SAT Solving
--- Basis and CDCL

Shaowei Cai

Institute of Software, Chinese Academy of Sciences
Constraint Solving (2022. Autumn)

SAT

Propositional Satisfiability (SAT): Given a propositional formula ¢, test
whether there is an assignment to the variables that makes ¢ true.

e.g., 0 = (x1V-x)A (X Vx3)A(x; V—xg) A(—x1V—ax3 V)

* Boolean variables: x{, x,, ...
» A literal is a Boolean variable x (positive literal) or its negation —x (negative literal)
* A clause is a disjunction (V) of literals

X2 V X3,

—x1 V —xz Vxg ({5xq, X3, X4))

» A Conjunctive Normal Form(CNF) formula is a conjunction (A) of clauses.
e.g., 0 = (x1Vx) A (X VX3)A(Xy Vaxg) A(mxy VX3 VXy)
Every propositional formulas can be converted into CNF efficiently.

Solvers Kfitzs

SAT solvers

 Using SAT solvers
* To find a certain structure
 To prove something

/ Constraints \/ Reasoning I

Scheduling, Theorem proving,
Resource allocation, System verification,
Logistics, Knowledge representation,
Hardware design, Decision procedure,
Software Engineering, Agents,

4
~

Prove that
x=zly=l=>x+y=2

\ 4

Is
x=1,y=1not(x+y=2)
UNSAT?

K Finding a solution Checking validity /

SAT revolution

cryptography

original C code optimized C code
if(!'a && !'b) h(); if(a) £Q);
else if('a) g(); else if(b) g();
else f(); else h();

4 f

if(la) { if(a) £0);

if(!'b) h(); = else {

else g(); if(!'b) h();
} else f(); else g(); }

How to check that these two versions are equivalent?

Program Analysis

XM+ ym = zm (mod p) vdW(6) = 1132
Schur's Theorem Ramsey Theory

Pythagorean Tuples Conjecture

3n+1 Conjecture?

Math

Resource Allocation

Using SAT Solvers

Input file: DIMACS format.
c example

p cnf 4 4
1-4-30
140
-10
430

» _»

lines starting ”¢” are comments and are ignored by the
SAT solver.

a line starting with ”p cnf” is the problem definition line
containing the number of variables and clauses.

the rest of the lines represent clauses, literals are integers

(starting with variable 1), clauses are terminated by a zero.

MiniSat: A open-source SAT solver widely used
in industries.

Output format

c comments, usually stastitics about the
solving

s SATISFIABLE

vi2-3-4 5-6-78910

V-111213-14 150

the solution line (starting with ”s”) can
contain SATISFIABLE,
UNSATISFIABLE and UNKNOWN.

For SATISFIABLE case, the truth values
of variables are printed in lines starting

»_.»

with ”v”, the last value is followed by

» .\

a o

10

SAT Solving Basis

-

SAT Solving

~

‘0

/ Complete Solvers: conflict-driven clause learning \

CDCL

/

/k
N

Incomplete Solvers: biased on satisfiable side

Stochastic
local search

~

11

SAT Solving Basis — Resolution 345

CVx xV D

Res]
CVD

* Resolution. If two clauses A and B have exactly one pair of complementary literals ae A

and ~a € B, then the clause AU B\{a, ~a} is called the resolvent of A and B (by a) and
denoted by R(A, B).

12

SAT Solving Basis - Resolution

Variable elimination by resolution

 Given a formula F and a literal a, the formula denoted DP,(F) is constructed from F

by adding all resolvents by a
 and then removing all clauses that contain a or -~a

Example. F=(xVe)A(yVe)A(xVzV e)A(yV e)A(y V z)
Eliminating variable e by resolution:

« first add all resolvents upon e.

{(xVve),(yve)lwth{(xvzvVv e)(yV e} 4resolvents
FA(xV xVZOAXVY)A(YV xV 2)A(Y)

* remove all clauses that contain e to obtain
(yVZIA(xV x VIOA(x VY)YV xV 2)A®)

13

SAT Solving Basis - Unit Propagation BBo{&HE

 Unit Clause: A Clause that all literals are falsified except one unassigned literal.

 Unit Propagation (UP): the unassigned literal in unit clause can only be assigned to
single value to satisfy the clause.

Example:
x; T X1 sat
X2 X; VX
Vars: X3 clauses: X; V Xq
X, Xy, V X3 V X4
Xs X, V X, V Xs
Xg Xy, V X4 V Xg

14

SAT Solving Basis - Unit Propagation

 Unit Clause: A Clause that all literals are falsified except one unassigned literal.

 Unit Propagation (UP): the unassigned literal in unit clause can only be assigned to
single value to satisfy the clause.

Example:
x; T X1 sat
X2 Xy Vox
Vars: X3 clauses: i V x_g
X, X, V x3 V x4
Xs X Vo X, VoXs

15

SAT Solving Basis — DP Algorithm

Davis-Putnam Algorithm [1960]
 Rule 1: Unit propagation

* Rule 2: Pure literal elimination

« Rule 3: Resolution at one variable

Apply deduction rules (giving priority to rules 1 and 2) until no further rule is applicable

Solver = Algorithmic framework + heuristics. [just a quick thinking, don’t quote me...]

16

SAT Solving — Quest for Efficient SAT solving

march-eq
Lookahead 2003
(Bohm,1996) ©
&
L N
1
Q &\ 2 e (B &
X OQ\'\/ 6@‘ c\)g\\’é K\ 6\‘)0 @@Q PO
Complete *—° QA —8— o —o—0—
S & ® & % I
RN AT N Ny N
Hybrid
v o> D ‘o N DY
9 O O O Q NN
&L F P
Incomplete —e——o Lj o— ﬂ,\ ~—¢
SRS S SR R
F & 2 & K
N
TS § € &
& o
> \°
c_)’b

Survey Propagation

17

A brief history of SAT solving

* 1060-1990
« DP, DPLL
« NP completeness, Complexity, Tractable subclass,...
« Resolution: Stalmarck’s Method (1989)

* 1090-2010
» Local Search (1992): GSAT (1992), WalkSAT (1994)

 Conflict Driven Clause Learning (1996): GRASP(1999), Chaff(2000), MiniSAT (2003),

Glucose (2009)

 Phase transition, Survey Propagation
 Portfolio: SATzilla (2007)

* 2010~today
* Modern local search
« Advanced clause management and simplification

Millions of variables
solved in 1 hour

» Hybridizing CDCL and local search (winners in 2020 and 2021 are of this type)

« Parallel solving: cube and conquer

18

DPLL Algorithm

Davis-Putnam-Logemann-Loveland (DPLL, 1962)
 Chronological backtracking + UP + Decision heuristics

O Unknown
(X1 V —xg) A (xa Vg V =) A {1V xa V —xa) A (X1 V Xa) O True)

@0

conditioning A on literal L: A|[L= {a—{-L} | a€A, L¢a}

19

DPLL Algorithm

Davis-Putnam-Logemann-Loveland (DPLL, 1962)
 Chronological backtracking + UP + Decision heuristics

A
1. {A, B} i
2 (B} 7
3. {=A4,-X,Y} B [B=1]
1 {-A X, 2} 1
5. (=AY, 7} C/ \O\['Czﬂ

S X/ &x l

AL
Y=l iz » » X X

|

[z

Decision level

[UP] Decide [UP] Decide [UP]
) /

Level 0 Level 1

20

Lazy data structure for UP

Efficient UP: 2 watched literals
e In each non-satisfied clause "watch"

two non-false literals
e For each literal remember all

the clauses where it is watched

A C E ¥ G H
@2 | @ @2 @l
| [
¥
A C E F G H
@2 | @0 @2 | @3 @l
o
A C E F G H
@2 | @o @2 | @3 | @4 | @l
A B C E F G H
@h | @2 | @0 @2 | @3 | @4 | @1
l A B C E F G H
@ @1

At DLevel 2: elause is unresolved

At DLevel 3: watched updated

At DLevel 4: watched updated

At DLevel 5: clause is unit

After backtracking to DLevel 1

21

VSIDS Branching heuristics

 Branching heuristics are used for deciding which variable to use when branching.
» Solvers prefer the variable which may cause conflicts faster.

» Variable State Independent Decaying Sum (VSIDS)

« Compute score for each variable, select variable with highest score
 Initial variable score is number of literal occurrences.
 For a new conflict clause c: score of all variables in ¢ is incremented.

* Periodically, divide all scores by a constant. // forgetting previous effects

22

VSIDS Branching heuristics

» Most popular: the exponential variant in MiniSAT (EVSIDS)

 The scores of some variables are bumped with inc, and inc decays after each

conflict.
» Initialize score to 0, the bump score inc default to 1.

* inc multiply 1/decay after each conflict, decay initialized to 0.8, increased by 0.01

every [5k] conflicts, the maximum of decay is 0.95.

 The score of variables in conflict clause ¢ are bumped with inc.

23

Backjumping

JA:

1. {A, B}
2.{B,C}

3. {~4,-X,Y)}
4. {~A, X, 7}

5. {~A, Y, Z}
6. {~A, X, -2}
7. {~A, Y, ~Z)

7Y,
C/ \O\[‘C=1]

VAR
KA AARA

l

[z

Chronological Backtracking

The first two conflicting C
clauses !
(=4, -X, Y}, {=4, X, ~Z} X

do not involve B and C. y Y

[Y=1] [z=1, z-0l¥

l

Z=1,z=0¥

Non-Chronological Backtracking

CDCL: Conflict Driven Clause Learning
* A demonstration on clause learning

e=(aVbA(=-bV c Vd)AN(=bVe)A(-dV —-eV f)...

— Assume decisions c = 0 and f =0

— Assign a = 0 and imply assignments

— A conflict is reached: (—d Vv —e V) is unsatisfied
— (a=0)A(c=0)A(Ff=0)= (¢p=0)

- (p=1)=(a=1)V(c=1)V(f=1)

— Learn new clause (aVV cV 1)

25

CDCL - Implication Graph

Implication Graph describes the decision and reasoning path.
» Vertex: (decision variable = value @decision level)
« Edge : unit clause used in UP (Reason Clause) .
» Conlflict: all literals are falsified (under the current assignment).

Y1 = w1 ANwa Awz Awg Aws A wsg
= (35'1 V T31 V _'.CCQ) N (35'1 V _|5E3) AN (332 V I3 V 5174)/\
(—'334 V —1$5) A\ (3.’321 V =24 V _'936) A (335 V :EG)

x31 =0@3

w

/

r1=0@5 T4 =1@5 | K
|

W % ” -

z3 =0Q@5 \ zg=0@5

X

€Tro1 =0@2

/N

26

CDCL - Implication Graph

Implication Graph describes the decision and reasoning path.
* Vertex: (decision variable = value @decision level)
« Edge : unit clause used in UP (Reason Clause) .
 Conflict: all literals are falsified (under the current assignment).
Fo=c1AcaAczAcgAcs A cg
—(avbve)n(@avd)n(evdve)An(hvev FIN(EV G A(FVT)

Level Dec. Unit Prop.
0]

2 b First unique implication point (UIP)

27

CDCL - Implication Graph

Implication Graph

Fo=c1 Nea AcgAceg Ncs Acg
—(avbve)A(avd)A(evdve)AhVeEV FYAN(EV g A(fVT)

Level Dec. Unit Prop.

0 1]
1) zeVU{Ll} | v()]|8() | al) For variable x:
h 1 1 | o
. b 1| 2| 9 v(x): the value
2 Y 1 | 3 | 0 6 (x): the decision level
N c4 a L a(x): the reason clause
3 Y C 1 4 €1
d 1 1)]
c3 e 1 4 €3
> e —:- I —:- 1 f 1 1 1
\ / \ < q 1 4 5
1 - - 6

(a) Implication graph (b) State of variables
28

CDCL - Conflict Analysis

Fo=cy ANeaAcg Acyg Acs Acg

=(avbve)A(avd)A(evdve)A(hVeVv fIA(EV g A(fV7)

Level Dec. Unit Prop.
0 1]
1 h

2 b

1 f4
3 Y
4

ze VU{Ll} | v()|d()]|al)
h 1 1 0
b 1 2
y 1 3
a 1 4
c 1 4 €1
d 1 4 €2
e 1 4 €3
f 1 4 c4
[} 1 1 Cs5
1 - - 6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue
0 - 1 €6 0 {f,q}
1 [f!r g] J €4 {E} {E}
s 9, €] 9 € {h} 0
3 €] e €3 {h,é} 0
6 0 - - {h,e} -

Variables are analyzed in an FIFO fashion, starting from the conflict.

In each step, for the reason clause, all literals assigned at decision levels smaller than the current one are added to
(i.e. recorded in) the clause being learned, while the others are added to the queue for analyse.

29

CDCL - Conflict Analysis

Fo=cy ANeaAcg Acyg Acs Acg

=(avbve)A(avd)A(evdve)A(hVeVv fIA(EV g A(fV7)

Level

0

Dec. Unit Prop.

0
h

ze VU{Ll} | v()|d()]|al)
h 1 1 0
b 1 2
y 1 3
a 1 4
c 1 4 €1
d 1 4 €2
e 1 4 €3
f 1 4 c4
(/] 1 1 Cs5
1 - - 6

Step Var Queue Extract Var Antecedent Recorded Lits Added to Queue
0 - 1 €6 0 {f,q}
1 [f!r g] J €4 {E} {E}
s 9, €] 9 € {h} 0
3 €] e €3 {h,é} 0
6 [- - {h,&} -

unique implication point (UIP)
in step 3, there exists only one variable to trace, e, it is a UIP.
a UIP is a dominator of the decision variable with respect to the conflict node L.

30

CDCL - Conflict Analysis

Fo=ciNeaAcgAcg Acs A cg

=(avbve)A(avd) A(evdve)AN(hVEV FIAN(EVG) A(FVT)

Step Var Queue Extract Var

Antecedent Recorded Lits Added to Queue

0 - 1 €6 0 {fﬂ 9’}
1 [f, 9] f €4 {h} {e}
2 (9, €] g e {h} 0

3 €] e 3 {h,&} 0

6 (] - - {h,&} -

31

CDCL - Conflict Analysis

ngflﬂfgﬂcgﬂ[:;;ﬁtﬁﬂtﬁ
=(@vbve)n(@vd)nEevdve)ANhVeV FYANEVGA(FVE AGVe)

Level Dec. Unit Prop. Level Dec. Unit Prop.
0 0 0o 0
1 h —» ¢

NBC with first UIP learnt clause h V e NBC with learnt clause h Vb V a

[FER 252 2] FRJAEE IR (BlekR 7 AER A, mEK—R) 32

CDCL Framework

 Analyze-Conflict : non-chronological backtracking + clause learning + vivification

 Decide : Branching strategy and phasing strategy

= SAT

D (6]
ECIDE J all assigned

—[BACKTRACKJ&

L |

(07

bl >

0

UNSAT
bl <0

conflict ANALYZE-
BCP CONFLICT

Algorithm 1: Typical CDCL algorithm: CDCL(F, o)

1 dl +0; //decision level
2 if UnitPropagation(F,a)==CONFLICT then return UNSAT

3

R =R - B LY I -

while d unassigned variables do

/* PickBranchVar picks a variable to assign and
picks the respective value x/
(x,v) < PickBranchVar(F,a);
dl < dl +1;
a+—aU{(z,v)};
if UnitPropagation(F,a)==CONFLICT then
bl < Con flict Analysis(F, «);
if bl < 0 then
L return UNSAT;

else
BackTrack(F, a, bl);
dl + bl;

return SAT;

35

CDCL Algorithm - CDCL

 Analyze-Conflict : non-chronological backtracking + clause learning + vivification

 Decide : Branching strategy and phasing strategy

[|

= SAT

(07

\

V

—[BACKTRAC

\

V

all assigned

K}_

bl >

0

UNSAT
bl <0

conflict ANALYZE-
BCP CONFLICT

Algorithm 1: Typical CDCL algorithm: CDCL(F, o)

1 dl +0; //decision level
2 if UnitPropagation(F,a)==CONFLICT then return UNSAT

3 while d unassigned variables do

R =R - B LY I -

/* PickBranchVar picks a variable to assign and

picks the respective va
(x,v) < PickBranchVar(F,a);
dl < dl +1;
a+—aU{(z,v)};
if UnitPropagation(F,a)==CONFLIC
bl < Con flict Analysis(F, «);
if bl < O then
L return UNSAT;

else
BackTrack(F, a, bl);
dl + bl;

return SAT;

1ue

7" then

« Clause learning
Clause management
« Lazy data structures
» Restarting

* Branching

« Phasing

« Mode Switching

36

CDCL Heuristics — Branching heuristics

« Static branching heuristic: e.g. Ordered BDDs

» Dynamic branching heuristic considering current partial assignment.
* dynamic literal individual sum heuristic (DLIS)

« Dynamic branching heuristic considering learning clauses
 Variants of DLIS

 Variable state independent decaying sum(VSIDS) and its variants

* Normalized VSIDS(NVSIDS) : exponential moving average
« Exponential VSIDS(EVSIDS) : proposed by MiniSAT
» Literal state independent decaying sum(LSIDS)

* Variable move to front(VMTF) [Ryan Thesis 2004]
 Average conflict-index decision score(ACIDS)

» Reinforcement learning based branching heuristic: multi-armed bandit(MAB)

multiplier
ncConf—lastConf,+1

 Conflict history-based branching(CHB): (1 —a)s+ a - r,r =

 Learning rate based branching(LRB)
* Dynamic switching between multiple heuristics

« Kissat-MAB switching between CHB and VSIDS by Upper Confidence Bound(UCB)

37

CDCL Heuristics — Learnt Clause Removal

« Reason why Clause Database Reduction:

 Not all of them are helpful;

« UP gets slower with memory consumption.
« Measurement criteria of clauses:

* least recently used (LRU) heuristics: discard clauses not involved in recent conflict clause generation

 Literal Block Distance(LBD): number of distinct decision levels in learnt clauses, proposed in glucose.

« 3-tired clause Learned clause management : core are clauses with LBD< 3; mid_tire retain recently used clause
with LBD up to 6; local saving other clauses.
* Reduction Method in 3-tier method:

* core never be removed;
 Periodically remove half local clauses based on score.
* Periodically move some recently not used clauses in mid_tire to local.

» move clauses encounter in local many times to mid_tire, and same from mid_tire to core.

38

CDCL Heuristics — Effective Restart

» Periodical traceback to o decision level.
» clause learning and search restarts correspond to a proof system as powerful as general

resolution, and stronger than DPLL proof system; practically effective.

ﬁ cutoff ﬁ

 Glucose restart (rapid) : When average LBD of some current learnt clauses is great than the

 Restart policies:

cutoff

« Luby series: 112112411211248...

average LBD of all learnt clauses.

» A conjecture: rapid restarts generally helps deriving a refutation proof, while remaining in the
current branch increases the chance of reaching a model

* interleave “stabilizing” mode (no restarts) and “focused” mode

39

CDCL Heuristics — Clause Simplification

« Remove some literals which can be conducted by another literal in the clause.

* reason(x;) = wy, reason(xg) = ws, ...

* Local / General implication graph

Learnt Conflict clause: (' x;q, x4, %11)

Decision
.\'l=l@6
X10 ™ X11
x,=0@ |
or, X11 = X10

Clause minimization: Drop X1,

40

Summary

Core information of this part:
» History of SAT solving
* Know key data structure and implementation of CDCL

« Watching literals > UP
« Implication graphs - clause learning

» Understand the core ideas of CDCL (know why)
« Know important engineering issues

