
SAT Solving
--- Basis and CDCL

Shaowei Cai

Institute of Software, Chinese Academy of Sciences

Constraint Solving (2022. Autumn)

1

3

SAT

• Boolean variables: 𝑥1, 𝑥2, …

• A literal is a Boolean variable 𝑥 (positive literal) or its negation ¬𝑥 (negative literal)

• A clause is a disjunction (∨) of literals

𝑥2 ∨ 𝑥3,

¬𝑥1 ∨ ¬𝑥3 ∨ 𝑥4 ({¬𝑥1, ¬𝑥3, 𝑥4})

• A Conjunctive Normal Form(CNF) formula is a conjunction (∧) of clauses.

e.g., 𝜑 = (𝑥1∨ ¬𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (𝑥2 ∨ ¬𝑥4) ∧ (¬𝑥1 ∨ ¬𝑥3 ∨ 𝑥4)

Every propositional formulas can be converted into CNF efficiently.

Propositional Satisfiability (SAT)：Given a propositional formula φ, test
whether there is an assignment to the variables that makes φ true.

e.g., 𝜑 = (𝑥1∨ ¬𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (𝑥2 ∨ ¬𝑥4) ∧ (¬𝑥1 ∨ ¬𝑥3 ∨ 𝑥4)

7

Solvers 求解器

8

SAT solvers

• Using SAT solvers
• To find a certain structure

• To prove something

Satisfiability

Finding a solution Checking validity

SAT

Reasoning
Theorem proving,
System verification,
Knowledge representation,
Decision procedure,
Agents,
…

Constraints
Scheduling,
Resource allocation,
Logistics,
Hardware design,
Software Engineering,
…

9

SAT revolution

xm + ym = zm (mod p)
Schur's Theorem

vdW(6) = 1132
Ramsey Theory

Pythagorean Tuples Conjecture

3n+1 Conjecture?

cryptography

EDA

Math

Program Analysis Planning

Resource Allocation

10

Using SAT Solvers

c example
p cnf 4 4
1 -4 -3 0
1 4 0
-1 0
-4 3 0

lines starting ”c” are comments and are ignored by the
SAT solver.
a line starting with ”p cnf” is the problem definition line
containing the number of variables and clauses.
the rest of the lines represent clauses, literals are integers
(starting with variable 1), clauses are terminated by a zero.

Input file: DIMACS format.

c comments, usually stastitics about the
solving
s SATISFIABLE
v 1 2 -3 -4 5 -6 -7 8 9 10
v -11 12 13 -14 15 0

the solution line (starting with ”s”) can
contain SATISFIABLE,
UNSATISFIABLE and UNKNOWN.
For SATISFIABLE case, the truth values
of variables are printed in lines starting
with ”v”, the last value is followed by
a ”0”

Output format

MiniSat: A open-source SAT solver widely used
in industries.

11

SAT Solving Basis

Complete Solvers：conflict-driven clause learning

Incomplete Solvers：biased on satisfiable side

SAT Solving

Stochastic
local search

CDCL

Reasoning Search

12

SAT Solving Basis – Resolution 归结

• Resolution. If two clauses A and B have exactly one pair of complementary literals a A

and ¬a B, then the clause A∪B\{a, ¬a} is called the resolvent of A and B (by a) and
denoted by R(A, B).

13

SAT Solving Basis - Resolution

Variable elimination by resolution

• Given a formula F and a literal 𝑎, the formula denoted 𝐷𝑃𝑎(F) is constructed from F
• by adding all resolvents by 𝑎

• and then removing all clauses that contain a or ¬a

Example. 𝐹 = (𝑥 ∨ 𝑒) ∧ (𝑦 ∨ 𝑒) ∧ (𝑥 ∨ 𝑧 ∨ 𝑒) ∧ (𝑦 ∨ 𝑒) ∧ (𝑦 ∨ 𝑧)

Eliminating variable e by resolution:

• first add all resolvents upon e.

{ 𝑥 ∨ 𝑒 , (𝑦 ∨ 𝑒)} with { 𝑥 ∨ 𝑧 ∨ 𝑒 , (𝑦 ∨ 𝑒)}→ 4 resolvents

𝐹 ∧ (𝑥 ∨ 𝑥 ∨ 𝑧) ∧ (𝑥 ∨ 𝑦) ∧ (𝑦 ∨ 𝑥 ∨ 𝑧) ∧ (𝑦)

• remove all clauses that contain e to obtain

(𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑥 ∨ 𝑧) ∧ (𝑥 ∨ 𝑦) (𝑦 ∨ 𝑥 ∨ 𝑧) ∧ (𝑦)

• Unit Clause: A Clause that all literals are falsified except one unassigned literal.

• Unit Propagation (UP): the unassigned literal in unit clause can only be assigned to
single value to satisfy the clause.

SAT Solving Basis - Unit Propagation 单元传播

14

• Unit Clause: A Clause that all literals are falsified except one unassigned literal.

• Unit Propagation (UP): the unassigned literal in unit clause can only be assigned to
single value to satisfy the clause.

SAT Solving Basis - Unit Propagation

15

SAT Solving Basis – DP Algorithm

Davis-Putnam Algorithm [1960] % could find record in 1959

• Rule 1: Unit propagation

• Rule 2: Pure literal elimination

• Rule 3: Resolution at one variable

Apply deduction rules (giving priority to rules 1 and 2) until no further rule is applicable

Solver = Algorithmic framework + heuristics. [just a quick thinking, don’t quote me…]

16

17

SAT Solving – Quest for Efficient SAT solving

Complete

Incomplete

Lookahead
(Bohm,1996)

march-eq
2003

Survey Propagation

Hybrid

• 1960-1990
• DP, DPLL

• NP completeness, Complexity, Tractable subclass,…

• Resolution: Stålmarck’s Method (1989)

• 1990-2010
• Local Search (1992): GSAT (1992), WalkSAT (1994)

• Conflict Driven Clause Learning (1996): GRASP(1999), Chaff(2000), MiniSAT (2003),
Glucose (2009)

• Phase transition, Survey Propagation

• Portfolio: SATzilla (2007)

• 2010~today
• Modern local search

• Advanced clause management and simplification

• Hybridizing CDCL and local search (winners in 2020 and 2021 are of this type)

• Parallel solving: cube and conquer

Millions of variables
solved in 1 hour

A brief history of SAT solving

18

Davis-Putnam-Logemann-Loveland (DPLL, 1962)

• Chronological backtracking + UP + Decision heuristics

DPLL Algorithm

19

conditioning Δ on literal L:

Davis-Putnam-Logemann-Loveland (DPLL, 1962)

• Chronological backtracking + UP + Decision heuristics

DPLL Algorithm

20

[UP] Decide [UP] Decide [UP] ….

Level 0 Level 1

Decision level

Efficient UP: 2 watched literals

• In each non-satisfied clause "watch"

two non-false literals

• For each literal remember all

the clauses where it is watched

Lazy data structure for UP
[ZhangStickel’00] [MoskewiczMadiganZhaoZhangMalik’01]

21

• Branching heuristics are used for deciding which variable to use when branching.

• Solvers prefer the variable which may cause conflicts faster.

• Variable State Independent Decaying Sum (VSIDS) [MoskewiczMadiganZhaoZhangMalik’01]

• Compute score for each variable, select variable with highest score

• Initial variable score is number of literal occurrences.

• For a new conflict clause 𝑐: score of all variables in 𝑐 is incremented.

• Periodically, divide all scores by a constant. // forgetting previous effects

VSIDS Branching heuristics

22

• Most popular: the exponential variant in MiniSAT (EVSIDS)

• The scores of some variables are 𝑏𝑢𝑚𝑝𝑒𝑑 with 𝑖𝑛𝑐, and 𝑖𝑛𝑐 decays after each

conflict.

• Initialize 𝑠𝑐𝑜𝑟𝑒 to 0, the bump score 𝑖𝑛𝑐 default to 1.

• 𝑖𝑛𝑐 multiply 1/𝑑𝑒𝑐𝑎𝑦 after each conflict, 𝑑𝑒𝑐𝑎𝑦 initialized to 0.8, increased by 0.01

every [5k] conflicts, the maximum of 𝑑𝑒𝑐𝑎𝑦 is 0.95.

• The score of variables in conflict clause 𝑐 are bumped with 𝑖𝑛𝑐.

VSIDS Branching heuristics

23

The first two conflicting
clauses
{¬𝐴,¬𝑋, 𝑌}, {¬𝐴, 𝑋, ¬𝑍}
do not involve B and C.

Chronological Backtracking Non-Chronological Backtracking

Backjumping

24

CDCL: Conflict Driven Clause Learning

• A demonstration on clause learning

25

CDCL – Implication Graph
[MarqueSilvaSakallah’96]

Implication Graph describes the decision and reasoning path.

• Vertex: (decision variable = value @decision level)

• Edge : unit clause used in UP (Reason Clause) .

• Conflict: all literals are falsified (under the current assignment).

26

CDCL – Implication Graph
[MarqueSilvaSakallah’96]

Implication Graph describes the decision and reasoning path.

• Vertex: (decision variable = value @decision level)

• Edge : unit clause used in UP (Reason Clause) .

• Conflict: all literals are falsified (under the current assignment).

27

First unique implication point (UIP)

CDCL – Implication Graph

Implication Graph

28

For variable x:

𝑣 𝑥 : 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒
𝛿 𝑥 : 𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙
𝛼 𝑥 : 𝑡ℎ𝑒 𝑟𝑒𝑎𝑠𝑜𝑛 𝑐𝑙𝑎𝑢𝑠𝑒

29

CDCL – Conflict Analysis

Variables are analyzed in an FIFO fashion, starting from the conflict.

In each step, for the reason clause, all literals assigned at decision levels smaller than the current one are added to
(i.e. recorded in) the clause being learned, while the others are added to the queue for analyse.

30

CDCL – Conflict Analysis

unique implication point (UIP)
in step 3, there exists only one variable to trace, e, it is a UIP.
a UIP is a dominator of the decision variable with respect to the conflict node ⊥.

31

CDCL – Conflict Analysis

32

CDCL – Conflict Analysis

NBC with first UIP learnt clause ℎ ∨ 𝑒 NBC with learnt clause ℎ ∨ 𝑏 ∨ 𝑎

回退到学习子句的第二深（就是除了当前层之外，最深的一层）

∧ (ℎ ∨ 𝑒)

• Analyze-Conflict : non-chronological backtracking + clause learning + vivification

• Decide : Branching strategy and phasing strategy

CDCL Framework

35

• Analyze-Conflict : non-chronological backtracking + clause learning + vivification

• Decide : Branching strategy and phasing strategy

CDCL Algorithm – CDCL

36

• Clause learning
• Clause management
• Lazy data structures
• Restarting
• Branching
• Phasing
• Mode Switching
• …

• Static branching heuristic: e.g. Ordered BDDs

• Dynamic branching heuristic considering current partial assignment.

• dynamic literal individual sum heuristic (DLIS)

• Dynamic branching heuristic considering learning clauses

• Variants of DLIS

• Variable state independent decaying sum(VSIDS) and its variants

• Normalized VSIDS(NVSIDS) : exponential moving average

• Exponential VSIDS(EVSIDS) : proposed by MiniSAT

• Literal state independent decaying sum(LSIDS)

• Variable move to front(VMTF) [Ryan Thesis 2004]

• Average conflict-index decision score(ACIDS)

• Reinforcement learning based branching heuristic: multi-armed bandit(MAB)

• Conflict history-based branching(CHB): 1 − 𝛼 𝑠 + 𝛼 ⋅ 𝑟, 𝑟 =
𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟

𝑛𝐶𝑜𝑛𝑓−𝑙𝑎𝑠𝑡𝐶𝑜𝑛𝑓𝑣+1

• Learning rate based branching(LRB)

• Dynamic switching between multiple heuristics

• Kissat-MAB switching between CHB and VSIDS by Upper Confidence Bound(UCB)

CDCL Heuristics – Branching heuristics

37

• Reason why Clause Database Reduction:

• Not all of them are helpful;

• UP gets slower with memory consumption.

• Measurement criteria of clauses:

• least recently used (LRU) heuristics: discard clauses not involved in recent conflict clause generation

• Literal Block Distance(LBD): number of distinct decision levels in learnt clauses, proposed in glucose.

[AudemardSimon,09IJCAI]

• 3-tired clause Learned clause management : 𝑐𝑜𝑟𝑒 are clauses with LBD≤ 3; 𝑚𝑖𝑑_𝑡𝑖𝑟𝑒 retain recently used clause

with LBD up to 6; 𝑙𝑜𝑐𝑎𝑙 saving other clauses. [Chanseok Oh, 15SAT]

• Reduction Method in 3-tier method:

• 𝑐𝑜𝑟𝑒 never be removed;

• Periodically remove half 𝑙𝑜𝑐𝑎𝑙 clauses based on score.

• Periodically move some recently not used clauses in 𝑚𝑖𝑑_𝑡𝑖𝑟𝑒 to 𝑙𝑜𝑐𝑎𝑙.

• move clauses encounter in 𝑙𝑜𝑐𝑎𝑙 many times to 𝑚𝑖𝑑_𝑡𝑖𝑟𝑒, and same from 𝑚𝑖𝑑_𝑡𝑖𝑟𝑒 to 𝑐𝑜𝑟𝑒.

CDCL Heuristics – Learnt Clause Removal

38

• Periodical traceback to 0 decision level.

• clause learning and search restarts correspond to a proof system as powerful as general

resolution, and stronger than DPLL proof system; practically effective.

• Restart policies:

• Luby series: 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8 …

• Glucose restart (rapid) : When average LBD of some current learnt clauses is great than the

average LBD of all learnt clauses. [AudemardSimon,12CP]

• A conjecture: rapid restarts generally helps deriving a refutation proof, while remaining in the
current branch increases the chance of reaching a model

• interleave “stabilizing” mode (no restarts) and “focused” mode [Chanseok Oh,15SAT]

CDCL Heuristics – Effective Restart

39

• Remove some literals which can be conducted by another literal in the clause.

CDCL Heuristics – Clause Simplification

40

41

Core information of this part:
• History of SAT solving
• Know key data structure and implementation of CDCL

• Watching literals → UP
• Implication graphs → clause learning

• Understand the core ideas of CDCL (know why)
• Know important engineering issues

Summary

