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Constraints are everywhere…

Recognizing constraints
• Facts/Rules （当按钮被按下时，门就打开；一天有24小时；

John是Alice的老师）
• Must  do （门必须有人看着）
• Cannot violate （不能闯红灯）
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Data types:

• Discrete 

• Continuous

• Hybrid
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Constraint Solving 约束求解

SolutionProblem
Mathematical 
sentence Φ

Encoding Solving
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Constraints 

布尔约束（SAT）：
𝜑 = (𝑥1∨ ¬𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (¬𝑥1 → 𝑥4)

𝑦2 + 2𝑥𝑦 < 100
𝑥 ≤ 60

数学规划：

谓词逻辑（SMT）:
((𝑦2 + 2𝑥𝑦 < 100) ∨ ((𝑓(𝑦) < 30) → ﹁(𝑥 − 𝑦 < 30) ∧ (𝑥 ≤ 60))

CSP:
𝐴𝑙𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑥𝑖 , 𝑥𝑗 ∧ 𝑥𝑖 − 𝑥𝑗 ≠ |𝑖 − 𝑗|

And, more:

Differential Equations 微分方程

Geometrical Constraints 几何约束

…
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Model vs. Problem

Formal (Mathematic)

Generic

Solvable (most cases)
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Solving
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Solvers

• Informally, a solver is a program that solves a constraint model.

Powerful, but not always best.

Tradeoff: Generic vs. Specific



Solving as Algorithm Engineering

from 《 Algorithm engineering: Bridging the Gap between Algorithm Theory and Practice 》
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How ?

• Reading
• Books

• Papers

• Codes

• Discussions

• Hands in
• Modelling

• Implementing

• Analyzing

• Presentation
• Talk 

• Writing
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Books

•《The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiabiliy》

•《Handbook of Satisfiablity》

•《Handbook of Constraint Programming》

•《 Decision Procedures: An Algorithmic Point of View》

•《The Calculus of Computation: Decision Procedures with Applications to 
Verification》

•《A Guide to Experimental Algorithms》

•《Stochastic Local Search: Foundation and Application》



Constraint Models

Shaowei Cai （蔡少伟）

Institute of Software, Chinese Academy of Sciences
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Models

• SAT
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SAT

• Boolean Satisfiability / Propositional Satisfiability / SAT

布尔可满足性问题/命题可满足性问题

• E.g. (𝑥1∨ ¬𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (¬𝑥1 → 𝑥4)

•Conjunctive Normal Form (CNF):

e.g., 𝜑 = (𝑥1∨ ¬𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ ¬𝑥4)

𝜑 ={{𝑥1, ¬𝑥2},{𝑥2, 𝑥3},{𝑥1 ∨ ¬𝑥4}}

Every propositional formulas can be converted into CNF efficiently.
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SAT

• Boolean variables: 𝑥1, 𝑥2, …

• A literal is a Boolean variable 𝑥 (positive literal) or its negation ¬𝑥 (negative literal)

• A clause is a disjunction (∨) of literals

𝑥2 ∨ 𝑥3, 

¬𝑥1 ∨ ¬𝑥3 ∨ 𝑥4

• A Conjunctive Normal Form(CNF) formula is a conjunction (∧) of clauses.



SAT 

Examples:

Solution: Satisfiable. Assign T to p, q, and r.

Solution:  Not satisfiable. Check each possible assignment of truth values to the 
propositional variables and none will make the proposition true.



Hello, SAT! 

• The first NP-Complete problem [Cook, 1971]

• A core problem in computer science and a basic problem in logic

• SAT solvers widely used in industry and science
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SAT solvers

• Using SAT solvers
• To find a certain structure

• To prove something

Satisfiability 

Finding a solution Checking validity

SAT

Reasoning
Theorem proving,
System verification,
Knowledge representation,
Decision procedure,
Agents,
…

Constraints
Scheduling,
Resource allocation,
Logistics,
Hardware design,
Software Engineering,
…
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SAT revolution

xm + ym = zm (mod p)
Schur's Theorem

vdW(6) = 1132
Ramsey Theory

Pythagorean Tuples Conjecture

3n+1 Conjecture?

cryptography

EDA

Math

Program Analysis Planning

Resource Allocation
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DIMACS Format of CNF

c example 
p cnf 4 4
1 -4 -3 0 
1 4 0 
-1 0 
-4 3 0

lines starting ”c” are comments and are ignored by the 
SAT solver.
a line starting with ”p cnf” is the problem definition line 
containing the number of variables and clauses. 
the rest of the lines represent clauses, literals are integers 
(starting with variable 1), clauses are terminated by a zero.

Input file: DIMACS format.

c comments, usually stastitics about the 
solving 
s SATISFIABLE 
v 1 2 -3 -4  5 -6 -7 8 9 10
v -11 12 13 -14 15 0

the solution line (starting with ”s”) can 
contain SATISFIABLE, 
UNSATISFIABLE and UNKNOWN.
For SATISFIABLE case, the truth values 
of variables are printed in lines starting 
with ”v”, the last value is followed by 
a ”0”

Output format

MiniSat: A open-source SAT solver widely used 
in industries.
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SAT Encoding: graph coloring problem

A coloring is an assignment of colors to vertices such that no two adjacent vertices 
share the same color.

The Graph Coloring Problem (GCP) is to find a coloring of a graph while minimizing 
the number of colors. 

The decision version: given a positive number k, decide whether a graph can be 
colored with k colors.
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SAT Encoding: graph coloring problem

• 3-coloring problem:
• for each vertex, uses 3 variables (n vertices), 4 × 3 = 12 in all.

x11, x12, x13,  x21, x22, x23 , x31, x32, x33 , x41, x42, x43

• For each edge, produces 3 negative 2-clause

edge1-2: ¬𝑥11⋁¬𝑥21 , ¬𝑥12⋁¬𝑥22 , ¬𝑥13⋁¬𝑥23 ;

edge1-4: ¬𝑥11⋁¬𝑥41 , ¬𝑥12⋁¬𝑥42 , ¬𝑥13⋁¬𝑥43 ;

edge2-3: ¬𝑥21⋁¬𝑥31 , ¬𝑥22⋁¬𝑥32 , ¬𝑥23⋁¬𝑥33 ;

edge2-4: ¬𝑥21⋁¬𝑥41 , ¬𝑥22⋁¬𝑥42 , ¬𝑥23⋁¬𝑥43 ;

edge3-4: ¬𝑥31⋁¬𝑥41 , ¬𝑥32⋁¬𝑥42 , ¬𝑥33⋁¬𝑥43 ;

• For each vertex, produces a positive k-clauses

𝑥11⋁ 𝑥12⋁ 𝑥13 , 𝑥21⋁ 𝑥22⋁ 𝑥23 , 𝑥31⋁ 𝑥32⋁ 𝑥33 , 𝑥41⋁ 𝑥42⋁ 𝑥43
• Result:

x11, ¬ x12, ¬ x13, ¬x21, x22, ¬ x23 , x31, ¬ x32, ¬ x33 , ¬ x41, ¬ x42, x43

1

2

3

4

1

2

3

4

Color 1

Color 2

Color 3



SAT Encoding: Meeting Scheduling 

Scheduling a meeting consider the following constraints

• Adam can only meet on Monday or Wednesday

• Bridget cannot meet on Wednesday

• Charles cannot meet on Friday

• Darren can only meet on Thursday or Friday

• 𝐹 = (𝑥1 ∨ 𝑥3) ∧ (𝑥3) ∧ (𝑥5) ∧ (𝑥4 ∨ 𝑥5) ∧ 𝐴𝑡𝑀𝑜𝑠𝑡𝑂𝑛𝑒(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)



SAT Encoding: Meeting Scheduling 

𝐹 = (𝑥1 ∨ 𝑥3) ∧ (𝑥3) ∧ (𝑥5) ∧ (𝑥4 ∨ 𝑥5)

∧ (𝑥1 ∨ 𝑥2) ∧ (𝑥1 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥4) ∧ (𝑥1 ∨ 𝑥5)

∧ (𝑥2 ∨ 𝑥3) ∧ (𝑥2 ∨ 𝑥4) ∧ (𝑥2 ∨ 𝑥5)

∧ (𝑥3 ∨ 𝑥4) ∧ (𝑥3 ∨ 𝑥5)

∧ 𝑥4 ∨ 𝑥5

• Solution: Unsatisfiable, i.e., it is impossible to schedule a 
meeting with these constraints
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SAT Encoding: logic puzzle

• Question: at least one of them speak truth. Who speaks the truth?
• A: B is lying.

• B: C is lying.

• C:  A and B is lying.

• Encoding:
• 3 variables: a, b, c present A, B, C speak truth, while ¬a, ¬b, ¬c present lying.

• clauses: 

a ∨ b ∨ c ;                                 %at least one speak truth.

¬ a ∨ ¬ b;  a ∨ b;                      %a-> ¬b, ¬a -> b

¬ b ∨ ¬ c;  b ∨ c; %b-> ¬c, ¬b -> c

¬ c ∨ ¬ a; ¬c ∨ ¬b; c ∨ a ∨ b %c->(¬aꓥ ¬b), ¬c->¬ (¬aꓥ ¬b)

• Result: ¬a, b, ¬c
B speaks truth, A and C are lying



SAT Encoding: Pythagorean Tuples Conjecture

Problem Definition：

Is it possible to assign to each integer 1,2,…..n one of two colors such that if 𝑎2 + 𝑏2 = 𝑐2

then a, b and c do not all have the same color?

• Solution : Nope

• for n=7825 it is not possible

• proof obtained by a SAT solver (2016)

How to encode this?

• for each integer i we have a Boolean variable 𝑥𝑖, 𝑥𝑖= 1 if color of i is 1, 𝑥𝑖=0 otherwise.

• for each a, b, c such that 𝑎2 + 𝑏2 = 𝑐2 we have two clauses: (𝑥𝑎∨ 𝑥𝑏 ∨ 𝑥𝑐) and ( ҧ𝑥𝑎 ∨ ҧ𝑥𝑏
∨ ҧ𝑥𝑐)
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SAT Encoding: Sudoku 

• A Sudoku puzzle is represented by a 99 grid made up of nine 33 blocks. Some of the 
81 cells of the puzzle are assigned one of the numbers 1,2, …, 9.

• Goal: assign numbers to each blank cell so that every row, column and block contains each 
of the nine possible numbers.

• Let p(i,j,n) denote the proposition that is true 
when the cell in the i-th row and the j-th column 
has number n.

• There are 99  9 = 729 such propositions.

• In the sample puzzle p(5,1,6) is true, but p(5,j,6) 
is false for j = 2,3,…9

27



SAT Encoding: Sudoku 

• For each cell with a given value, assert p(i,j,n), when the cell in row i and column j
has the given value.

• Assert that every row contains every number.

• Assert that every column contains every number.

28



SAT Encoding: Sudoku 

• Assert that each of the 3 x 3 blocks contain every number.

• Assert that no cell contains more than one  number. 

29

¬𝑝 𝑖, 𝑗, 𝑛 ∨ ¬𝑝(𝑖, 𝑗, 𝑛′)

通过枚举二元负文字对保证独一性
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Encoding Circuit to CNF
Tseitin Transformation

C = A ⋅ 𝐵

C → A ∧ 𝐵 ≡ ¬𝐶 ∨ 𝐴 ∧ 𝐵
≡ 𝐴 ∨ ¬𝐶 ∧ (𝐵 ∨ ¬𝐶)

𝐴 ∧ 𝐵 → 𝐶 ≡ ¬ 𝐴 ∧ 𝐵 ∨ 𝐶
≡ ¬𝐴 ∨ ¬𝐵 ∨ 𝐶
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Encoding Circuit to CNF
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Equivalence Checking to SAT

X X

…

N1 N2

M

Multi-output Miter

N2N1

Inputs

Output

Single output Miter

• Build a miter circuit

• Transform Miter Circuit to CNF

• Call a  SAT solver
• If SAT，we find a counter-example

• If UNSAT, N1=N2



Encoding Sokoban to SAT

• Variables – For each location we have variable, the domain is WORKER, BOX, 
EMPTY

• Initial State – assign values based on the picture

• Goal – goal position variables have value BOX

• Actions – move and push for each possible location
• push(L1; L2; L3) 
= ({L1 = W; L2 = B; L3 = E}; {L1 = E; L2 = W; L3 = B}).
• move(L1; L2) = ({L1 = W; L2 = E}; {L1 = E; L2 = W})

• We cannot encode the existence of a plan in general

• But we can encode the existence of plan up to some length

[example taken from SAT lecture by Carsten Sinz, Toma´s Balyo]
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Planning Problem Definition

• A planning problem instance Π is a tuple (χ, 𝐴, 𝑆𝐼 , 𝑆𝐺) where

• 𝜒 is a set of multivalued variables with finite domains.

each variable 𝑥 ∈ 𝜒 has a finite possible set of values 𝑑𝑜𝑚 𝑥

• A   is a set actions. Each action 𝑎 ∈ 𝐴 is a tuple 𝑝𝑟𝑒 𝑎 , 𝑒𝑓𝑓 𝑎

𝑝𝑟𝑒(𝑎) is a set of preconditions of action 𝑎

𝑒𝑓𝑓(𝑎) is a set of effects of action 𝑎

both are sets of equalities of the form 𝑥 = 𝑣 where 𝑥 ∈ 𝜒 and 𝑣 ∈ 𝑑𝑜𝑚(𝑥)

• 𝑠𝐼 is the initial state, it is a full assignment of the variables in 𝜒

• 𝑠𝐺 is the set of goal conditions, it is a set of equalities(same as 𝑝𝑟𝑒(𝑎) and 𝑒𝑓𝑓(𝑎) )
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Planning Problem Definition

The task

• Given a planning problem instance Π = 𝜒, 𝐴, 𝑆𝐼 , 𝑆𝐺 and 𝑘 ∈ N construct a CNF 
formula 𝐹 sus that 𝐹 satisfiable if and only if there is plan of length 𝑘 for Π.

• We will need two kinds of variables
• Variables to encode the actions:

𝑎𝑖
𝑡 for each 𝑡 ∈ 1,… , 𝑘 and 𝑎𝑖 ∈ 𝐴

• Variables to encode the states:

𝑏𝑥=𝑣
𝑡 for each 𝑡 ∈ 1,… , 𝑘 + 1 , 𝑥 ∈ 𝜒 and 𝑣 ∈ 𝑑𝑜𝑚(𝑥)

• In total we have 𝑘 𝐴 + (𝑘 + 1)σ𝑥∈𝜒 𝑑𝑜𝑚(𝑥) variables

35



Planning Problem Definition

We will need 8 kinds of clauses

• The first state is the initial state

• The goal conditions are satisfied in the end

• Each state variable has at least one value

• Each state variable has at most one value

• If an action is applied it must be applicable

• If an action is applied its effects are applied in the next step

• State variables cannot change without an action between steps

• At most one action is used in each step

36



Planning Problem Definition

The first state is the initial state:

（𝑏𝑥=𝑣
1 ）

∀(𝑥 = 𝑣) ∈ 𝑠𝐼

The goal conditions are satisfied in the end:

（𝑏𝑥=𝑣
𝑛+1）

∀(𝑥 = 𝑣) ∈ 𝑠𝐺

37



Planning Problem Definition

Each state variable has at least one value:

(𝑏𝑥=𝑣1
𝑡 ⋁𝑏𝑥=𝑣2

𝑡 ⋁⋯𝑏𝑥=𝑣𝑑
𝑡 )

∀𝑥 ∈ 𝜒, 𝑑𝑜𝑚 𝑥 = 𝑣1, 𝑣1, . . . , 𝑣𝑑 , ∀𝑡 ∈ {1, . . . , 𝑘 + 1}

Each state variable has at most one value:

(¬𝑏𝑥=𝑣𝑖
𝑡 ⋁¬𝑏𝑥=𝑣𝑗

𝑡 )

∀𝑥 ∈ 𝜒, 𝑣𝑖 ≠ 𝑣𝑗 , {𝑣𝑖 , 𝑣𝑗} ⊆ 𝑑𝑜𝑚 𝑥 , ∀𝑡 ∈ {1, . . . , 𝑘 + 1}
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Planning Problem Definition

If an action is applied it must be applicable:  

（preconditions是action的必要条件 𝑎𝑡 → ∧ ∀ 𝑥=𝑣 ∈𝑝𝑟𝑒 𝑎 𝑏𝑥=𝑣
𝑡 )

(¬𝑎𝑡⋁ 𝑏𝑥=𝑣
𝑡 )

∀𝑎 ∈ 𝐴, ∀ 𝑥 = 𝑣 ∈ 𝑝𝑟𝑒 𝑎 , ∀𝑡 ∈ {1, . . . , 𝑘}

If an action is applied its effects are applied in the next step: 

（action是effects的充分条件 𝑎𝑡 → ∧ ∀ 𝑥=𝑣 ∈𝑒𝑓𝑓 𝑎 𝑏𝑥=𝑣
𝑡+1）

(¬𝑎𝑡⋁ 𝑏𝑥=𝑣
𝑡+1)

∀𝑎 ∈ 𝐴, ∀ 𝑥 = 𝑣 ∈ 𝑒𝑓𝑓 𝑎 , ∀𝑡 ∈ {1, . . . , 𝑘}
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Planning Problem Definition

State variables cannot change without an action between steps

( ¬𝑏𝑥=𝑣
𝑡 ∧ 𝑏𝑥=𝑣

𝑡+1) → 𝑎𝑠1
𝑡 ∨ ⋯⋁ 𝑎𝑠𝑗

𝑡

 ( 𝑏𝑥=𝑣
𝑡 ∨ ¬𝑏𝑥=𝑣

𝑡+1 ⋁ 𝑎𝑠1
𝑡 ⋁⋯⋁ 𝑎𝑠𝑗

𝑡 )

∀𝑥 ∈ 𝜒, ∀𝑣 ∈ 𝑑𝑜𝑚 𝑥 , 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑥 = 𝑣 = 𝑎𝑠1 , . . . , 𝑎𝑠𝑗 , ∀𝑡 ∈ 1, . . . , 𝑘

By support(𝑥 = 𝑣) ⊆ 𝐴 we mean the set of supporting actions of the assignment 𝑥
= 𝑣,i.e., the set of actions that have 𝑥 = 𝑣 as one of their effects.

40

对于某个位置x，如果第t步它不在状态x=v,而第t+1步它在状态x=v, 
则必定是发生了某个支持x=v的action 



Planning Problem Definition

At most one action is used in each step:

(¬𝑎𝑖
𝑡 ⋁¬𝑎𝑗

𝑡)

∀ 𝑎𝑖 , 𝑎𝑗 ⊆ 𝐴, 𝑎𝑖 ≠ 𝑎𝑗 ∀𝑡 ∈ {1, . . . , 𝑘}

41
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Models

• SAT

• MaxSAT



MaxSAT

• When the formula is not satisfiable, we concern about satisfying as many clauses as 
possible -> Maximum Satisfiability.



Variants of MaxSAT

• Weighted MaxSAT
• Each clause is associated with a weight, the goal: maximize the total weight of satisfied clauses

• Partial MaxSAT
• hard clauses: must be satisfied

• soft clauses: to satisfy as many as possible

• the goal: satisfy all hard clauses and as many soft clauses as possible.

• Weighted Partial MaxSAT
• Each soft clause is associated with a weight

• The goal: satisfy all hard clauses and maximize the total weight of satisfied soft clauses.



Encoding MaxCut to MaxSAT

MaxCut: to maximize the numbers of edges in a graph that are “cut” by 
partitioning the vertices into two sets.

x1 x2

x3

x4

Graph : G = (E, V)



Encoding MaxClique to MaxSAT

• MaxClique Problem • hard clauses:

• soft clauses:

Eexx

xx

xx

ijji 





,

...

21

51

6

1

...

x

x
A is a vertex subset C such that every 
vertex in C is adjacent to any other vertices in C.



Encoding Set Cover to Weighted Partial MaxSAT

Set Cover Problem
U={𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8}

• S1: {𝑥1, 𝑥2}, 2
• S2: {𝑥1, 𝑥2, 𝑥3, 𝑥4}, 3
• S3: {𝑥2, 𝑥3, 𝑥5}, 2
• S4: {𝑥2, 𝑥4, 𝑥5}, 2
• S5: {𝑥3, 𝑥4, 𝑥5, 𝑥6},7
• S6: {𝑥4, 𝑥5, 𝑥6, 𝑥7},5
• S7: {𝑥6, 𝑥7, 𝑥8},3
• S8: {𝑥7, 𝑥8},4

Hard clauses:

ℎ1: 𝑣1, 𝑣2
ℎ2: {𝑣1, 𝑣2, 𝑣3, 𝑣4}
ℎ3: {𝑣2, 𝑣3, 𝑣5}
ℎ4: {𝑣2, 𝑣4, 𝑣5}
ℎ5: {𝑣3, 𝑣4, 𝑣5, 𝑣𝟔}
ℎ6: {𝑣5, 𝑣6, 𝑣7}
ℎ7: {𝑣6, 𝑣7, 𝑣8}
ℎ8: {𝑣7, 𝑣8}

Soft clauses:

𝑠1: ¬𝑣1 , 2
𝑠2: ¬𝑣2 , 3
𝑠3: ¬𝑣3 , 2
𝑠4: ¬𝑣4 , 2
𝑠5: ¬𝑣5 , 7
𝑠6: ¬𝑣6 , 5
𝑠7: ¬𝑣7 , 3
𝑠8: ¬𝑣8 , 4



Cardinality constraints and CNF

• Cardinality constraints:
• 𝑙1 + 𝑙2+ … + 𝑙𝑛 ≥ 𝑘,  k ∈ 𝕫,   𝒍𝒊 ∈ {𝒙𝒊, ¬𝒙𝒊},  𝒙𝒊 ∈ {𝟎, 𝟏}

• A naïve encoding to CNF: Forbidding all illegal assignments

• Example: atLeast_2{𝑥1, 𝑥2, 𝑥3, 𝑥4}

h1: 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∨ 𝑥4
h1: ¬𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∨ 𝑥4
h1: 𝑥1 ∨ ¬𝑥2 ∨ 𝑥3 ∨ 𝑥4
h1: 𝑥1 ∨ 𝑥2 ∨ ¬𝑥3 ∨ 𝑥4
h1: 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∨ ¬𝑥4

48



Linear objective function and CNF

• Example:

• Min z = 2 ∗ 𝑥1 + 3 ∗ 𝑥2 − 4 ∗ 𝑥3
• Generate soft unit clauses:

s1 = (2, {¬ 𝑥1})

s2 = (3, {¬ 𝑥2})

s3 = (4, {𝑥3})
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Models

• SAT

• MaxSAT

• Integer Linear Programming



Pseudo Boolean Constraints / 0-1 Integer Linear Programming

• Pseudo Boolean constraints:
• a1𝑙1 + a2𝑙2+ … + a𝑛𝑙𝑛 ≥ 𝑘,  𝒂𝒊, k ∈ 𝕫,   𝒍𝒊 ∈ {𝒙𝒊, ¬𝒙𝒊},  𝒙𝒊 ∈ {𝟎, 𝟏}

One PB constraint: σ𝑖=1
𝑖=𝑛 𝑎𝑖 𝑙𝑖 ≥k

O(σ𝑖=1
𝑖=𝑛 𝑎𝑖) additional variables and 

clauses of ECNF

O(nlogn) additional variables and 
clauses of CNF



Linear Programming (LP)

• Linear Programming has been studied for many years and achieved great 
success in real word situations.

• Standard form:

min 𝑧 =𝑐′𝑥

s. t. ቊ
𝐴𝑥 = 𝑏
𝑥 ≥ 0

c is a weight vector;         x represents the vector of variables

A represents a matrix;     b is a column vector



LP

• Linear function is in the form of  𝑎′𝑥 ∞ 𝑏, where ∞ can be =、≥、≤

• a′x = b → standard form

• a′x ≥ b → a′x − 𝑥𝑠 = b, where 𝑥𝑠 ≥ 0

• a′x ≤ b → a′x + 𝑥𝑠 = b, where 𝑥𝑠 ≥ 0

• 𝑥𝑖 ≤ 0 → 𝑦𝑖= −𝑥𝑖
• 𝑥𝑖 ∈ 𝑅 → 𝑥𝑖 = 𝑧1 − 𝑧2, where 𝑧1, 𝑧2 ≥ 0

•max 𝑐′𝑥 → 𝑚𝑖𝑛 −𝑐′𝑥



LP

Example:

max 100𝑥1 + 200𝑥2

s. t. ቐ
30𝑥1 + 40𝑥2 ≤ 500
40𝑥1 + 60𝑥2 ≤ 700

𝑥1, 𝑥2 ≥ 0
→

min−(100𝑥1 + 200𝑥2)

s. t. ቐ
30𝑥1 + 40𝑥2 + 𝑐1 = 500
40𝑥1 + 60𝑥2 + 𝑐2 = 700

𝑥1, 𝑥2, 𝑐1, 𝑐2 ≥ 0

1. Turn to standard form
2. Apply the general LP solver



ILP and MILP

• If all the variables in LP are restricted to integers, the resulting problem is Integer 
Linear Programming (ILP)

• If only a part of the variables in LP is restricted to integers, the resulting problem is 
Mix Integer Linear Programming (MILP)



MILP Example:

s.t. : 1. the total intake of vitamin A is not less than 500                Goal: minimize the total cost 

2. the total intake of Vitamin B is not less than 1000 

Food Cost per serving Vitamin A Vitamin B

Corn $0.18 107 72

Milk $0.23 500 121

Wheat Bread $0.05 0 65

Min:  0.18𝑥𝑐𝑜𝑟𝑛 + 0.23 𝑥𝑚𝑖𝑙𝑘 + 0.05 𝑥𝑏𝑟𝑒𝑎𝑑

s.t. 107𝑥𝑐𝑜𝑟𝑛 + 500 𝑥𝑚𝑖𝑙𝑘 >= 500
72𝑥𝑐𝑜𝑟𝑛 + 121 𝑥𝑚𝑖𝑙𝑘 +65 𝑥𝑏𝑟𝑒𝑎𝑑 >= 1000

𝑥𝑐𝑜𝑟𝑛, 𝑥𝑚𝑖𝑙𝑘 , 𝑥𝑏𝑟𝑒𝑎𝑑 ≥ 0; 𝑥𝑐𝑜𝑟𝑛 is integer



ILP:Knapsack Problem

• Given a set of items, each with a weight and a profit, determine the number of each 
item to include in a collection so that the total weight is less than or equal to a given 
limit and the total value is as large as possible. 
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Max෍

𝑖=1

𝑁

𝑝𝑖𝑥𝑖

s.t ෍
𝑖=1

𝑁

𝑤𝑖𝑥𝑖 ≤ 𝐶;

𝑥𝑖 ∈ {0,1}; ∀𝑖 = 1,⋯ ,𝑁

𝑁: the number of items

𝑝𝑖: the profit of the 𝑖-th item

𝑤𝑖: the weight of the 𝑖-th item

𝐶: the capacity of the knapsack

𝑥𝑖: binary decision variable

it equals to 1 if  𝑖-th item is selected, and 0 otherwise. 

capacity constraint of resources



Multiple Dimensions 0-1 Knapsack Problem (MKP) 

• Each item 𝑖 consumes an amount 𝑤𝑗𝑖 ≥ 0 from each dimension 𝑗. 

• Each dimension has a capacity 𝐶𝑗 > 0.
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Max෍

𝑖=1

𝑁

𝑝𝑖𝑥𝑖

s.t ෍
𝑖=1

𝑁

𝑤𝑗𝑖𝑥𝑖 ≤ 𝐶𝑗; ∀𝑗 = 1,⋯ , 𝑑

𝑥𝑖 ∈ {0,1}; ∀𝑖 = 1,⋯ ,𝑁

𝑁: the number of items

𝑝𝑖: the profit of the 𝑖-th item

𝑤𝑗𝑖: the j-th dimension weight of the 𝑖-th item

𝐶𝑗: the j-th dimension capacity of the knapsack

𝑥𝑖: binary decision variable

it equals to 1 if  𝑖-th item is selected, and 0 otherwise. 

capacity constraint of resources in each dimension



Multiple MKP

• Consider multiple knapsacks where each one (say knapsack 𝑘), has 𝑑 dimensions 
with limited capacity 𝐶𝑘𝑗. 
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𝑥𝑖𝑘: binary decision variable

𝑥𝑖𝑘 = 1 if  𝑖-th item is selected and packed into knapsack k, 
and 𝑥𝑖𝑘 = 0 otherwise. 

each item appears at most once in all knapsacks

𝑀𝑎 𝑥෍

𝑘=1

𝑀

෍

𝑖=1

𝑁

𝑝𝑖𝑥𝑖𝑘

𝑠. 𝑡෍

𝑖=1

𝑁

𝑤𝑖𝑗
𝑘𝑥𝑖𝑘 ≤ 𝐶𝑗

𝑘; ∀𝑗 = 1,⋯ , 𝑑; ∀𝑘 = 1,⋯ ,𝑀;

෍

𝑘=1

𝑀

𝑥𝑖𝑘 ≤ 1; ∀𝑖 = 1,⋯ ,𝑁;

𝑥𝑖𝑘 ∈ 0,1 ; ∀𝑖 = 1,⋯ ,𝑁; 𝑘 = 1,⋯ ,𝑀;



Encoding Nurse Rostering to ILP

Nurse Rostering :

The basic problem consists in the weekly scheduling of a fixed number of nurses 
using a set of shifts, such that in each day a nurse works a shift or has a day-off. 

Nurses may have multiple skills, and for each skill we are given different coverage 
requirements.



Data and variables

• N: the set of nurses

• W: the set of all weeks in the scheduling period

• D: the set of days in each week (D={1,2,3,4,5,6,7})

• S: the set of shift types

Variables: 

∀n ∈ N, ∀d ∈ D, ∀s ∈ S:                                                                                           
𝑥𝑛,𝑤,𝑑,𝑠 = 1 if nurse n works shift type s on the dth day of week w

= 0   otherwise.



Hard (H) constraint types:

• H1. Single assignment per day: 

→A nurse can be assigned to at most one shift per day

• ILP:   ∀n ∈ N, ∀w ∈W, ∀d ∈ D :   σ𝑠∈𝑆 𝑥𝑛,𝑤,𝑑,𝑠 ≤ 1



Hard (H) constraint types:

• H2. Sufficient-staffing:

→The number of nurses for each shift for each skill must be at   
least equal to the minimum requirement

• ILP: Let 𝐶𝑤,𝑑,𝑠
𝑚𝑖𝑛 denote the minimum number of nurses required for   

covering a shift s on the dth day of week w, then: 

∀w ∈ W, ∀d ∈ D, ∀s ∈ S:   σ𝑛∈𝑁 𝑥𝑛,𝑤,𝑑,𝑠 ≥ 𝐶𝑤,𝑑,𝑠
𝑚𝑖𝑛



Hard (H) constraint types:

• H3. Shift type successions: 

→The shift type assignments of one nurse in two consecutive days 
must belong to the legal successions provided in the scenario. 

• ILP: Let F be the set of forbidden shift type successions. Each f ∈ F 
represents a sequence of two shift types s1 and s2 that is forbidden. T.i. a 
shift s2 cannot follow a shift type s1: 

∀n ∈ N, ∀w ∈ W, ∀d ∈ D, ∀f ∈ F : 𝑥𝑛,𝑤,𝑑,𝑠1+ 𝑥𝑛,𝑤,𝑑+1,𝑠2 ≤ 1

(ps: if d = 7, then 𝑥𝑛,𝑤,7,𝑠1+ 𝑥𝑛,𝑤+1,1,𝑠2 ≤ 1 )



Soft (S) constraints types:

Soft constraints:

• Allowed falsified 

• Incur a penalty to the cost

Alternatively, we can have an objective function. 



Objectives

• Complete weekend

→Every nurse that has the complete weekend value set to true, must work both 
week-end days or none. 

If a nurse works only one of the two days Sat and Sun, this is penalized by the 
corresponding penalty weight 𝑤1. 

(the penalty weight can vary among the nurses. Here for simplicity, we assume all 
nurses have the same penalty weight.)



Objectives

Complete weekend

• 𝑝𝑛,𝑤,𝑑 =1 if nurse n works any shift type on the dth day of week w

s.t. 𝑝𝑛,𝑤,𝑑 = σ𝑠∈𝑆 𝑥𝑛,𝑤,𝑑,𝑠

• Mathematical constraint: 

→∀n ∈ N, ∀w ∈ W:  𝑝𝑛,𝑤,6 - 𝑝𝑛,𝑤,7 = 0

• ILP: ∀n ∈ N, ∀w ∈ W:                                                                                

• s.t. 𝑝𝑛,𝑤,6 - 𝑝𝑛,𝑤,7 + 𝑦𝑛,𝑤,1 ≥ 0 and 𝑝𝑛,𝑤,7 - 𝑝𝑛,𝑤,6 + 𝑦𝑛,𝑤,2 ≥ 0 

obj: min z1 := 𝑤1*(σn∈𝑁,𝑤∈𝑊 𝑦𝑛,𝑤,1 + 𝑦𝑛,𝑤,2)



Objectives

• S2: Total assignments

→For each nurse the total number of assignments (working days) must at least 
reach the minimum requirement. The difference, multiplied by its weight, is added 
to the objective function. 



Objectives

• S2: Total assignments

• 𝑝𝑛,𝑤,𝑑 =1 if nurse n works any shift type on the dth day of week w

s.t. 𝑝𝑛,𝑤,𝑑 = σ𝑠∈𝑆 𝑥𝑛,𝑤,𝑑,𝑠

Mathematical constraint: 

→∀n ∈ N, σ𝑤∈𝑊,𝑑∈𝐷 𝑝𝑛,𝑤,𝑑 ≥ Tmin 每个护士必须上班的最少天数

ILP: ∀n ∈ N 

s.t. σ𝑤∈𝑊,𝑑∈𝐷 𝑝𝑛,𝑤,𝑑 +𝑞𝑛 ≥ Tmin

Obj: min z2 := 𝑤2 ∗ (σ𝑛∈𝑁 𝑞𝑛)

注意𝑞𝑛是对于缺失的天数的惩罚。



Overall:

Min z = z1 +z2 = 𝑤1σn∈𝑁,𝑤∈𝑊(𝑦𝑛,𝑤,1 + 𝑦𝑛,𝑤,2)+ 𝑤2(σ𝑛∈𝑁 𝑞𝑛) 

s.t. ∀n ∈ N, ∀w ∈W, ∀d ∈ D :   σ𝑠∈𝑆 𝑥𝑛,𝑤,𝑑,𝑠 ≤ 1                       (H1)

∀w ∈ W, ∀d ∈ D, ∀s ∈ S:   σ𝑛∈𝑁 𝑥𝑛,𝑤,𝑑,𝑠 ≥ 𝐶𝑤,𝑑,𝑠
𝑚𝑖𝑛 (H2)

∀n ∈ N, ∀w ∈ W, ∀d ∈ D, ∀f ∈ F : 𝑥𝑛,𝑤,𝑑,𝑠1+ 𝑥𝑛,𝑤,𝑑+1,𝑠2 ≤ 1   (H3)

∀n ∈ N, ∀w ∈ W, ∀d ∈ D, 𝑝𝑛,𝑤,𝑑 = σ𝑠∈𝑆 𝑥𝑛,𝑤,𝑑,𝑠 (H4)

∀n ∈ N, ∀w ∈ W, 𝑝𝑛,𝑤,6 - 𝑝𝑛,𝑤,7 + 𝑦𝑛,𝑤,1 ≥ 0 and 𝑝𝑛,𝑤,7 - 𝑝𝑛,𝑤,6 + 𝑦𝑛,𝑤,2 ≥ 0  (S1)

∀n ∈ N σ𝑤∈𝑊,𝑑∈𝐷 𝑝𝑛,𝑤,𝑑 +σ𝑞𝑛 ≥ Tmin (S2)



• Transfrom ILP to 0-1 ILP (PBO)

ILP: ∀n ∈ N 

s.t. σ𝑤∈𝑊,𝑑∈𝐷 𝑝𝑛,𝑤,𝑑 +𝑞𝑛 ≥ Tmin

Obj: min z2 := 𝑤2 ∗ (σ𝑛∈𝑁 𝑞𝑛)

0-1 ILP: ∀n ∈ N 

s.t. σ𝑤∈𝑊,𝑑∈𝐷 𝑝𝑛,𝑤,𝑑 + σ𝑡∈[1,𝑇min] 𝑞𝑛,𝑡 ≥ Tmin

Obj: min z2 := 𝑤2 ∗ (σ𝑛∈𝑁σ𝑡∈[1,𝑇min] 𝑞𝑛,𝑡)

𝑞𝑛,𝑡为0-1变量。
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Models

• SAT

• MaxSAT

• Integer Linear Programming

• CSP



Constraint Satisfaction Problem (CSP)

• Constraint Satisfiability Problem

• P=<X,D,C>
• X: variables 

• D: domains

• C: constraints

• Express constraints
• Extensional 

• Intensional

Q

Q

Q

Q

Encoding the n-queue problem to CSP

Variables: x1, x2, x3, x4 



Constraint Satisfiability Problem (CSP)

• Constraint Satisfiability Problem

• P=<X,D,C>
• X: variables 

• D: domains

• C: constraints

• Express constraints
• Extensional 

• Intensional

Q

Q

Q

Q

Encoding the n-queue problem to CSP

Variables: x1, x2, x3, x4 

D1, D2, D3, D4 (Di = {1,2,3,4})

xi ≠ xj (0<i<j≤n) ;   

|xi-xj| ≠ |i-j|.    (0<i<j≤n)
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CSP: Global Constraints

• 𝚊𝚕𝚕𝚍𝚒𝚏𝚏𝚎𝚛𝚎𝚗𝚝(X) 

//Enforce all variables of the collection X to take distinct values.
• 𝚊𝚕𝚕equal(X)

//Enforce all variables of the collection X to take the same value.
• 𝚊𝚝𝚕𝚎𝚊𝚜𝚝(𝙽,X,value)

//At least 𝙽 variables of the collection are assigned to the value.

• regular(X,DFA)

//accepted by a DFA
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CSP Encoding: Graph Coloring

From www.minizinc.org
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CSP Encoding: Puzzle

• SEND+MORE=MONEY, what is the value of each letter in the equation?

From www.minizinc.org
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CSP Encoding: Job Shop Scheduling

Assign jobs to a machine

• Sequential

• Handle one job at any time



CSP Encoding: Nonogram

/** * CSPLib prob012:<br/> * "Nonograms are a popular 
puzzles, which goes by different names in different countries. *

Models have to shade in squares in a grid so that blocks of 
consecutive shaded squares satisfy constraints  given for each 
row and column. 

Constraints typically indicate the sequence of shaded blocks 
(e.g. 3,1,2 means that there is a block of 3,  then a gap of 
unspecified size, a block of length 1, another gap, and then a 
block of length 2)." 

@author Charles Prud'homme @since 08/08/11 */



CSP Encoding: Nonogram
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CSP Modeling

• Choco   

• MiniZinc

https://www.minizinc.org/
https://www.minizinc.org/
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Models

• SAT

• MaxSAT

• Integer Linear Programming

• CSP

• SMT
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The Logic Languages

SAT: Propositional Satisfiability

(Tie ∨ Shirt) ∧ (¬ Tie ∨ ¬ Shirt) ∧ (¬ Tie ∨ Shirt)

FOL: First-order Logic

∀X,Y,Z [X*Y*Z] =(X*Y)*Z]

∀X[X*inv(X)=e] ∀X[X*e=e]

∀𝑛 ∈ 𝑧 𝑧 > 2, 𝑧 ∈ 𝑍 ¬∃𝑥, 𝑦, 𝑧 ∈ Z (𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛)

SMT: Satisfiability Modulo background Theories

b+2 = c ∧ A[3] ≠ A[c-b+1]
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First Order Logic (FOL)

• First-order logic (FOL), also called predicate logic and the first-order predicate 
calculus.

• FOL extends propositional logic with predicates, functions, and quantifiers.

• variables x, y, z, x1, x2, . . . 

• constants a, b, c, a1, a2, . . ..

• Terms evaluate to values other than truth values, integers, people, or cards of a deck. //objects
• More complicated terms are constructed using functions.

Example: these are terms
a, a constant (or 0-ary function); 
x, a variable; 
f(a), a unary function f applied to a constant; 
g(x, b), a binary function g applied to a variable x and a constant b; 
f(g(x, f(b))).
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First Order Logic (FOL)

• First-order logic (FOL), also called predicate logic and the first-order predicate 
calculus.

• FOL extends propositional logic with predicates, functions, and quantifiers.

• Predicates P, Q… // properties, relations of objects
• An n-ary predicate takes n terms as arguments.

• Example: x is a student   S(x)

• Andy is a student    S(Andy)

• Bob is not a student ¬𝑆 𝐵𝑜𝑏

• Example: y is a teacher of x   T(y, x)

• John is a teacher of Andy    T(John, Andy)

• An atom is ⊤, ⊥, or an n-ary predicate applied to n terms. 

• A literal is an atom or its negation.
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• First-order logic (FOL), also called predicate logic and the first-order predicate 
calculus.

• FOL extends propositional logic with predicates, functions, and quantifiers.

• Quantifiers

• the existential quantifier ∃x. F[x], read “there exists an x such that F[x]”; 

• the universal quantifier ∀x. F[x], read “for all x, F[x]”.

• A FOL formula is 
• a literal, 

• the application of a logical connective ¬, ∧, ∨, →, or ↔ to a formula or formulae, 

• or the application of a quantifier to a formula. 
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Satisfiability Modulo Theories
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From Propositional to Quantifier-Free Theories

Example: 
𝜙:= 𝑥1 − 𝑥2 ≤ 13 ∨ 𝑥2 ≠ 𝑥3 ∧ 𝑥2 = 𝑥3 → 𝑥4 > 𝑥5 ∧ 𝐴 ∧ ¬𝐵

Propositional Skeleton PSΦ=(𝑏1 ∨ ¬𝑏2) ∧ 𝑏2 → 𝑏3 ∧ 𝐴 ∧ ¬𝐵

𝑏1: 𝑥1 − 𝑥2 ≤ 13

𝑏2: 𝑥2 = 𝑥3
𝑏3: 𝑥4 > 𝑥5
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From Propositional to Quantifier-Free Theories

Example:

• a = b + 2 ∧ 𝐴 = 𝑤𝑟𝑖𝑡𝑒 𝐵, 𝑎 + 1,4 ∧ (𝑟𝑒𝑎𝑑 𝐴, 𝑏 + 3 = 2 ∨ 𝑓 𝑎 − 1 ≠ 𝑓 𝑏 + 1 )

• Propositional Skeleton PSΦ = 𝑦1 ∧ 𝑦2 ∧ (𝑦3 ∨ 𝑦4)

• 𝑦1: a = b + 2

• 𝑦2: 𝐴 = 𝑤𝑟𝑖𝑡𝑒 𝐵, 𝑎 + 1,4

• 𝑦3: 𝑟𝑒𝑎𝑑 𝐴, 𝑏 + 3 = 2

• 𝑦4: 𝑓 𝑎 − 1 ≠ 𝑓 𝑏 + 1
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Language: Signatures

• A first-order theory T is defined by the following components. 

1. Its signature Σ is a set of constant, function, and predicate symbols. 

• A constant can also be viewed as a 0-ary function

• A FOL propositional variable is a 0-ary predicate, which we write A, B, C, ...

2. Its set of axioms 𝒜 is a set of closed FOL formulae in which only constant, function, 
and predicate symbols of Σ appear. 

• A Σ-formula is constructed from constant, function, and predicate symbols of Σ, as well 
as variables, logical connectives, and quantifiers. 

• As usual, the symbols of Σ are just symbols without prior meaning. 

• The axioms A provide their meaning.
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Interpretation

Recall

• An interpretation I assigns to every propositional variable exactly one truth value. 
For example, I : {P ⟼ 𝑡𝑟𝑢𝑒, 𝑄 ⟼ false, …}

• A formula F is satisfiable iff there exists an interpretation I such that I ⊨ F. 

• A formula F is valid iff for all interpretations I, I ⊨ F
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Interpretation

• FOL interpretation 𝐼: ( 𝐷𝐼 , 𝛼𝐼)

• The domain D𝐼 of an interpretation I is a nonempty set of values or objects, such as 
integers, real numbers, dogs, people, or merely abstract objects…



96

Interpretation

Example

• F : x + y > z → y > z − x

• We construct a “standard” interpretation I 

• The domain is the integers,  ℤ:𝐷𝐼 = ℤ = {… ,−2,−1,0,1,2,… }

• 𝛼𝐼: {+⟼ +ℤ,−⟼ −ℤ, >⟼>ℤ, 𝑥 ⟼ 13, 𝑦 ⟼ 42, 𝑥 ⟼ 1}
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T-satisfiability

• Given a FOL formula F and interpretation  𝐼: (𝐷𝐼 , 𝛼𝐼), we want to compute if F 
evaluates to true under interpretation I, I ⊨ F, or if F evaluates to false under 
interpretation I, I ⊭F.
• I satisfies F: I ⊨ F

• T – interpretation: an interpretation satisfying 𝐼 ⊨ A for every A ∈𝒜.

• A Σ-formula F is satisfiable in T , or T -satisfiable, if there is a T-interpretation I 
that satisfies F.
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Input Format : SMT-LIB2 

• Second, set background theory：

( set - logic QF_LIA )

• First, directives. E.g., asking models to be reported：

( set - option : produce - models true )

• Standard theories of interest ：
• QF_BV: quantifier-free bit vector theory
• QF_LRA : quantifier-free linear real arithmetic
• QF_LIA: quantifier-free linear integer arithmetic
• QF_NRA : quantifier-free nonlinear real arithmetic
• QF_NIA : quantifier-free nonlinear integer arithmetic
• … 
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Input Format : SMT-LIB2 

• Third, declare variables

(declare-fun x () s), or (declare-const x s) //introducing new symbols x of sort s

common sorts: Int Bool Real (_BitVec 3) ((_FixedSizedList 4) Real) (Set (_BitVec 3))

E.g., integer variable x:

( declare - fun x () Int )
E.g., real variable z_1_3:

( declare - fun z_1_3 () Real ) 
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Input Format : SMT-LIB2 

• Fourth, assert formula.
• Expressions should be written in prefix form:

( < operator > < arg 1 > ... < arg n > )

( assert
( and 

( or 
( <=  (+  x  3)   ( *  2  u )  ) 
( >=  (+  v  4)   y ) 
( >=  (+  x  y  z  )   2)

) 
( = 7 

(+ 
( ite ( and   ( <=  x  2 )   ( <= 2   (+  x  3  (- 1) ) ) )   3   0)
( ite ( and   ( <=  u  2 )   ( <= 2   (+  u  3  (- 1) ) ) )   4   0)

) 
) 

)
)

• and, or, + have arbitrary arity 

• - is unary or binary 

• * is binary 

• ite is the if-then-else operator (like ? in C, 
C++, Java).

Let a be Boolean and b, c have the same 
sort S, then ( ite a  b  c) is the expression of 
sort S equal to: 

• b if a holds
• c if a does not hold
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Input Format : SMT-LIB2 

• Finally ask the SMT solver to check satisfiability ... 

( check - sat ) 

• ... and report the model

( get - model ) 

• Anything following a ; up to an end-of-line is a comment
• You can also use (set-info : comments) to write comments in your files
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Input Format : SMT-LIB2 

( set - option  :  produce - models true )

( set - logic   QF_LIA ) 

( declare - fun x ()    Int ) 

( declare - fun y ()    Int ) 

( declare - fun z ()    Int )           ;              This  is  an  example

( declare - fun u ()    Int ) 

( declare - fun v ()    Int ) 

( assert 

( and 

( or 

( <= (+  x  3) (*  2  y ) ) 

( >= (+  x  4)   z ) 

)   

(<= x  y))

)

( check - sat ) 

( get - model )
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Input Format : SMT-LIB2 

(set-logic QF_LIA) 

(declare-fun x ()   Int) 

(declare-fun y ()   Int) 

(declare-fun z ()   Int) 

(assert ( or  ( >  x  y)  ( >  x  z ) ) ) 

(assert ( or  ( <  ( +  x  1 )  y )  ( not  ( >  x  y ) ) ) ) 

(assert ( or  ( >  x  y )  ( >  z  y ) ) ) ) 

(check-sat) Example
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Input Format : SMT-LIB2 

; There is a fast way to check that fixed size numbers are powers of two. 
; It turns out that a bit-vector x is a power of two or zero if and only if x & (x - 1) is zero, 
where & represents the bitwise and. 
; When using Z3, if you do not set logic, it means all logics supported in Z3.

(define-fun is-power-of-two ((x (_ BitVec 4))) Bool 
(= #x0 (bvand x (bvsub x #x1))))

(declare-const a (_ BitVec 4))
(assert 
(not (= (is-power-of-two a) 

(or (= a #x0) 
(= a #x1) 
(= a #x2) 
(= a #x4) 
(= a #x8)))))

(check-sat)
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Output Format : SMT-LIB2 

• 1st line is sat or unsat

• If satisfiable, then comes a description of the solution in a model expression, where the value 
of each variable is given by: 

(define − fun < variable > () < sort > < value >) 

• Example:

sat
( model 

( define - fun y ()    Int 0 ) 
( define - fun x ()    Int (- 3) ) 
( define - fun z ()    Int 2 )  

)
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SMT Encoding (Programming) – solving equations 
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SMT Encoding (Programming) - Sudoku

SMT-solvers are so helpful, in that our Sudoku 
solver has nothing else, we have just defined 
relationships between variables (cells).
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SMT Encoding (Programming) – Hamiltonian cycle

The position of every node in hamiltonian cycle order array should be a integer in [0, N).

For every node, there should be one node which is just next to it in hamiltonian cycle order.

∀ 𝑖 ∈ 0, 1, … , 𝑁 − 1 𝑝𝑜𝑠 𝑖 ∈ 0, 1, … , 𝑁 − 1 ∧ 𝑝𝑜𝑠 𝑖 ∈ Z

∀ 𝑖 ∈ 0, 1, … , 𝑁 − 1 ∃𝑗 {𝑗 ∈ 0, 1, … , 𝑁 − 1 ∧ 𝑒𝑑𝑔𝑒 𝑖, 𝑗 ∈ 𝐺 ∧ 𝑝𝑜𝑠 𝑗 ≡ 𝑝𝑜𝑠 𝑖 + 1 %𝑁}

A Hamiltonian path (or traceable path) is a path in an 
undirected or directed graph that visits each vertex exactly 
once
A Hamiltonian cycle (or Hamiltonian circuit) is a 
Hamiltonian path that is a cycle.
NP complete problem.
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SMT Encoding (Programming) – Hamiltonian cycle

constraint <- {}
for i : {i | i in [0, N)} do

constraint.add_clause(0 <= pos[i] < N and is_integer(pos[i]))
end for
constraint.add_clause(pos[0] == 0)
for i : {i | i in [0, N)} do

or_clause <- {}
for j : {j | node j can be reached by node i in graph} do

or_clause.add_literal(pos[j] == (pos[i] + 1) % N)
end for
constraint.add_clause(or_clause)

end for
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SMT Encoding (Programming) – Job Scheduling
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SMT Encoding (Programming) – Job Scheduling
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SMT Encoding (Programming) – Job Scheduling
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Homework: find an interesting (real world or research) problem and formulate it
into a constraint model.

Constraint Modeling


