1Rf£: Constraint Solving

Shaowei Cai (&Z=/M%)

Institute of Software, Chinese Academy of Sciences

Constraint Solving (2022. Autumn)

Constraints are everywhere...

Recognizing constraints

» Facts/Rules (Higdi#fzsz o, [THLIT I — KA 247D
John#&Alice)2 i)

* Must do ([]I/ NEHE)

» Cannot violate (AEE[FLLT)

Data types:
* Discrete

 Continuous

,
. 1.8 -
« Hybrid
14 -
1.2
1 -
0.8 -
0.6 -
04 -
0.2 A
0

B RER AR AE, T I T I 1 I LI 1
010407 1 1316 19 22 25 28 3.1 34 3.7

Constraint Solving Z9kKfZ

2oy Y Encoding [Masteesessss] Solving

sentence ¢

‘ Solution

Constraints

TIRZIR (SAT) - And, more:
@ = 1V ax) A (X Vx3) A(=xg = xy) . . .) .
Differential Equations 14> /7 %

FF Y-

y? + 2xy < 100
x <60

Geometrical Constraints JL{AJZ) K
g1 H (SMT) :
((y? + 2xy < 100) V ((f(¥) <30) > —(x —y < 30) A(x <60))

CSP:
AllDifferent(xi,xj) A |xi — xj| # [t = J|

Model vs. Problem

Formal (Mathematic)
Generic
Solvable (most cases)

Solving

Solvers

 Informally, a solver is a program that solves a constraint model.

Powerful, but not always best.

Tradeoff: Generic vs. Specific

Solving as Algorithm Engineering

" Modelling with
realistic computer

L models

AIIZ?:sr:;hnm { Experimentation ’
\\J /‘ Applications

[Analysis ()
Implementation -
Libraries [
=

A

from { Algorithm engineering: Bridging the Gap between Algorithm Theory and Practice)

How ?

* Reading
* Books
* Papers
* Codes

e Discussions

« Hands in
* Modelling
« Implementing
 Analyzing

* Presentation
e Talk
« Writing

10

Books

{The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiabiliy)

{Handbook of Satisfiablity)

{Handbook of Constraint Programming)

{ Decision Procedures: An Algorithmic Point of View)

{The Calculus of Computation: Decision Procedures with Applications to
Verification)

(A Guide to Experimental Algorithms)

» {Stochastic Local Search: Foundation and Application)

Constraint Models

Shaowei Cai (Z/MF)

Institute of Software, Chinese Academy of Sciences
Constraint Solving (2022. Autumn)

Models

* SAT

SAT

 Boolean Satisfiability / Propositional Satisfiability / SAT
/Rl e I AJRR / anet AT i 1 B R

* E.g. (x1V _Ixz) /\ (XZ V XS) /\ (_le - X4)

*Conjunctive Normal Form (CNF):
e.g., 0 = (x1V-xy) A (xo Vx3)A(x1V—xy,)

P ={{X1, _'xZ}a{xZJ X3},{X1 v —|X4}}

Every propositional formulas can be converted into CNF efficiently.

SAT

* Boolean variables: x4, x,, ...
* A literal is a Boolean variable x (positive literal) or its negation —x (negative literal)

* A clause is a disjunction (V) of literals
Xy V X35
_le V _|x3 V x4

» A Conjunctive Normal Form(CNF) formula is a conjunction (A) of clauses.

15

SAT

Examples:

(pV—g)A(gV—r)A(rV-p)

Solution: Satisfiable. Assign T to p, g and r.

(V=) AN(gV)NV -p)A(pVagVr)A(=pV gV -r)

Solution: Not satisfiable. Check each possible assignment of truth values to the
propositional variables and none will make the proposition true.

Hello, SAT!

 The first NP-Complete problem [Cook, 1971]
A core problem in computer science and a basic problem in logic
« SAT solvers widely used in industry and science

The SAT problem is evidently a killer
app, because it is key to the solution
of so many other problems. SAT-
solving techniques are among com-
puter science’s best success stories
so far, and these volumes tell that
fascinating tale in the words of the
leading SAT experts.

Donald Knuth

Clearly, efficient SAT solving is
a key technology for 21st century
computer science. | expect this col-
lection of papers on all theoretical
and practical aspects of SAT solv-
ing will be extremely useful to both
students and researchers and will
lead to many further advances in
the field.

Edmund Clarke

17

SAT solvers

 Using SAT solvers
* To find a certain structure
 To prove something

/ Constraints \/ Reasoning I

Scheduling, Theorem proving,
Resource allocation, System verification,
Logistics, Knowledge representation,
Hardware design, Decision procedure,
Software Engineering, Agents,

4
~

Prove that
x=zly=l=>x+y=2

\ 4

Is
x=1,y=1not(x+y=2)
UNSAT?

K Finding a solution Checking validity /

SAT revolution

cryptography

original C code optimized C code
if(!'a && !'b) h(); if(a) £Q);
else if('a) g(); else if(b) g();
else f(); else h();

4 f

if(la) { if(a) £0);

if(!'b) h(); = else {

else g(); if(!'b) h();
} else f(); else g(); }

How to check that these two versions are equivalent?

Program Analysis

xXm+ ym=zm (mod p) vdW(6) = 1132
Schur's Theorem Ramsey Theory

Pythagorean Tuples Conjecture

3n+1 Conjecture?

Math

Resource Allocation

19

DIMACS Format of CNF

Input file: DIMACS format.
c example

p cnf 4 4
1-4-30
140
-10

-430

» _»

lines starting “c¢” are comments and are ignored by the
SAT solver.

a line starting with ”p cnf” is the problem definition line
containing the number of variables and clauses.

the rest of the lines represent clauses, literals are integers

(starting with variable 1), clauses are terminated by a zero.

MiniSat: A open-source SAT solver widely used
in industries.

Output format

c comments, usually stastitics about the
solving

s SATISFIABLE

vi2-3-4 5-6-78910

V-111213-14 150

the solution line (starting with ”s”) can
contain SATISFIABLE,
UNSATISFIABLE and UNKNOWN.

For SATISFIABLE case, the truth values
of variables are printed in lines starting

»__»

with ”v”, the last value is followed by

»

a o

20

SAT Encoding: graph coloring problem

A coloring is an assignment of colors to vertices such that no two adjacent vertices

share the same color.

The Graph Coloring Problem (GCP) is to find a coloring of a graph while minimizing
the number of colors.

The decision version: given a positive number Kk, decide whether a graph can be
colored with k colors.

21

SAT Encoding: graph coloring problem

* 3-coloring problem:
« for each vertex, uses 3 variables (n vertices), 4 X 3 = 12 in all.

1

X1, X1, Xi3, Xog, Xop Xog X3y Xgp Xgg Xy Xyo Xys
» For each edge, produces 3 negative 2-clause

edgel'2: _lelv_IX21 5 _IX12V_IX22 5 _IX13V_Ix23)
edgel—4: _lelv_IX41 ’ _lezv_IX42 . _legv_lx43 5 O Color 1
edge2—3: —|x21V—|x31 ’ —|x22V—|x32 R _Ix23V_Ix33 5 . Color 2
edge2'4: —|x21V—|x41 R _Ixzzv_IX42 5 ﬂngV_IX43 5 . Color 3
edg63-4: ﬁXglv_l.X}l,l) _Ix32V_Ix42 ; _IX33V_IX43 5

1

» For each vertex, produces a positive k-clauses
X11V %12V X13, %21V X22V X33, x31V X35V X33, X491V X425V X453
e Result:

—|X12’—|X X =1 X =1 X

i | |
13, 1 Xop, Xoo TV Xpg g, T Xgy 71X

33, 1 X

41, 7 X4z, X435

5

22

SAT Encoding: Meeting Scheduling

Scheduling a meeting consider the following constraints
« Adam can only meet on Monday or Wednesday

* Bridget cannot meet on Wednesday

 Charles cannot meet on Friday

* Darren can only meet on Thursday or Friday

e F=(x; Vx3)A(x3)A(xs) A (x4 Vx5) ANAtMostOne(xq, Xy, X3, X4, Xs)

SAT Encoding: Meeting Scheduling

F=(x;Vx3)A(x3) A(x5) A (x4 V X5)
ANy VX)N VX3)A(XL VX)) A (X1 VX5)
A (X2 VX3)A(xz VX)) A (X3 VXs)
A (X3V Xg) A (X3V Xs5)
A (X4 V X5)

 Solution: Unsatisfiable, i.e., it is impossible to schedule a
meeting with these constraints

SAT Encoding: logic puzzle

* Question: at least one of them speak truth. Who speaks the truth?
» A: B is lying.
 B: Cis lying.
* C: A and B is lying.

* Encoding;:
3 variables: a, b, c present A, B, C speak truth, while -a, -b, -c present lying.
* clauses:

avbvece; %at least one speak truth.

—aV-ab; avb; %a-> -b, -a->b

-bV-c bve; %b-> ¢, -b -> ¢

- CcCV-a;CcV —Ib; cvavb %c->(-al —lb), =c->- (=a =b)

e Result: —a, b, —c
B speaks truth, A and C are lying

25

SAT Encoding: Pythagorean Tuples Conjecture

Problem Definition:

Is it possible to assign to each integer 1,2,.....n one of two colors such that if a? + b? = ¢
then a, b and ¢ do not all have the same color?

2

* Solution : Nope
« for n=7825 it is not possible
» proof obtained by a SAT solver (2016)

How to encode this?
« for each integer i we have a Boolean variable x;, x;= 1 if color of i is 1, x;=0 otherwise.

- for each a, b, ¢ such that a? + b? = ¢? we have two clauses: (x,V x, V x.) and (X, V X},
VX.)

26

SAT Encoding: Sudoku

« A Sudoku puzzle is represented by a 9x9 grid made up of nine 3x3 blocks. Some of the

81 cells of the puzzle are assigned one of the numbers 1,2, ..., 9.

 Goal: assign numbers to each blank cell so that every row, column and block contains each

of the nine possible numbers.

* Let p(i,j,n) denote the proposition that is true
when the cell in the i-th row and the j-th column
has number n.

» There are 9x9 x 9 = 729 such propositions.

 In the sample puzzle p(5,1,6) is true, but p(5,j,6)
is false forj = 2,3,...9

(&)

27

SAT Encoding: Sudoku

 For each cell with a given value, assert p(i,j,n), when the cell in row i and column j
has the given value.

» Assert that every row contains every number.

9 9 9
/\/\\/ p(i,j,n 29 4
i=1n=1j =1

« Assert that every column contains every number. 4|2

9 9 9
A AV ptiin ZEEE NN

j=1n=1i=1 1 9

(&)

SAT Encoding: Sudoku

» Assert that each of the 3 x 3 blocks contain every number.

2 2 9 3 3
/\ /\ /\ p(3r +1i,3s+j,n)
r=0 s=0 n=1 i=1 j=1

e Assert that no cell contains more than one number.

n #n'

—p(i,j,n) vV =p(i,j,n")

A2 I ST R RAE A

(&)

29

Encoding Circuit to CNF

Tseitin Transformation

Type Operation

_D— AND C=A-B
__)o— NAND ¢ —A4.B

CNF Sub-expression

(AVBVC)A(AVC)A(BVC)

(AVBVC)A(AVC)A(BVC)

(AVBVC)A(AVC)A(BVC)

(AVBVC)A(AVC)A(BVC)

(AVC)A(AVC)

(AVBVC)A(AVBVC)A(AVBVC)A(AVBVCO)

C=A-B

CoAAB=-CV(AAB)
=(AVv-aC)A(BV=0)

AANB->C=-(AANB)VC
= AV -AaBVC

Encoding Circuit to CNF

S
h—
5,0

oAN(x = a)AN(x—=c)A(x—aAc)A ...

oAN(XVa)A(XVc)A(xVAvT)A ...

o A
X & alc) A
y & bvx) A
u+ avb) A
v & bVc) A
W UAV)A
0 S yDdw)

S — — — — —

31

Equivalence Checking to SAT

Output

N1

N2

Inputs

Single output Miter

e Build a miter circuit

N1

Multi-output Miter

e Transform Miter Circuit to CNF

e Call a SAT solver

» If SAT, we find a counter-example
» If UNSAT, N1=N2

Encoding Sokoban to SAT

 Variables — For each location we have variable, the domain is WORKER, BOX,
EMPTY

e Initial State — assign values based on the picture
 Goal — goal position variables have value BOX

» Actions — move and push for each possible location
e push(L1; L2; L3)
=({L1=W;L2=B; L3 =E}; {L1=E; L2 =W; L3 = B}).
emove(L1; L2) =({L1=W; L2 =E}; {L1=E; L2 = W})

« We cannot encode the existence of a plan in general
 But we can encode the existence of plan up to some length

33

Planning Problem Definition

A planning problem instance II is a tuple (x, 4, S;, S;) where
* ¥ is a set of multivalued variables with finite domains.
each variable x € y has a finite possible set of values dom(x)

- A is aset actions. Each action a € A is a tuple (pre(a), ef f(a))
pre(a) is a set of preconditions of action a
eff(a) is a set of effects of action a
both are sets of equalities of the form x = v where x € y and v € dom(x)
* 5; is the initial state, it is a full assignment of the variables in y
* s is the set of goal conditions, it is a set of equalities(same as pre(a) and ef f(a))

34

Planning Problem Definition

The task

 Given a planning problem instance Il = (y,4,S,,S;) and k € N construct a CNF
formula F sus that F satisfiable if and only if there is plan of length k for II.

« We will need two kinds of variables
 Variables to encode the actions:
al foreacht € {1,..,k}andq; € A
« Variables to encode the states:
bl_,foreacht € {1,..,k + 1}, x € y andv € dom(x)
* In total we have k|A| + (k + 1) Y¢, dom(x) variables

35

Planning Problem Definition

We will need 8 kinds of clauses
 The first state is the initial state
 The goal conditions are satisfied in the end
 Each state variable has at least one value
 Each state variable has at most one value
e If an action is applied it must be applicable
« If an action is applied its effects are applied in the next step
» State variables cannot change without an action between steps
» At most one action is used in each step

36

Planning Problem Definition

The first state is the initial state:
(by=v)

V(x =v) € s
The goal conditions are satisfied in the end:
(b5

V(x =v) € s¢

37

Planning Problem Definition
Each state variable has at least one value:
(bley, VbEoy,V -+ biy,)
Vx € y,dom(x) = {v{,vq,...,v5 L, Vt €{1,...,k + 1}
Each state variable has at most one value:
(mbley,Vbly)

Vx € x,v; # vj,{v;,v;} € dom(x),Vt € {1,...,k + 1}

38

Planning Problem Definition

If an action is applied it must be applicable:

(preconditions2actionBIWMEFM ab = A ympyepre(a) Pi=v)
(_'atv b3€=v)

Va € A,V(x =v) €Epre(a),Vt € {1,...,k}

If an action is applied its effects are applied in the next step:

(actionZeffectsHIFED M a* = A ymvyeerfia) Prsv)
(=a®V biiy)

Va€eAV(x=v)€eff(a),Vte{l,..., k}

39

Planning Problem Definition

State variables cannot change without an action between steps

(~biey ABE) = atv -V,
@ (beyV bV at,V -V al)

Vx € x,Vv € dom(x), support(x = v) = {asl,...,asj},‘v’t €e{l,...,k}

By support(x = v) € A we mean the set of supporting actions of the assignment x
= v,1.e., the set of actions that have x = v as one of their effects.

ST E X, R EOD EAEIRS =y, T B t+1 20 B AR S x=y,
M)A & KA T FA L Hix=viaction

40

Planning Problem Definition

At most one action is used in each step:

(—laf V—ua]’-f)

V{ai, aj} CAa #a;Vte{l,...

41

Models

* SAT

e MaxSAT

MaxSAT

* When the formula is not satisfiable, we concern about satistying as many clauses as
possible -> Maximum Satisfiability.

Example: A Simple MAX-SAT Instance

F:= (—x)

e minimum number of unsatisfied clauses? 1

(eg.,x1 =2 =3 =24 = x5 := 1)

Variants of MaxSAT

* Weighted MaxSAT

 Each clause is associated with a weight, the goal: maximize the total weight of satisfied clauses

o Partial MaxSAT
e hard clauses: must be satisfied
» soft clauses: to satisfy as many as possible
* the goal: satisfy all hard clauses and as many soft clauses as possible.

* Weighted Partial MaxSAT

 Each soft clause is associated with a weight
 The goal: satisfy all hard clauses and maximize the total weight of satisfied soft clauses.

Encoding MaxCut to MaxSAT

MaxCut: to maximize the numbers of edges in a graph that are “cut” by
partitioning the vertices into two sets.

- non-Partial MaxSAT

X1 X, - soft clauses:
X,V X,
_le V _Ixz
)
_le VvV _Ix4

Graph: G=(E, V)

Encoding MaxClique to MaxSAT

« MaxClique Problem

A clique is a vertex subset C such that every
vertex in Cis adjacent to any other vertices in C.

e hard clauses:
—|X1 \/—|X5
—|X1 \/—|X2

e soft clauses:

Xy

Xe

Encoding Set Cover to Weighted Partial MaxSAT

Set Cover Problem
U={xq, X9, X3, X4, X5, Xg, X7, Xg }

* S1:{xq, X5}, 2

* S2: {xl: X2, X3, X4}, 3
*S3: {x3, x3, x5}, 2
*S4:{x5, x4, X5}, 2

° S5 {Xg, X4, X5, x6}a7
* S6: {X4, X5, X6, X7},5
* S7: {Xe, X7, Xg},3

* S8: {x7,xg},4

—)

Hard clauses:

hl:{vy,v,}
h2:{v{,v,,v3,V4}
h3:{v,,v3,vs}
h4: {v,, v, vs}
h5:{v3, V4, Vs, g}
hé6:{vs, vg, v}
h7:{ve, v, g}
h8:{v,, vg}

Soft clauses:

s1: {—uvl}, 2
s2:{—v,},3
s3:{—v3},2
s4:{—v,}, 2
s5:{—v:s}, 7
s6:{—1¢}, 5
s7:{—v-},3
s8: {—vg}, 4

Cardinality constraints and CNF

* Cardinality constraints:
* ll + l2+ o T ln = k, ke Z, li (S {xi, —|xi}, X; € {O, 1}

* A naive encoding to CNF: Forbidding all illegal assignments
- Example: atLeast _2{x{,x,, X3, X4}

hi:x;V x, VX3V x4

hi: —=x; V x, VX3V x4

hi:x;V =x, VX3V x4

hi:x;V x, V-ax3 V x,

jfll: x1 V xz V x3 V _Ix4

Linear objective function and CNF

« Example:
eMinz=2x*x; +3*x, —4*x3
* Generate soft unit clauses:

s1=(2,{-1x1})

s2 = (3, {1 x2})

s3 = (4,{x3})

49

Models
« SAT
e MaxSAT

* Integer Linear Programming

Pseudo Boolean Constraints / 0-1 Integer Linear Programming

 Pseudo Boolean constraints:
° a1l1 + a2l2+ eeo T anln = k, a;, ke Z, li S {xi, —uxi}, X; € {0, 1}

O(nlogn) additional variables and

One PB constraint: ii’f a; l; =k / clauses of CNF
\ O(Zﬁz’f a;) additional variables and

clauses of ECNF

Linear Programming (LP)

* Linear Programming has been studied for many years and achieved great
success in real word situations.

e Standard form:
min z =c'x

St Ax =0b
x>0
¢ is a weight vector; X represents the vector of variables

A represents a matrix; b is a column vector

* Linear function is in the form of a’x o b, where o can be =, >, <

a’x=">b - standard form

a’x>Db 2> a'x—x; = b, wherex; =0
ca’x< b -2 a'x+x, = b,wherex; =0
*x; <0 2 Y= —X;

*x; ER > Xx; =2z, — Z,, Where z;, 2z, = 0
*max c'x 2> min —c'x

LP

Example:
max 100x; + 200x; min —(100x; + 200x,)
‘ :igxl 1‘;3? f 388 5 (30x; + 40x, + ¢; = 500
s. L. X1 , < ~
\ X, %, =0 s.t.<40x; + 60x, + ¢, = 700

\ X1,%X2,C1,C3 = 0

1. Turn to standard form
2. Apply the general LP solver

ILP and MILP

o If all the variables in LP are restricted to integers, the resulting problem is Integer
Linear Programming (ILP)

* If only a part of the variables in LP is restricted to integers, the resulting problem is
Mix Integer Linear Programming (MILP)

MILP Example:
-m-

Corn S0.18
Milk S0.23 500 121
Wheat Bread S0.05 0 65
s.t. : 1. the total intake of vitamin A is not less than 500 Goal: minimize the total cost

2. the total intake of Vitamin B is not less than 1000
Min: 0.18xcom + 0.23 Xmilk + 0.05 Xbread

s.t. 107x.0rn + 500 X475 >= 500
712X corn + 121 Xpi1 65 Xpreqq >= 1000

Xcorn» Xmilk» Xbread = 0; Xcorn 1S INteger

ILP:Knapsack Problem

* Given a set of items, each with a weight and a profit, determine the number of each
item to include in a collection so that the total weight is less than or equal to a given

limit and the total value is as large as possible. ?
<_=
¥

(N —
MaXE PiX;i %
i=1
d
s.t z wix; < C; capacity constraint of resources .)
i=1
<

x; € {0,1};Vi=1,--,N

N: the number of items x; - binary decision variable

pi: the profit of the i-th item it equals to 1 if i-th item is selected, and 0 otherwise.
w;: the weight of the i -th item

C: the capacity of the knapsack

57

Multiple Dimensions 0-1 Knapsack Problem (MKP)

- Each item i consumes an amount wj; > 0 from each dimension ;.

- Each dimension has a capacity C; > 0.

(N
Maxz PiXi
=1

N
i=1

% €{0,1};Vi=1,-,N

N : the number of items
p;: the profit of thei-th item

capacity constraint of resources in each dimension

x;: binary decision variable

it equals to 1 if i-th item is selected, and 0 otherwise.

w;; - the j-th dimension weight of the i-th item

C;: the j-th dimension capacity of the knapsack

58

Multiple MKP

 Consider multiple knapsacks where each one (say knapsack k), has d dimensions
with limited capacity Cy;.

M
z xp < 1L;Vi=1,---,N; each item appears at most once in all knapsacks

xixk €{0,1}Vi=1,---,N;k=1,---,M;

X - binary decision variable

X = 1 if i-th item is selected and packed into knapsack k,
and x;;,, = 0 otherwise.

59

Encoding Nurse Rostering to ILP

Nurse Rostering :

The basic problem consists in the weekly scheduling of a fixed number of nurses
using a set of shifts, such that in each day a nurse works a shift or has a day-off.

Nurses may have multiple skills, and for each skill we are given different coverage
requirements.

Data and variables

* N: the set of nurses

« W: the set of all weeks in the scheduling period
 D: the set of days in each week (D={1,2,3,4,5,6,7})
* S: the set of shift types

Variables:

vn € N,vd € D, Vs € S:
Xnwas = 1 1f nurse n works shift type s on the dth day of week w

= 0 otherwise.

Hard (H) constraint types:

« H1. Single assignment per day:
- A nurse can be assigned to at most one shift per day

ILP: Vn € N,Vw EW,Vd E D: Y.csXnmwas <1

Hard (H) constraint types:

« H2. Sufficient-staffing:

—->The number of nurses for each shift for each skill must be at
least equal to the minimum requirement

« ILP: Let CJ*4% denote the minimum number of nurses required for
covering a shift s on the dth day of week w, then:

. min
vw e W,vd € D, Vs € S: DneN Xnw,ds = Cwds

Hard (H) constraint types:

« H3. Shift type successions:

—>The shift type assignments of one nurse in two consecutive days
must belong to the legal successions provided in the scenario.

* ILP: Let F be the set of forbidden shift type successions. Each f € F
represents a sequence of two shift types s1 and s2 that is forbidden. T.i. a
shift s2 cannot follow a shift type s1:

vh EN,vw e W,vd € D, VI €E Fix,pa51+ Xnwa+1s2 <1
(pSZ ifd —_ 7, theIl xn,W’7,Sl+ xn’w+1’1,52 <1)

Soft (S) constraints types:

Soft constraints:
» Allowed falsified
* Incur a penalty to the cost

Alternatively, we can have an objective function.

Objectives

* Complete weekend

- Every nurse that has the complete weekend value set to true, must work both
week-end days or none.

If a nurse works only one of the two days Sat and Sun, this is penalized by the
corresponding penalty weight w,.

(the penalty weight can vary among the nurses. Here for simplicity, we assume all
nurses have the same penalty weight.)

Objectives

Complete weekend
* Pnwa =11f nurse n works any shift type on the dth day of week w

s.t. Pnw,d = ZSES Xnw,d,s
e Mathematical constraint:

2Vn € N,Vvw € Wt pp 6 - Dnw,7 = O

 JLP: Vn € N,VYw € W:

* s.t. pn,w,6 - pn,w,7 + Yn,w,l =0 and pn,w,7 - pn,w,6 + Yn,w,z =0
.. : . *
ObJ- min 71 := Wq (ZHEN,WEW yn,w,l T Yn,w,z)

Objectives

« S2: Total assignments

- For each nurse the total number of assignments (working days) must at least
reach the minimum requirement. The difference, multiplied by its weight, is added

to the objective function.

Objectives

« S2: Total assignments
* Prwa =11f nurse n works any shift type on the dth day of week w

s.t. Pnw,d = ZSES Xnw,d,s
Mathematical constraint:

SV € N, Syew aep Prwa = T MR EHIIS DR
ILP:vn € N

s.L. ZWEW,dED pn,w,d +dn = Tmin
Ob] min z2 := Wy * (ZnEN Qn)

IR g XS T IR REAY T,

Overall:

Min z = 71 +22 = W1 Xnenwew Vnw,1 T Ynw,2)+ W2 (Qnen qn)

st. vn E N,Vvw EW,Vd €E D: YicsXpwas <1 (H1)
Yw E W,Vd € D,Vs € S: Y ey Xnwas = CiH, (H2)
vn € N,vw € W,vd € D,Vf € F:xp a1+ Xnwas1sz <1 (H3)
vn € N,Vvw € W,Vd € D, ppwa = Lses X¥nw,ds (H4)

vn € N, VW € W, ppwe - Paw,7 + Ynw1 = 0a0d Py 7 - Prwe + Yaw,2 = O (S1)
vn € N ZWEW,dED pn,w,d +Z dn = Tmm (82)

e Transfrom ILP to 0-1 ILP (PBO)

ILP:vn € N

S.L. ZWEW,dED pn,w,d +CIn = Tmin
Obj: min z2 :=w, * Qen Gn)

O-1ILP:vn € N
S.t. ZWEW,dED pn,w,d + Zte[l,Tmin] CIn,t = Tmin
Obj: min z2 := Wy * (ZnEN Zte[l,Tmin] Qn,t)

> AREL
qnt/I0-12E,

Models
« SAT
e MaxSAT

* Integer Linear Programming

* CSP

Constraint Satisfaction Problem (CSP)

 Constraint Satisfiability Problem Encoding the n-queue problem to CSP
«P=<X.D.C> Q

e X: variables
* D: domains
e C: constraints 0

Q

Q

 Express constraints
« Extensional
e Intensional

Variables: x,, x,, X3, X,

Constraint Satisfiability Problem (CSP)

 Constraint Satisfiability Problem Encoding the n-queue problem to CSP
«P=<X.D.C> Q

e X: variables
* D: domains
e C: constraints Q

Q

Q

 Express constraints
« Extensional
e Intensional

Variables: x,, x,, X3, X,
D11 Dz; D3I D4(Di = {1121314})

X; #X; (0<i<j<n) ;
[Xi-xj| # [I-])]. (0<i<j<n)

CSP: Global Constraints

calldifferent(X)

//Enforce all variables of the collection X to take distinct values.
* allequal(X)

//Enforce all variables of the collection X to take the same value.
 atleast(N,X,value)

/ /At least N variables of the collection are assigned to the value.
 regular(X,DFA)

//accepted by a DFA

75

CSP Encoding: Graph Coloring

From www.minizinc.org

AUST =
% Colouring Australia using nc colours
int: nc = 3;
var 1..nc: wa; var 1..nc: nt; wvar 1l..nc:
var 1l..nc: nsw; var l..nc: v; var 1..nc:
constraint wa '= nt;
constraint wa '= sa;
constraint nt != sa;
constraint nt !'= q;
constraint sa != q;
constraint sa !'= nsw;
constraint sa !'= v;
constraint q '= nsw;
constraint nsw != v;
solve satisfy;
output ["wa=", show(wa), "\t nt=", show(nt),

"\t sa=", show(sa), "\n", "g=", show(q),
"\t nsw=", show(nsw),

"t=", show(t), "\n"];

"\t v=", show(v),

[DOWNLOAD]

..Nnc: q;

79

CSP Encoding: Puzzle

 SEND+MORE=MONEY, what is the value of each letter in the equation?

SEND-MORE-MONEY = [powNLOAD]
include "alldifferent.mzn";

var
var
var
var
var
var
var
var

- =

= ms ma

-

-

< DO =Z0O=ZMmMmuw

-

coocoRrooeo o
O WY WYw w wwww

constraint 1000 * S + 100 « E + 10 « N + D
+ 1000 * M + 100 = 0 + 10 = R + E
= 10000 * M + 1000 * 0 + 100 * N + 10 = E + Y;
constraint alldifferent([S,E,N,D,M,0,R,Y]);
solve satisfy;
output [" ", show(S),show(E),show(N),show(D),"\n",

"+ ",show(M),show(0),show(R),show(E),"\n",
"= " show(M),show(0),show(N),show(E),show(Y),"\n"];

From www.minizinc.org

CSP Encoding: Job Shop Scheduling

1int: jobs; % no of jobs
> int: tasks; % no of tasks per job
. . . - array [1..jobs,1..tasks] of int: d; % task durations
ASS]gnJObS tO a maChlne 4int: total = sum(i in 1..jobs, j in 1..tasks)

5 (d[1,3]1); % total duration
int: digs = ceil(log(10.0,int2float(total))); % digits for output
varray [1..jobs,1..tasks] of var @..total: s; % start times

(%3]

o 5;63(111(3I1ti£11 .ivar 0..total: end; % total end time
. . 18
i Handle Ol’leJOb at aIly tlme 11 constraint %% ensure the tasks occur in sequence
12 forall(i in 1..jobs) (
13 forall(j in 1..tasks-1)
14 (s[1,3] + d[1,3] <= s[1,3+1]) /\
15 s[1i,tasks] + d[i,tasks] <= end
16);
17
12 constraint %% ensure no overlap of tasks
19 forall(j in 1..tasks) (
28 torall(i,k in 1..jobs where 1 < k) (
21 s[1,3]1 + d[1,3] <= s[k,31 \/
22 s[k,31 + d[k,3] <= s[1,]]
23)
24)

26 solve minimize end;

g output ["end = ", show(end), "\n"] ++
29 [show int(digs,s[1,3]) ++ " " ++
ETS if j == tasks then "\n" else "" endif |

31 iin 1..jobs, j in 1..tasks];

CSP Encoding: Nonogram

/** * CSPLib prob012:
 * "Nonograms are a popular
puzzles, which goes by different names in different countries. *

Models have to shade in squares in a grid so that blocks of
consecutive shaded squares satisfy constraints given for each
row and column.

Constraints typically indicate the sequence of shaded blocks
(e.g. 3,1,2 means that there is a block of 3, then a gap of
unspecified size, a block of length 1, another gap, and then a
block of length 2)."

@author Charles Prud'homme @since 08/08/11 */

R I I T o I A T A O T I

12
23
2 2
17
4 3
12
3 2
12
21
92
12
21
32
g1

LY

L1 I)

R I

MY = =]

Lol — N A

— e e e

= W o

b e s [N

[I

N s

o o= = M

— NN

— = N

M W

CSP Encoding: Nonogram

buildModel() {
Model()
.getR().
.getc().
BoolVar[nR][nC]
nR; i++) o
j < nC; j++) {

.boolVar (format(

nR; i++) o

.getR(i)

dfa(ArrayUtils.c

dfa(BoolVar[] cells [1 rest, Model model) {

StringBulilder regexp

regexp.append(
regexp.append(

regexp.append(i

TAutomaton auto =

model.regular(cells

|'v|

= StringBuilder(

i++) o
) .append('{').append(rest[i]).append(

1
|
-

—

FiniteAutomaton(regexp.toString())

auto).post()

CSP Modeling

* Choco

 MiniZinc

84

https://www.minizinc.org/
https://www.minizinc.org/

Models

* SAT

* MaxSAT

* Integer Linear Programming
* CSP

* SMT

The Logic Languages

SAT: Propositional Satisfiability

FOL: First-order Logic
vX,Y,Z [X*Y*Z] =(X*Y)*Z]
VX[X*Inv(X)=e] VX[X*e=¢e]
Vnel{zlz>2,zeZ}-3Ax,y,z€Z(x*+y" =2z")

SMT: Satisfiability Modulo Theories
b+2 =c /A A[3] # A[c-b+1]

86

First Order Logic (FOL)

» First-order logic (FOL), also called predicate logic and the first-order predicate
calculus.

* FOL extends propositional logic with predicates, functions, and quantifiers.

e variables x, y, z, X1, X2, . ..

 constants a, b, ¢, a1, a2,

 Terms evaluate to values other than truth values, integers, people, or cards of a deck. //objects
« More complicated terms are constructed using functions.

Example: these are terms
a, a constant (or o-ary function);
X, a variable;
f(a), a unary function f applied to a constant;
g(x, b), a binary function g applied to a variable x and a constant b;

f(g(x, {(b))).

87

First Order Logic (FOL)

» First-order logic (FOL), also called predicate logic and the first-order predicate
calculus.

* FOL extends propositional logic with predicates, functions, and quantifiers.

 Predicates P, Q... // properties, relations of objects
« An n-ary predicate takes n terms as arguments.
« Example: x is a student S(x)
* Andy is a student S(Andy)
* Bob is not a student ~S(Bob)
« Example: y is a teacher of x T(y, x)
» John is a teacher of Andy T(John, Andy)

« An atom is T, L, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.

88

» First-order logic (FOL), also called predicate logic and the first-order predicate
calculus.

* FOL extends propositional logic with predicates, functions, and quantifiers.

 Quantifiers
* the existential quantifier 3x. F[x], read “there exists an x such that F[x]”;
* the universal quantifier vx. F[x], read “for all x, F[x]”.

A FOL formula is
« a literal,
* the application of a logical connective -, /\, \V, —, or < to a formula or formulae,
* or the application of a quantifier to a formula.

89

Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT)

0+9-9

= Arithmetic
= Bit-vectors
= Arrays

.-

90

From Propositional to Quantifier-Free Theories

Example:
p:=(;—x, <13V, #x3)AN(Xy = X3 9> X4 > xs) NANB

Propositional Skeleton PS¢,=(b; V =b,) A (b, - b3) NANA AN B

bl:xl — X9 <13
bz:xZ =X3
b3:x4 >x5

91

From Propositional to Quantifier-Free Theories

Example:
ca=b+2ANA=write(B,a+ 1,4)A(read(4,b+3) =2V f(a—1)# f(b+1))

* Propositional Skeleton PSg = y; Ay, A (Y3 V ys)

*yi:a=b+2

*y,: A =write(B,a + 1,4)
e yi: read(A,b + 3) = 2
*yy: fla=D#f(b+1)

Language: Signatures

* A first-order theory T is defined by the following components.
1. Its signature X is a set of constant, function, and predicate symbols.
* A constant can also be viewed as a 0-ary function
* A FOL propositional variable is a 0-ary predicate, which we write A, B, C, ...

2. Its set of axioms <A is a set of closed FOL formulae in which only constant, function,
and predicate symbols of X appear.

» A Y-formula is constructed from constant, function, and predicate symbols of X, as well
as variables, logical connectives, and quantifiers.

* As usual, the symbols of ¥ are just symbols without prior meaning.
* The axioms A provide their meaning.

93

Interpretation

Recall

» An interpretation I assigns to every propositional variable exactly one truth value.
For example, I : {P +— true, Q +— false, ...}

A formula F is satisfiable iff there exists an interpretation I such thatI = F.

A formula F is valid iff for all interpretations I, I = F

94

Interpretation

* FOL interpretation I: (D;, a;)

* The domain D, of an interpretation I is a nonempty set of values or objects, such as
integers, real numbers, dogs, people, or merely abstract objects...

The assignment a; of interpretation I maps constant, function, and pred-
icate symbols to elements, functions, and predicates over Djy. It also maps
variables to elements of Dy:

e each variable symbol x is assigned a value x; from Dy;
e each n-ary function symbol f is assigned an n-ary function

fr: D} — Dy

that maps n elements of D; to an element of Dy;
e each n-ary predicate symbol p is assigned an n-ary predicate

pr : D} — {true, false}

that maps n elements of D to a truth value. .

Interpretation

Example
‘F:x+y>z—y>z-X
* We construct a “standard” interpretation I

* The domain is the integers, Z:D, =Z ={...,—-2,-1,0,1,2, ...}
cap{+— +g5,—r> —5,>—o>,,x+— 13,y +— 42, x — 1}

96

T-satisfiability

* Given a FOL formula F and interpretation I: (D;, a;), we want to compute if F
evaluates to true under interpretation I, I = F, or if F evaluates to false under
interpretation I, I #F.

« I satisfies F: 1 E F

T — interpretation: an interpretation satisfying I = A for every A € A.

» A 3-formula F is satisfiable in T, or T -satisfiable, if there is a T-interpretation I
that satisfies F.

97

Input Format : SMT-LIB2

» First, directives. E.g., asking models to be reported:

(set - option : produce - models true)
« Second, set background theory:

(set -logic QF_LIA)

« Standard theories of interest :

« QF_BV: quantifier-free bit vector theory
QF_LRA : quantifier-free linear real arithmetic
QF_LIA: quantifier-free linear integer arithmetic
QF_NRA : quantifier-free nonlinear real arithmetic
QF_NIA : quantifier-free nonlinear integer arithmetic

98

Input Format : SMT-LIB2

« Third, declare variables

(declare-fun x () s), or (declare-const x s) //introducing new symbols x of sort s
commonsorts: Int Bool Real (BitVec 3) ((FixedSizedList 4) Real) (Set (BitVec 3))

E.g., integer variable :

(declare - fun x () Int)
E.g., real variable

(declare-funz 1 3 () Real)

99

Input Format : SMT-LIB2

Fourth, assert formula.
Expressions should be written in prefix form:
(< operator > < arg1>..<argn>)

(assert
(and
(or

)

)

(

<=(+x3) (F2u))

(>=(+v4)y)
(>=(+xyz) 2)

)
(=7
+
(ite (and (<=x2) (<=2 (+ x 3
(ite (and (<=u2) (<=2 (+u 3
)
)

(-1)

(

_1)

« and, or, + have arbitrary arity
e -isunary or binary
e *is binary

 iteis the if-then-else operator (like ? in C,
C++, Java).

Let a be Boolean and b, ¢ have the same
sort -, then (ite a b c) is the expression of
sort - equal to:

 bifaholds
e cif a does not hold

100

Input Format : SMT-LIB2

« Finally ask the SMT solver to check satisfiability ...

(check - sat)
... and report the model

(get - model)

« Anything following a ; up to an end-of-line is a comment
* You can also use (set-info : comments) to write comments in your files

101

Input Format : SMT-LIB2

(set - option : produce - models true)
(set-logic QF _LIA)
(declare-funx () Int)
(declare-funy () Int)
(declare-funz () Int) : This is an example
(declare-funu () Int)
(declare-funv () Int)
(assert
(and
(or
(<=(+x3)(* 2y))
(>=(+x4) z)
)
(<=xy))
)
(check - sat)
(get - model)

102

Input Format : SMT-LIB2

(set-logic QF_LIA)

(declare-fun x () Int)

(declare-funy () Int)

(declare-fun z () Int)

(assert(or (> xy) (>x2z)))

(assert(or (< (+ x1)y) (not (>xy))))

(assert(or (> xy) (>2zy))))
(check-sat) Example

103

Input Format : SMT-LIB2

; There is a fast way to check that fixed size numbers are powers of two.
; It turns out that a bit-vector x is a power of two or zero if and only if x & (x - 1) is zero,
where & represents the bitwise and.

; When using Z3, if you do not set logic, it means all logics supported in Z3.

(define-fun is-power-of-two ((x (_ BitVec 4))) Bool
(= #x0 (bvand x (bvsub x #x1))))
(declare-const a (_ BitVec 4))
(assert
(not (= (is-power-of-two a)
(or (= a #x0)

(= a #x1)

(= a #x2)

(= a #x4)

(= a #x8)))))
(check-sat)

104

Output Format : SMT-LIB2

e 1stline is sat or unsat

« If satisfiable, then comes a description of the solution in a model expression, where the value
of each variable is given by:

(define — fun < variable > () < sort > < value >)

« Example:

sat

(model
(define-funy () Into)
(define-funx () Int(-3))
(define-funz() Int2)

)

105

SMT Encoding (Programming) — solving equations

It’s that easy to solve it in Z3:

#!/usr/bin/python

from z3 import *
O+Q:-10

circle, square, triangle = Ints('circle square triangle')

s = Solver () ‘xD *Dz 'z

s.add(circle+circle==10)

s.add(circle*square+square==12)

sS. add(circle*square—triangle*circ1e==circle) .X D e A*‘ - ‘
print s.check()

print s.model()

sat ‘.‘ - i,

[triangle = 1, square = 2, circle = 5] |

106

SMT Encoding (Programming) - Sudoku

| 3
8 2
7 1)
4 3] 3
1 7 6
31 2 8
6 5 9
4 3
917
% time python sudoku2_Z3.py
145 3276 9 8
8§ 39654127
6 72918543
SMT-solvers are so helpful, in that our Sudoku sl
solver has nothing else, we have just defined 753296481
. . . 3675 428109
relationships between variables (cells). e w10
5218 397FE6 4
real Om0 .382s
user Om0 . 346s

sys Om0.036s

SMT Encoding (Programming) — Hamiltonian cycle

A Hamiltonian path (or traceable path) is a path in an
undirected or directed graph that visits each vertex exactly
once

A Hamiltonian cycle (or Hamiltonian circuit) is a
Hamiltonian path that is a cycle.

NP complete problem.

The position of every node in hamiltonian cycle order array should be a integer in [0, N).
viel0,1,..,N —1](pos|i] € [0,1,...,N — 1] Apos|i] € Z)

For every node, there should be one node which is just next to it in hamiltonian cycle order.

viel0,1,...,N —1]3j{j €[0,1,...,N — 1] Aedge(i,j) € G Apos|j] = (pos[i] +1) % N}

108

SMT Encoding (Programming) — Hamiltonian cycle

constraint <- {}
for i« {i | 1 in [0, N)} do

constraint @ <= pos[i] < N and is_integer(pos[i])
end for
constraint pos[@] ==

for i ¢ {i | 1 in [0, N)} do
or_clause <- {}
for 7 ¢ {j | node j can be reached by node i in graph} do

or_clause pos[j] == (pos[i] + 1) % N
end for
constraint or_clause

end for

109

SMT Encoding (Programming) — Job Scheduling
Precedence: between two tasks of the same job

N

Resource: Machines execute at most one job at
a time / N
N
/ \‘\\

[Sta?’tziz. . endzlz] N [Sta?'tdu. . end4,2] =0

110

SMT Encoding (Programming) — Job Scheduling

Constraints: Encoding:
Precedence: t, 3 -start time of

/ job 2 on mach 3
) . d, 3 -duration of
job 2 on mach 3

tr3+dy3 <ty
Resource: s

/\ — Not convex
/ \ tro +dyo S tyy
\%

[startz,z..endzfz] N [Start‘;,z..endq.,z] =0 tao +dgr <tys

—u

111

SMT Encoding (Programming) — Job Scheduling

dﬁ[Machine 1 Machine 2

Job 1 2 1

Job 2 3 1

Job 3 2 3
max = 8
Solution
hi1=5h2=701=2,
hy=6,11=0157=3

Encoding

(h1Z20)A(ha2H1+2)A(Hha2+1<8) A
h1=20A(h2=>h1+3)A(h2+1<8)A
B3120)A(B2261+2)A(532+3<8)A

(hi=2h1+3)V(h1=2h1+2)) A
(hi=286B1+2)V(B12>2h1+2)) A
(h1=2861+2)V(126H1+3)) A
(a2 = ha+1)V(bha=har+1)) A
(h2>28B2+3)V(B2=2h2+1)) A
(h2>28B2+3)V(Ba=2ha+1))

(
(
(
(
(
(
(
(

112

Constraint Modeling

Homework: find an interesting (real world or research) problem and formulate it
into a constraint model.

113

