SMT Solving: DPLL(T) and Eager Encoding

Shaowei Cai

Institute of Software, Chinese Academy of Sciences

From Propositional to Quantifier-Free Theories

From Propositional to Quantifier-Free Theories

Example: $\phi := (x_1 - x_2 \le 13 \lor x_2 \ne x_3) \land (x_2 = x_3 \rightarrow x_4 > x_5) \land A \land \neg B$

Propositional Skeleton $PS_{\Phi} = (b_1 \vee \neg b_2) \wedge (b_2 \rightarrow b_3) \wedge A \wedge \neg B$

 $b_1: x_1 - x_2 \le 13$ $b_2: x_2 = x_3$ $b_3: x_4 > x_5$

From Propositional to Quantifier-Free Theories

Example:

• $a = b + 2 \land A = write(B, a + 1, 4) \land (read(A, b + 3) = 2 \lor f(a - 1) \neq f(b + 1))$

• Propositional Skeleton $PS_{\Phi} = y_1 \land y_2 \land (y_3 \lor y_4)$

- y_1 : a = b + 2
- y_2 : A = write(B, a + 1, 4)
- y_3 : read(A, b + 3) = 2
- y_4 : $f(a-1) \neq f(b+1)$

Interpretation

Example

- F : x + y > z \rightarrow y > z x
- We construct a "standard" interpretation I
- The domain is the integers, $\mathbb{Z}: D_I = \mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
- α_I : {+ \mapsto + $_{\mathbb{Z}}$,- \mapsto - $_{\mathbb{Z}}$,> \mapsto > $_{\mathbb{Z}}$, $x \mapsto$ 13, $y \mapsto$ 42, $x \mapsto$ 1}

T-satisfiability

- Given a FOL formula F and interpretation $I: (D_I, \alpha_I)$, we want to compute if F evaluates to true under interpretation I, $I \models F$, or if F evaluates to false under interpretation I, $I \not\models F$.
 - I satisfies $F: I \vDash F$

- T interpretation: an interpretation satisfying $I \vDash A$ for every $A \subseteq A$.
- A Σ -formula F is satisfiable in T , or T -satisfiable, if there is a T-interpretation I that satisfies F.

Approaches for Solving Single SMT Theory

Two main approaches for SMT

Lazy Approach

Integrate a theory solver with a CDCL solver for SAT

• Eager Approach

Encode the SMT formula to a equ-satisfiable SAT formula

Normalizing T-atoms

- Drop dual operators: $(x_1 < x_2), (x_1 \ge x_2) \Longrightarrow \neg (x_1 \ge x_2), (x_1 \ge x_2).$
- Exploit associativity: $(x_1 + (x_2 + x_3) = 1), ((x_1 + x_2) + x_3) = 1) \Longrightarrow (x_1 + x_2 + x_3 = 1).$
- Sort: $(x_1 + x_2 x_3 \le 1), (x_2 + x_1 1 \le x_3) \Longrightarrow (x_1 + x_2 x_3 \le 1)).$
- Exploit \mathcal{T} -specific properties: $(x_1 \leq 3), (x_1 < 4) \Longrightarrow (x_1 \leq 3)$ if x_1 represents an integer.

Static Learning

If so, the clauses obtained by negating the literals in such sets (e.g., $\neg(x = 0) \lor \neg(x = 1)$) can be added to the formula before the search starts

- incompatible values (e.g., $\{x = 0, x = 1\}$),
- congruence constraints (e.g., $\{(x_1 = y_1), (x_2 = y_2), f(x_1, x_2) \neq f(y_1, y_2)\}),\$
- transitivity constraints (e.g., $\{(x y \le 2), (y z \le 4), \neg (x z \le 7)\}$),
- equivalence constraints (e.g., $\{(x = y), (2x 3z \le 3), \neg(2y 3z \le 3)\}$).

Equality logic with Uninterpreted Functions (EUF)

An equality logic formula with uninterpreted functions and uninterpreted predicates² is defined by the following grammar:

formula : formula ∧ formula | ¬formula | (formula) | atom atom : term = term | predicate-symbol (list of terms) term : identifier | function-symbol (list of terms)

$$\models \varphi^{\rm \tiny UF} \implies \models \varphi$$

- Replacing functions with uninterpreted functions in a given formula is a common technique for making it easier to reason about (e.g., to prove its validity).
- At the same time, this process makes the formula weaker, which means that it can make a valid formula invalid.

The only thing uninterpreted functions need to satisfy:

• Functional consistency: Instances of the same function return the same value if given equal arguments.

```
int power3(int in)
                                      int power3_new(int in)
  int i, out_a;
                                         int out_b;
  out_a = in;
  for (i = 0; i < 2; i++)
                                         out_b = (in * in) * in;
    out_a = out_a * in;
                                        return out_b;
  return out_a;
                                               (b)
          (a)
out0_a = in0_a
                         \wedge
out1_a = out0_a * in0_a \land
                                       out0_b = (in0_b * in0_b) * in0_b;
out2_a = out1_a * in0_a
     (\varphi_a)
                                                 (\varphi_b)
```

To show that these two piece of codes are actually equivalent, we only need to prove the validity of

 $in0_a = in0_b \wedge \varphi_a \wedge \varphi_b \implies out2_a = out0_b$

$$\begin{array}{c}
out0_a = in0_a & \land \\
out1_a = out0_a * in0_a \land \\
out2_a = out1_a * in0_a \\
(\varphi_a)
\end{array}$$

 $out0_b = (in0_b * in0_b) * in0_b;$ (φ_b)

 $out0_a = in0_a$ \wedge $out1_a = G(out0_a, in0_a) \land$ $out0_b = G(G(in0_b, in0_b), in0_b)$ $out2_a = G(out1_a, in0_a)$

 $(arphi_a^{ ext{UF}})$

 $(arphi_b^{ ext{UF}})$

```
int mul3(struct list *in)
  int i, out_a;
  struct list *a;
  a = in;
  out_a = in \rightarrow data;
  for (i = 0; i < 2; i++) {
    a = a \rightarrow n;
     out_a = out_a * a \rightarrow data;
  return out_a;
             (a)
a0_a = in0_a
                                  Λ
out0_a = list_data(in0_a)
                                  Λ
a1_a = list_n(a0_a)
                                  Λ
out1_a = G(out0_a, list_data(a1_a)) \land
a2\_a = list\_n(a1\_a)
                                  Λ
```

```
int mul3_new(struct list *in)
{
  int out_b;
  out_b =
     in -> data *
     in \rightarrow n \rightarrow data *
     in \rightarrow n \rightarrow n \rightarrow data;
  return out_b;
           (b)
```

};

 $out2_a = G(out1_a, list_data(a2_a))$

 $(\varphi_a^{\mathrm{UF}})$

```
struct list {
    struct list *n; // pointer to next element
    int data;
```

 $out0_b = G(G(list_data(in0_b)),$ *list_data*(*list_n*(*in*0_*b*)), *list_data*(*list_n*(*int_n*(*int_b*)))))

Congruence Closure

$$\varphi^{\text{UF}} := x_1 = x_2 \wedge x_2 = x_3 \wedge x_4 = x_5 \wedge x_5 \neq x_1 \wedge F(x_1) \neq F(x_3)$$
.

Initially, the equivalence classes are

 $\{x_1, x_2\}, \{x_2, x_3\}, \{x_4, x_5\}, \{F(x_1)\}, \{F(x_3)\}.$

Step 1(b) of Algorithm 4.3.1 merges the first two classes:

 ${x_1, x_2, x_3}, {x_4, x_5}, {F(x_1)}, {F(x_3)}$.

The next step also merges the classes containing $F(x_1)$ and $F(x_3)$, x_1 and x_3 are in the same class:

$${x_1, x_2, x_3}, {x_4, x_5}, {F(x_1), F(x_3)}$$
.

In step 2, we note that $F(x_1) \neq F(x_3)$ is a predicate in φ^{UF} , but that $F(x_1)$ and $F(x_3)$ are in the same class. Hence, φ^{UF} is unsatisfiable.

Can be implemented with a union-find data structure, which results in a time complexity of O(n log n)

Congruence Closure

Splitting on demand

- solving problems with general Boolean structure over EUF using the DPLL(T) framework ?
- it is desirable to allow a theory solver T -solver to demand that the DPLL engine do additional case splits before determining the T -consistency of a partial assignment.

Example 26.5.5. In the theory $\mathcal{T}_{\mathcal{A}}$ of arrays introduced in §26.2.2, consider the following set of literals: $read(write(A, i, v), j) = x, read(A, j) = y, x \neq v, x \neq y$. To see that this set is unsatisfiable, notice that if i = j, then x = v because the value read should match the value written in the first equation. On the other hand, if $i \neq j$, then x = read(A, j) and thus x = y. Deciding the $\mathcal{T}_{\mathcal{A}}$ -consistency of larger sets of literals may require a significant amount of such reasoning by cases.

Outline

• SMT Basis

- Lazy Approach --- DPLL(T)
- Eager Approach --- Bit Blasting

DPLL(T)

- The method is commonly referred to as DPLL(T), emphasizing that it is parameterized by a theory T.
- The fact that it is called DPLL(T) and not CDCL(T) is attributed to historical reasons only: it is based on modern CDCL solvers"
- --- "Decision Procedures" Daniel Kroening, Ofer Strichman

CDCL Review

Propositional Skeleton

<u>Abstract the skeleton</u>: Given atom a, we associate with it a unique Boolean variable e(a), which we call the Boolean encoder of this atom.

$$\varphi:=\ x=y\wedge ((y=z\wedge \neg (x=z))\vee x=z)\ .$$

The propositional skeleton of φ is

$$e(\varphi):=\ e(x=y)\wedge \left((e(y=z)\wedge \neg e(x=z))\vee e(x=z)\right)\,.$$

Let \mathcal{B} be a Boolean formula, initially set to $e(\varphi)$, i.e.,

$$\mathcal{B}:=~e(arphi)$$
 .

$$\alpha := \{ e(x = y) \mapsto \text{TRUE}, \ e(y = z) \mapsto \text{TRUE}, \ e(x = z) \mapsto \text{FALSE} \} .$$

DPLL(T)

A basic lazy approach

$$\varphi:=\ x=y\wedge \left((y=z\wedge \neg (x=z))\vee x=z\right)\,.$$

The propositional skeleton of φ is

$$e(\varphi) := e(x = y) \land ((e(y = z) \land \neg e(x = z)) \lor e(x = z)) \land$$

Let \mathcal{B} be a Boolean formula, initially set to $e(\varphi)$, i.e.,

$$\mathcal{B} := e(\varphi)$$
.

• Call SAT solver to solve $e(\varphi)$, find

$$\alpha := \{ e(x = y) \mapsto \text{TRUE}, \ e(y = z) \mapsto \text{TRUE}, \ e(x = z) \mapsto \text{FALSE} \}$$

• \rightarrow Call decision procedure DP_T to check the conjunction corresponding to α , denoted by $\widehat{Th}(\alpha)$, $\widehat{Th}(\alpha) \coloneqq x = y \land y = z \land \neg(x = z) \rightarrow$ the result: $\widehat{Th}(\alpha)$ is unsat.

A basic lazy approach

$$\varphi:=\ x=y\wedge \left((y=z\wedge \neg (x=z))\vee x=z\right)\,.$$

The propositional skeleton of φ is

$$e(\varphi) := e(x = y) \land ((e(y = z) \land \neg e(x = z)) \lor e(x = z)) .$$

Let \mathcal{B} be a Boolean formula, initially set to $e(\varphi)$, i.e.,

$$\mathcal{B} := e(\varphi)$$
.

- $e(\neg \widehat{Th}(\alpha))$ is conjoined into B, the Boolean encoding of this tautology.
 - $e(\neg \widehat{Th}(\alpha)) := \neg e(x=y) \lor \neg e(y=z) \lor e(x=z) \dashrightarrow blocking clause(s)$
 - This clause contradicts the current assignment, and hence blocks it from being repeated
 - In general, we denote by *t* the lemma returned by DP_T .

A basic lazy approach

$$\varphi:=\ x=y\wedge \left((y=z\wedge \neg (x=z))\vee x=z\right)\,.$$

The propositional skeleton of φ is

$$e(\varphi):=\ e(x=y)\wedge \left((e(y=z)\wedge \neg e(x=z))\vee e(x=z)\right) \,.$$

Let \mathcal{B} be a Boolean formula, initially set to $e(\varphi)$, i.e.,

$$\mathcal{B} := e(\varphi)$$
.

- →After the blocking clause has been added, the SAT solver is invoked again and suggests another assignment
- \rightarrow Then invoke DP_T again to check the conjunction of the literals corresponding to the new assignment.

A Basic Lazy Approach: Example

$$\Phi \coloneqq g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$$

•
$$PS_{\Phi} = y_1 \land (\neg y_2 \lor y_3) \land y_4)$$

• $y_1: g(a) = c$ • $y_2: f(g(a)) = f(c)$ • $y_3: g(a) = d$ • $y_4: c = d$ Send{ $1, \overline{2} \lor 3, \overline{4}$ } to SAT SAT solver returns model { $1, \overline{2}, \overline{4}$ } UF-solver find concretization of { $1, \overline{2}, \overline{4}$ } UNSAT Send { $1, \overline{2} \lor 3, \overline{4}, \neg(1 \land \overline{2} \land \overline{4})$ } to SAT Send { $1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4$ } to SAT SAT solver returns model { $1, 3, \overline{4}$ } UF-solver find concretization of { $1, 3, \overline{4}$ } UNSAT Send { $1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{3} \lor 4$ } to SAT SAT solver returns UNSAT; Original formula is UNSAT in UF

Integration into CDCL

Algorithm LAZY-CDCL
Input: A formula φ
otherwise
1. function LAZY-CDCL
2. ADDCLAUSES $(cnf(e(\varphi)));$
3. while (TRUE) do
4. while $(BCP() = "conflict")$ do
5. $backtrack-level := ANALYZE-CONFLICT();$
6. if <i>backtrack-level</i> < 0 then return "Unsatisfiable";
 else BackTrack(backtrack-level);
8. if \neg DECIDE() then \triangleright Full assignment
9. $\langle t, res \rangle := DEDUCTION(\hat{Th}(\alpha)); \qquad \rhd \alpha \text{ is the assignment}$
10. if <i>res</i> ="Satisfiable" then return "Satisfiable";
11. $ADDCLAUSES(e(t));$

Improving the Basic Lazy Approach

• Incremental SAT solving

Let B^i be the formula B in the *i*-th iteration of the loop in basic lazy algorithm. B^{i+1} is strictly stronger than B^i for all $i \ge 1$, because blocking clauses are added but not removed between iterations.

It is not hard to see that this implies that any conflict clause that is learned while solving B^i can be reused when solving B^j for i < j.

This, in fact, is a special case of **incremental satisfiability**, which is supported by most modern SAT solvers.

Hence, invoking an incremental SAT solver can increase the efficiency of the algorithm.

Still not clever enough...

 \bullet Consider, for example, a formula φ that contains literals

 $x_1 \ge 10, \ x_1 < 0,$

where x_1 is an integer variable.

- Assume that the CDCL procedure assigns $e(x_1 \ge 10) \mapsto$ true and $e(x_1 < 0) \mapsto$ true. Inevitably, any call to Deduction results in a contradiction between these two facts.
- However, Algorithm Lazy-CDCL does not call Deduction until a full satisfying assignment is found. // waste time to complete the assignment.

Theory Propagation

Theory Propagation

- Deduction is invoked after BCP stops.
- It finds T-implied literals and communicates them to the CDCL part of the solver in the form of a constraint t.

Example. Consider the two encoders $e(x_1 \ge 10)$ and $e(_1 < 0)$.

- After $e(x_1 \ge 10)$ has been set to true, Deduction detects that $\neg(x_1 < 0)$ is implied.
- In other words, $t := \neg(x_1 \ge 10) \lor \neg(x_1 < 0)$ is T-valid.
- The corresponding encoded (asserting) clause $e(t) := \neg e(x_1 \ge 10) \lor \neg e(x_1 < 0)$
- e(t) is added to B, which leads to an immediate implication of $\neg e(x_1 < 0)$, and possibly further implications.

The DPLL(T) Approach

Algorithm DPLL(T)

- 1. function DPLL(T)
- 2. ADDCLAUSES($cnf(e(\varphi))$);
- 3. while (TRUE) do
- 4. repeat
- 5. while (BCP() = "conflict") do
 6. backtrack-level := ANALYZE-CONFLICT();
 7. if backtrack-level < 0 then return "Unsatisfiable";
 8. else BackTrack(backtrack-level);
- 9. $\langle t, res \rangle$:=DEDUCTION $(\hat{T}h(\alpha))$;
- 10. $(t, res) := DEDUCTION(Tn(\alpha))$ ADDCLAUSES(e(t));
- 11. **until** $t \equiv \text{TRUE};$
- 12. **if** α is a *full* assignment **then return** "Satisfiable";
- 13. DECIDE();

- \bullet When α is partial, Deduction checks
 - if there is a contradiction on the theory side,
 - and if not, it performs theory propagation.

not mandatory, only for efficiency

Performance, Performance...

- For performance, it is frequently better to run an approximation for finding contradictions.
 - This does not change the completeness of the algorithm, since a complete check is performed when α is full.

E.g. integer linear arithmetic:

Deciding the conjunctive fragment of this theory is NP-complete

- consider the real relaxation of the problem, which can be solved in polynomial time.
- Deduction sometimes misses a contradiction and hence not return a lemma

Performance, Performance...

- Exhaustive theory propagation refers to a procedure that finds and propagates all literals that are implied in T by $\widehat{Th}(\alpha)$.
- A simple generic way (called "plunging") to perform theory propagation Given an unassigned theory atom at_i , check whether $\widehat{Th}(\alpha)$ implies either at_i or $\neg at_i$. The set of unassigned atoms that are checked in this way depends on how exhaustive we want the theory propagation to be.
- In many cases a better strategy is to perform only cheap propagations
 - E.g. LIA: to search for simple-to-find implications, such as "if x > c holds, where x is a variable and c a constant, then any literal of the form x > d is implied if d < c"

Running A DPLL(LIA) Example

```
( x>y \lor x>z ) \land( x+1<y \lor ¬x>y ) \land( x>y \lor z>y)
```

- DPLL(LIA) algorithm
 - Decide $x > y \rightarrow true$
 - Propagate x+1<y \rightarrow true
 - Invoke theory solver for LIA on: { x>y, x+1<y }

Running A DPLL(LIA) Example

Running A DPLL(LIA) Example

$$(x>y \lor x>z) \land (x+1< y \lor \neg x>y) \land (x>y \lor z>y) \land (\neg x>y \lor \neg x+1$$

- DPLL(LIA) algorithm
 - Backtrack : $x > y \rightarrow false$
 - Propagate : $x>z \rightarrow true$
 - Propagate : $z > y \rightarrow true$
 - Invoke theory solver for LIA on: $\{\neg x > y, x > z, z > y\}$

Context	
	١
· A ~ y	
x>z	
z>y	
Running A DPLL(LIA) Example


```
(x+1>0 \lor x+y>0) \land (x<0 \lor x+y>4) \land \neg x+y>0
```

• DPLL(LIA) algorithm

Invoke DPLL(T) for theory T = LIA (linear integer arithmetic)

 $(x+1>0 \lor x+y>0) \land (x<0 \lor x+y>4) \land \neg x+y>0$

- DPLL(LIA) algorithm
 - Propagate : $x+y>o \rightarrow false$
 - Propagate : $x+1>0 \rightarrow true$
 - Decide : $x < o \rightarrow true$

Unlike propositional SAT case, we must check T-satisfiability of context

Context	
$\neg x + y > 0$	
x+1>0	
$x < 0^d$	
_	

 $(x+1>0 \lor x+y>0) \land (x<0 \lor x+y>4) \land \neg x+y>0$

- DPLL(LIA) algorithm
 - Propagate : $x+y>o \rightarrow false$
 - Propagate : $x+1>0 \rightarrow true$
 - Decide : $x < o \rightarrow true$
 - Invoke theory solver for LIA on: {x+1>0, $\neg x+y>0, x<0$ }

Context is LIA-unsatisfiable! \rightarrow one of x+1>0, x<0 must be false

 $(x+1>0 \lor x+y>0) \land (x<0 \lor x+y>4) \land \neg x+y>0 \land (\neg x+1>0 \lor \neg x<0)$

- DPLL(LIA) algorithm
 - Propagate : $x+y>o \rightarrow false$
 - Propagate : $x+1>0 \rightarrow true$
 - **Propagate :** $x < 0 \rightarrow$ false

 $(x+1>0 \lor x+y>0) \land (x<0 \lor x+y>4) \land \neg x+y>0 \land (\neg x+1>0 \lor \neg x<0)$

- DPLL(LIA) algorithm
 - Propagate : $x+y>o \rightarrow false$
 - Propagate : $x+1>0 \rightarrow true$
 - Propagate : $x < 0 \rightarrow false$
 - Propagate : $x+y>4 \rightarrow true$
 - Invoke theory solver for LIA on: { x+1>0, ¬ x+y>0, ¬x<0, x+y>4 }

DPLL(T)

• DPLL(T) algorithm for satisfiability modulo T

- Extends DPLL (indeed CDCL) algorithm to incorporate reasoning about a theory T
- Basic Idea:
 - Use CDCL algorithm to find assignments for propositional abstraction of formula Use off-the-shelf SAT solver
 - Check the T-satisfiability of assignments found by SAT solver

Use Theory Solver for T

• Perform contradiction detection and theory propagation at partial assignments in CDCL Use Theory Solver for T

DPLL(T) Theory Solver

- Input : A set of T-literals M
- Output : either
- 1. M is T-satisfiable
 - Return model, e.g. { $x \rightarrow 2, y \rightarrow 3, z \rightarrow -3, ...$ }
 - \rightarrow Should be *solution-sound*
 - Answers "M is T-satisfiable" only if M is T-satisfiable
- 2. $\{l_1, \dots, l_n\} \subseteq M$ is T-unsatisfiable $// l_1 \wedge \dots \wedge l_n$
 - Return conflict clause ($\neg \ l_1 \lor \ldots \lor \neg \ l_n$)
 - \rightarrow Should be *refutation-sound*
 - Answers "{ l_1, \dots, l_n } is T-unsatisfiable" only if { l_1, \dots, l_n } is T-unsatisfiable
- 3. Don't know
 - Return lemma
- \rightarrow If solver is solution-sound, refutation-sound, and *terminating*,
 - Then it is a *decision procedure* for T

Design of DPLL(T) Theory Solvers

- A DPLL(T) theory solver:
 - Should be solution-sound, refutation-sound, terminating
 - Should produce models when M is T-satisfiable
 - Should produce T-conflicts of minimal size when M is T-unsatisfiable
 - Should be designed to work incrementally
 - M is constantly being appended to/backtracked upon
 - Can be designed to check T-satisfiability either:
 - Eagerly: Check if M is T-satisfiable immediately when any literal is added to M
 - Lazily: Check if M is T-satisfiable only when M is complete
 - Should cooperate with other theory solvers when combining theories
 - (see later)

Outline

• SMT Basis

- Lazy Approach --- DPLL(T)
- Eager Approach --- Bit Blasting

Eager Approach

Perform a full reduction of a *T*-formula to an equisatisfiable propositional formula in *one-step*. A *single run* of the SAT solver on the propositional formula is then sufficient to decide the original formula.

Eliminating Function Applications

Ackermann's method

Eliminate applications of function and predicate symbols of non-zero arity. These applications are replaced by new propositional symbols, and also encode information to maintain functional consistency (the congruence property).

Suppose that function symbol f has three occurrences: $f(a_1)$, $f(a_2)$, and $f(a_3)$. First, we generate three fresh constant symbols xf_1 , xf_2 , and xf_3 , one for each of the three different terms containing f, and then we replace those terms in F_{norm} with the fresh symbols.

The result is the following set of functional consistency constraints for f:

$$\left\{a_1 = a_2 \implies xf_1 = xf_2, \ a_1 = a_3 \implies xf_1 = xf_3, \ a_2 = a_3 \implies xf_2 = xf_3\right\}$$

Eliminating Function Applications

The Bryant-German-Velev method

eliminate function applications using a nested series of ITE expressions.

f has three occurrences: $f(a_1)$, $f(a_2)$, and $f(a_3)$, then we would generate three new constant symbols xf_1 , xf_2 , and xf_3 . We would then replace all instances of $f(a_1)$ by xf_1 , all instances of $f(a_2)$ by $ITE(a_2 = a_1, xf_1, xf_2)$, and all instances of $f(a_3)$ by $ITE(a_3 = a_1, xf_1, ITE(a_3 = a_2, xf_2, xf_3))$. It is easy to see that this preserves functional consistency.

Small-domain encodings

• an enumerative approach

$$\sum_{j=1}^{n} a_{i,j} x_j \ge b_i$$

• the coefficients and the constant terms are integer constants and the variables are integer-valued.

If there is a satisfying solution to a formula, there is one whose size, measured in bits, is polynomially bounded in the problem size [BT76, vzGS78, KM78, Pap81]. Problem size is traditionally measured in terms of the parameters m, n, $\log a_{\max}$, and $\log b_{\max}$, where m is the total number of constraints in the formula, n is the number of variables (integer-valued constant symbols), and $a_{\max} = \max_{(i,j)} |a_{i,j}|$ and $b_{\max} = \max_i |b_i|$ are the maximums of the absolute values of coefficients and constant terms respectively.

Small-domain encodings

- Given a formula F_Z , we first compute the polynomial bound S on solution size, and then search for a satisfying solution to F_Z in the bounded space $\{0, 1, ..., 2^S 1\}$
- S is O(log m + log b_{max} + m[log m + log a_{max}])

Improving Small-domain encoding

Equalities

- Theorem. For an equality logic formula with n variables, $S = \log n$
- The key proof argument is that any satisfying assignment can be translated to the range $\{0, 1, 2, ..., n 1\}$, since we can only tell whether variable values differ, not by how much.
- Get compact search space by constraint graph
 - representing equalities and disequalities between variables in the formula
 - Connected components of this graph correspond to equivalence classes

Improving Small-domain encoding

Difference Logic

$$x_i - x_j \bowtie b_t$$

 x_0 is a special "variable" denoting zero.

• Build constraint graph

- 1. A vertex v_i is introduced for each variable x_i , including for x_0 .
- 2. For each difference constraint of the form $x_i x_j \ge b_t$, we add a directed edge from v_i to v_j of weight b_t .

Improving Small-domain encoding

Theorem 26.3.3. Let F_{diff} be a DL formula with n variables, excluding x_0 . Let b_{\max} be the maximum over the absolute values of all difference constraints in F_{diff} . Then, F_{diff} is satisfiable if and only if it has a solution in $\{0, 1, 2, \ldots, d\}^n$ where $d = n \cdot (b_{\max} + 1)$.

- any satisfying assignment for a formula with constraints represented by G can have a spread in values that is at most the weight of the longest path in G.
- This path weight is at most n $\cdot(b_{max} + 1)$. The bound is tight, the "+1" in the second term arising from a "rounding" of inequalities from strict to non-strict.

Bit Vector

Many compilers have this sort of bug

overflow? $(x - y > 0) \Leftrightarrow (x > y)$

What is the output? (44)

unsigned char number = 200; number = number + 100; printf ("Sum: %d\n", number);

- Bitwise operator frequently occur in system-level software
 - left-shift, right-shift
 - and, or, xor

Complexity

- Satisfiability is undecidable for an unbounded width, even without arithmetic.
- It is NP-complete otherwise.

Bitwise operators (*l*-bits): *a*|*b*

Introduce new bitvector variable *e* for a|b, such that foreach *i* $(a_i \lor b_i) \Leftrightarrow e_i$

Other bitwise operators is similar

a + b

one-bit Full adder

four-bits Full adder

How about 32-bits or 64-bits

$$a - b = (a + \sim b + 1)$$

Complement(补码) for negative numbers: $-b \rightarrow \sim b + 1$ ~b: invert each bits of b

one-bit Full adder

CNF: How many variables and clauses?

$$a = b$$
 $a_i = b_i \Leftrightarrow e_i$

unsigned
$$a < b$$

$$a_i \quad b_i$$

$$(a - b = (2^l - b) + a)_{mod \ 2^l}$$
If $c_{out} = 1$, then in RHS, the subtract part b is less than the addition part a , i.e. $b < a$

$$\langle a \rangle_U < \langle b \rangle_U \iff \neg add(a, \sim b, 1). c_{out}$$

$$2 - 3 \Rightarrow 010 - 011 = 010 + 101, c_{out} = 0$$

$$3 - 2 \Rightarrow 011 - 010 = 011 + 110, c_{out} = 1$$

 e_i

signed a < b $\langle a \rangle_S < \langle b \rangle_S \Leftrightarrow (a_{l-1} \Leftrightarrow b_{l-1}) \bigoplus add(a, \sim b, 1).$ cout

 $a \ll b$

n-stage (*n* is the width of *b*) stage 1: for each bit *i*

$$e_i \Leftrightarrow \begin{cases} a_i & :b_0 = 0\\ a_{i-1} & :i \ge 1 \land b_0\\ 0 & : otherwise \end{cases}$$

stage 2: for each bit *i*

$$e'_i \Leftrightarrow \begin{cases} e_{i-2^1} & :i \ge 2^1 \wedge b_1 \\ e_i & :b_1 = 0 \\ 0 & : otherwise \end{cases}$$

 $\begin{array}{l} \text{if } (i < 1) \\ ite(b_0, (e_i \Leftrightarrow 0), (e_i \Leftrightarrow a_i)) \\ \text{if } (i \geq 1) \\ ite(b_0, (e_i \Leftrightarrow a_{i-1}), (e_i \Leftrightarrow a_i)) \end{array}$

 $1011011 \ll 101$ Stage 1: 0110110 \equiv 1011011 \lequiv 001 Stage 2: 0110110 \equiv 0110110 \lequiv 000 Stage 3: 1100000 \equiv 0110110 \lequiv 100

 $a \times b$

n-stage (shift-and-add):

$$mul(a, b, -1) \doteq 0 \qquad (l-1) \text{ adden}$$
$$mul(a, b, i) \doteq mul(a, b, i-1) + (b_i? (a \ll i): 0)$$

$$\begin{array}{c} 1001 \\ \times \ 0101 \\ \hline \\ 1001 \\ 0000 \\ b_1 = 0 \rightarrow 0 \\ 1001 \\ b_2 = 1 \rightarrow a \ll 2 \\ 0000 \\ \# \\ \end{array}$$

$$a \div b$$

Implemented by adding two constraints:

$$b \neq 0 \Longrightarrow e \times b + r = a,$$

 $b \neq 0 \Longrightarrow r < b$

If b = 0, $a \div b$ is set to a special value.

Rewrite before Bit-Blasting

n	Number of variables	Number of clauses
8	313	1001
16	1265	4177
24	2857	9529
32	5089	17057
64	20417	68929

Fig. The size of the constraint for an *n*-bit multiplier expression after Tseitin's transformation

formulas with expensive operators (e.g. multipliers) are often very hard to solve

 $t \times (s \ll (s+t)) \Leftrightarrow s \times (t \ll (s+t))$

32bits. 10⁵ variables. Can't be solved by CaDiCal within 2 hour

Rewrite before Bit-Blasting

Rewrite before Bit-Blasting

reduce one multiplier

Deep first order travelling

Theory rewrite rules

• bit2bool (c is 0 or 1)• $(ite x y z) = c \rightarrow (ite x (y = c) (z = c))$ • $(not x) = c \rightarrow x = (1-c)$ • mul_eq • $cx = c' \rightarrow x = c_{inv} \times c'$ • $cx = c'x_2 \rightarrow x = (c_{inv} \times c') x_2$ • ... • mul • $cx + c'x \rightarrow (c + c')x$ • ...

• add

• ...

- $\bullet \left(x + (y \ll x) \right) \to (x | (y \ll x))$
- $(x + y \times x) \rightarrow x \times (y + 1)$

Reduce the number of operator Expensive operator \rightarrow cheap operator

Propagate const values

• Given an equality t = c, when *c* is constant, then replaces *t* everywhere with *c*

Variable elimination does not always help

6 adder

8 adder

How to avoid increasing the number of adder and multipliers?

only eliminate variables that occur at most twice
Eliminate unconstrained variables

- a bit-vector function f can be replaced by a fresh bit-vector variable if
 - at least one of its operands is an unconstrained variable *v* (free variable)
 - f can be "inverted" with respect to v

v3 + t = v1 & v2v3 + t = v4v5 = v4v6

If v1 and v2 are unconstrained variables then no matter what's the value of LHS, it is satisfiable.

If v3 is unconstrained variables then no matter what's the value of v4 and t, it is satisfiable.

bv_size_reduction

• Reduce by size using upper bound and lower bound

 $1 \le x \le 4$ (x has 8 bits) Replace x with (concat 00000 x')

x' is new variable of 3-bits

Local contextual simplification

• bool rewrite

 $(or \ args[0] \dots \ args[num_{args} - 1])$ replace args[i] by false in the other arguments

$$(x != 0 \text{ or } y = x + 1) \rightarrow (x != 0 \text{ or } y = 1)$$

Hoist, max sharing

• Reduce the number of adder and multiplier using distribution and association

2 multiplier + 1 adder \rightarrow 1 multiplier + 1 adder

Hoist: $a * b + a * c \rightarrow (b + c) * a$

Max Sharing: $a + (b + c), a + (b + d) \rightarrow (a + b) + c, (a + b) + d$

(a + b) only need to calculte once

AIGs can be used to represent arbitrary boolean formulas and circuits

Automatic structure sharing and the simplicity of AIGs make them a compact, simple, easy to use, and scalable representation.

Name	Function	Representation by two-input AND and inversion
Inversion	$\neg x$	$\neg x$
Conjunction	$x \wedge y$	$x \wedge y$
Disjunction	$x \lor y$	$\neg(\neg x \land \neg y)$
Implication	$x \to y$	$ eg (x \land \neg y)$
Equivalence	$x \leftrightarrow y$	$ egin{aligned} egi$
Xor	$x\oplus y$	$ egin{aligned} end{aligned} e$

Table 1. Basic logic operations with two-input AND gates and negation.

Local 2-level AIG rewrite

Referenced by other nodes

Locally size decreasing, global non increasing

 $\neg (a \land b) \land (b \land d) \Rightarrow (\neg a \land b) \land d$

Local 2-level AIG rewrite

LHS	RHS	Ο	S	Condition
$a \wedge \top$	a	1	\mathbf{S}	
$a \land \bot$	\perp	1	S	
$a \wedge b$	a	1	S	a = b
$a \wedge b$	\perp	1	S	a eq b
$(a \wedge b) \wedge c$	\perp	2	Α	$(a \neq c) \lor (b \neq c)$
$(a \wedge b) \wedge (c \wedge d)$	\perp	2	S	$(a \neq c) \lor (a \neq d) \lor (b \neq c) \lor (b \neq d)$
$ eg(a \wedge b) \wedge c$	c	2	Α	$(a \neq c) \lor (b \neq c)$
$ eg(a \wedge b) \wedge (c \wedge d)$	$c \wedge d$	2	S	$(a \neq c) \lor (a \neq d) \lor (b \neq c) \lor (b \neq d)$
$(a \wedge b) \wedge c$	$a \wedge b$	2	Α	$(a=c) \lor (b=c)$
$\neg (a \land b) \land \neg (c \land d)$	$\neg a$	2	S	$(a=d) \land (b \neq c)$
•				
$ eg(a \wedge b) \wedge c$	$ eg a \wedge b$	3	Α	b = c
$ eg(a \wedge b) \wedge (c \wedge d)$	$ eg a \wedge (c \wedge d)$	3	S	b = c
$(a \wedge b) \wedge (c \wedge d)$	$(a \wedge b) \wedge d$	4	S	$(a=c) \lor (b=c)$
$(a \land b) \land (c \land d)$	$a \wedge (c \wedge d)$	4	S	$(b=c) \lor (b=d)$
$(a \wedge b) \wedge (c \wedge d)$	$(a \wedge b) \wedge c$	4	S	$(a=d) \lor (b=d)$
$(a \wedge b) \wedge (c \wedge d)$	$b \wedge (c \wedge d)$	4	S	$(a=c) \lor (a=d)$
	$\begin{array}{c} \text{LHS} \\ \hline a \land \top \\ \hline a \land \bot \\ \hline a \land b \\ $	LHSRHS $a \land \top$ a $a \land \bot$ \bot $a \land b$ a $a \land b$ \bot $a \land b$ \bot $a \land b$ \bot $(a \land b) \land c$ \bot $(a \land b) \land (c \land d)$ \bot $\neg(a \land b) \land (c \land d)$ $c \land d$ $\neg(a \land b) \land (c \land d)$ $c \land d$ $\neg(a \land b) \land (c \land d)$ $\neg a$ $\neg(a \land b) \land (c \land d)$ $\neg a \land b$ $\neg(a \land b) \land (c \land d)$ $\neg a \land (c \land d)$ $(a \land b) \land (c \land d)$ $(a \land b) \land d$ $(a \land b) \land (c \land d)$ $a \land (c \land d)$ $(a \land b) \land (c \land d)$ $(a \land b) \land c$ $(a \land b) \land (c \land d)$ $(a \land b) \land c$ $(a \land b) \land (c \land d)$ $b \land (c \land d)$ $(a \land b) \land (c \land d)$ $b \land (c \land d)$	$\begin{array}{c c c c c c c c c } \mathrm{LHS} & \mathrm{RHS} & \mathrm{O} \\ \hline a \wedge \top & a & 1 \\ \hline a \wedge \bot & \bot & 1 \\ \hline a \wedge b & a & 1 \\ \hline a \wedge b & A & 1 \\ \hline a \wedge b & A & 1 \\ \hline a \wedge b & A & 1 \\ \hline a \wedge b & A & 1 \\ \hline a \wedge b & A & 1 \\ \hline a \wedge b & A & 1 \\ \hline a \wedge b & A & 1 \\ \hline a \wedge b & A & 1 \\ \hline a \wedge b & A & 1 \\ \hline a \wedge b & A & C & A \\ \hline (a \wedge b) \wedge (c \wedge d) & A & C \\ \hline (a \wedge b) \wedge (c \wedge d) & a \wedge (c \wedge d) \\ \hline (a \wedge b) \wedge (c \wedge d) & a \wedge (c \wedge d) \\ \hline (a \wedge b) \wedge (c \wedge d) & a \wedge (c \wedge d) \\ \hline (a \wedge b) \wedge (c \wedge d) & a \wedge (c \wedge d) \\ \hline (a \wedge b) \wedge (c \wedge d) & a \wedge (c \wedge d) \\ \hline (a \wedge b) \wedge (c \wedge d) & a \wedge (c \wedge d) \\ \hline (a \wedge b) \wedge (c \wedge d) & b \wedge (c \wedge d) \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 2. All locally size decreasing, globally non increasing, two-level optimization rules. "O" is the optimization level, "S" the type of symmetry. Subsumption is also known as "Absorption". The condition $a \neq b$ is a short hand for $a = \neg b$ or $b = \neg a$.

Circuit to CNF

Tseitin Transformation

Туре	Operation	CNF Sub-expression				
	$C = A \cdot B$	$(\overline{A} \lor \overline{B} \lor C) \land (A \lor \overline{C}) \land (B \lor \overline{C})$				
	$C = \overline{A \cdot B}$	$(\overline{A} \lor \overline{B} \lor \overline{C}) \land (A \lor C) \land (B \lor C)$				
	C = A + B	$(A \lor B \lor \overline{C}) \land (\overline{A} \lor C) \land (\overline{B} \lor C)$				
	$C = \overline{A + B}$	$(A \lor B \lor C) \land (\overline{A} \lor \overline{C}) \land (\overline{B} \lor \overline{C})$				
	$C = \overline{A}$	$(\overline{A} \lor \overline{C}) \land (A \lor C)$				
	$C = A \oplus B$	$(\overline{A} \lor \overline{B} \lor \overline{C}) \land (A \lor B \lor \overline{C}) \land (A \lor \overline{B} \lor C) \land (\overline{A} \lor B \lor C)$				

 \rightarrow SAT solver

Pseudo-Boolean to BV

other relation operators (e.g. *LT*, *GT*, *EQ*) can be represent by *GE*

LIA/NIA to BV

foreach variable *x*:

1. collect low bound *low* and upper bound *up*

2. BV size
If
$$(low \le x \le up)$$

 $bits = \log_2(1 + |up - low|)$
Otherwise
 $bits = num_{bits}$
3. BitVector
If $(has low)$
 $x \Leftrightarrow x_{bv} + low$
else if $(has up)$
 $x \Leftrightarrow x - 2^{bits-1}$
 (-2^{bits-1}) is the *lower bound* of signed int of size *bits*

LIA/NIA to BV

x op y

1. Align BV size of *x* and *y*

2. Extend BV size of *x* and *y* according to *op*

Thank you!