SMT Solving: Combined Theories

Shaowei Cai

Institute of Software, Chinese Academy of Sciences Constraint Solving (2022. Autumn)

Reminders: theories and signatures

- A first-order theory T is defined by the following components.
 - 1. Its signature Σ is a set of constant, function, and predicate symbols.

2. Its set of axioms \mathcal{A} is a set of closed FOL formulae in which only constant, function, and predicate symbols of Σ appear.

• A Σ -formula is constructed from constant, function, and predicate symbols of Σ , as well as variables, logical connectives, and quantifiers.

Reminders: T-satisfiability

- Given a FOL formula F and interpretation $I: (D_I, \alpha_I)$, we want to compute if F evaluates to true under interpretation I, $I \models F$, or if F evaluates to false under interpretation I, $I \not\models F$.
- T interpretation: an interpretation satisfying $I \vDash A$ for every $A \in \mathcal{A}$.
- A Σ -formula F is satisfiable in T , or T -satisfiable, if there is a T-interpretation I that satisfies F.

Combining Theories

• We know how to decide EUF and Linear Integer Arithmetic :

EUF:
$$(x_1 = x_2) \lor \neg (f(x_2) = x_3) \land \cdots$$

LIA: $3x_1 + 5x_2 \ge 2x_3 \land x_2 \le 4x_4 \dots$

• What about a combined formula ?

 $(x_2 \ge x_1) \land (x_1 - x_3 \ge x_2) \land (x_3 \ge 0) \land f(f(x_1) - f(x_2)) \neq f(x_3)$

The Theory-Combination problem

- Given theories T_1 and T_2 with signatures Σ_1 and Σ_2 , the combined theory $T_1 \oplus T_2$
 - has signature $\Sigma_1 \cup \Sigma_2$ and
 - the union of their axioms.

- Let F be a $\Sigma_1 \cup \Sigma_2$ -formula.
- The problem: Does $T_1 \oplus T_2 \models F$?

The Theory-Combination problem

• The Theory-Combination problem is <u>undecidable</u> (even when the individual theories are decidable).

- Under certain restrictions, it becomes decidable.
- We will assume the following restrictions:
 - T₁ and T₂ are decidable, quantifier-free first-order theories with equality;
 - Disjoint signatures (except =): $\Sigma_1 \cap \Sigma_2 = \{=\}$;
 - T_1 and T_2 are stably infinite (we will discuss this later).

The Theory-Combination problem

- We can reduce all theories to a common logic (e.g. Propositional Logic).
- But here, we focus on the Nelson-Oppen method
 - Combine decision procedures of the individual theories.

• Greg Nelson and Derek Oppen, *simplification by cooperating decision procedures*, 1979

By utilizing DPLL(T), when deciding combined theories, we can focus on conjunctive fragments.

Step1: Purification: validity-preserving transformation of the formula after which predicates from different theories are not mixed.

Continue replacing a minimal "alien" expression *e* by a fresh variable *a* and add *a* = *e* until no more "alien" expressions.

E.g. Transform $x_1 \le f(x_1)$..into $x_1 \le a_1 \land a_1 = f(x_1)$

Step1: Purification: validity-preserving transformation of the formula after which predicates from different theories are not mixed.

$$x_2 \ge x_1 \land x_1 - x_3 \ge x_2 \land x_3 \ge 0 \land f(f(x_1) - f(x_2)) \neq f(x_3)$$

 $x_2 \ge x_1 \land x_1 - x_3 \ge x_2 \land x_3 \ge 0 \land f(a) \neq f(x_3) \land a = f(x_1) - f(x_2)$ $x_2 \ge x_1 \land x_1 - x_3 \ge x_2 \land x_3 \ge 0 \land f(a) \neq f(x_3)$

$$A_{2} = a_{1} + a_{1} + a_{2} + a_{3} = a_{2} + a_{3} = a_{1} + a_{2} + a_{1} = f(x_{1}) + a_{2} = f(x_{2})$$

- After purification we are left with several sets of pure expressions $F_1 \dots F_n$:
 - F_i belongs to some 'pure' theory which we can decide.
 - Shared variables are allowed.
 - ϕ is satisfiable \leftrightarrow $F_1 \land \cdots \land F_n$ is satisfiable

The Nelson-Oppen method: A Basic Algorithm

- 1. Purify ϕ into $F_1 \wedge \cdots \wedge F_n$
- 2. If $\exists i, F_i$ is unsatisfiable, return `unsatisfiable'.
- 3. If $\exists i, j, F_i$ implies an equality not implied by F_j , add it to F_j and goto step 2.
- 4. Return `satisfiable'.

The algorithm runs in polynomial time, if the conjunctive fragments of T_1 and T_2 can be decided in polynomial time.

Example

$$(x_2 \ge x_1) \land (x_1 - x_3 \ge x_2) \land (x_3 \ge 0) \land f(f(x_1) - f(x_2)) \neq f(x_3)$$

• Purification:

Example

Arithmetic	EUF
$x_2 \ge x_1$ $x_1 - x_3 \ge x_2$ $x_3 \ge 0$ $a_1 = a_2 - a_3$	$f(a_1) \neq f(x_3)$ $a_2 = f(x_1)$ $a_3 = f(x_2)$
$x_3 = 0$ $x_1 = x_2$ $a_2 = a_3$	$x_3 = 0$ $x_1 = x_2$ $a_2 = a_3$
$a_1 = 0$	$a_1 = 0$ False

Wait, it' s not so simple...

```
• Consider: \varphi: 1 \le x \land x \le 2 \land p(x) \land \neg p(1) \land \neg p(2)
x \in \mathbb{Z}
```

Arithmetic over Z	Uninterpreted predicates
$1 \leq x$	p(x)
$x \leq 2$	p(1) p(2)

- Neither theories imply an equality, and both are satisfiable.
- But ϕ is unsatisfiable!

Convexity of Theories

• Definition: A Σ -theory T is *convex* if for every conjunctive Σ -formula F, $F \rightarrow \bigvee_{i=1..n} x_i = y_i$, for some $n > 1 \Rightarrow$

$$F \rightarrow x_i = y_i, for some i \in \{1..n\}$$

where x_i , y_i are some T variables.

- *Convex*: Linear Arithmetic over R, EUF
- *Non-convex*: Almost anything else...

Convexity of Theories: examples

Linear arithmetic over Z is not convex.

For example, while

$$x_1 = 1 \land x_2 = 2 \land 1 \leq x_3 \land x_3 \leq 2 \Rightarrow (x_3 = x_1 \lor x_3 = x_2)$$
 holds, neither

$$\mathbf{x}_1 = 1 \land \mathbf{x}_2 = 2 \land 1 \le \mathbf{x}_3 \land \mathbf{x}_3 \le 2 \Rightarrow \mathbf{x}_3 = \mathbf{x}_1$$

nor

$$\mathbf{x}_1 = 1 \land \mathbf{x}_2 = 2 \land 1 \le \mathbf{x}_3 \land \mathbf{x}_3 \le 2 \Rightarrow \mathbf{x}_3 = \mathbf{x}_2$$

holds

Definition: A Σ -theory \top is *convex* if for every conjunctive Σ -formula F, $F \rightarrow \bigvee_{i=1..n} x_i = y_i$, for some $n > 1 \Rightarrow F \rightarrow x_i = y_i$, for some $i \in \{1..n\}$ Denote G: $\bigvee_{i=1..n} x_i = y_i$

Intuition: let us view an assignment of all variables as a point. S(F): the set of points satisfying F; S(G) similarly. $F \rightarrow G$ means, if a point is in S(F), then it is also in S(G).

Intuition:

F cannot be covered by any disjunction of equalities, no matter how many, if no single equality covers F.

A polyhedron F cannot be covered by a finite disjunction of planes unless at least one of the planes is F itself.

Proof idea:

- F is a conjunction of linear rational equations/inequations. \Rightarrow F is convex.
- Suppose F \rightarrow G, but for no $i \in \{1., n\}$ does F $\rightarrow x_i = y_i$, we will prove that then F is not convex. This leads to a contradiction.

Proof:

- Each equality $x_i = y_i$ is convex: for an equality x=y, if two points \vec{u}, \vec{v} satisfies the equality, then for any $\lambda \in (0,1), \lambda \vec{u} + (1 \lambda) \vec{v}$ also satisfies the equality.
- But the disjunction G is not convex (e.g. H: $x = y \lor x = z$, the points (0,0,1) and (1,0,1) are in the set of points satisfying H, denoted as S(H), but $\frac{1}{2}(0,0,1) + \frac{1}{2}(1,0,1) = (\frac{1}{2},0,1)$ is not in S(H)).
- Indeed, S(G) consists of $S_{x_i=y_i}$ for each equation $x_i = y_i$.

- Suppose, then, that $F \rightarrow G : \bigvee_{i=1..n} x_i = y_i$, but for no $i \in \{1..n\}$ does $F \rightarrow x_i = y_i$.
- Then there must be two points \vec{u} and \vec{v} in S(F), they are in separate subsets of S(G).
 - otherwise, if all points are in the same subset, that means all points satisfy the same equality, $F \rightarrow x_i = y_i$ for some i.
- By the arguments above, the points on the line segment between \vec{u} and \vec{v} are not in S(G) and thus not in S(F).
 - \Rightarrow F is not convex.

This leads to a contradiction.

So why is convexity important ?

```
• Recall: \varphi: 1 \le x \land x \le 2 \land p(x) \land \neg p(1) \land \neg p(2)
x \in \mathbb{Z}
```

Arithmetic over Z	Uninterpreted predicates
$1 \le x$ $x \le 2$	$p(x)$ $\neg p(1)$ $p(2)$

• Neither theories imply an equality, and both are satisfiable.

Propagate Disjunction for Non-Convex Theories

- But: $1 \le x \land x \le 2$ imply the disjunction $x = 1 \lor x = 2$
- Since the theory is non-convex we cannot propagate either x = 1 or x = 2.
- We can only propagate the disjunction itself.

Propagate Disjunction for Non-Convex Theories

• Propagate the disjunction and perform case-splitting.

Arithmetic over Z	Uninterpret predicates	ed
$1 \le x$ $x \le 2$	p($\neg p(1)/$	(x) n p(2)
$x = 1 \lor x = 2$	$x = 1 \lor x =$ $\langle \cdot \rangle \land x = 1$ False	$2 Split!$ $\langle \cdot \rangle \wedge x = 2$ False

The Nelson-Oppen Method: the Full Algorithm

- 1. Purify ϕ into $\phi': F_1 \land \cdots \land F_n$
- 2. If $\exists i, F_i$ is unsatisfiable, return `unsatisfiable'.
- 3. If $\exists i, j, F_i$ implies an equality not implied by F_j , add it to F_j and goto step 2.
- 4. If $\exists i, F_i \rightarrow (x_1 = y_1 \lor \cdots \lor x_k = y_k)$ but $\exists j \ F_i \not\rightarrow x_j = y_j$, apply recursively to $\varphi' \land x_1 = y_1, \dots, \varphi' \land x_k = y_k$. If any of them is satisfiable, return 'satisfiable'. Otherwise return 'unsatisfiable'.
- 5. Return `satisfiable'.

The algorithm runs in exponential time, even if the conjunctive fragments of T_1 and T_2 can be decided in polynomial time.

Why the theories need to be Stably Infinite?

Example.

- T_1 : $\Sigma_1 = \{f, =\}$, axioms enforce solutions with at most two distinct values.
- T_2 : $\Sigma_1 = \{g,=\}$, axioms...
- f and g are function symbols.
- The combined theory $T_1 \oplus T_2$ contains the union of the axioms, and thus, the solution to any formula $\phi \in T_1 \oplus T_2$ cannot have more than two distinct values.

Consider this formula: $f(x_1) \neq f(x_2) \land g(x_1) \neq g(x_3) \land g(x_2) \neq g(x_3)$

No equalities are propagated, and the algorithm returns Satisfiable. Error! In fact, the formula is unsatisfiable, because any assignment satisfying it must use three different values for x_1 , x_2 and x_3 .

F_1 (a Σ_1 -formula)	F_2 (a Σ_2 -formula)
$f(x_1) \neq f(x_2)$	$g(x_1) \neq g(x_3)$ $g(x_2) \neq g(x_3)$

Stably Infinite Theories

A Σ -theory is stably infinite if every satisfiable formula has a model with an infinite domain.

Examples of Stably infinite theories

- LIA and LRA: Linear integer arithmetic, Linear real arithmetic
- EUF: Equality logic with uninterpreted functions

Examples of non-stably infinite theories

- $\Sigma = \{a, b, =\}$ axiom: $\forall x. x = a \lor x = b$
- Theory of fixed width bit vectors: BV

There are extensions of Nelson-Oppen method that can handle non-stably infinite theories. C. Tinelli and C. Zarba. Combining non-stably infinite theories. Journal of Automated Reasoning, 34(3):209{238, 2005.

- In practice, Nelson-Oppen method is based on the deterministic method we just described.
- There is a nondeterministic version, which is easier to understand and to prove the correctness.
 - The purification phase is the same.
 - For the equality propagation phase, the nondeterministic version adopts a guessand-check favor, instead of the construction favor in the deterministic version.

Purification phase separates $(\Sigma_1 \cup \Sigma_2)$ -formula F into two formulas, Σ_1 -formula F₁ and Σ_2 -formula F₂.

 F_1 and F_2 are linked by a set of shared variables.

- Let $V = \text{shared}(F_1, F_2) = \text{free}(F_1) \cap \text{free}(F_2)$
- Let E be an equivalence relation over shared (F_1, F_2) .
- The arrangement $\alpha(V, E)$ of V induced by E is the formula:

$$\alpha(V,E): \bigwedge_{u,v \ \in \ V. \ uEv} u = v \ \land \ \bigwedge_{u,v \ \in \ V. \ \neg(uEv)} u \neq v$$

F is $T_1 \oplus T_2$ -satisfiable iff there exists an equivalence relation E of V such that $F_1 \wedge \alpha(V, E)$ is T_1 -satisfiable, and $F_2 \wedge \alpha(V, E)$ is T_2 -satisfiable.

We can check the equivalence relation over V, one by one

- Once an equivalence relation E makes $F_1 \wedge \alpha(V, E)$ be T_1 -satisfiable and $F_2 \wedge \alpha(V, E)$ be T_2 -satisfiable, then we show that F is satisfiable
- If all the equivalence relations over V have been checked and failed, then F is unsatisfiable.

Example

$$F: 1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$$

The purification phase separates it into a $\Sigma_{\mathbb{Z}}$ -formula F_1 and a Σ_{EUF} -formula F_2 .

$$F_1: 1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$$
$$\land$$
$$F_2: \quad f(x) \neq f(w_1) \land f(x) \neq f(w_2)$$

Then, V = shared(F_1, F_2) = { x, w_1, w_2 }

Example

• There are 5 equivalence relations to consider:

- 1. {{ x, w_1, w_2 }}, *i.e.*, $x = w_1 = w_2$: $F_{\mathsf{E}} \wedge \alpha(V, E)$ is T_{E} -unsatisfiable because it cannot be the case that both $x = w_1$ and $f(x) \neq f(w_1)$.
- 2. {{ x, w_1 }, { w_2 }}, *i.e.*, $x = w_1, x \neq w_2$: $F_{\mathsf{E}} \wedge \alpha(V, E)$ is T_{E} -unsatisfiable because it cannot be the case that both $x = w_1$ and $f(x) \neq f(w_1)$.
- 3. $\{\{x, w_2\}, \{w_1\}\}, i.e., x = w_2, x \neq w_1: F_{\mathsf{E}} \land \alpha(V, E) \text{ is } T_{\mathsf{E}}\text{-unsatisfiable}$ because it cannot be the case that both $x = w_2$ and $f(x) \neq f(w_2)$.
- 4. $\{\{x\}, \{w_1, w_2\}\}, i.e., x \neq w_1, w_1 = w_2: F_{\mathbb{Z}} \land \alpha(V, E) \text{ is } T_{\mathbb{Z}}\text{-unsatisfiable}$ because it cannot be the case that both $w_1 = w_2$ and $w_1 = 1 \land w_2 = 2$.
- 5. {{x}, { w_1 }, { w_2 }}, *i.e.*, $x \neq w_1$, $x \neq w_2$, $w_1 \neq w_2$: $F_{\mathbb{Z}} \land \alpha(V, E)$ is $T_{\mathbb{Z}}$ unsatisfiable because it cannot be the case that both $x \neq w_1 \land x \neq w_2$ and $x = w_1 = 1 \lor x = w_2 = 2$ (since $1 \le x \le 2$ implies that $x = 1 \lor x = 2$ in $T_{\mathbb{Z}}$).

Hence, F is $(T_{\mathsf{E}} \cup T_{\mathbb{Z}})$ -unsatisfiable.

- Phase 2 is formulated as "guess and check": first, guess an equivalence relation E, then check the induced arrangement.
- Unfortunately, the number of equivalence relations is given by the sequence of Bell numbers, which grows super-exponentially.
 - For example, just 12 shared variables induce over four million equivalence relations.

• However, there is no need to guess the entire equivalence relation at once; instead, construct it incrementally.

Correctness of the Nelson-Oppen Method

- We reason at the level of arrangements, which is more suited to the nondeterministic version of the method.
- However, we have shown how to construct an arrangement in the deterministic version, so the proof can be extended to the deterministic version.
- We assume the purification phase is correct.

Correctness of the Nelson-Oppen Method

Theorem (Sound & Complete of Nelson-Oppen).

Consider stably infinite theories T_1 and T_2 such that $\Sigma_1 \cap \Sigma_2 = \{=\}$. For conjunctive quantifier-free Σ_1 -formula F_1 and conjunctive quantifier-free Σ_2 -formula F_2 , $F_1 \wedge F_2$ is $(T_1 \bigoplus T_2)$ -satisfiable iff there exists an arrangement $K = \alpha(\text{shared}(F_1, F_2), E)$ such that $F_1 \wedge K$ is T_1 satisfiable and $F_2 \wedge K$ is T_2 -satisfiable.

Proof of Soundness

Soundness if straightforward.

- Suppose that $F_1 \wedge F_2$ is $(T_1 \oplus T_2)$ -satisfiable with a satisfying $(T_1 \oplus T_2)$ -interpretation I.
- Extract from I the equivalence relation E such that the arrangement $K = \alpha(V = \text{shared}(F_1, F_2), E)$ is satisfied by I.
- Then $F_1 \wedge K$ and $F_2 \wedge K$ are both satisfied by I, which can be viewed as both a T_1 interpretation and a T_2 -interpretation, so that they are T_1 -satisfiable and T_2 -satisfiable, respectively.
- In other words, if the N.O. returns unsatisfiable, then $F_1 \wedge F_2$ is unsatisfiable.

Proof of Completeness

• Let $K = \alpha(V = \text{shared}(F_1, F_2), E)$ be an arrangement such that $F_1 \wedge K$ is T_1 -satisfiable and $F_2 \wedge K$ is T_2 -satisfiable. We want to prove that, $F_1 \wedge F_2$ is $(T_1 \bigoplus T_2)$ -satisfiable.

Proof sketch:

- We suppose that $F_1 \wedge F_2$ is $(T_1 \oplus T_2)$ -unsatisfiable, and derive a contradiction.
- $F_1 \wedge F_2$ is $(T_1 \oplus T_2)$ -unsatisfiable $\Rightarrow F_1 \rightarrow \neg F_2$

• Using Craig Interpolation Lemma, we show that there is a quantifier-free formula H, such that $F_1 \rightarrow H$ over all infinite T_1 -interpretations, and $H \rightarrow \neg F_2$, equally $F_2 \rightarrow \neg H$, over all infinite T_2 -interpretations.

- We then show that $K \to H$, which means $F_2 \to \neg K$ over all infinite T2-interpretations.
- In other words, no infinite T2-interpretation satisfies $F_2 \wedge K$.
- But, if T_2 is stably infinite and $F_2 \wedge K$ is T_2 -satisfiable as assumed, then $F_2 \wedge K$ is satisfied by some infinite T_2 -interpretation, a contradiction.

<u>Compactness Theorem</u>. A countable set of first-order formulae S is simultaneously satisfiable iff the conjunction of every finite subset is satisfiable.

- Let S_1 be conjunction of a finite subset of axioms of T_1 and S_2 a conjunction of a finite subset of axioms of T_2 . Choose S_1 and S_2 to include the axioms that imply reflexivity, symmetry, and transitivity of equality.
- Since $F_1 \wedge F_2$ is $(T_1 \oplus T_2)$ -unsatisfiable, the Compactness Theorem tells us $S_1 \wedge F_1 \wedge S_2 \wedge F_2$ is unsatisfiable.
- Then, rearranging, we have $S_1 \wedge F_1 \Rightarrow \neg S_2 \vee \neg F_2$ (*a*)

Craig Interpolation Lemma

If $\phi_1 \rightarrow \phi_2$, then there exists a formula H such that $\phi_1 \rightarrow H$ and $H \rightarrow \phi_2$, and each free variable, function symbol, and predicate symbol of H appears in ϕ_1 and ϕ_2 .

- Using Craig Interpolation Lemma, according to (a), there exists an interpolant H' such that free(H') = shared(F_1, F_2) and $S_1 \wedge F_1 \Rightarrow H'$ and $S_2 \wedge H' \Rightarrow \neg F_2$ (b) (The letter implication is derived by recompanying $H' \Rightarrow -S_2 \wedge F_2$)
- (The latter implication is derived by rearranging $H' \Rightarrow \neg S_2 \lor \neg F_2$)
- Because = is the only predicate or function shared between $S_1 \wedge F_1$ and $S_2 \wedge F_2$, H' is of a special form: its atoms are equalities between variables of shared (F_1, F_2) .
- However, H' may have quantifiers.
- We prove next that in fact a "weak" quantifier free interpolant H exists.

- What is "weakly equivalent"?
- We define ⇒* as a weaker form of implication: F ⇒* G iff G is true on every interpretation I that has an infinite domain and that satisfies F.
- Similarly, weaken \Leftrightarrow to \Leftrightarrow *.
- If $F \Rightarrow * G$, we say that F weakly implies G;
- if $F \Leftrightarrow * G$, we say that F is weakly equivalent to G.
- Note: since we are considering only stably infinite theories, we need only consider interpretations with infinite domains. We can extend a T1- or T2-interpretation with a finite domain to a T1- or T2-interpretation with an infinite domain.

Lemma (Weak Quantifier Elimination for Pure Equality). Consider any stably infinite theory T with equality. For each pure equality formula F, there exists a quantifier-free pure equality formula F' such that F is weakly T-equivalent to F'.

Proof. Consider pure equality formula $\exists x. G[x, \overline{y}]$, where G is quantifier-free with free variables x and \overline{y} . Define

 $G_0: G\{x = x \mapsto \text{true}, x = y_1 \mapsto \text{false}, \dots, x = y_n \mapsto \text{false}\}$

and, for $i \in \{1, ..., n\}$,

 $G_i: G\{x \mapsto y_i\}$.

We claim that $\exists x. G$ is weakly T-equivalent to

 $G': G_0 \vee G_1 \vee \cdots \vee G_n$.

For G' asserts that x is either equal to some free variable y_i or not. Because we consider only interpretations with infinite domains, it is always possible for x not to equal any y_i .

It is weak because equivalence is only guaranteed to hold on infinite interpretations. • By Lemma(Weak Quantifier Elimination for Pure Equality), according to (b), we claim that there exists a quantifier-free pure equality formula H over shared(F1, F2) such that

 $S_1 \wedge F_1 \Rightarrow *H and S_2 \wedge H \Rightarrow * \neg F_2$

Next step:

- Recall from the beginning of the proof that $F_1 \wedge K$ is T_1 -satisfiable and $F_2 \wedge K$ is T_2 -satisfiable, where $K = \alpha(V = \text{shared}(F_1, F_2), E)$ is an arrangement.
- Thus, $S_1 \wedge F_1 \wedge K$ and $S_2 \wedge F_2 \wedge K$
- Moreover, as T_1 and T_2 are stably infinite, each of these formulae has an interpretation with an infinite domain.

Now, let's look at K.

- We know K is a conjunction of equalities and disequalities between pairs of variables of shared(F_1, F_2).
- Now, we construct the formula K' by conjoining additional equality literals:
 - for each pair of variables $u, v \in shared(F_1, F_2)$, conjoin either u = v or $u \neq v$, depending on which maintains the satisfiability of K' in a theory with equality.
- Since $S_1 \wedge F_1 \wedge K$ is satisfiable, then so is $S_1 \wedge F_1 \wedge K'$, indeed by the same interpretations

We claim that the DNF representation of H must include K' or a (conjunctive) subformula of K' as a disjunct.

• Suppose not; then every disjunct of the DNF representation of H contradicts the satisfying interpretations of $S_1 \wedge F_1 \wedge K'$. But we know at least one interpretation satisfies $S_1 \wedge F_1 \wedge K'$.

So, K' ⇒ H, and because K and K' are equivalent in a theory with equality, thus K⇒H.

 $S_2 \wedge H \Rightarrow * \neg F_2$ Rearranging, $S_2 \wedge F_2 \Rightarrow * \neg H$

From $K \Rightarrow H$, we have $\neg H \Rightarrow \neg K$, so $S_2 \land F_2 \Rightarrow * \neg K$

• But this weak implication contradicts that $S_2 \wedge F_2 \wedge K$ is satisfied by some infinite interpretation.

Proof finished \square

• The Nelson-Oppen method is correct.

Thank you!