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From Propositional to Quantifier-Free Theories



3

From Propositional to Quantifier-Free Theories

Example: 
𝜙:= 𝑥1 − 𝑥2 ≤ 13 ∨ 𝑥2 ≠ 𝑥3 ∧ 𝑥2 = 𝑥3 → 𝑥4 > 𝑥5 ∧ 𝐴 ∧ ¬𝐵

Propositional Skeleton PSΦ=(𝑏1 ∨ ¬𝑏2) ∧ 𝑏2 → 𝑏3 ∧ 𝐴 ∧ ¬𝐵

𝑏1: 𝑥1 − 𝑥2 ≤ 13

𝑏2: 𝑥2 = 𝑥3
𝑏3: 𝑥4 > 𝑥5
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From Propositional to Quantifier-Free Theories

Example:

• a = b + 2 ∧ 𝐴 = 𝑤𝑟𝑖𝑡𝑒 𝐵, 𝑎 + 1,4 ∧ (𝑟𝑒𝑎𝑑 𝐴, 𝑏 + 3 = 2 ∨ 𝑓 𝑎 − 1 ≠ 𝑓 𝑏 + 1 )

• Propositional Skeleton PSΦ = 𝑦1 ∧ 𝑦2 ∧ (𝑦3 ∨ 𝑦4)

• 𝑦1: a = b + 2

• 𝑦2: 𝐴 = 𝑤𝑟𝑖𝑡𝑒 𝐵, 𝑎 + 1,4

• 𝑦3: 𝑟𝑒𝑎𝑑 𝐴, 𝑏 + 3 = 2

• 𝑦4: 𝑓 𝑎 − 1 ≠ 𝑓 𝑏 + 1
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Interpretation

Example

• F : x + y > z → y > z − x

•We construct a “standard” interpretation I 

• The domain is the integers,  ℤ:𝐷𝐼 = ℤ = {… ,−2,−1,0,1,2,… }

• 𝛼𝐼: {+⟼ +ℤ,−⟼ −ℤ, >⟼>ℤ, 𝑥 ⟼ 13, 𝑦 ⟼ 42, 𝑥 ⟼ 1}
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T-satisfiability

•Given a FOL formula F and interpretation  𝐼: (𝐷𝐼 , 𝛼𝐼), we want to compute if F 
evaluates to true under interpretation I, I ⊨ F, or if F evaluates to false under 
interpretation I, I ⊭F.
• I satisfies F: I ⊨ F

• T – interpretation: an interpretation satisfying 𝐼 ⊨ A for every A ∈𝒜.

• A Σ-formula F is satisfiable in T , or T -satisfiable, if there is a T-interpretation I 
that satisfies F.
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Approaches for Solving Single SMT Theory

Two main approaches for SMT 

• Lazy Approach 

Integrate a theory solver with a CDCL solver for SAT

• Eager Approach 

Encode the SMT formula to a equ-satisfiable SAT formula



8

Normalizing T-atoms
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Static Learning

If so, the clauses obtained by negating the literals in such sets 
(e.g., ¬(x = 0) ∨ ¬(x = 1)) can be added to the formula before 
the search starts
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Equality logic with Uninterpreted Functions (EUF)
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Using Uninterpreted Functions

• Replacing functions with uninterpreted functions in a given formula is a common 
technique for making it easier to reason about (e.g., to prove its validity). 

• At the same time, this process makes the formula weaker, which means that it can 
make a valid formula invalid. 

The only thing uninterpreted functions need to satisfy:

• Functional consistency: Instances of the same function return the same value if 
given equal arguments.
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Using Uninterpreted Functions

To show that these two piece of codes are 
actually equivalent, we only need to prove the 
validity of
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Using Uninterpreted Functions



14

Using Uninterpreted Functions
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Congruence Closure

Can be implemented with a 
union-find data structure, which 
results in a time complexity of 
O(n log n)
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Congruence Closure
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Splitting on demand

• solving problems with general Boolean structure over EUF using the DPLL(T) 
framework ? 

• it is desirable to allow a theory solver T -solver to demand that the DPLL engine do 
additional case splits before determining the T -consistency of a partial assignment.
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Outline

• SMT Basis

• Lazy Approach --- DPLL(T) 

• Eager Approach --- Bit Blasting
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DPLL(T) 

SAT Solver
Theory 

Solver

Assignments

Conflict Clauses

SATUNSAT
Model

• The method is commonly referred to as DPLL(T), emphasizing that it is parameterized by 
a theory T. 

• The fact that it is called DPLL(T) and not CDCL(T) is attributed to historical reasons only: 
it is based on modern CDCL solvers” 

• ---”Decision Procedures” Daniel Kroening, Ofer Strichman



Chronological Backtracking8. {¬𝐴,¬Y }

Conflicting Clause:{¬𝐴,¬Y , ¬𝑍}

Learnt Clause(1UIP):{¬𝐴,¬Y}

Conflict Analysis 

Clause Learning

CDCL Review

20

Non-Chronological 
Backtracking
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Propositional Skeleton

Abstract the skeleton:
Given atom a, we associate with it a unique Boolean variable 
e(a), which we call the Boolean encoder of this atom. 



22

DPLL(T) 
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A basic lazy approach

• Call SAT solver to solve 𝑒 𝜑 , find 

• →Call decision procedure 𝐷𝑃𝑇 to check the conjunction corresponding to 𝛼, denoted  by 𝑇ℎ(𝛼), 
𝑇ℎ 𝛼 ≔ 𝑥=y ∧ 𝑦 = 𝑧 ∧ ¬(𝑥=z) → the result: 𝑇ℎ(𝛼) is unsat.
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A basic lazy approach

• 𝑒(¬𝑇ℎ(𝛼)) is  conjoined into B, the Boolean encoding of this tautology.

• 𝑒 ¬𝑇ℎ 𝛼 := ¬𝑒(𝑥=y) ∨ ¬𝑒 𝑦 = 𝑧 ∨ 𝑒(𝑥=z) --- blocking clause(s)

• This clause contradicts the current assignment, and hence blocks it from being 
repeated

• In general, we denote by 𝑡 the lemma returned by 𝐷𝑃𝑇.
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A basic lazy approach

•→After the blocking clause has been added, the SAT solver is invoked again and 
suggests another assignment

•→Then invoke 𝐷𝑃𝑇 again to check the conjunction of the literals corresponding 
to the new assignment.
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A Basic Lazy Approach: Example

• PSΦ = 𝑦1 ∧ ¬𝑦2 ∨ 𝑦3 ∧ 𝑦4)

• 𝑦1: g 𝑎 = 𝑐

• 𝑦2: 𝑓 𝑔 𝑎 = 𝑓 𝑐

• 𝑦3: 𝑔 𝑎 = 𝑑

• 𝑦4: 𝑐 = 𝑑

Φ ≔ g 𝑎 = 𝑐 ∧ (𝑓 𝑔 𝑎 ≠ 𝑓 𝑐 ∨ 𝑔 𝑎 = 𝑑) ∧ 𝑐 ≠ 𝑑

Send 1, ത2 ∨ 3, ത4 to SAT

SAT solver returns model 1, ത2, ത4

UF-solver find concretization of 1, ത2, ത4 UNSAT

Send 1, ത2 ∨ 3, ത4, ¬(1 ∧ ത2 ∧ ത4) to SAT

Send 1, ത2 ∨ 3, ത4, ത1 ∨ 2 ∨ 4 to SAT

SAT solver returns model 1,3, ത4

UF-solver find concretization of 1,3, ത4 UNSAT

Send 1, ത2 ∨ 3, ത4, ത1 ∨ 2 ∨ 4, ത1 ∨ ത3 ∨ 4 to SAT

SAT solver returns UNSAT; Original formula is UNSAT in UF
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Integration into CDCL
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Improving the Basic Lazy Approach

• Incremental SAT solving

Let 𝛣i be the formula 𝛣 in the 𝑖-th iteration of the loop in basic lazy algorithm.

𝛣i+1 is strictly stronger than 𝛣i for all 𝑖 ≥ 1, because blocking clauses are 
added but not removed between iterations. 

It is not hard to see that this implies that any conflict clause that is learned 

while solving 𝛣i can be reused when solving 𝛣𝑗 for 𝑖 < 𝑗. 

This, in fact, is a special case of incremental satisfiability, which is 
supported by most modern SAT solvers.

Hence, invoking an incremental SAT solver can increase the efficiency of the 
algorithm.
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Still not clever enough…

• Consider, for example, a formula ϕ that contains literals

𝑥1 ≥ 10, 𝑥1 < 0,

where 𝑥1 is an integer variable.

• Assume that the CDCL procedure assigns 𝑒(𝑥1 ≥ 10) ↦ true and  𝑒(𝑥1 < 0) ↦ true. 
Inevitably, any call to Deduction results in a contradiction between these two facts.

•However, Algorithm Lazy-CDCL does not call Deduction until a full satisfying 
assignment is found. // waste time to complete the assignment.
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Theory Propagation

Theory Propagation
• Deduction is invoked after BCP stops. 
• It finds T-implied literals and communicates them to the CDCL 

part of the solver in the form of a constraint t.

Example.   Consider the two encoders 𝑒(𝑥1 ≥ 10) and 𝑒(1< 0). 
• After 𝑒(𝑥1 ≥ 10) has been set to true, Deduction detects that ¬(𝑥1 < 0) is implied. 

• In other words, t := ¬(𝑥1 ≥ 10) ∨ ¬(𝑥1 < 0) is T-valid. 
• The corresponding encoded (asserting) clause 

e(t) := ¬𝑒 𝑥1 ≥ 10 ∨ ¬𝑒 𝑥1 < 0

• e(t)  is added to B, which leads to an immediate implication of ¬𝑒 𝑥1 < 0 , and possibly 
further implications.



31

The DPLL(T) Approach

•When α is partial, Deduction 
checks 
• if there is a contradiction on 

the theory side, 
• and if not, it performs theory 

propagation.

not mandatory, only for 
efficiency
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Performance, Performance…

• For performance, it is frequently better to run an approximation for finding 
contradictions.
• This does not change the completeness of the algorithm, since a complete check is performed 

when α is full.

E.g.  integer linear arithmetic: 
Deciding the conjunctive fragment of this theory is NP-complete
• consider the real relaxation of the problem, which can be solved in 

polynomial time.
• Deduction sometimes misses a contradiction and hence not return a lemma
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Performance, Performance…

• Exhaustive theory propagation refers to a procedure that finds and propagates all 
literals that are implied in T by 𝑇ℎ 𝛼 .

• A simple generic way (called “plunging”) to perform theory propagation 
Given an unassigned theory atom 𝑎𝑡𝑖 , check whether 𝑇ℎ 𝛼 implies either 𝑎𝑡𝑖 or ¬𝑎𝑡𝑖 . 

The set of unassigned atoms that are checked in this way depends on how exhaustive we want the 
theory propagation to be.

• In many cases a better strategy is to perform only cheap propagations
• E.g. LIA: to search for simple-to-find implications, such as “if x > c holds, where x is a variable 

and c a constant, then any literal of the form x > d is implied if d < c”
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Running A DPLL(LIA) Example 

(           ∨ ) ∧(              ∨ ) ∧( ∨ z>y)

• DPLL(LIA) algorithm

• Decide x>y → true 

• Propagate x+1<y →true

• Invoke theory solver for LIA on: { x>y, x+1<y }

Context

x>𝑦𝑑
x>y x>z x+1<y ¬x>y x>y

x+1<y
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Running A DPLL(LIA) Example 

(           ∨ ) ∧(              ∨ ) ∧( ∨ z>y) ∧

(¬ x>y ∨ ¬ x+1<y)

• DPLL(LIA) algorithm

• Decide x>y → true 

• Propagate x+1<y →true

• Invoke theory solver for LIA on: {        ,            }

• x>y ∧ x+1<y is LIA-unsatisfiable,add(¬ x>y ∨ ¬ x+1<y）

Context

x>𝑦𝑑
x>y x>z x+1<y ¬x>y x>y

x+1<yConflicting clause!
…backtrack on a decision

x>y x+1<y
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Running A DPLL(LIA) Example 

(           ∨ ) ∧(              ∨ ) ∧( ∨ ) ∧

(¬ x>y ∨ ¬ x+1<y)

• DPLL(LIA) algorithm

x>y → false 

• Propagate : x>z → true 

• Propagate : z>y → true 

• Invoke theory solver for LIA on: {¬ x>y, x>z, z>y }

Context

¬ x>y
x>y x>z x+1<y ¬x>y x>y

x>z

• Backtrack ：

z>y

z>y
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Running A DPLL(LIA) Example 

(           ∨ ) ∧(              ∨ ) ∧( ∨ z>y) ∧

(¬ x>y ∨ ¬ x+1<y) ∧ (x>y ∨ ¬ x>z ∨ ¬ z>y)

• DPLL(LIA) algorithm

x>y → false 

• Propagate : x>z → true 

• Propagate : z>y → true 

• Invoke theory solver for LIA on: {¬ x>y, x>z, z>y }

• ¬ x>y ∧ x>z ∧ z>y is LIA-unsatisfiable,add( x>y ∨ ¬ x>z ∨ ¬ z>y ）

Context

¬ x>y
x>y x>z x+1<y ¬x>y x>y

x>z

• Backtrack ：

z>y

Conflicting  clause! 
…no decision to backtrack

LIA-UNSAT
Input is
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Another Example

(              ∨ ) ∧(        ∨ ) ∧

• DPLL(LIA) algorithm 

Invoke DPLL(T) for theory T = LIA (linear integer arithmetic)

x+1>0 x+y>0 x<0 x+y>4 ¬x+y>0
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Another Example

(              ∨ ) ∧(        ∨ ) ∧

• DPLL(LIA) algorithm

• Propagate : x+y>0 → false 

• Propagate : x+1>0 → true 

• Decide : x<0 → true

Unlike propositional SAT case, we must check T-satisfiability of context

Context

¬x+y>0
x+1>0 x+y>0 x<0 x+y>4 ¬x+y>0

x+1>0

x<0𝑑
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Another Example

( x+1>0 ∨ x+y>0 ) ∧(x<0 ∨ x+y>4) ∧ ¬x+y>0

• DPLL(LIA) algorithm

• Propagate : x+y>0 → false 

• Propagate : x+1>0 → true 

• Decide : x<0 → true

• Invoke theory solver for LIA on: {            , ¬ x+y>0,        } 

Context

¬x+y>0 
x+1>0 
x<0𝑑

Context is LIA-unsatisfiable! → one of 
x+1>0, x<0 must be false

x+1>0 x<0
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Another Example

( x+1>0 ∨ x+y>0 ) ∧(x<0 ∨ x+y>4) ∧ ¬x+y>0 ∧

(¬x+1>0 ∨ ¬x<0)

• DPLL(LIA) algorithm

• Propagate : x+y>0 → false 

• Propagate : x+1>0 → true 

• Decide : x<0 → true

• Invoke theory solver for LIA on: {x+1>0, ¬ x+y>0, x<0} 

• Add theory lemma (¬x+1>0 ∨ ¬x<0 )

Context

¬x+y>0 
x+1>0 
x<0𝑑Conflicting  clause! 

…backtrack on a decision
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Another Example

( x+1>0 ∨ x+y>0 ) ∧(x<0 ∨ x+y>4) ∧ ¬x+y>0 ∧

(¬ x+1>0 ∨ )

• DPLL(LIA) algorithm

• Propagate : x+y>0 → false 

• Propagate : x+1>0 → true 

• Propagate : x<0 → false

Context

¬x+y>0 
x+1>0 

¬ x<0

¬x<0
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Another Example

( x+1>0 ∨ x+y>0 ) ∧(x<0 ∨ x+y>4) ∧ ¬x+y>0 ∧

(¬ x+1>0 ∨ )

• DPLL(LIA) algorithm

• Propagate : x+y>0 → false 

• Propagate : x+1>0 → true 

• Propagate : x<0 → false

• Propagate : x+y>4 → true

Context

¬x+y>0 
x+1>0 

¬ x<0

¬x<0

x+y>4

• Invoke theory solver for LIA on: { x+1>0, ¬ x+y>0, ¬x<0，x+y>4 }
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Another Example

( x+1>0 ∨ x+y>0 ) ∧(x<0 ∨ x+y>4) ∧ ¬x+y>0 ∧

(¬ x+1>0 ∨ )

• DPLL(LIA) algorithm

• Propagate : x+y>0 → false 

• Propagate : x+1>0 → true 

• Propagate : x<0 → false

• Propagate : x+y>4 → true

Context

¬x+y>0 
x+1>0 

¬ x<0

¬x<0

x+y>4

• Invoke theory solver for LIA on: { x+1>0, ¬ x+y>0, ¬x<0，x+y>4 }

Context is LIA-unsatisfiable! → one of 
¬ x+y>0, x+y>4 must be false
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Another Example

( x+1>0 ∨ x+y>0 ) ∧(x<0 ∨ x+y>4) ∧ ¬x+y>0 ∧

(¬ x+1>0 ∨ ) ∧(x+y>0 ∨ ¬ x+y>4)

• DPLL(LIA) algorithm

• Propagate : x+y>0 → false 

• Propagate : x+1>0 → true 

• Propagate : x<0 → false

• Propagate : x+y>4 → true

Context

¬x+y>0 
x+1>0 

¬ x<0

¬x<0

x+y>4

• Invoke theory solver for LIA on: { x+1>0, ¬ x+y>0, ¬x<0，x+y>4 }

• Add theory lemma (x+y>0 ∨ ¬ x+y>4 )

Conflicting  clause! 
…no decision to backtrack

unsat
Input is
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DPLL(T)  

• DPLL(T) algorithm for satisfiability modulo T

• Extends DPLL (indeed CDCL) algorithm to incorporate reasoning about a theory T 

• Basic Idea: 

• Use CDCL algorithm to find assignments for propositional abstraction of formula 

Use off-the-shelf SAT solver 

• Check the T-satisfiability of assignments found by SAT solver 

Use Theory Solver for T

• Perform contradiction detection and theory propagation at partial assignments in CDCL

Use Theory Solver for T
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DPLL(T) Theory Solver  

• Input :

• Output : 

1. M is T-satisfiable 
• Return model, e.g. { x → 2, y → 3, z → -3, … } 

→Should be solution-sound
• Answers “M is T-satisfiable” only if M is T-satisfiable 

2.     {𝑙1, … , 𝑙n} ⊆ M is T-unsatisfiable   // 𝑙1 ∧ ⋯∧ 𝑙n
• Return conflict clause ( ¬ 𝑙1 ∨ … ∨ ¬ 𝑙n )

→ Should be refutation-sound

• Answers “{𝑙1, … , 𝑙n} is T-unsatisfiable” only if {𝑙1, … , 𝑙n} is T-unsatisfiable 

3. Don’t know 
• Return lemma

→If solver is solution-sound, refutation-sound, and terminating,
• Then it is a decision procedure for T

A set of T-literals M

either
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Design of DPLL(T) Theory Solvers  

• A DPLL(T) theory solver: 

• Should be solution-sound, refutation-sound, terminating 

• Should produce models when M is T-satisfiable 

• Should produce T-conflicts of minimal size when M is T-unsatisfiable 

• Should be designed to work incrementally 

• M is constantly being appended to/backtracked upon 

• Can be designed to check T-satisfiability either: 

• Eagerly: Check if M is T-satisfiable immediately when any literal is added to M 

• Lazily: Check if M is T-satisfiable only when M is complete

• Should cooperate with other theory solvers when combining theories

• (see later)
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Outline

• SMT Basis

• Lazy Approach --- DPLL(T) 

• Eager Approach --- Bit Blasting
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Eager Approach

solution𝑇-formula
equisatisfiable 
propositional 
formula

Encoding
SAT 

solver

Perform a full reduction of a 𝑇-formula to an equisatisfiable propositional 
formula in one-step. A single run of the SAT solver on the propositional 
formula is then sufficient to decide the original formula.



51

Eliminating Function Applications

Ackermann’s method

Eliminate applications of function and predicate symbols of non-zero arity.

These applications are replaced by new propositional symbols, and also encode  
information to maintain functional consistency (the congruence property).
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Eliminating Function Applications

The Bryant-German-Velev method

eliminate function applications using a nested series of ITE expressions.
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Small-domain encodings

• an enumerative approach

• the coefficients and the constant terms are integer constants and the variables are 
integer-valued.
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Small-domain encodings

•Given a formula 𝐹Z , we first compute the polynomial bound S on solution size, and 
then search for a satisfying solution to 𝐹Z in the bounded space 0,1,… , 2𝑆 − 1

• S is O(log m + log 𝑏𝑚𝑎𝑥 + m[log m + log 𝑎𝑚𝑎𝑥])
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Improving Small-domain encoding

Equalities

• Theorem. For an equality logic formula with n variables, S = log n

• The key proof argument is that any satisfying assignment can be translated to the 
range {0, 1, 2, . . . , n − 1}, since we can only tell whether variable values differ, not 
by how much.

•Get compact search space by constraint graph
• representing equalities and disequalities between variables in the formula

• Connected components of this graph correspond to equivalence classes
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Improving Small-domain encoding

Difference Logic

𝑥0 is a special “variable” denoting zero. 

• Build constraint graph
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Improving Small-domain encoding

• any satisfying assignment for a formula with constraints represented by G can have 
a spread in values that is at most the weight of the longest path in G. 

• This path weight is at most n ·(𝑏𝑚𝑎𝑥 + 1). The bound is tight, the “+1” in the second 
term arising from a “rounding” of inequalities from strict to non-strict.
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Bit Vector

• Bitwise operator frequently occur in system-level software
• left-shift, right-shift

• and, or, xor

What is the output? (44)

unsigned char number = 200;
number = number + 100;
printf ("Sum: %d\n", number );

Many compilers have this sort of bug

overflow?

(𝑥 − 𝑦 > 0) ⟺ 𝑥 > 𝑦
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Complexity

• Satisfiability is undecidable for an unbounded width, even without arithmetic. 

• It is NP-complete otherwise.
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Operator to Circuit

Bitwise operators (𝑙-bits):     𝑎|𝑏

Introduce new bitvector variable 𝑒 for 𝑎|𝑏, such that foreach 𝑖
𝑎𝑖 ∨ 𝑏𝑖 ⟺ 𝑒𝑖

  
 

  
 

  
 

𝑎0 𝑎1 𝑎𝑙−1𝑏0 𝑏1 𝑏𝑙−1

…

𝑒𝑙−1𝑒1𝑒0

Other bitwise operators 
is similar
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Operator to Circuit

𝑎 + 𝑏

one-bit Full adder four-bits Full adder

How about 32-bits or 64-bits
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Operator to Circuit

𝑎 − 𝑏 = a + ~b + 1

one-bit Full adder

CNF: How many variables and clauses?

Complement(补码) 
for negative numbers:

−𝑏 → ~𝑏 + 1
~𝑏: invert each bits of 𝑏
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Operator to Circuit

𝑎𝑖 = 𝑏𝑖 ⟺ 𝑒𝑖𝑎 = 𝑏

𝑎𝑖 𝑏𝑖

𝑒𝑖

⟨𝑎⟩𝑈 < ⟨𝑏⟩𝑈 ⟺¬𝑎𝑑𝑑(𝑎, ∼ 𝑏, 1). 𝑐𝑜𝑢𝑡

⟨𝑎⟩𝑆 < ⟨𝑏⟩𝑆 ⟺ 𝑎𝑙−1 ⟺ 𝑏𝑙−1 ⊕𝑎𝑑𝑑(𝑎, ~𝑏, 1). cout

unsigned 𝑎 < 𝑏

signed 𝑎 < 𝑏

𝑎 − 𝑏 = 2𝑙 − 𝑏 + 𝑎
𝑚𝑜𝑑 2𝑙

If 𝑐𝑜𝑢𝑡 = 1, then in RHS, the subtract part 𝑏 is less than 
the addition part 𝑎, i.e. 𝑏 < 𝑎

2 − 3 ⇒ 010 − 011 = 010 + 101, 𝑐𝑜𝑢𝑡 = 0
3 − 2 ⇒ 011 − 010 = 011 + 110, 𝑐𝑜𝑢𝑡 = 1
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Operator to Circuit

𝑎 ≪ 𝑏

𝑛-stage (𝑛 is the width of 𝑏)
stage 1: for each bit 𝑖

𝑒𝑖 ⟺ ቐ
𝑎𝑖 : 𝑏0 = 0

𝑎𝑖−1 : 𝑖 ≥ 1 ∧ 𝑏0
0 : otherwise

stage 2: for each bit 𝑖

𝑒𝑖
′ ⟺ ቐ

𝑒𝑖−21 : 𝑖 ≥ 21 ∧ 𝑏1
𝑒𝑖 : 𝑏1 = 0
0 : otherwise

…

if (𝑖 < 1)
𝑖𝑡𝑒 𝑏0, (𝑒𝑖⟺ 0 , (𝑒𝑖⟺ 𝑎𝑖))

if (𝑖 ≥ 1)
𝑖𝑡𝑒(𝑏0, 𝑒𝑖 ⟺ 𝑎𝑖−1 , 𝑒𝑖 ⟺ 𝑎𝑖 )

1011011 ≪ 101
Stage 1:

0110110 ⇐ 1011011 ≪ 001
Stage 2:

0110110 ⇐ 0110110 ≪ 000
Stage 3:

1100000 ⇐ 0110110 ≪ 100
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Operator to Circuit

𝑎 × 𝑏

𝑛-stage (shift-and-add):

𝑚𝑢𝑙 𝑎, 𝑏, −1 ≐ 0
𝑚𝑢𝑙 𝑎, 𝑏, 𝑖 ≐ 𝑚𝑢𝑙 𝑎, 𝑏, 𝑖 − 1 + 𝑏𝑖? 𝑎 ≪ 𝑖 : 0

1001
× 0101

−−−−− −
1001

0000#
1001##

0000###
−−−−−−−

𝑏0 = 1 → 𝑎 ≪ 0
𝑏1 = 0 → 0
𝑏2 = 1 → 𝑎 ≪ 2
𝑏3 = 0 → 0

(𝑙 − 1) adder
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Operator to Circuit

𝑎 ÷ 𝑏

Implemented by adding two constraints:

𝑏 ≠ 0 ⟹ 𝑒 × 𝑏 + 𝑟 = 𝑎,
𝑏 ≠ 0 ⟹ 𝑟 < 𝑏

If 𝑏 = 0, 𝑎 ÷ 𝑏 is set to a special value.
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Rewrite before Bit-Blasting

formulas with expensive operators (e.g. 
multipliers) are often very hard to solve

𝑡 × 𝑠 ≪ 𝑠 + 𝑡 ⟺ s × (𝑡 ≪ 𝑠 + 𝑡 )

32bits.  10^5  variables. 
Can’t be solved by CaDiCal within 2 hour
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Rewrite before Bit-Blasting

=

× 𝑐2

𝑐1 𝑥

𝑐1 × 𝑥 = 𝑐2

𝑒𝑥𝑝

𝑎𝑟𝑔 𝑎𝑟𝑔
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Rewrite before Bit-Blasting

=

× 𝑖𝑛𝑣 𝑐1 × 𝑐2

𝑐1 × 𝑥 = 𝑐2

𝑒𝑥𝑝

𝑎𝑟𝑔 𝑎𝑟𝑔

𝑥 = 𝑖𝑛𝑣(𝑐1) × 𝑐2

reduce one multiplier Deep first order travelling
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Theory rewrite rules

• bit2bool （𝑐 is 0 or 1）
• 𝑖𝑡𝑒 𝑥 𝑦 𝑧 = 𝑐 → (𝑖𝑡𝑒 𝑥 (𝑦 = 𝑐) (𝑧 = 𝑐))

• 𝑛𝑜𝑡 𝑥 = 𝑐 → 𝑥 = (1 – 𝑐)

•mul_eq
• 𝑐𝑥 = 𝑐′ → 𝑥 = 𝑐𝑖𝑛𝑣 × 𝑐′

• 𝑐𝑥 = 𝑐′𝑥2 → 𝑥 = (𝑐𝑖𝑛𝑣× 𝑐′) 𝑥2
• …

•mul
• c𝑥 + 𝑐′𝑥 → (𝑐 + 𝑐′)𝑥

• …

• add
• 𝑥 + 𝑦 ≪ 𝑥 → 𝑥 𝑦 ≪ 𝑥

• 𝑥 + 𝑦 × 𝑥 → 𝑥 × (𝑦 + 1)

•…

Reduce the number of operator

Expensive operator → cheap operator
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Propagate const values

𝑓𝑜𝑟𝑚𝑢𝑙𝑎 0 , 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 1 , 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 2 , … , 𝑓𝑜𝑟𝑚𝑢𝑙𝑎[𝑛]

•Given an equality 𝑡 = 𝑐, when  𝑐 is constant, then replaces 𝑡 everywhere with 
𝑐

𝑡 = 𝑐 Replace 𝐹 𝑡 with 𝐹(𝑐)

cyclical scan till fixed
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Variable elimination does not always help

How to avoid increasing the number of adder and multipliers? 

only eliminate variables that occur at most twice

𝑥 = 𝑦 + 𝑧 + 𝑤
… 𝑥 + 𝑧 …
… 𝑥 + 2𝑧 …
… 𝑥 + 3𝑧 …
…(𝑥 + 4𝑧)…

… 𝑦 + 2𝑧 + 𝑤 …
… 𝑦 + 3𝑧 + 𝑤 …
… 𝑦 + 4𝑧 + 𝑤 …
…(𝑦 + 5𝑧 + 𝑤)…

6 adder 8 adder
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Eliminate unconstrained variables

• a bit-vector function 𝑓 can be replaced by a fresh bit-vector variable if
• at least one of its operands is an unconstrained variable 𝑣 (free variable)

• 𝑓 can be “inverted” with respect to 𝑣

𝑣3 + 𝑡 = 𝑣1 & 𝑣2

If 𝑣1 and 𝑣2 are unconstrained variables
then no matter what’s the value of LHS, it is 
satisfiable. 

𝑣3 + 𝑡 = 𝑣4 If 𝑣3 is unconstrained variables
then no matter what’s the value of 𝑣4 and 𝑡, it is 
satisfiable. 

𝑣5 = 𝑣4

𝑣6
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bv_size_reduction

• Reduce bv size using upper bound and lower bound

1 ≤ 𝑥 ≤ 4 (𝑥 has 8 bits)

Replace 𝑥 with 𝑐𝑜𝑛𝑐𝑎𝑡 00000 𝑥′

𝑥′ is new variable of 3-bits
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Local contextual simplification

• bool rewrite 
𝑜𝑟 𝑎𝑟𝑔𝑠 0 … 𝑎𝑟𝑔𝑠 𝑛𝑢𝑚𝑎𝑟𝑔𝑠 − 1

replace 𝑎𝑟𝑔𝑠[𝑖] by 𝑓𝑎𝑙𝑠𝑒 in the other arguments

(𝑥 ! = 0 𝑜𝑟 𝑦 = 𝑥 + 1) −> (𝑥 ! = 0 𝑜𝑟 𝑦 = 1)
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Hoist, max sharing

• Reduce the number of adder and multiplier using distribution and association

Hoist: 𝑎 ∗ 𝑏 + 𝑎 ∗ 𝑐 → 𝑏 + 𝑐 ∗ 𝑎

Max Sharing: 𝑎 + 𝑏 + 𝑐 , 𝑎 + 𝑏 + 𝑑 → 𝑎 + 𝑏 + 𝑐, 𝑎 + 𝑏 + 𝑑

𝑎 + 𝑏 𝑜𝑛𝑙𝑦 𝑛𝑒𝑒𝑑 𝑡𝑜 𝑐𝑎𝑙𝑐𝑢𝑙𝑡𝑒 𝑜𝑛𝑐𝑒

2 multiplier + 1 adder → 1 multiplier + 1 adder
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AIG

AIGs can be used to represent arbitrary boolean formulas and circuits

Automatic structure sharing and the simplicity of AIGs make them a 
compact, simple, easy to use, and scalable representation.
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Local 2-level AIG rewrite

Referenced by other nodes

𝑎 𝑏 𝑑

Locally size decreasing, global non increasing

2-level:
Consider children and 
grand-children

Locally size decreasing, global non increasing

¬ 𝑎 ∧ 𝑏 ∧ 𝑏 ∧ 𝑑 ⇒ ¬𝑎 ∧ 𝑏 ∧ 𝑑
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Local 2-level AIG rewrite
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Circuit to CNF
Tseitin Transformation

→ SAT solver
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Pseudo-Boolean to BV

𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑛𝑥𝑛 ≥ 𝑐

other relation operators (e.g. 𝐿𝑇, 𝐺𝑇, 𝐸𝑄 ) can be represent by 𝐺𝐸

𝑎𝑖𝑥𝑖 ⟺ 𝑖𝑡𝑒 𝑥𝑖 , 𝑏𝑣(𝑎𝑖), 𝑏𝑣(0 )
𝑙ℎ𝑠 = 𝑏𝑣𝑎𝑑𝑑 𝑖𝑡𝑒1, 𝑖𝑡𝑒2, … , 𝑖𝑡𝑒𝑛

𝑟ℎ𝑠 = 𝑏𝑣 𝑐

𝑙ℎ𝑠 ≥ 𝑟ℎ𝑠
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LIA/NIA to BV

𝑓𝑜𝑟𝑒𝑎𝑐ℎ variable 𝑥:

1. collect low bound 𝑙𝑜𝑤 and upper bound 𝑢𝑝

2. BV size
If 𝑙𝑜𝑤 ≤ 𝑥 ≤ 𝑢𝑝

𝑏𝑖𝑡𝑠 = log2(1 + |𝑢𝑝 − 𝑙𝑜𝑤|)
Otherwise 

𝑏𝑖𝑡𝑠 = 𝑛𝑢𝑚𝑏𝑖𝑡𝑠

3. BitVector
If (has 𝑙𝑜𝑤)

𝑥 ⟺ 𝑥𝑏𝑣 + 𝑙𝑜𝑤
else if (has 𝑢𝑝)

𝑥 ⟺ 𝑢𝑝 − 𝑥𝑏𝑣
else

𝑥 ⟺ 𝑥 − 2𝑏𝑖𝑡𝑠−1

𝑛𝑢𝑚𝑏𝑖𝑡𝑠 = bit_size of abs(Largest constant) + 1

Under approximate
unbound → bound
satisfiability is not preserving

−2bits−1 is the 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 of signed int of size 𝑏𝑖𝑡𝑠
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LIA/NIA to BV

𝑥 𝑜𝑝 𝑦

1. Align BV size of 𝑥 and 𝑦

2. Extend BV size of 𝑥 and 𝑦 according to 𝑜𝑝

𝑥3𝑏𝑖𝑡𝑠 + y4bits

𝑥4𝑏𝑖𝑡𝑠 + 𝑦4𝑏𝑖𝑡𝑠

𝑥5𝑏𝑖𝑡𝑠 + 𝑦5𝑏𝑖𝑡𝑠

𝑥4𝑏𝑖𝑡𝑠 × 𝑦4𝑏𝑖𝑡𝑠

𝑥8𝑏𝑖𝑡𝑠 × 𝑦8𝑏𝑖𝑡𝑠
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Thank you!


