SMT Solving: DPLL(T) and Eager Encoding

Shaowei Cai

Institute of Software, Chinese Academy of Sciences

1

From Propositional to Quantifier-Free Theories

From Propositional to Quantifier-Free Theories

Example: ϕ : = $(x_1 - x_2 \le 13 \vee x_2 \ne x_3) \wedge (x_2 = x_3 \rightarrow x_4 > x_5) \wedge A \wedge \neg B$

Propositional Skeleton PS $_{\Phi}=(b_1 \vee \neg b_2) \wedge (b_2 \rightarrow b_3) \wedge A \wedge \neg B$

 $b_1: x_1 - x_2 \leq 13$ $b_2: x_2 = x_3$ $b_3: x_4 > x_5$

From Propositional to Quantifier-Free Theories

Example:

• $a = b + 2 \wedge A = write(B, a + 1, 4) \wedge (read(A, b + 3) = 2 \vee f(a - 1) \neq f(b + 1))$

• Propositional Skeleton $PS_{\Phi} = y_1 \wedge y_2 \wedge (y_3 \vee y_4)$

- $y_1: a = b + 2$
- y_2 : $A = write(B, a + 1, 4)$
- y_3 : $read(A, b + 3) = 2$
- y_4 : $f(a-1) \neq f(b+1)$

Interpretation

Example

- $F: x + y > z \rightarrow y > z x$
- We construct a "standard" interpretation I
- The domain is the integers, $\mathbb{Z}: D_1 = \mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- α_{I} : {+ \mapsto + $_{\mathbb{Z}}$, \mapsto - $_{\mathbb{Z}}$, \gt \mapsto $\gt_{\mathbb{Z}}$, $x \mapsto 13$, $y \mapsto 42$, $x \mapsto 1$ }

T-satisfiability

- Given a FOL formula F and interpretation $I: (D_I, \alpha_I)$, we want to compute if F evaluates to true under interpretation I, $I \models F$, or if F evaluates to false under interpretation I, I \neq F.
	- I satisfies $F: I \vDash F$

- T interpretation: an interpretation satisfying $I \vDash A$ for every $A \in \mathcal{A}$.
- A Σ -formula F is satisfiable in T, or T -satisfiable, if there is a T-interpretation I that satisfies F.

Approaches for Solving Single SMT Theory

Two main approaches for SMT

• Lazy Approach

Integrate a theory solver with a CDCL solver for SAT

• Eager Approach

Encode the SMT formula to a equ-satisfiable SAT formula

Normalizing T-atoms

- Drop dual operators: $(x_1 < x_2)$, $(x_1 \ge x_2) \implies \neg(x_1 \ge x_2)$, $(x_1 \ge x_2)$.
- Exploit associativity: $(x_1 + (x_2 + x_3) = 1)$, $((x_1 + x_2) + x_3) = 1$ \implies $(x_1 + x_2 + x_3 = 1).$
- Sort: $(x_1 + x_2 x_3 \le 1), (x_2 + x_1 1 \le x_3) \implies (x_1 + x_2 x_3 \le 1)).$
- Exploit T-specific properties: $(x_1 \leq 3)$, $(x_1 < 4) \implies (x_1 \leq 3)$ if x_1 represents an integer.

Static Learning

If so, the clauses obtained by negating the literals in such sets $(e.g., \neg(x = 0) \lor \neg(x = 1))$ can be added to the formula before the search starts

- *incompatible values* (e.g., $\{x = 0, x = 1\}$),
- congruence constraints (e.g., $\{(x_1 = y_1), (x_2 = y_2), f(x_1, x_2) \neq f(y_1, y_2)\}),$
- transitivity constraints (e.g., $\{(x-y\leq 2), (y-z\leq 4), \neg(x-z\leq 7)\}\)$,
- equivalence constraints (e.g., $\{(x = y), (2x 3z \le 3), \neg (2y 3z \le 3)\}\)$.

Equality logic with Uninterpreted Functions (EUF)

An equality logic formula with uninterpreted functions and uninterpreted predicates² is defined by the following grammar:

> $formula: formula \wedge formula \mid \neg formula \mid (formula) \mid atom$ $atom: term = term \mid predicate\text{-}symbol (list \text{ of terms})$ $term: identifier \mid function-symbol$ (list of terms)

$$
\models \varphi^\textup{\tiny UF} \implies \models \varphi
$$

- Replacing functions with uninterpreted functions in a given formula is a common technique for making it easier to reason about (e.g., to prove its validity).
- At the same time, this process makes the formula weaker, which means that it can make a valid formula invalid.

The only thing uninterpreted functions need to satisfy:

• Functional consistency: Instances of the same function return the same value if given equal arguments.

```
\int int power 3 (int in)
                                       \int int power3_new(int in)
                                         int out_b:
int i, out<sub>-a</sub>;
out_a = in;out_b = (in * in) * in;for (i = 0; i < 2; i++)out_a = out_a * in;return out_b;
return out<sub>-a</sub>;
                                                 (b)(a)out0_a = in0_a\wedgeout1_a = out0_a * in0_a \wedgeout0_b = (in0_b * in0_b) * in0_b;out2_a = out1_a * in0_a(\varphi_b)(\varphi_a)
```
To show that these two piece of codes are actually equivalent, we only need to prove the validity of

 $in0.a = in0.b \wedge \varphi_a \wedge \varphi_b \implies out2.a = out0.b$

$$
out0.a = in0a \landout1.a = out0.a * in0a \landout2.a = out1.a * in0a \land(\varphia) \qquad out0.b = (in0b * in0b) * in0b;
$$

(\varphi_b)

out
$$
0.a = in0.a
$$

\nout $1.a = G(out0.a, in0.a)$
\nout $2.a = G(out1.a, in0.a)$
\nout $0.b = G(G(in0.b, in0.b), in0.b)$
\n (φ_a^{UF})

```
int mul3(struct list *in)int i, out_a;
struct list *a;
a = in:out_a = in \rightarrow data;
for (i = 0; i < 2; i++) {
   a = a \Rightarrow n;out_a= out_a * a \rightarrow data;
<sup>}</sup>
return out<sub>-a</sub>;
            (a)a0_a = in0_a\wedgeout0_a = list_data(in0_a)\wedgea1_a = list_n(a0_a)\wedgeout1_a = G(out0_a, list_data(a1_a)) \wedgea2_a = list_n(a1_a)\wedgeout2_a = G(out1_a, list_data(a2_a))
```

```
int mul<sub>3</sub>-new (struct list *in)
 int out_b;
out_b =in \Rightarrow data *in \Rightarrow n \Rightarrow data *
   in \Rightarrow n \Rightarrow n \Rightarrow data;
return out_b;
         (b)out0_b = G(G(list_data(in0_b)),list_data(list_n(in0_b)),list_data(list_n(list_n(in0_b))))
```
 $\vert \}$;

struct list { struct list $*n; // pointer to next element$ int data;

Congruence Closure

$$
\varphi^{\text{UF}} := x_1 = x_2 \wedge x_2 = x_3 \wedge x_4 = x_5 \wedge x_5 \neq x_1 \wedge F(x_1) \neq F(x_3) .
$$

Initially, the equivalence classes are

 ${x_1, x_2}, {x_2, x_3}, {x_4, x_5}, {F(x_1)}, {F(x_3)}$.

Step $1(b)$ of Algorithm 4.3.1 merges the first two classes:

 ${x_1, x_2, x_3}, {x_4, x_5}, {F(x_1)}, {F(x_3)}$.

The next step also merges the classes containing $F(x_1)$ and $F(x_3)$, x_1 and x_3 are in the same class:

$$
{x1, x2, x3}, {x4, x5}, {F(x1), F(x3)}.
$$

In step 2, we note that $F(x_1) \neq F(x_3)$ is a predicate in φ^{UF} , but that $F(x_1)$ and $F(x_3)$ are in the same class. Hence, φ^{UF} is unsatisfiable.

Can be implemented with a union-find data structure, which results in a time complexity of O(n log n)

Congruence Closure

Splitting on demand

- solving problems with general Boolean structure over EUF using the DPLL(T) framework ?
- it is desirable to allow a theory solver T -solver to demand that the DPLL engine do additional case splits before determining the T -consistency of a partial assignment.

Example 26.5.5. In the theory $\mathcal{T}_{\mathcal{A}}$ of arrays introduced in §26.2.2, consider the following set of literals: read $(write(A, i, v), j) = x, read(A, j) = y, x \neq v, x \neq y$. To see that this set is unsatisfiable, notice that if $i = j$, then $x = v$ because the value read should match the value written in the first equation. On the other hand, if $i \neq j$, then $x = read(A, j)$ and thus $x = y$. Deciding the \mathcal{T}_{A} -consistency of larger sets of literals may require a significant amount of such reasoning by cases.

Outline

• SMT Basis

- Lazy Approach --- DPLL(T)
- Eager Approach --- Bit Blasting

DPLL(T)

- The method is commonly referred to as DPLL(T), emphasizing that it is parameterized by a theory T.
- The fact that it is called DPLL(T) and not CDCL(T) is attributed to historical reasons only: it is based on modern CDCL solvers"
- ---"Decision Procedures" Daniel Kroening, Ofer Strichman

CDCL Review

Non-Chronological Backtracking

Propositional Skeleton

Abstract the skeleton: Given atom a, we associate with it a unique Boolean variable e(a), which we call the Boolean encoder of this atom.

$$
\varphi := x = y \wedge ((y = z \wedge \neg(x = z)) \vee x = z).
$$

The propositional skeleton of φ is

$$
e(\varphi) := e(x = y) \land ((e(y = z) \land \neg e(x = z)) \lor e(x = z)).
$$

Let B be a Boolean formula, initially set to $e(\varphi)$, i.e.,

$$
{\cal B}:=\,\,e(\varphi)\;.
$$

$$
\alpha := \{ e(x = y) \mapsto \text{TRUE}, \ e(y = z) \mapsto \text{TRUE}, \ e(x = z) \mapsto \text{FALSE} \} .
$$

DPLL(T)

A basic lazy approach

$$
\varphi := x = y \wedge ((y = z \wedge \neg(x = z)) \vee x = z).
$$

The propositional skeleton of φ is

$$
e(\varphi) := e(x = y) \land ((e(y = z) \land \neg e(x = z)) \lor e(x = z))
$$

Let B be a Boolean formula, initially set to $e(\varphi)$, i.e.,

$$
\mathcal{B} := e(\varphi) \; .
$$

• Call SAT solver to solve $e(\varphi)$, find

$$
\alpha := \{ e(x = y) \mapsto \text{TRUE}, \ e(y = z) \mapsto \text{TRUE}, \ e(x = z) \mapsto \text{FALSE} \}
$$

• \rightarrow Call decision procedure DP_T to check the conjunction corresponding to α , denoted by $\widehat{Th}(\alpha)$, $\widehat{Th}(\alpha) \coloneqq x = y \land y = z \land \neg(x = z) \rightarrow$ the result: $\widehat{Th}(\alpha)$ is unsat.

A basic lazy approach

$$
\varphi := x = y \wedge ((y = z \wedge \neg(x = z)) \vee x = z).
$$

The propositional skeleton of φ is

$$
e(\varphi) := e(x = y) \land ((e(y = z) \land \neg e(x = z)) \lor e(x = z)).
$$

Let B be a Boolean formula, initially set to $e(\varphi)$, i.e.,

$$
\mathcal{B}:=\,\,e(\varphi)\;.
$$

- $e(\neg \widehat{\text{Th}}(\alpha))$ is conjoined into B, the Boolean encoding of this tautology.
	- $e\left(\neg \widehat{\text{Th}}(\alpha)\right) := \neg e(x=y) \vee \neg e(y=z) \vee e(x=z) \text{ -- blocking clause(s)}$
	- This clause contradicts the current assignment, and hence blocks it from being repeated
	- In general, we denote by *t* the lemma returned by DP_T .

A basic lazy approach

$$
\varphi := x = y \wedge ((y = z \wedge \neg(x = z)) \vee x = z).
$$

The propositional skeleton of φ is

$$
e(\varphi) := e(x = y) \land ((e(y = z) \land \neg e(x = z)) \lor e(x = z)).
$$

Let B be a Boolean formula, initially set to $e(\varphi)$, i.e.,

$$
\mathcal{B}:=\;e(\varphi)\;.
$$

- \rightarrow After the blocking clause has been added, the SAT solver is invoked again and suggests another assignment
- \rightarrow Then invoke DP_T again to check the conjunction of the literals corresponding to the new assignment.

A Basic Lazy Approach: Example

$$
\Phi \coloneqq g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d
$$

•
$$
PS_{\Phi} = y_1 \wedge (\neg y_2 \vee y_3) \wedge y_4)
$$

• y_1 : $g(a) = c$ • y_2 : $f(g(a)) = f(c)$ • y_3 : $g(a) = d$ • y_4 : $c = d$

Send $\{1, \overline{2} \vee 3, \overline{4}\}$ to SAT SAT solver returns model $\{1, \overline{2}, \overline{4}\}$ UF-solver find concretization of $\{1, \overline{2}, \overline{4}\}$ UNSAT Send $\{1, \overline{2} \vee 3, \overline{4}, \neg(1 \wedge \overline{2} \wedge \overline{4})\}$ to SAT Send $\{1, 2 \vee 3, 4, 1 \vee 2 \vee 4\}$ to SAT SAT solver returns model $\{1,3,\overline{4}\}$ UF-solver find concretization of $\{1,3,\overline{4}\}$ UNSAT Send $\{1, \overline{2} \vee 3, \overline{4}, \overline{1} \vee 2 \vee 4, \overline{1} \vee \overline{3} \vee 4\}$ to SAT SAT solver returns UNSAT; Original formula is UNSAT in UF

Integration into CDCL

Improving the Basic Lazy Approach

• Incremental SAT solving

Let B^i be the formula B in the *i*-th iteration of the loop in basic lazy algorithm. B^{i+1} is strictly stronger than B^i for all $i \geq 1$, because blocking clauses are added but not removed between iterations.

It is not hard to see that this implies that any conflict clause that is learned while solving B^i can be reused when solving B^j for $i < j$.

This, in fact, is a special case of **incremental satisfiability**, which is supported by most modern SAT solvers.

Hence, invoking an incremental SAT solver can increase the efficiency of the algorithm.

Still not clever enough…

• Consider, for example, a formula φ that contains literals

 $x_1 \ge 10$, $x_1 < 0$, where x_1 is an integer variable.

- Assume that the CDCL procedure assigns $e(x_1 \geq 10) \mapsto$ true and $e(x_1 < 0) \mapsto$ true. Inevitably, any call to Deduction results in a contradiction between these two facts.
- However, Algorithm Lazy-CDCL does not call Deduction until a full satisfying assignment is found. // waste time to complete the assignment.

Theory Propagation

Theory Propagation

- Deduction is invoked after BCP stops.
- It finds T-implied literals and communicates them to the CDCL part of the solver in the form of a constraint t.

Example. Consider the two encoders $e(x_1 \ge 10)$ and $e(1 < 0)$.

- After $e(x_1 \ge 10)$ has been set to true, Deduction detects that $\neg(x_1 < 0)$ is implied.
- In other words, t := $\neg(x_1 \ge 10) \vee \neg(x_1 < 0)$ is T-valid.
- The corresponding encoded (asserting) clause $e(t) := -e(x_1 \ge 10) \vee -e(x_1 < 0)$
- e(t) is added to B, which leads to an immediate implication of $\neg e(x_1 < 0)$, and possibly further implications.

The DPLL(T) Approach

Algorithm $DPLL(T)$

Input: A formula φ **Output:** "Satisfiable" if the formula is satisfiable, and "Unsatisfiable" otherwise

- 1. function $DPLL(T)$
- ADDCLAUSES $(cnf(e(\varphi)))$; $2.$
- while (TRUE) do 3
- repeat 4.
- while $(BCP() = "conflict")$ do 5. 6.
- $backtrack-level := \text{ANALYZE-CONFLICT}$. if backtrack-level < 0 then return "Unsatisfiable"; 7.
- else BackTrack(backtrack-level); 8.
- $\langle t, res \rangle := \text{DeduCTION}(\hat{Th}(\alpha));$ $\mathbf{9}$.
- $ADDCLASS(e(t));$ 10.
- until $t \equiv \text{TRUE};$ $11.$
- if α is a *full* assignment then return "Satisfiable"; 12.
- $DECIDE$); 13.
- When α is partial, Deduction checks
	- if there is a contradiction on the theory side,
	- and if not, it performs theory propagation.

not mandatory, only for efficiency

Performance, Performance…

- For performance, it is frequently better to run an approximation for finding contradictions.
	- This does not change the completeness of the algorithm, since a complete check is performed when α is full.

E.g. integer linear arithmetic:

Deciding the conjunctive fragment of this theory is NP-complete

- consider the real relaxation of the problem, which can be solved in polynomial time.
- Deduction sometimes misses a contradiction and hence not return a lemma

Performance, Performance…

- Exhaustive theory propagation refers to a procedure that finds and propagates all literals that are implied in T by $\widehat{Th}(\alpha)$.
- A simple generic way (called "plunging") to perform theory propagation Given an unassigned theory atom at_i , check whether $\widehat{Th}(\alpha)$ implies either at_i or $\neg at_i$. The set of unassigned atoms that are checked in this way depends on how exhaustive we want the theory propagation to be.
- In many cases a better strategy is to perform only cheap propagations
	- E.g. LIA: to search for simple-to-find implications, such as "if x > c holds, where x is a variable and c a constant, then any literal of the form $x > d$ is implied if $d < c$ "

Running A DPLL(LIA) Example

```
( x>y \lor x>z ) \land ( x+1<y \lor ¬x>y ) \land ( x>y \lor z>y)
```
- DPLL(LIA) algorithm
	- Decide $x>y \rightarrow true$
	- Propagate $x+1 < y \rightarrow true$
	- Invoke theory solver for LIA on: $\{x>y, x+1 < y\}$

Running A DPLL(LIA) Example

Running A DPLL(LIA) Example

$$
(\begin{array}{l} x \rightarrow y \lor x \rightarrow z \end{array}) \land (\begin{array}{l} x+1 \leq y \lor \neg x \Rightarrow y \end{array}) \land (\begin{array}{l} x \rightarrow y \lor z \Rightarrow y \end{array}) \land (\begin{array}{l} x \land y \lor y \end{array})
$$

- DPLL(LIA) algorithm
	- Backtrack : $x>y \rightarrow false$
	- Propagate : $x > z \rightarrow true$
	- Propagate : $z \rightarrow y \rightarrow true$
	- Invoke theory solver for LIA on: $\{\neg x > y, x > z, z > y\}$

Running A DPLL(LIA) Example

(x+1>0 \lor x+y>0) ∧(x<0 \lor x+y>4) ∧ ¬x+y>0

• DPLL(LIA) algorithm

Invoke DPLL (T) for theory $T = LIA$ (linear integer arithmetic)

(x+1>0 \lor x+y>0) ∧(x<0 \lor x+y>4) ∧ ¬x+y>0

- DPLL(LIA) algorithm
	- Propagate : $x+y>0$ \rightarrow false
	- Propagate : $x+1>0 \rightarrow true$
	- Decide : $x < 0 \rightarrow true$

Unlike propositional SAT case, we must check T-satisfiability of context

 $(x+1>0 \vee x+y>0)$ \wedge $(x<0 \vee x+y>4)$ $\wedge \neg x+y>0$

- DPLL(LIA) algorithm
	- Propagate : $x+y>0$ \rightarrow false
	- Propagate : $x+1>0 \rightarrow true$
	- Decide : $x < 0 \rightarrow true$
	- Invoke theory solver for LIA on: $\{x+1>0, \, \neg \, x+y>0, x<0\}$

Context is LIA-unsatisfiable! \rightarrow one of $x+1>0$, $x<0$ must be false

 $(x+1>0 \vee x+y>0) \wedge (x<0 \vee x+y>4) \wedge \neg x+y>0$ $(\neg x+1>0 \lor \neg x<0)$

- DPLL(LIA) algorithm
	- Propagate : $x+y>0$ \rightarrow false
	- Propagate : $x+1>0 \rightarrow true$
	- Propagate : $x < 0 \rightarrow$ false

 $(x+1>0 \vee x+y>0) \wedge (x<0 \vee x+y>4) \wedge \neg x+y>0$ $(\neg x+1>0 \lor \neg x<0)$ • DPLL(LIA) algorithm • Propagate : $x+y>0$ \rightarrow false • Propagate : $x+1>0 \rightarrow true$ • Propagate : $x < 0 \rightarrow$ false • Propagate : $x+y>4 \rightarrow true$ Context \neg x+y>0 $x+1>0$ \neg x \lt 0 $x+y>4$ • Invoke theory solver for LIA on: $\{x+1>0, -x+y>0, -x<0, x+y>4\}$

DPLL(T)

• DPLL(T) algorithm for satisfiability modulo T

- Extends DPLL (indeed CDCL) algorithm to incorporate reasoning about a theory T
- Basic Idea:
	- Use CDCL algorithm to find assignments for propositional abstraction of formula Use off-the-shelf SAT solver
	- Check the T-satisfiability of assignments found by SAT solver Use Theory Solver for T
	- Perform contradiction detection and theory propagation at partial assignments in CDCL Use Theory Solver for T

DPLL(T) Theory Solver

- Input : A set of T-literals M
- Output : either
- 1. M is T-satisfiable
	- Return model, e.g. $\{x \rightarrow 2, y \rightarrow 3, z \rightarrow -3, ... \}$
	- →Should be *solution-sound*
		- Answers "M is T-satisfiable" only if M is T-satisfiable
- 2. $\{l_1, ..., l_n\} \subseteq M$ is T-unsatisfiable $// l_1 \wedge ... \wedge l_n$
	- Return conflict clause ($\neg l_1 \vee \dots \vee \neg l_n$)
	- → Should be *refutation-sound*
		- Answers " $\{l_1, ..., l_n\}$ is T-unsatisfiable" only if $\{l_1, ..., l_n\}$ is T-unsatisfiable
- 3. Don't know
	- Return lemma
- →If solver is solution-sound, refutation-sound, and *terminating*,
	- Then it is a *decision procedure* for T

Design of DPLL(T) Theory Solvers

- A DPLL(T) theory solver:
	- Should be solution-sound, refutation-sound, terminating
	- Should produce models when M is T-satisfiable
	- Should produce T-conflicts of minimal size when M is T-unsatisfiable
	- Should be designed to work incrementally
		- M is constantly being appended to/backtracked upon
	- Can be designed to check T-satisfiability either:
		- Eagerly: Check if M is T-satisfiable immediately when any literal is added to M
		- Lazily: Check if M is T-satisfiable only when M is complete
	- Should cooperate with other theory solvers when combining theories
		- (see later)

Outline

- SMT Basis
- Lazy Approach --- DPLL(T)
- Eager Approach --- Bit Blasting

Eager Approach

Perform a full reduction of a *-formula to an equisatisfiable propositional* formula in *one-step*. A *single run* of the SAT solver on the propositional formula is then sufficient to decide the original formula.

Eliminating Function Applications

Ackermann's method

Eliminate applications of function and predicate symbols of non-zero arity. These applications are replaced by new propositional symbols, and also encode information to maintain functional consistency (the congruence property).

Suppose that function symbol f has three occurrences: $f(a_1)$, $f(a_2)$, and $f(a_3)$. First, we generate three fresh constant symbols xf_1 , xf_2 , and xf_3 , one for each of the three different terms containing f, and then we replace those terms in F_{norm} with the fresh symbols.

The result is the following set of functional consistency constraints for f :

$$
\left\{ a_1 = a_2 \implies xf_1 = xf_2, a_1 = a_3 \implies xf_1 = xf_3, a_2 = a_3 \implies xf_2 = xf_3 \right\}
$$

Eliminating Function Applications

The Bryant-German-Velev method

eliminate function applications using a nested series of ITE expressions.

f has three occurrences: $f(a_1)$, $f(a_2)$, and $f(a_3)$, then we would generate three new constant symbols xf_1 , xf_2 , and xf_3 . We would then replace all instances of $f(a_1)$ by xf_1 , all instances of $f(a_2)$ by $ITE(a_2 = a_1, xf_1, xf_2)$, and all instances of $f(a_3)$ by $ITE(a_3 = a_1, xf_1, ITE(a_3 = a_2, xf_2, xf_3))$. It is easy to see that this preserves functional consistency.

Small-domain encodings

• an enumerative approach

$$
\sum_{j=1}^{n} a_{i,j} x_j \ge b_i
$$

• the coefficients and the constant terms are integer constants and the variables are integer-valued.

If there is a satisfying solution to a formula, there is one whose size, measured in bits, is polynomially bounded in the problem size [BT76, vzGS78, KM78, Pap81. Problem size is traditionally measured in terms of the parameters m , n, $\log a_{\max}$, and $\log b_{\max}$, where m is the total number of constraints in the formula, n is the number of variables (integer-valued constant symbols), and $a_{\max} = \max_{(i,j)} |a_{i,j}|$ and $b_{\max} = \max_i |b_i|$ are the maximums of the absolute values of coefficients and constant terms respectively.

Small-domain encodings

- Given a formula F_Z , we first compute the polynomial bound S on solution size, and then search for a satisfying solution to $F_{\rm Z}$ in the bounded space {0,1, ..., $2^{S} - 1$
- S is O(log m + log b_{max} + m[log m + log a_{max}])

Improving Small-domain encoding

Equalities

- Theorem. For an equality logic formula with n variables, $S = log n$
- The key proof argument is that any satisfying assignment can be translated to the range $\{0, 1, 2, \ldots, n-1\}$, since we can only tell whether variable values differ, not by how much.
- Get compact search space by constraint graph
	- representing equalities and disequalities between variables in the formula
	- Connected components of this graph correspond to equivalence classes

Improving Small-domain encoding

Difference Logic

 $x_i - x_j \bowtie b_t$

 x_0 is a special "variable" denoting zero.

• Build constraint graph

- 1. A vertex v_i is introduced for each variable x_i , including for x_0 .
- 2. For each difference constraint of the form $x_i x_j \geq b_t$, we add a directed edge from v_i to v_j of weight b_t .

Improving Small-domain encoding

Theorem 26.3.3. Let F_{diff} be a DL formula with *n* variables, excluding x_0 . Let b_{max} be the maximum over the absolute values of all difference constraints in F_{diff} . Then, F_{diff} is satisfiable if and only if it has a solution in $\{0, 1, 2, ..., d\}^n$ where $d = n \cdot (b_{\text{max}} + 1)$.

- any satisfying assignment for a formula with constraints represented by G can have a spread in values that is at most the weight of the longest path in G.
- This path weight is at most n $\cdot(b_{max} + 1)$. The bound is tight, the "+1" in the second term arising from a "rounding" of inequalities from strict to non-strict.

Bit Vector

Many compilers have this sort of bug

overflow? $(x - y > 0) \Leftrightarrow (x > y)$

What is the output? (44)

unsigned char number = 200; $number = number + 100;$ printf ("Sum: %d\n", number);

- Bitwise operator frequently occur in system-level software
	- left-shift, right-shift
	- and, or, xor

Complexity

- Satisfiability is undecidable for an unbounded width, even without arithmetic.
- It is NP-complete otherwise.

Bitwise operators (*l*-bits): $a|b$

Introduce new bitvector variable *e* for $a|b$, such that foreach i $(a_i \vee b_i) \Leftrightarrow e_i$

Other bitwise operators is similar

 $a + b$

one-bit Full adder four-bits Full adder

How about 32-bits or 64-bits

$$
a - b = (a + \sim b + 1)
$$

Complement(补码) for negative numbers: $-b \rightarrow \sim b + 1$ $\sim b$: invert each bits of *b*

one-bit Full adder

6 - 3 ==> 6 + (-3)
\n0000 0110 // 6(
$$
\aleph
$$
4) + 1111 1101 // -3(\aleph 4) -
\n-2000 0011 // 3(\aleph 4)

CNF: How many variables and clauses?

 $C = A \oplus B \left[(\overline{A} \vee \overline{B} \vee \overline{C}) \wedge (A \vee B \vee \overline{C}) \wedge (A \vee \overline{B} \vee C) \wedge (\overline{A} \vee B \vee C) \right]$ **XOR**

$$
a = b \qquad \qquad a_i = b_i \Leftrightarrow e_i
$$

$$
\text{unsigned } a < b
$$

$$
(a - b = (2l - b) + a)_{mod 2l}
$$

If $c_{out} = 1$, then in RHS, the subtract part *b* is less than
the addition part *a*, i.e. *b* < *a*

$$
\langle a \rangle_U \langle b \rangle_U \Leftrightarrow \neg add(a, \sim b, 1). c_{out}
$$

$$
2 - 3 \Rightarrow 010 - 011 = 010 + 101, c_{out} = 0
$$

$$
3 - 2 \Rightarrow 011 - 010 = 011 + 110, c_{out} = 1
$$

 a_i b_i

 e_i

 $\langle a \rangle_{S} \langle b \rangle_{S} \Leftrightarrow (a_{l-1} \Leftrightarrow b_{l-1}) \oplus add(a, \sim b, 1)$. cout signed $a < b$

 $a \ll b$

n-stage (*n* is the width of *b*) stage 1: for each bit i

$$
e_i \Longleftrightarrow \begin{cases} a_i & : b_0 = 0 \\ a_{i-1} & : i \ge 1 \land b_0 \\ 0 & : otherwise \end{cases}
$$

stage 2: for each bit i

$$
e'_i \Longleftrightarrow \begin{cases} e_{i-2^1} & : i \geq 2^1 \land b_1 \\ e_i & : b_1 = 0 \\ 0 & : otherwise \end{cases}
$$

if $(i < 1)$ $ite(b_0, (e_i \Leftrightarrow 0), (e_i \Leftrightarrow a_i))$ if $(i \geq 1)$ $ite(b_0, (e_i \Leftrightarrow a_{i-1}), (e_i \Leftrightarrow a_i))$

 $1011011 \ll 101$ Stage 1: $0110110 \Leftarrow 1011011 \propto 001$ Stage 2: $0110110 \Leftarrow 0110110 \propto 000$ Stage 3: $1100000 \Leftarrow 0110110 \propto 100$

 $a \times b$

 n -stage (shift-and-add):

$$
mul(a, b, -1) \doteq 0
$$
 (*l* - 1) adder

$$
mul(a, b, i) \doteq mul(a, b, i - 1) + (b_i? (a \ll i): 0)
$$

$$
1001
$$

\n
$$
\times 0101
$$

\n
$$

$$

\n
$$
1001
$$

\n
$$
b_0 = 1 \rightarrow a \ll 0
$$

\n0000#
\n
$$
b_1 = 0 \rightarrow 0
$$

\n
$$
1001 \# \# \qquad b_2 = 1 \rightarrow a \ll 2
$$

\n0000## #
\n
$$
b_3 = 0 \rightarrow 0
$$

−−−−−− −

$$
a \div b
$$

Implemented by adding two constraints:

$$
b \neq 0 \Longrightarrow e \times b + r = a,
$$

$$
b \neq 0 \Longrightarrow r < b
$$

If $b = 0$, $a \div b$ is set to a special value.

Rewrite before Bit-Blasting

Fig. The size of the constraint for an n -bit multiplier expression after Tseitin's transformation

formulas with expensive operators (e.g. multipliers) are often very hard to solve $t \times (s \times (s + t)) \Longleftrightarrow s \times (t \times (s + t))$

32bits. 10^5 variables. Can't be solved by CaDiCal within 2 hour

Rewrite before Bit-Blasting

Rewrite before Bit-Blasting

reduce one multiplier Deep first order travelling

Theory rewrite rules

 \bullet bit2bool $(c \text{ is a or 1})$ • (ite x y z) = $c \rightarrow$ (ite x (y = c) (z = c)) • $(not x) = c \rightarrow x = (1 - c)$ • mul_eq • $cx = c' \rightarrow x = c_{inv} \times c'$ • $cx = c'x_2 \rightarrow x = (c_{inv} \times c') x_2$ • … • mul • $cx + c'x \rightarrow (c + c')x$

• …

• add

 \bullet …

- \bullet $(x + (y \ll x)) \rightarrow (x | (y \ll x))$
- $(x + y \times x) \rightarrow x \times (y + 1)$

Reduce the number of operator Expensive operator \rightarrow cheap operator

Propagate const values

• Given an equality $t = c$, when c is constant, then replaces t everywhere with \mathcal{C}

cyclical scan till fixed

Variable elimination does not always help

6 adder 8 adder

How to avoid increasing the number of adder and multipliers?

only eliminate variables that occur at most twice
Eliminate unconstrained variables

- a bit-vector function f can be replaced by a fresh bit-vector variable if
	- at least one of its operands is an unconstrained variable ν (free variable)
	- f can be "inverted" with respect to ν

If ν 1 and ν 2 are unconstrained variables then no matter what's the value of LHS, it is satisfiable.

 $v3 + t = v4$ If v3 is unconstrained variables then no matter what's the value of ν 4 and t, it is satisfiable.

bv size reduction

• Reduce bv size using upper bound and lower bound

```
1 \leq x \leq 4 (x has 8 bits)
Replace x with (concat\ 00000 x')
```
 x' is new variable of 3-bits

Local contextual simplification

• bool rewrite

 $(or args[0] ... args[num_{args}-1])$ replace $arg[*i*]$ by *false* in the other arguments

 $(x != 0 or y = x + 1) \rightarrow (x != 0 or y = 1)$

Hoist, max sharing

• Reduce the number of adder and multiplier using distribution and association

2 multiplier + 1 adder \rightarrow 1 multiplier + 1 adder

Hoist: $a * b + a * c \rightarrow (b + c) * a$

Max Sharing: $a + (b + c)$, $a + (b + d) \rightarrow (a + b) + c$, $(a + b) + d$

 $(a + b)$ only need to calculte once

AIGs can be used to represent arbitrary boolean formulas and circuits

Automatic structure sharing and the simplicity of AIGs make them a compact, simple, easy to use, and scalable representation.

Table 1. Basic logic operations with two-input AND gates and negation.

Local 2-level AIG rewrite

Referenced by other nodes

Locally size decreasing, global non increasing

$$
\neg(a \land b) \land (b \land d) \Rightarrow (\neg a \land b) \land d
$$

Local 2-level AIG rewrite

Name	LHS	RHS	\overline{O}	S	Condition
Neutrality	$a \wedge \top$	\boldsymbol{a}	$\mathbf 1$	S	
Boundedness	$a \wedge \bot$		1	S	
Idempotence	$a \wedge b$	\mathbf{a}	$\mathbf{1}$	S	$a = b$
Contradiction	$a \wedge b$		$\mathbf{1}$	S	$a \neq b$
Contradiction	$(a \wedge b) \wedge c$		$\overline{2}$	\bf{A}	$(a \neq c) \vee (b \neq c)$
Contradiction	$(a \wedge b) \wedge (c \wedge d)$		$\overline{2}$	S	$(a \neq c) \vee (a \neq d) \vee (b \neq c) \vee (b \neq d)$
Subsumption	$\neg(a \wedge b) \wedge c$	\boldsymbol{c}	$\overline{2}$	\mathbf{A}	$(a \neq c) \vee (b \neq c)$
Subsumption	$\neg(a \wedge b) \wedge (c \wedge d)$	$c \wedge d$	$\overline{2}$	S	$(a \neq c) \vee (a \neq d) \vee (b \neq c) \vee (b \neq d)$
Idempotence	$(a \wedge b) \wedge c$	$a \wedge b$	$\overline{2}$	$\mathbf A$	$(a = c) \vee (b = c)$
Resolution	$\neg(a \wedge b) \wedge \neg(c \wedge d)$	$\neg a$	$\overline{2}$	S	$(a = d) \wedge (b \neq c)$
Substitution	$\neg(a \wedge b) \wedge c$	$\neg a \wedge b$	3 ¹	\bf{A}	$b=c$
Substitution	$\overline{\neg(a \wedge b)} \wedge (c \wedge d)$	$\neg a \wedge (c \wedge d)$	3	S	$b=c$
Idempotence	$(a \wedge b) \wedge (c \wedge d)$	$(a \wedge b) \wedge d$	$\overline{4}$	S	$(a = c) \vee (b = c)$
Idempotence	$(a \wedge b) \wedge (c \wedge d)$	$a \wedge (c \wedge d)$	$\overline{4}$	S	$(b = c) \vee (b = d)$
Idempotence	$(a \wedge b) \wedge (c \wedge d)$	$(a \wedge b) \wedge c$	$\overline{4}$	S	$(a = d) \vee (b = d)$
Idempotence	$(a \wedge b) \wedge (c \wedge d)$	$\overline{b} \wedge (c \wedge d)$	$\overline{4}$	S	$(a = c) \vee (a = d)$

Table 2. All locally size decreasing, globally non increasing, two-level optimization rules. "O" is the optimization level, "S" the type of symmetry. Subsumption is also known as "Absorption". The condition $a \neq b$ is a short hand for $a = \neg b$ or $b = \neg a$.

Circuit to CNF

Tseitin Transformation

 \rightarrow SAT solver

Pseudo-Boolean to BV

other relation operators (e.g. LT, GT, EQ) can be represent by GE

LIA/NIA to BV

 f oreach variable x :

1. collect low bound low and upper bound up

2. BV size
\nIf
$$
(low \le x \le up)
$$

\nbits = log₂(1 + |up – low|)
\nOtherwise
\nbits = num_{bits}
\n3. BitVector
\nIf (has low)
\n $x \Leftrightarrow x_{bv} + low$
\nelse if (has up)
\n $x \Leftrightarrow x - 2^{bits-1}$
\n $x \Leftrightarrow x - 2^{bits-1}$

LIA/NIA to BV

 $x op y$

1. Align BV size of x and y

2. Extend BV size of x and y according to op

Thank you!