score(x,)=g(000) - g(100)=2-1=1
« score(x,)=g(000) - g(010) = 2-1=1
* score(x,)=g(000) - g(001) = 2-2=0

Iterative improvement

Invariant of Iterative Improvement for SAT
GSAT [Selman et al, AAAT 1992]

* S := arandom complete assignment;

* while (!termination condition)
« if (S is a solution) return S;
X := a variable with the best score;
* S := S with x flipped,;

« return S;

78

Focused random walk (WalkSAT)

« In this type of random walk step, first a random unsatisfied constraint c is selected.
 Then, one of the variable appearing in c is randomly selected and flip (thus forces c to become satisfied).

procedure WalkSAT (F. maxTries, maxSteps, slc)

input: CNF formula F, positive integers maxTries and maxSteps,
heuristic function slc

output: model of F or ‘no solution found’

for try := 1 to maxTries do
a := randomly chosen assignment of the variables in formula F;
for step := 1 to maxSteps do
if a satisfies F then return a end
¢ := randomly selected clause unsatisfied under a;
[x := variable selected from ¢ according to heuristic function slc;]
a := a with x flipped;
end
end

return ‘no solution found’
end WalkSAT

79

Clause weighting for SAT

 Date back to the Breakout method (1993): increases the weight of each unsatisfied clause
by one when reaching local optima.

Modern clause weighting usually have a “smoothing” mechanism to decrease weights.

« discrete Lagrangian method (DLM): DLM follows Breakout’s weight increment scheme, but
additionally decrements clause weights by a constant amount after a fixed number of increases;

« pure additive weighting scheme (PAWS)

« PAWS updates clause weights in local optima as follows. First, the clause weights of all unsatisfied clauses
are increased by one; then, all clause weights are decreased by one after a fixed number of increases.[]

* the scaling and probabilistic smoothing (SAPS)

» when reaching a local optimum, with some probability w(c) = pw(c) + (1 — p)w
« Smoothed Weighting based on Threshold (SWT)

 When w reaching a threshold, smooth the weights by w(c) = pw(c) + gqw

80

Scoring functions

A basic Scoring Function

* A common scoring function for SAT, which is named ‘score’.

* Under assignment S, score(x) = cost(S)-cost(S’), where S’ differs from S
only in the value of x, cost(S) is the number of unsatisfied clauses under S.

» Score(x)=make(x)-break(x)

« Efficient implementation: caching or non-caching, depends..

81

Scoring functions

A Scoring Function can be:
* a property of the variable, such as score, age, frequency ...
« any mathematical expression with one or more properties.

Other Scoring functions
* age(x) = the number of steps since x has changed value
» frequency(x) = a count on how many times x changes its value

» wscore(x) = the weighted version of score, using clause weighting
techniques

 Score(x)+age(x)/T, where T is a parameter
° Ascore(x)

e score(x)B

Dynamic Scoring functions

. Chanﬁe the parameters or the expression of the scoring function during the
searc

82

Scoring Functions - Probability based scoring functions

 Sparrow (2010)

* probSAT(2011)

 Focused random walk algorithm

* In each step, probSAT computes f(x) for each variable x in the clause for a given scoring
function f(-),

« and then chooses a random variable x according to probability Y f(x) z€ C f(z) .

» several functions {(-) for probSAT, mainly including exponential and polynomial
functions of the break property.

83

Scoring functions - Satisfaction degree

 Given an assignment S={x; =1, x, =0, x3 =0, X, =1, Xz =1}
¢ C1=x1 VvV xZ VvV _|x3 VvV x4 VvV —|x5
*C2=x; V Xy V X3 V 11Xy V 11 Xc

Both clauses are satisfied.

But c1is a 4-satised clause, while c2 has 1-satised.

1-satised clauses are the most endangered satisfied
clauses. > critical clauses

84

Scoring functions - Second level scoring functions

 Second Level Scoring Functions
» make,(x) is the number of 1-satifised clauses that would become 2-satised by flipping x.
 break,(x) is the number of 2-satifised clauses that would become 1-satised by flipping x.
» score,(x) = make,(x) — break,(x)

* Use score,
* Break ties
 Hybrid scoring functions

85

Analysis on second level score

 Proposition: For a random 3-SAT formula F(n,m), under any solution s to the formula, the number
of 1-satised clauses is more than m/2.

 Proof: Since half literals are positive and half are negative, for any complete assignment, the
number of true literals is half of all literals T(«a) = mTR (k=3)

« Now we calculate T(a) in another way, by adding up true literals in the i-satisfied clauses(o<i <k)

k k
T(a) = Z im; = z im;
i=0 i=1

_ k

=my + X, im;
Kk .

>mq+ 2) -, im;

= m;+2(m- m,)

=2m-my

86

Analysis on second level score

Together, we have

mk
722m—m1

Which yields a lower bound of the number of 1-satisfied clauses as
> |2 k
mq =2 — E m

Suitable for formulas with long clauses (k>3).

87

The cycling problem of local search

* Cycling problem, i.e., revisiting candidate solutions

* A key factor to bad performance
» wastes time
« prevents it from getting out of local minima

* Cycling is an inherent problem of local search
* local search does not allow to memorize all previously visited parts of the search space.

88

Methods to deal with cycling

* Naive methods
« Random walk
« Non-improving search
* Restart

e The tabu mechanism

» forbids reversing the recent changes, where the strength of forbidding is controlled by a
parameter called tabu tenure

* Configuration checking
» Initially for vertex cover, then SAT/MaxSAT, among many others

 Considers the circumstance of the variables, a variable is allowed to flip if its circumstance has
changed since its last flip.

89

Tabu for SAT

« An FIFO queue: tabulList]]
 Each step

e a variable x not in tabuList is chosen to flip the value
« Add x to tabulList

o If (tabulist.size > tt) remove the first element of tabuList

 Think: how to check whether a variable is tabu, by the age of a variable (so that we

do not need tabuList)? (age(x): the number of steps since the last time x changed
its value).

90

Tabu for SAT

Note: Cycles of length at most m can be prevented by
tabu mechanism with tabu tenure tt=m.

Trade-off of choosing tt:
* tt too low -> fail to prevent cycling
* tt too high -> an excessive restriction of neighborhoods

Advanced TS methods:

- Tabu with Aspiration

a variable can be chosen if its score is very large, regardless of whether
it is forbidden by Tabu strategy;

 Robust Tabu Search [Taillard, 1991]:
repeatedly choose tt from given interval;

« Reactive Tabu Search [Battiti and Tecchiolli, 1994]:
dynamically adjust tt during search;

91

Configuration Checking (CC)

 Address cycling problem by Configuration Checking (CC) [2011].

« CCis found effective for the following types of problems:
 Assignment Problems: to find an assignment to all variables such that satifises the constraints
(and optimized).
» Subset Problems: to find a subset from a universe set such that satisfies the constraints (and
optimized).

92

A simple CC for SAT

* N(x) = {y|y and x occur in at least one clause}

 configuration: the configuration of a variable x is a vector C, consisting of truth value of
all variables in N(x) under current assignment s (i.e., C, = S|y(x))-

» A simple CC for SAT: if the configuration of x has not changed since x's last flip, then it
should not be flipped.

SO

93

The Use of CC

e Use CC

* to filter candidate variables
* to give preference to CC variables

 Used in many successful local search SAT and MaxSAT algorithms.

94

Naive Implementation of CC

» An accurate implementation of CC
« Store the configuration (i.e., truth values of all its neighbors) for a variable x when it is flipped

 Check the configuration when considering flipping a variable

* For a formula F, let A(F) = max{#N(x):x € V(F)}
* It needs O(A(F)) for both storing and checking the configuration for a variable.
 Thus, the worst case complexity of CC in each step is O(A(F)) + O(A(F)n)

95

Efficient Implementation of CC

 Observation: when a variable is flipped, the configuration of all its neighboring
variables has changed.

« Efficient Implementation:

» Auxiliary data structure --- CC array
» CC[x] = 1 means the configuration of x has been changed since x's last flip;
* CC[x] = 0 on the contrary.

e Maintain the CC array
 Rule 1: In the beginning, for each variable x, CC[x] is initialized as 1.
* Rule 2: When flipping x, CC[x] is reset to 0, and for each y € N(x), CC[y] is set to 1.

96

Efficient Implementation of CC

« Complexity of the approximate implementation
» O(1) for checking whether a variable is configuration changed (check whether CC[x]=1).
» update CC values for N(x).
 Thus, the worst case complexity of CC in each step is
0O(n) + O(A(F))

 Indeed, the number of candidate variables for flipping is much smaller than n.

97

On the analysis of CC

* When it works? When it does not work?
* The effectiveness of CC is related to the neighborhood of variables.

For a random k-SAT formula Fg(n, m), we fo an arbitrary variable
x, calculate E(#N(x)).

For any clause ¢, E(c): "x and y both appear in c", then

p=preke = (172)(7) = Mk

Hence,
Pr(y € N(x))=1—Pr(y ¢ N(x)) =1—(1-p)"
Let /, be the indicator variable for the event {y € N(x)},

; _{1. if y € N(x)

¥ 1o, ifyé N(x)

E(l,) = Pr(y € N(x)) =1— (1 — p)™

On the analysis of CC

The expectation of the size of N(x) can be obtained as following

E#N(x)=E(>

ly)

yeV(F)\{x}

P>

yeV(F)\{x

=(n-1)(1-(1-p)")

~(n—-1)1

~(n-1)(
=(n—1)(

E(ly)
}

- (2)P™)

1 (3)w

k(k—1)r

1- ()T

)
)

(let r= m/n)

(1)
(2)

(3)
(4)

(5)
(6)

99

On the analysis of CC

Using the limit _lim (1 —e ¥) = < (where c is a constant), and
N—+oo N

let N=n—1, c = k(k —1)r, we have

Im BN = (-1 (1-QFF) @

= (-) 8)

= k(k — 1)r (9)

100

On the analysis of CC

Now, by using the inequality (1 —)" <1 (n > 1), we have

E(#N(x)) = (n-1)(1 - (1 - p)") (10)
> (n=1)(1- ()" (11)
- (-1 (1- Q) (12)
= (a—1)— u (13)
e (n-1)
k(k—1)r

k(k—1)r

When n—1 < e "-1 | or equivalently, In(n—1) < (n—1)

have E(#N(x)) >(n—1)—1=n-2.
~= most variables have all other variables as their neighbourhood
~~ the CC strategy almost degrades to the tabu with tt=1.

, We

101

When CC Becomes Ineffective on random k-SAT

f(n)=In(n—1)— k(ﬁjll)' is a monotonic increasing with n
(n>1).
f(n) <0 iff n < |n*|, where n* is a real number s.t. f(n*) =0.

Formulas 3-SAT 4-SAT 5-SAT 6-SAT 7-SAT
(r=42) | (r=9.0) | (r=20) | (r=40) | (r=85)
n* 11.652 32.348 90.093 223.005 564.5905

Table: The n* value such that when n < n*, the size of any variable's
neighborhood is bigger than n — 2, and the CC strategy degrades to the
tabu method with tabu tenure 1.

102

Variants of CC for SAT

 The typical CC strategy for SAT is Neighboring Variables based CC.

* We can have different CC variants by defining different configuration and checking
methods.

* In Clause States based CC (CSCC), the configuration of a variable x is a vector that consists of the
states of all the clauses in which x appears.

 Quantitative CC, the CC value is an integer.

e Dynamic Threshold CC, a dynamic checking mechanism
« Double CC, combining NVCC and CSCC

103

Local Search Solver - CCAnr

 Configuration checking (CC)
» Smoothed Weighting (SW)

* Aspiration

 Score: weighted version

» configuration changed decreasing(CCD):
score>0 and configuration is modified.

» significant decreasing(SD) : score > w

Algorithm 5: generalized pickVar-heuristic CCA

2

3

4

-3

6

=]

/lgreedy mode

if CCD variables exist then return a CCD variable with the greatest score;
if SD variables exist then return an SD variable with the greatest score;
/ldiversification mode

update clause weights;

select a random falsified clause c;

return a variable in c;

. the tie-breaking mechanism in the greedy mode: CCAnr break ties by favoring the oldest

variable in the greedy mode, as Sweca does.

. the clause weighting scheme: CCAnNr adopts a Smooth Weighting based on Threshold (SWT)

scheme. Each time the SWT weighting is called, clause weights of all falsified clauses are
increased by one; further, if the averaged weight w exceeds a threshold -, all clause weights

are smoothed as w(c;) = |p-w(c;)| + |g - T].

. the pick-var heuristic in the diversification mode: CCAnr selects the variable with the greatest

score from an falsified clause, breaking ties by favoring the oldest one.

104

Outline

« Hybrid SAT Solving

105

Hybrid Solving — The 7t Challenge of SAT

Ten Challenges in Propositional Reasoning and Search

Bart Selman, Henry Kautz, and David McAllester
AT&T Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974
{selman, kautz, dmac}@research.att.com
hitp:/www. research, att.com/~selman/challenge

Challenge 7: Demonstrate the successful combination of stochastic search and
systematic search techniques, by the creation of a new algorithm that outperforms the
best previous examples of both approaches.

---AAAI 1997, Bart Selman, Henry Kautz and David McAllester

106

Hybrid Solving — Related works

 Use a local search solver as the main body solver.
»hybridGM (SAT 2009) , SATHYS (LPAR 2010)

»GapSAT: use CDCL as preprocessor before local search (SAT 2020)
»Use resolution in local search (AAAI 1996, AAAI 2005)

* DPLL/CDCL as the main body solver

> HINOTOS: local search finds subformulas for CDCL to solve (SAT 2008)
»WalkSatz: calls WalkSAT at each node of a DPLL solver Satz (CP 2002)

»CaDiCaL and Kissat: a local search solver is called when the solver resets the saved phases and is

used only once immediately after the local search process (2019)

 Sequential call local search and CDCL
»Sparrow2Riss, CCAnr+glucose, SGSeq (SAT Competitions 2014,2015)

107

Hybrid Solving — A turning point

It has been a long belief that SLS is good at solving random formulas, while CDCL is powertful at
solving structured formulas.

The emerging modern SLS solvers, particularly Sattime , probSAT CCAnr
, YalSAT ,show that SLS can be competitive on hard combinatorial instances.

Exapmles of CCA solvers on solving structured benchmarks.

« a variant of CCASat used in FCC projects, solving more SAT instances then CDCL solvers (Kevin
Brown et al, AAAI 2016, PNAS 2017),

« CCAnr showed good performance in software testing benchmark from Microsoft (Armin Biere, SAT
2015)

» specified SLS solver in matrix multiplication (Marijn, SAT 2009),

« CCAnr solving more instances from PTN problem (CaiZhangLuo, CP 2021) than state of the art
CDCL solvers except one .

108

A Quest on efficient hybrid solvers

1. Sequential calling SLS and CDCL solvers

SAT

Hard combinatorial
Gold Silver

SparrowToRiss CCAnr+glucose

From SAT Competition 2014

Bronze

SGSeq

O 0o N o g B~ W N =

-
o

From Sparkle SAT Challenge 2018

Solver
CryptoMiniSatv5.5

ReasonLS
minisat-2.2.0_PADC
glucose-3.0_PADC
UPLS

Riss7

probSAT

CaDiCaL

glu_mix
BreaklDGlucoseSEL

rel. marginal contribution PAR2 (stand-alone) Note

12.97%
9.68%
9.07%
8.41%
8.18%
7.81%
6.99%
6.93%
6.20%
5.42%

4740.02
4775.40
5925.19
6065.19
8569.31
5336.48
9041.22
5372.57
5668.08
5702.63

109

A Quest on efficient hybrid solvers

UP based Initialization

2. Trying to utilize reasoning to improve SLS
hinking:

T]
The power of CDCL mainly comes from reasoning techniques: Unit Propagation,
Clause learning

Attempts:

Using unit propagation
. during local search
 initializationV

[UP]decision[UP]decision.... 2 complete assignment

110

A Quest on efficient hybrid solvers

UP based construct-and-cut Initialization

~ 1STCONSTRUCTIONTRY = = = = —= = = = = = = = = = = = o e e e e = = = = = = — -\
{ .. Provide a complete assignment . I
I |UP-based ASSlgmng] Evaluation of « Use #(empty_clause) as |
: Procedure J Assignment its cost |
I
R 7
* Maintain cost* as upper bound
* Provide variable assignment order
2ND CONSTRUCTIONTRY o o o o o o o o o o oo oo o oo o oo oo oo oo o oo o o o o o e o —
\
(! :
I .. Provide a complete assignment . I
1 |UP-based Assigning 3¢ Evaluation of « Use #(empty_clause) as |
' Procedure J Cut unpromising construction Assignment o cost I
' when its cost>cost* !
S Y ® e e e e e e e ’
[]]

S. Cai, C. Luo, X Zhang, J. Zhang: Improving Local Search for Structured SAT Forthulas via Unit Propagation Based
Construct and Cut Initialization (Short Paper). CP 2021: 5:1-5:10

111

A Quest on efficient hybrid solvers

UP based construct-and-cut Initialization

« Improving SLS in solving some mathematical and industrial benchmarks

Table 1 Results of local search solvers and CnC-enhanced local search solvers on all benchmarks.

CCAnr CCAnr+cnc ProbSAT ProbSAT+cnc Sattime Sattime+cnc YalSAT
Benchmark

LSAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2
FCC (9879) 7878 2091.6 8110 1868.2 5407 4577.7 5477 4506.5 7054 2011.8 7078 2900.0 7136 2881.1
PTN (23) 13 47180 23 127.0 5 7885.0 20 2161.7 9 6790.7 18 2945.3 14 4490.3
SN5 (6) 92 7364.5 4 4969.5 0 10000.0 0 10000.0 0 10000.0 1 8708.7 0 10000.0

[

Table 2 Results of CCAnr+cnc and its CDCL competitors on all benchmarks.

CCAnr+cne CaDiCalL CaDiCal,__sat Maple LCM__Dist MapleCOMSPS Kissat Kissat__sat
#SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2
FCC (9879) 8110 1868.2 7674 2326.9 7783 2211.9 7788 2183.2 7783 2183.0 7949 20428 8163 1819.1
PTN (23) 23 127.0 17 3274.2 17 3007.4 0 10000.0 1 9639.0 19 2215.7 21 1402.5
SN5 (6) 4 4969.5 0 10000.0 0 10000.0 0 10000.0 0 10000.0 0 10000.0 1 9130.7

112

A Quest on efficient hybrid solvers

Cooperation Between UP-Construction and SLS

3. From UP-based Decimation to SLS and Back

provide a complete assignment
UP-based as initial assignment
k) g »| Local Search
Decimation

provide best found assi
ment as feedbac

UP-based

provide a complete assignment
as initial assignment
Decimatioy . FG,ocal SearcD

S. Cai, C. Luo, H. Zhang: From Decimation to Local Search and Back: A New Approach to MaxSAT, IJCAI, 571-577

(2017).
113

A Quest on efficient hybrid solvers

Cooperation Between UP-Construction and SLS

Unweighted Max-SAT - Industrial

CnC- ||dsat-wpm3-| WPM3-
Solver #Ins. IS o e 015.0m
1al/circuit-
debugging-problems BT |10306) -
sean-safarpour = -43-30(3?) 24.18(35)
Total 55 |47 40 38

Table: Experimental Results on the MSE2016 PMS benchmarks.

Benchmark #tinst. DeciDist Dist
#win. time #win. time
MSE2016_PMS _Industrial 601 398 84.91 225 57.31

Table: Experimental Results on MSE2016 WPMS benchmarks.

Benchmark #tinst. DeciCCEHC CCEHC
Fwin. time #win. time
MSE2016_WPMS _Industrial 630 319 117.67 140 103.74

S. Cai, C. Luo, H. Zhang: From Decimation to Local Search and Back: A New Approach to MaxSAT, IJCAI, 571-577

(2017).

114

A Quest on efficient hybrid solvers
Deep cooperation between CDCL Solving + SLS Sampling

CDCL searches in the space of partial assignments
-->Better to integrate reasoning techniques

SLS walks in the whole search space of all complete assignments
-->Better at sampling

SLS sampling <> CDCL solving
Boosting CDCL with SLS information

=

Plug SLS into a CDCL solver

« (Calling SLS on promising branches

e Filter similar branches

Fig. 1. Overall Procedure of Relaxed CDCL

S. Cai, X. Zhang: Deep Cooperation of CDCL and Local Search for SAT, SAT 2021 (best paper).

115

A Quest on efficient hybrid solvers
Deep cooperation between CDCL Solving + SLS Sampling

(1) Exploring Promising Branches by Local Search

Identify which branches deserve exploration

||

Vi > p and there is no conflict under a. p = 0.4 .
L antinue CDCL process
%l g and there is no conflict under a. g = 0.6 %\
la_max| M
|

from this node
Can't find solution
Call LS solver w
Find a solution

- Explore the branch by firstly extend it to a complete
assignment, and then call SLS search nearby.

Fig. 1. Overall Procedure of Relaxed CDCL
« The cutoff of each Local Search process: certain

amount of memory accesses (5 x 107)

S. Cai, X. Zhang: Deep Cooperation of CDCL and Local Search for SAT, SAT 2021 (best paper).

116

A Quest on efficient hybrid solvers
Deep cooperation between CDCL Solving + SLS Sampling

(2) Rephasing with Local Search Assignments
note that rephasing has been used in Kissat

Resets the saved phases of all variables with assignments produced by local search.

o After each time the CDCL is restarted [NewTechRelaxed in SAT2020]
 Fixed frequency [IstechMaple in SAT 2021]

Table 1. Probability of different phases in our phase resetting mechanism

Phase Name

a_max_LS|x]

a_latest _LS|x]

a_best_LS|x]

no change

Probability

20%

65%

5%

10%

a_max_LS and a_best_LS serve for the aim to maximize the depth of the branch
a_latest_LS adds diversification

S. Cai, X. Zhang: Deep Cooperation of CDCL and Local Search for SAT, SAT 2021 (best paper).

117

A Quest on efficient hybrid solvers
Deep cooperation between CDCL Solving + SLS Sampling

(3) Improve Branching with Conflict Frequency in Local Search
This idea has been used in NewTechRelaxed and CryptoMiniSAT-CCANTr [SoosCaiDevriendt, Gocht,
Shaw, Meel] In SC2020

« CDCL is a powerful framework owing largely to the utilization of the conflict information
branching heuristics aim to promote conflicts.
« Can information from SLS be used to enhance branching heuristics?

Is_confl_freq (x) = #(steps in which x appears in unsatisfied clauses) / #total_local_search_steps
multiply Is_confl_freq(x) with 100, resulting Is_confl_num(x).

LS Enhanced VSIDS: for each variable x, its activity is increased by Is_confIl_num(x)

LS Enhanced LRB: for each variable x, the number of learnt clause during its period I is creased
by ls_confl_num(x).

S. Cai, X. Zhang: Deep Cooperation of CDCL and Local Search for SAT, SAT 2021 (best paper).

118

A Quest on efficient h}lbrid solvers
Deep cooperation between CDCL Solving + SLS Sampling

. . . asig for SAT Analysis for UNSAT
* The hYbI’ld method 1mproves 3 typlcal CDCL solvers we #by LS FSAT_bonus #1.S_call LS_time(%)[#1S_call LS_time(%)
oy SC2017(351)
on benchmarks from SAT Competitions 2017-2020. === 30 T
2luCOse+rx+rp 10 33 | 1777 1846 14.33 486
solver #SAT #UNSAT #Solved PAR2 [#SAT #UNSAT #Solved PAR2 olucosesrx+rpecf 17 2| 27 219 153 5.81
SC2017(351) SC2018(400) Maple+1x 16 9 | 1386 7.52] 1L18 2.03
glucose_4.2.1 83 101 184 5220.0 95 95 190 5745.9 Maple+x+p 1 15] 963 1043 654 2.36
glucose+rx 88 95 183 Zm 113 95 208 5 1 * Maple+rx+p+cf 6 16 | 1259 749 839 2.12
glucose+rx+rp 112 94 206 141 87 228 SC2018(400)
glucose+rx+rp+cf 110 o4 204 4668.5| 150 o1 241 4438.2 2lucose+Ix 30 311127 20.66] 20.62 104
Maple-DL-v2.1 101 113 214 5210] 133 102 235 45339 2IUCOSE+TX4TP 47 31 | 946 18.4] 2166 5.64
Maple-DL+rx 101 112 213 9 f 149 101 250 2 4 glucose+rx+rp+cf 33 36 | 1143 20.28] 2062 6.64
Maple-DL+rx+rp 111 103 214 . 158 93 251 Maple+1x 50 7 38 13.02] 1169 381
Maple-DL+rx+rp+cf| 116 107 223 41394 162 97 259 3927.6 Maple+mx+p 56 13 | 484 15.21 87 3.04
Kissat_sat 115 114 229 3 { 167 98 265 1 7* Maple+1x+1p+cf 51 18 | 652 12.53] 1562 2.94
Kissat_sat+cf 113 113 226 178 104 282 SC2019(300)
CCAnr 13 N/A 13 96299 56 N/A 56 8622.0 glucose+rx 14 8 2646 10.79 17.42 639
SC2019(400) SC2020(400) 2lUCOSE+TX+Tp 10 26 | 2268 8.67] 14.59 5.14
glucose_4.2.1 118 86 204 5437.6| 68 91 159 6494.6 glucose+rx+rp+cf 11 26 | 2039 11.82] 1551 595
glucose+rx 120 84 204 2 —ﬁ 93 88 181 6 2 Maple+1x 14 7 [1266 261 1294 1.98
glucose+rx+rp 134 85 219 130 85 215 Maple+x+1p 9 14 8.6 3.17| 1659 253
glucose+rx—+rp+cf 140 85 225 4923 .6(134 87 221 4977.9 Maple+rx+1p+cf 12 151 1121 3.05] 17.23 222
Maple-DL-v2.1 143 97 240 4601.8] 86 104 190 5835.7 SC2020(400)
Maple-DL+rx 146 93 239 9 f 121 105 226 67f glucose+rx 30 9 | 1494 11.75] 14.67 10.27
Maple-DL+rx+rp 155 94 249 142 99 241 2lUCOSe+TX+Tp 23 37 | 3.7 10.79 9.4 971
Maple-DL+rx+rp+cf| 154 95 249 4377.4| 151 106 257 4171.1 glucose+rx+rpscf 23 37 1 1278 1.671 1052 10.28
Kissat_sat 159 88 247 5 * 146 114 260 1 a Maple+mx) 13 1 1321 6.69] 1024 3.35
Kissat_sat+cf 162 90 252 157 113 270 Maple+x+1p 30 29 853 6.62 1.7 6.18
CCAnr 13 N/A 13 9678.3| 45 N/A 45 89787 Maple+rx+p-<f 23 36 | 1095 605l 1417 5.42

S. Cai, X. Zhang: Deep Cooperation of CDCL and Local Search for SAT, SAT 2021 (best paper). 119

A Quest on efficient hybrid solvers
Deep cooperation between CDCL Solving + SLS Sampling

 The hybrid solvers in our team achieved good results in recent SAT/MaxSAT/SMT
competitions.

SAT Competitions SMT Competition 2021

 Main track SAT 18t, 2020 QF_IDL 1%, 2021

« Incremental track 15t , 2020 MaxSAT Evaluation 2021

- Planning track 224, 2020 Complete track: unweighted 15t , weighted 2nd

. Main track SAT/UNSAT 22 2021 Incomplete track: unweighted 15, weighted 1%
The ongoing trend:

Most (if not all) top-3 winners of SAT Competition 2021 are based on hybrid solvers.

120

Thank you!

Welcome to visit us in Beljing! ©

Email: caisw@ios.ac.cn

