SMT Solving:
DPLL(T) and Eager Encoding

Shaowei Cai

Institute of Software, Chinese Academy of Sciences

From Propositional to Quantifier-Free Theories

Satisfiability Modulo Theories (SMT)

@+O=€

Arithmetic
Bit-vectors
Arrays

> O 0 o

From Propositional to Quantifier-Free Theories

Example:
p:=(x; —x, <13Vx, #Fx3)A(xy, =x3 > x4 >x5) NANB

Propositional Skeleton PS¢,=(b; V =b,) A (b, - b3) NANA AN B

bl:xl — X9 <13
bz:xZ =X3
b3:x4 >x5

From Propositional to Quantifier-Free Theories

Example:
ca=b+2ANA=write(B,a+ 1,4)A(read(4,b+3) =2V f(a—1)# f(b+1))

* Propositional Skeleton PSg = y; Ay, A (Y3 V ys)

*yi:a=b+2

*y,: A =write(B,a + 1,4)
e yi: read(A,b + 3) = 2
*yy: fla=D#f(b+1)

Interpretation

Example
*F:x+y>z—y>z-X
* We construct a “standard” interpretation I

* The domain is the integers, Z:D, =Z ={...,—-2,-1,0,1,2, ...}
cap{+— +g5,—r> —5,>—o>,,x+— 13,y +— 42, x — 1}

T-satisfiability

* Given a FOL formula F and interpretation I: (D;, a;), we want to compute if F
evaluates to true under interpretation I, I = F, or if F evaluates to false under
interpretation I, I #F.

« I satisfies F: 1 E F

T — interpretation: an interpretation satisfying I = A for every A € A.

» A 3-formula F is satisfiable in T, or T -satisfiable, if there is a T-interpretation I
that satisfies F.

Approaches for Solving Single SMT Theory

Two main approaches for SMT

 Lazy Approach
Integrate a theory solver with a CDCL solver for SAT

« Eager Approach
Encode the SMT formula to a equ-satisfiable SAT formula

Normalizing T-atoms

e Drop dual operators: (r1 < x3), (r1 > x9) = —(x1 > 9), (x1 > T9).

e FEzrploit associativity: (x1 + (z2 + x3) = 1), ((z1 + 22) +23) = 1) =
(Il + To —f—.?j’-g — 1)

o Sort: (x1+ 22 —2x3<1),(xo+x1—1<x3) = (1 +x2 — 73 <1)).

e FExploit T -specific properties: (x1 < 3), (z1 < 4) = (z; < 3) if xq repre-
sents an integer.

Static Learning

If so, the clauses obtained by negating the literals in such sets
(e.g., =(x=0) vV =(x = 1)) can be added to the formula before

‘ the search starts

incompatible values (e.g., {x =0,z = 1}),

congruence constraints (e.g., {(z1 = y1), (2 = y2), f(21,72) # f(Y1,92)}),
transitivity constraints (e.g., {(x —y < 2),(y — 2 <4),~(x — 2 < 7)}),
equivalence constraints (e.g., {(x = y), (2z — 32 < 3),~(2y — 32 < 3)}).

Equality logic with Uninterpreted Functions (EUF)

An equality logic formula with uninterpreted functions and uninterpreted
predicates? is defined by the following grammar:

formula : formula A formula | —formula | (formula) | atom
atom : term = term | predicate-symbol (list of terms)

term : identifier | function-symbol (list of terms)

10

Using Uninterpreted Functions

= =y

 Replacing functions with uninterpreted functions in a given formula is a common
technique for making it easier to reason about (e.g., to prove its validity).

* At the same time, this process makes the formula weaker, which means that it can
make a valid formula invalid.

The only thing uninterpreted functions need to satisty:

 Functional consistency: Instances of the same function return the same value if
given equal arguments.

11

Using Uninterpreted Functions

int power3(int in)

{
int i, out_a;
out_a = in;
for (1 = 0; 1 < 2; i++4)
out_a = out_a x in;
return out_a;
}
(a)
outO_a = in0, A

outl_a = outO_a * 1n0, A
out2_a = outl_a * in0,

(¢a)

int power3_new(int in)
{
int out_b:

out_b = (in * in) * in;

return out_b;

}

(b)

out0_b = (in0p*in0p) *in0p;

(¢s)

To show that these two piece of codes are
actually equivalent, we only need to prove the
validity of

in0_a = 1n0_bA o, AN pp = out2_a = out0-b

12

Using Uninterpreted Functions

outO_a = tn0, N
outl _a = outO_a * 1n0, A
out2_a = outl_a * in0,

(¢a)

outO_a = in0_a A
outl_a = G(out0_a,in0_a) A
out2_a = G(outl_a,in0_a)

(¢a)

out0_b = (in0p*in0p)*in0y;

(5)

out0_b = G(G(in0.b,in0.b), in0_b)

(e5")

13

Using Uninterpreted Functions

int mul3(struct list *in)

int i, out_a;
struct list xa;

a = in;

out_a = in —> data;

for (i = 0; 1 < 2; i++) {
a = a —> n;

out_a= out_.a * a —> data;

}

return out_a;

}

(a)

al_a = mn0_a

out0_a = list_data(in0_a)

al_a = list_n(a0_a)

outl_a = G(out0_a,list_data(al_a))
a2_a = list_n(al_a)

out2_a = G(outl _a,list_data(a2_a))

> > > > >

(¢a’)

int mul3_new(struct list *in)

{

}

int out_b;

out_b =
in —> data =*
in —> n —> data =*
in —> n —> n —> data;

return out_b;

out0-b = G(G(list_data(in0-b),
list_data(list_n(in0.b)),
list_data(list_n(list-n(in0.b)))))

(e5")

struct list {

i

struct list xn; // pointer to next element

int data;

14

Congruence Closure

(,OUF = :1',‘1=3‘32/\$2=I3A$4=3§5/\$5#I‘l/\F(l’l)%F(ﬂ?g).

Initially, the equivalence classes are Can be implemented with a
union-find data structure, which
b b ? bl bl bl F b F - . ° o,
W P2k {72, T} {24, 25 AR (01), 1 (25)) results in a time complexity of

O(n log n)
Step 1(b) of Algorithm 4.3.1 merges the first two classes:

{$1?$2rm3}?{$4?$5}:{F($1)}?{F($3)} .

The next step also merges the classes containing F'(x;) and F(x3),
r1 and x5 are in the same class:

{le2:$3}:{$4:$5}?{F($l)?F($3)} .

In step 2, we note that F(z;) # F(x3) is a predicate in ¢©"", but that F(z;)
and F'(x3) are in the same class. Hence, " is unsatisfiable. .|

15

Congruence Closure

a=b, f(a,f(b,g_(a_)))=d, g(b)=c, f(a,c)=c, f(a,c)=d

@%?f(a,c):g(D f(b,g(a))

...merge congruent terms
since a=b and c=g(a), we know f(a,c)=f(b,g(a))

16

Splitting on demand

* solving problems with general Boolean structure over EUF using the DPLL(T)
framework ?

« it is desirable to allow a theory solver T -solver to demand that the DPLL engine do
additional case splits before determining the T -consistency of a partial assignment.

Example 26.5.5. In the theory 7 4 of arrays introduced in §26.2.2, consider the
following set of literals: read (write(A,i,v),j) = z,read (A, j) = y,x # v,x # ¥.
To see that this set is unsatisfiable, notice that if 7 = j, then z = v because the
value read should match the value written in the first equation. On the other
hand, if 7 # j, then x = read (A, j) and thus x = y. Deciding the 7 4-consistency
of larger sets of literals may require a significant amount of such reasoning by

casces.

17

Outline

» Lazy Approach --- DPLL(T)

18

DPLL(T)

D Assignments /°

Theory W Model

Solver B

UNSAT SAT Solver

&

" Conflict Clauses |

..

e The method is commonly referred to as DPLL(T), emphasizing that it is parameterized by
a theory T.

» The fact that it is called DPLL(T) and not CDCL(T) is attributed to historical reasons only:
it is based on modern CDCL solvers”

 ---"Decision Procedures” Daniel Kroening, Ofer Strichman

CDCL Review

A
gl
A=A X, 7} /B\O\[Bﬂ]
c

[C=1]
xy \&x >l<
250 L 4V N YUY

LA X2 Y=l @z » »FX P

5. {~A,~Y, 7} |
6. (-4, X,~2Z} 2
7. {=A,-Y, ~Z)
8. {~4, -V}

7. {-A,~Y, -2}

1. {A, B)
2. {B,C}

Chronological Backtracking

0A=1

181\

2C =1 ¥
}3 - \\

/,
7

3X =1

Conflict Analysis

Conflicting Clause:{—4, =Y, —Z}
Learnt Clause(1UIP):{—4, =Y}

Clause Learning

1
C [X=0]
1
X [Z=1, Z=0
1
[Y=1]
l
Z=1,z=0l¥

Non-Chronological
Backtracking

20

Propositional Skeleton

Abstract the skeleton:
Given atom a, we associate with it a unique Boolean variable
e(a), which we call the Boolean encoder of this atom.

pi=x=yAN((y=zA-(z=2z))Vr=2z).
The propositional skeleton of ¢ is
e(¢) = e(x=y) Al(e(y = 2) A ~e(z = 2)) Ve(z = 2)) .
Let B be a Boolean formula, initially set to e(yp), ie.,

B:= e(yp) .

o := {e(xr = y) — TRUE, e(y = z) — TRUE, e(x = z) > FALSE} .

21

DPLL(T)

Propositional
SAT solver

I.r

DP7 — a decision procedure

for a conjunction of X-literals

22

A basic lazy approach

po:=xz=yA((y=zA-(xz=2))Vz=2z).
The propositional skeleton of ¢ is
e(¢) = e(w=y) A ((e(y = 2) A—e(z = 2)) Ve(z = 2))
Let B be a Boolean formula, initially set to e(y), i.e.,

B:= e(p).

« Call SAT solver to solve e(¢), find
a = {e(x = y) — TRUE, e(y = z) — TRUE, e(x = z) +» FALSE} .

» 2Call decision procedure DPr to check the conjunction corresponding to «, denoted by Th(),
Th(a) :==x=y Ay =z A -(x=z) - theresult: Th(a) is unsat.

23

A basic lazy approach

po:=xz=yA((y=zA-(xz=2))Vz=2z).
The propositional skeleton of ¢ is
e(¢) = e(z =) Al(ely =2) Ae(z = 2)) Ve(z = 2)).

Let B be a Boolean formula, initially set to e(y), i.e.,

B := e(yp).

 e(=Th(@)) is conjoined into B, the Boolean encoding of this tautology.
°e (—lﬁl(a)) : = —e(x=y) V —e(y = z) Ve(x=z) --- blocking clause(s)

* This clause contradicts the current assignment, and hence blocks it from being
repeated

* In general, we denote by t the lemma returned by D Py.

A basic lazy approach

po:=xz=yA((y=zA-(xz=2))Vz=2z).
The propositional skeleton of ¢ is

e(¢) = e(w=y) A ((ey = 2) A —e(x =) Ve(z = 2))

Let B be a Boolean formula, initially set to e(y), i.e.,

B := e(yp).

« 2 After the blocking clause has been added, the SAT solver is invoked again and
suggests another assignment

« >Then invoke DP; again to check the conjunction of the literals corresponding
to the new assignment.

25

A Basic Lazy Approach: Example

®:=gla)=cA(f(g@) = f)vgl@=d)Ac+d

*PSop =1 A(my2 VY3) AYy)

*yi:8(a) =c

*y2: f(9(@) = f(©)
*y3:g(a) =d
*yu:ic=d

Send{1,2 v 3,4} to SAT

SAT solver returns model {1, 2, 4}

UF-solver find concretization of {1, 2, 4} UNSAT

Send{1,2Vv 3,4, —(1 A2 A4)}to SAT

Send {1,2Vv 3,4,1V 2V 4}to SAT

SAT solver returns model {1,3, 4}

UF-solver find concretization of {1,3, 4} UNSAT
Send{1,2Vv3,4,1v2Vv4,1Vv3V4}toSAT

SAT solver returns UNSAT; Original formula is UNSAT in UF

26

Integration into CDCL

| Algorithm Lazy-CDCL

Input: A formula ¢

Output: “Satisfiable” if the formula is satisfiable, and “Unsatisfiable”
otherwise

1. function Lazy-CDCL

2 ADDCLAUSES(enf (e(¢))):

3 while (TRUE) do

4 while (BCP() = “conflict”) do

5. backtrack-level := ANALYZE-CONFLICT();

6. if backtrack-level < () then return “Unsatisfiable”;

7 else BackTrack(backtrack-level);

8 if -DECIDE() then > Full assignment
9. (t, res):=DEDpUCTION(T h(a)): > « is the assignment
0 if res=“Satisfiable” then return “Satisfiable”:

1 AppCLAausEs(e(t));

10.
11.

Improving the Basic Lazy Approach

 Incremental SAT solving

Let B! be the formula B in the i-th iteration of the loop in basic lazy algorithm.

B'*1 is strictly stronger than B! for all i > 1, because blocking clauses are
added but not removed between iterations.

It is not hard to see that this implies that any conflict clause that is learned
while solving B' can be reused when solving B’ fori < j.

This, in fact, is a special case of incremental satisfiability, which is
supported by most modern SAT solvers.

Hence, invoking an incremental SAT solver can increase the efficiency of the
algorithm.

28

Still not clever enough...

 Consider, for example, a formula ¢ that contains literals
x1 =10, x; <0,
where x; is an integer variable.

« Assume that the CDCL procedure assigns e(x; = 10) = true and e(x; < 0) - true.
Inevitably, any call to Deduction results in a contradiction between these two facts.

« However, Algorithm Lazy-CDCL does not call Deduction until a full satisfying
assignment is found. // waste time to complete the assignment.

29

Theory Propagation

Theory Propagation

* Deduction is invoked after BCP stops.

o It finds T-implied literals and communicates them to the CDCL
part of the solver in the form of a constraint t.

Example. Consider the two encoders e(x; = 10) and e(; < 0).
« After e(x; = 10) has been set to true, Deduction detects that —(x; < 0) is implied.

* In other words, t := =(x; = 10) V = (x; < 0) is T-valid.
* The corresponding encoded (asserting) clause
e(t) := =e(xy = 10) V —e(x; < 0)

* ¢e(t) is added to B, which leads to an immediate implication of =e(x; < 0), and possibly
further implications.

30

The DPLL(T) Approach

1.
2.
3.
4
D

6.

d

i.
5.
9.
10.
11.
12,
13.

Algorithm DPLL(T)

Input: A formula
Output: “Satisfiable” if the formula is satisfiable, and “Unsatis-

fiable” otherwise

function DPLL(T)
ADDCLAUSES(enf(e(y))):
while (TRUE) do
repeat
while (BCP() = “conflict”) do
backtrack-level := ANALYZE-CONFLICT();

if backtrack-level < () then return “Unsatisfiable”:

else BackTrack(backtrack-level);
(t,res):=DEDUCTION(Th(av));
ADDCLAUSES(e(t));
until # = TRUE;
if o is a full assignment then return “Satisfiable”;
DECIDE();

* When a is partial, Deduction
checks

e if there is a g:ontradiction on
the theory side,

« and if not, it performs theory
propagation.

not mandatory, only for
efficiency

31

Performance, Performance...

* For performance, it is frequently better to run an approximation for finding
contradictions.

 This does not change the completeness of the algorithm, since a complete check is performed
when a is full.

E.g. integer linear arithmetic:

Deciding the conjunctive fragment of this theory is NP-complete

 consider the real relaxation of the problem, which can be solved in
polynomial time.

* Deduction sometimes misses a contradiction and hence not return a lemma

32

Performance, Performance...

* Exhaustive theory propagation refers to a procedure that finds and propagates all
literals that are implied in T by Th(a).

A simple generic way (called “plunging”) to perform theory propagation
Given an unassigned theory atom at; , check whether Th(«) implies either at; or —at; .

The set of unassigned atoms that are checked in this way depends on how exhaustive we want the
theory propagation to be.

 In many cases a better strategy is to perform only cheap propagations

 E.g. LIA: to search for simple-to-find implications, such as “if x > ¢ holds, where x is a variable
and c a constant, then any literal of the form x > d is implied if d < ¢”

33

Running A DPLL(LIA) Example

(x>y V x>z) A(X+1<y V =x>y) A(x>y V z>y)

« DPLL(LIA) algorithm

 Decide x>y — true

» Propagate x+1<y —true
« Invoke theory solver for LIA on: { x>y, x+1<y }

[

Context |

7

x>y?
X+1<y

N

34

Running A DPLL(LIA) Example

(V x>z) A(\V4) A(\V z>y) A

(\/) L Conﬂicting ClallSe ! /

...backtrack on a decision

« DPLL(LIA) algorithm

 Decide x>y — true

» Propagate x+1<y —true
e Invoke theory solver for LIA on: { x>y,x+1<y}
« x>y /\ x+1<y is LIA-unsatisfiable,add(- x>y V = x+1<y)

. Context |

-

x>y?
X+1<y

<N

35

Running A DPLL(LIA) Example

(V x>z) NA(xX+1y V) A\(Vz>y) A

(V = X+1<y)

« DPLL(LIA) algorithm

o Backtrack : x>y — false
* Propagate : x>z — true
» Propagate : z>y — true
« Invoke theory solver for LIA on: {- x>y, x>z, z>y }

. Context |

-

- X>y
X>7
Z>y

<N

36

Running A DPLL(LIA) Example

| Context |

(V) A(X+1y V) A(\/) A Va oy ~
(V = x+1<y) A (\V4 \V4) X>7
7>y

« DPLL(LIA) algorithm |
=) Conflicting clause!

« Backtrack : x>y — false ...no decision to backtrack

» Propagate : x>z — true
» Propagate : z>y — true
« Invoke theory solver for LIA on: {- x>y, x>z, z>Vy }
« - x>y /A x>z A z>yis LIA-unsatisfiable,add(x>y V -~ x>z V = z>y)

mm) Inputis

Another Example

(x+1>0 VV Xx+y>0) A(X<0V X+y>4) /\ =X+y>0

« DPLL(LIA) algorithm

Invoke DPLL(T) for theory T = LIA (linear integer arithmetic)

38

Another Example

(x+1>0 VV X+y>0) A(X<0V X+y>4) /\ =X+y>0

« DPLL(LIA) algorithm

« Propagate : x+y>0 — false
» Propagate : x+1>0 — true
* Decide : x<0 — true

m=) Unlike propositional SAT case, we must check T-satisfiability of context

[

Context |

-

—|X+y>0
X+1>0
x<04

<N

39

Another Example

(\) A(V x+y>4) A

« DPLL(LIA) algorithm

 Propagate : x+y>0 — false

» Propagate : x+1>0 — true

 Decide : x<0 — true

« Invoke theory solver for LIA on: {x+1>0, = Xx+y>0,x<0}

Context is LIA-unsatisfiable! — one of
X+1>0, Xx<0 must be false

[

Context |

—|X+y>0
X+1>0
x<04

<N

40

Another Example

(Vv) A(<0 V x+y>4) A A

\/) L] .
v
=) Conflicting clause!

...backtrack on a decision

« DPLL(LIA) algorithm

« Propagate : x+y>0 — false

» Propagate : x+1>0 — true

« Decide : x<0 — true

« Invoke theory solver for LIA on: {x+1>0, = x+y>0, x<0}
« Add theory lemma (=x+1>0 V =x<0)

[

Context |

—|X+y>0
X+1>0
x<04

<N

41

Another Example

(\) A(V x+y>4) A
V= X<O)

« DPLL(LIA) algorithm

« Propagate : x+y>0 — false
» Propagate : x+1>0 — true
« Propagate : x<0 — false

[

Context |

—|X+y>0
X+1>0

-1 X<0

<N

42

Another Example

(V) NG00V x+y>4) A A
V)

« DPLL(LIA) algorithm

« Propagate : x+y>0 — false
» Propagate : x+1>0 — true
 Propagate : x<0 — false

» Propagate : x+y>4 — true

« Invoke theory solver for LIA on: { x+1>0, = X+y>0, -X<0, X+y>4 }

[

Context |

—X+y>0
X+1>0
- X<0
X+y>4

<N

43

Another Example

| Context |
(v) AG<0 V) A A g0
\/) X+1>0
-1 X<0
X+y>
. DPLL(LIA) algorithm y>4
« Propagate : x+y>0 — false
» Propagate : x+1>0 — true
 Propagate : x<0 — false
e Propagate : x+y>4 — true
« Invoke theory solver for LIA on: { x+1>0, = x+y>0, -X<0, X+y>4 }
|
Context is LIA-unsatisfiable! — one of
N J

- X+y>0, X+y>4 must be false

Another Example

(v) AG=0 Vv) N A\
V) A(Vv)

« DPLL(LIA) algorithm | o
—> Conflicting clause!

- Propagate : x+y>0 — false ...no decision to backtrack
» Propagate : x+1>0 — true

 Propagate : x<0 — false

e Propagate : x+y>4 — true

« Invoke theory solver for LIA on: { x+1>0, = X+y>0, -X<0, X+y>4 }

« Add theory lemma (x+y>0 V = x+y>4)

m=) Inputis

[

Context |

—|X+y>0
X+1>0

-1 X<0
X+y>4

N

45

DPLL(T)

« DPLL(T) algorithm for satisfiability modulo T

« Extends DPLL (indeed CDCL) algorithm to incorporate reasoning about a theory T
« Basic Idea:
« Use CDCL algorithm to find assignments for propositional abstraction of formula
Use off-the-shelf SAT solver
« Check the T-satisfiability of assignments found by SAT solver
Use Theory Solver for T
 Perform contradiction detection and theory propagation at partial assignments in CDCL
Use Theory Solver for T

46

DPLL(T) Theory Solver

« Input : A set of T-literals M

« Output : either

1. M is T-satisfiable
e Return model, e.g. {x > 2,y—>3,z— -3, ... }
—Should be solution-sound
« Answers “M is T-satisfiable” only if M is T-satisfiable

2. {ly,..,1,} €MisT-unsatisfiable //[; A---Al,
 Return conflict clause (= [; V...V = ;)
— Should be refutation-sound
» Answers “{l;, ..., l,} is T-unsatisfiable” only if {l,, ..., [,,} is T-unsatisfiable
3. Don’t know
« Return lemma

—If solver is solution-sound, refutation-sound, and terminating,
 Then it is a decision procedure for T

47

Design of DPLL(T) Theory Solvers

« A DPLL(T) theory solver:

« Should be solution-sound, refutation-sound, terminating
 Should produce models when M is T-satisfiable
« Should produce T-conflicts of minimal size when M is T-unsatisfiable
« Should be designed to work incrementally
« M is constantly being appended to/backtracked upon
« Can be designed to check T-satisfiability either:

« Eagerly: Check if M is T-satisfiable immediately when any literal is added to M
« Lazily: Check if M is T-satisfiable only when M is complete

« Should cooperate with other theory solvers when combining theories
* (see later)

48

Outline

« Eager Approach --- Bit Blasting

49

Eager Approach

equisatisfiable -
itional solution
‘ propositiona ‘ solver ‘ uti

formula

(e IEN M Encoding

Perform a full reduction of a T-formula to an equisatisfiable propositional
formula in one-step. A single run of the SAT solver on the propositional
formula is then sufficient to decide the original formula.

50

Eliminating Function Applications

Ackermann’s method

Eliminate applications of function and predicate symbols of non-zero arity.

These applications are replaced by new propositional symbols, and also encode
information to maintain functional consistency (the congruence property).

Suppose that function symbol f has three occurrences: f(ai), f(az2), and f(as).
First, we generate three fresh constant symbols zf,, zf,, and zf 5, one for each of

the three different terms containing f, and then we replace those terms in F},omm
with the fresh symbols.

The result is the following set of functional consistency constraints for f:
{{11 =ay = If| =2f9, a1 = a3 = zf; = xf5, a2 =a3 = zfy = *rfg}

51

Eliminating Function Applications

The Bryant-German-Velev method

eliminate function applications using a nested series of ITE expressions.

f has three occurrences: f(aq), f(as), and f(a3), then we would generate three
new constant symbols zf, zf,, and zf;. We would then replace all instances of
f(ay) by zf, all instances of f(as) by ITE(ay =aq, zf, zf,), and all instances
of f(as) by ITE(az=a1, zf |, ITE(as=az2, zfs, zf3)). It is easy to see that this
preserves functional consistency.

52

Small-domain encodings

- an enumerative approach
Y aija; > b
7=1

* the coefficients and the constant terms are integer constants and the variables are
integer-valued.

If there is a satisfying solution to a formula, there is one whose size, measured
in bits, is polynomially bounded in the problem size [BT76, vzGS78, KMT7S,
Pap81|. Problem size is traditionally measured in terms of the parameters m,
n, 10g Gmax, and log byax, Where m is the total number of constraints in the
formula, n is the number of variables (integer-valued constant symbols), and
Amax = Max(; ;) |a; ;| and byae = max; |b;| are the maximums of the absolute
values of coefficients and constant terms respectively.

53

Small-domain encodings

 Given a formula F; , we first compute the polynomial bound S on solution size, and
then search for a satisfying solution to F, in the bounded space {0,1, ..., 2° — 1}

*Sis O(log m + log by, qx + m[log m + log a;,4x1)

54

Improving Small-domain encoding

Equalities
* Theorem. For an equality logic formula with n variables, S = log n

 The key proof argument is that any satisfying assignment can be translated to the
range {0, 1, 2, ..., n — 1}, since we can only tell whether variable values differ, not

by how much.

» Get compact search space by constraint graph
* representing equalities and disequalities between variables in the formula
» Connected components of this graph correspond to equivalence classes

55

Improving Small-domain encoding

Difference Logic
r, —r; X bt

X, 1s a special “variable” denoting zero.

* Build constraint graph

1. A vertex v; is introduced for each variable z;, including for x.
2. For each difference constraint of the form z; — z; > b;, we add a directed

edge from v; to v; of weight b;.

56

Improving Small-domain encoding

Theorem 26.3.3. Let Fyr be a DL formula with n variables, excluding z.
Let b,,.« be the maximum over the absolute values of all difference constraints in
Fair. Then, Fyp is satisfiable if and only if it has a solution in {0,1,2,..., d}"
where d = n - (bpnax + 1).

« any satisfying assignment for a formula with constraints represented by G can have
a spread in values that is at most the weight of the longest path in G.

* This path weight is at most n -(b,,,4, + 1). The bound is tight, the “+1” in the second
term arising from a “rounding” of inequalities from strict to non-strict.

57

Bit Vector

Many compilers have this sort of bug What is the output? (44)

unsigned char number = 200;
number = number + 100;
printf ("Sum: %d\n", number);

overflow?
x—y>0) e x>y)

» Bitwise operator frequently occur in system-level software
* left-shift, right-shift
* and, or, xXor

58

Complexity
» Satisfiability is undecidable for an unbounded width, even without arithmetic.

* It is NP-complete otherwise.

59

Operator to Circuit
Bitwise operators (l-bits): alb

Introduce new bitvector variable e for a|b, such that foreach i
(a; V b;) < e

é @ @ Other bitwise operators
is similar

60

Operator to Circuit

one-bit Full adder

A o

B o

Ciho

L
3
3l
=2
| :
-
—
Oh
2
-

a+b
four-bits Full adder
A3 B3 A> B2 A1 B1 Ao Bo
I O S I T A
1-bit 3 1-bit 3 1-bit 3 1-bit .
EA&HLr G Acl?dllar C2 Agjoller C Agudllar Co
' ' ' '
S3 S2 S1 So

How about 32-bits or 64-bits

61

Operator to Circuit

a—b=(@+~b+1)

one-bit Full adder

A ©
B o
Ciho

CNF: How many variables and clauses?

4T
I S
3
=2
| :
-
—
Oh
2
-

Complement(¥MY)

for negative numbers:
—b->~b+1

~b: invert each bits of b

5-3==}E+('3)
eeee o110 // 6(fHiT)
+ 1111 1101 // -3(fMD)

eeee eell // 3(fMY)

XOR | C=A®B (AVBVC)A(AVBVC)A(AVBVC)A(AVBVC)

62

Operator to Circuit

a=>b a;, = b; & e

a; b;

(a=b=(2'=b)+a)
If c,,t = 1, then in RHS, the subtract part b is less than
the addition parta,ie.b < a

unsigned a < b (a)y < (b)y & —add(a,~ b,1).c,ys

2-3= 010—011 =010 + 101,c,y; = O
3—-2= 011—010 =011+ 110,c,,, = 1

signed a < b (a)s < (b)s & (a;—1 © b;_,) D add(a,~b,1). cout

63

Operator to Circuit

a<<b
n-stage (n is the width of b)
stage 1: for each bit i
(ai :bo — O ‘
ei@<ai_1 lZl/\bO
. 0 : otherwise

stage 2: for each bit i

(el-_21 1221/\171
i, & 9 € :bl =(
. 0 : otherwise

e

if (i <1)
ite(by, (e;< 0), (e, a;))
if(i=1)
ite(bg, (e; & a;_1),(e; & a;))

1011011 « 101
Stage 1:
0110110 « 1011011 « 001
Stage 2:
0110110 « 0110110 « 000
Stage 3:
1100000 « 0110110 « 100

64

Operator to Circuit

aXxXb

n-stage (shift-and-add):

mul(a,b,—1) =0
mul(a, b,i) = mul(a,b,i — 1) + (b;? (a K i):0)

1001
X 0101

0000#
1001##
0000###

by =1-a<0
by =0-0
b, =1->a<«K2
b; =0-20

(I — 1) adder

65

Operator to Circuit

a—+»>b

Implemented by adding two constraints:

b#+0=eXb+r=aqa,
bx0=1r<b»

If b =0, a -+ b is set to a special value.

66

Rewrite before Bit-Blasting

n Number of variables Number of clauses

8 313 1001
16 1265 4177
24 2857 9529
32 5089 17057
64 20417 68929
Fig. The size of the constraint for an n-bit multiplier expression after Tseitin’s

transformation

, , tX(sK(s+t) ©sx(tK(s+1)
formulas with expensive operators (e.g.

multipliers) are often very hard to solve 39bits. 1075 variables.

Can’t be solved by CaDiCal within 2 hour

67

Rewrite before Bit-Blasting

C1><x=C2

68

Rewrite before Bit-Blasting

C1Xx=C2

I

x = inv(cy) X ¢y

reduce one multiplier

inv(cy) X ¢,

Deep first order travelling

69

Theory rewrite rules

 bit2bool (cisoor1)
s (itexyz)=c - (itex(y =c) (z =c))
*(notx)=c »x = (1-¢)
*mul_eq
ccx =c¢' > x = Cjpp X'
scx =c'x, > X = (CippX ') Xy

* mul
ccx+c'x - (c+c)Hx

e add

. (x+(y K x))—>(x|(y K x))
c(x+yxx)>xX(y+1)

Reduce the number of operator

Expensive operator - cheap operator

70

Propagate const values

 Given an equality t = ¢, when c is constant, then replaces t everywhere with

C
t =c Replace F(t) with F(c)
formulal0], formula[1], formula|2],) formula[n]

>

cyclical scan till fixed

71

Variable elimination does not always help

X=y+zZz+w
WX+ 2) . E}’ i gZ i W%
R S A R FR
(x4 42) .. . (y+5z+w)..
6 adder 8 adder

How to avoid increasing the number of adder and multipliers?

only eliminate variables that occur at most twice

Eliminate unconstrained variables

« a bit-vector function f can be replaced by a fresh bit-vector variable if
- at least one of its operands is an unconstrained variable v (free variable)
* f can be “inverted” with respect to v

If v1 and v2 are unconstrained variables
then no matter what’s the value of LHS, it is

v3+t=vl&v2 satisfiable.
v3 +t = v4 If v3 is unconstrained variables
then no matter what’s the value of v4 and ¢, it is
1 satisfiable.
v5 = v4

!

V6

73

bv size reduction

« Reduce bv size using upper bound and lower bound

1< x < 4 (x has 8 bits)

l

Replace x with (concat 00000 x")

x' 1s new variable of 3-bits

74

Local contextual simplification

* bool rewrite
(or args|0] ... args[numargs - 1])

replace args|i] by false in the other arguments

(x!'=00ry=x+1) —> (x!'=0o0ry = 1)

75

Hoist, max sharing
» Reduce the number of adder and multiplier using distribution and association

2 multiplier + 1 adder — 1 multiplier + 1 adder
Hoist:a*b + axc —» (b+c¢c)*a
Max Sharing:a + (b + ¢),a + (b +d)-> (a+b)+c,(a+b)+d

(a + b) only need to calculte once

76

AlG

AIGs can be used to represent arbitrary boolean formulas and circuits

Automatic structure sharing and the simplicity of AIGs make them a
compact, simple, easy to use, and scalable representation.

Name Function|Representation by two-input AND and inversion
Inversion —x —x
Conjunction| x Ay TNy
Disjunction| = Vy —(—z A —y)
Implication | = — y —(x A\ —y)
Equivalence| x <y —(x A —y) A (- Ay)
Xor Dy 2(o(z A —y) Ao(bzAy))

Table 1. Basic logic operations with two-input AND gates and negation.

Local 2-level AlG rewrite

2-level:
Consider children and —>
grand-children

a b d a b d

harmful substitution variant

Referenced by other nodes Locally size decreasing, global non increasing

—“(aAb)A(bAd)=>(maAb)Ad

78

Local 2-level AlG rewrite

Name LHS | RHS \ O| S | Condition

Neutrality aNT a 1S
Boundedness al L 1 1]S
Idempotence aNb a 1S a=1>o
Contradiction alb L 1S a#b
Contradiction (anb)Ae 1 2]1A (a#c)V(b#c)
Contradiction| (a Ab) A (¢ Ad) 1 2|1Sl{(a#c)V(a#d)V(b#c)V(b#d)
Subsumption —(aANb)ANc c 21A (a#c)V(b#c)
Subsumption | =(a A b) A (¢ A d) cANd 2|1Sl{(a#c)V(a#d)V(b#c)V(b#d)
Idempotence (anb)Ae aNb 2]1A (a=c)V(b=rc)

Resolution |—(a Ab) A —(cAd) —a 2|S (a=d)N(b#c)
Substitution “(aAb)Ac —aANb |3]A b=c
Substitution | =(a Ab) A (cAd) |ma A (ecNd)|3]|S b=c
Idempotence | (a Ab)A(ecAd) | (aANb)Ad|4]S (a=c¢)V(b=c¢)
Idempotence | (a Ab)A(cAd) |aN(cAd)|4]|S (b=c)V(b=4d)
Idempotence | (a Ab)A(ecAd) | (aANb)Ac |4]S (a=d)V (b=d)
Idempotence | (a Ab)A(cAd) | bA(cAd) |4]S (a=¢c)V(a=d)

Table 2. All locally size decreasing, globally non increasing, two-level optimization
rules. 70" is the optimization level, ”S” the type of symmetry. Subsumption is also
known as ” Absorption”. The condition a # b is a short hand for a = —b or b = —a.

Circuit to CNF

Tseitin Transformation

Type

=pie
_)o— NAND

Operation

C=A-B

CNF Sub-expression

(AVBVC)A(AVC)A(BVC)

(AVBVC)A(AVC)A(BVC)

(AVBVC)A(AVC)A(BVC)

(AVBVC)A(AVC)A(BVC)

(AVC)A(AVC)

(AVBVC)A(AVBVC)A(AVBVC)A(AVBVC)

- SAT solver

Pseudo-Boolean to BV

a1xq1 +ax, +--+a,x, =c¢

a;x; < ite(x;, bv(a;), bv(0))
l lhs = bvadd (iteq,ite,, ..., ite,)
rhs = bv(c)

lhs > rhs

other relation operators (e.g. LT, GT, EQ) can be represent by GE

81

LIA/NIA to BV

foreach variable x:

1. collect low bound low and upper bound up

2. BV size
If (low < x < up)
bits = log,(1 + |up — low|)
Otherwise
bits = numy;,

3. BitVector

If (has low)

X & Xpy, + low
else if (has up)

X S UP — Xpy
else

numy;;s = bit_size of abs(Largest constant) + 1

Under approximate
unbound - bound
satisfiability is not preserving

x & x — 2bits—1

v

(—2P1571) is the lower bound of signed int of size bits

82

LIA/NIA to BV

X0pYy

1. Align BV size of x and y

2. Extend BV size of x and y according to op

X3bits T Y 4bits

!

X4bits T+ Yabpits

!

X5bits + Ysbits

X4bits X Yabpits

!

X8bits X Ys8bits

83

Thank you!

