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Reminders: theories and signatures

* A first-order theory T is defined by the following components.

1. Itssignature X is a set of constant, function, and predicate symbols.
2. Its set of axioms A is a set of closed FOL formulae in which only constant,

function, and predicate symbols of ¥ appear.

A ¥-formula is constructed from constant, function, and predicate symbols of X,
as well as variables, logical connectives, and quantifiers.



Reminders: T-satisfiability

 Given a FOL formula F and interpretation I: (D;, a;), we want to compute if F
evaluates to true under interpretation I, I = F, or if F evaluates to false under

interpretation I, I #F.
« T — interpretation: an interpretation satisfying I = A for every A € A.

« A ¥-formula F is satisfiable in T, or T -satisfiable, if there is a T-interpretation I
that satisfies F.



Combining Theories

* We know how to decide EUF and Linear Integer Arithmetic :
EUF: (x; = x3) V= (f(xz) = x3) A -~
LIA: 3x; +5x, = 2x3 A xy, < 4x4 ...

« What about a combined formula ?

(3 = x1) A(xy—x3 = %) A(xg = 0) A F(F(xy) — F(x2)) # f(x3)



The Theory-Combination problem

* Given theories T, and T, with signatures X, and X, the combined theory T,®T,
* has signature £, U X, and

e the union of their axioms.

* Let Fbe a X, UX -formula.

» The problem: DoesT,®T, FF ?



The Theory-Combination problem

* The Theory-Combination problem is undecidable (even when the individual
theories are decidable).

e Under certain restrictions, it becomes decidable.

* We will assume the following restrictions:
*T. and T, are decidable, quantifier-free first-order theories with equality;
* Disjoint signatures (except =): %, NZ, ={=} ;

T, and T, are stably infinite (we will discuss this later).



The Theory-Combination problem

* We can reduce all theories to a common logic (e.g. Propositional Logic).

 But here, we focus on the Nelson-Oppen method
* Combine decision procedures of the individual theories.

» Greg Nelson and Derek Oppen, simplification by cooperating decision
procedures, 1979



The Nelson-Oppen method

By utilizing DPLL(T), when deciding combined theories, we can
focus on conjunctive fragments.

SMT Solver

W{_ Datatypes solver
oPLL)
! String solver
SAT 50'\!"&‘!’ Nelson-Oppen £

Bit-vector solver




The Nelson-Oppen method

Step1: Purification: validity-preserving transformation of the formula after which
predicates from different theories are not mixed.

Continue replacing a minimal “alien” expression e by a fresh variable a and add a
= e until no more “alien” expressions.

E.g. Transform x1 < [(x1)
..iIltO Xl S al A\ Cl1 —_ f(xl)



The Nelson-Oppen method

Step1: Purification: validity-preserving transformation of the formula after which
predicates from different theories are not mixed.

Xo 2 X1 ANX1 —X3 =X AX3 2 OAf(f(X1)—f(Xz)) #* f(x3)

~

Xy Zx1 AXg—x3 22X Ax3 2 0Af(a) # fxz)Aa= fx) — fxz)

~

Xo =X ANX{ —X3 22X, Ax3=0Af(a) # f(x3)
ANa=a;—a;Aa; = f(x) Aay = f(xy)
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The Nelson-Oppen method

o After purification we are left with several sets of pure expressions Fj ...

* F; belongs to some ‘pure’ theory which we can decide.
 Shared variables are allowed.

* ¢ is satisfiable < F; A --- A E, is satisfiable

Xszl/\xl—xgsz/\x:gZO/\f(a):;tf(xg)
ANa=a;—a;ANay = f(x) Aay = f(xy)

~~

b1 X=X Ax1—x3=2x,Ax3=0Aa=a;—a,
N\

¢ fla) # f(x3) Aay = f(x) Aay = f(x;)
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The Nelson-Oppen method: A Basic Algorithm

1. Purify ¢ into F; A - A E,

2. If 3i, F; is unsatisfiable, return "unsatisfiable’ .
3. If 3i,j. F; implies an equality not implied by F; , add it to F; and goto step 2.

4. Return "satisfiable’.

The algorithm runs in polynomial time, if the conjunctive
fragments of T; and T, can be decided in polynomial time.
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Example

(X2 = x1) A(xg —x3 =x3) A(x3 =0) /\f(f(x1) - f(xz)) #* f(x3)

e Purification:

Fi: x=2xiANxq—x3=2x,Ax3=0ANa=a;—a,
N\

Fo: f(a)# f(xz) Aay = f(x) Aay = f(x3)
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Example

Arithmetic EUF

X2 = 2 flar) # f(xs)
X1 = X3 = X3 az = f(x1)

x3 =0 az = f(x2)
a1 - az - a3

X3 = 0 X3 = 0

X1 = Xy X1 = X3

a; = as a, = as

al = 0 a1 — 0
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Wait, it" s not so simple...

e Consider: @:1 <xAx < 2Ap(x) A—p(1) A—p(2)

x €7

Arithmetic over Z

Uninterpreted

predicates
1<x p(x)
<2 —p(1)
p(2)

* Neither theories imply an equality, and both are satisfiable.
* But ¢ is unsatisfiable!



Convexity of Theories

 Definition: A X-theory T is convex if for every conjunctive X-formula F,
F—>\/ X; =Yy;,forsomen>1=
i=1.n

F-x;, =vy;forsomeie€{l..n}
where x;, y; are some T variables.

* Convex: Linear Arithmetic over R, EUF
» Non-convex: Almost anything else...
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Convexity of Theories: examples

Linear arithmetic over Z is not convex.

For example, while

X1:1AX2:2/\1SX3/\X3S2:>(X3:X1VX3:X2)

holds, neither
X1=1/\X2 =2/\1SX3/\X3S2$X3 = X1

nor
X1:1AX2:2A1SX3/\X3S2:>X3:X2

holds
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LRA is Convex

Definition: A X-theory T is if for every conjunctive X-formula F,
F— \/ x; =y, forsomen>1=>F - x; =vy;, for somei € {1..n}
i=1.n

Denote G: V- ,xi = ¥;
Intuition: let us view an assignment of all variables as a point.

S(F): the set of points satistying F; S(G) similarly.
F — G means, if a point is in S(F), then it is also in S(G) .
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Intuition:

F cannot be covered by any disjunction of equalities, no matter how many, if no
single equality covers F.

A polyhedron F cannot be covered by a finite disjunction of planes unless at least
one of the planes is F itself.



LRA is Convex

Proof idea:

 Fis a conjunction of linear rational equations/inequations. = F is convex.

* Suppose F -G, but forno i € {1..n} does F — x; = y;, we will prove that then F is
not convex. This leads to a contradiction.
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LRA is Convex

Prootf:
« Each equality x; = y; is convex: for an equality x=y, if two points u, v satisfies the
equality, then for any 1 € (0,1), Au + (1 — A)v also satisfies the equality.

 But the disjunction G is not convex (e.g. H: x = y V x = z, the points (0,0,1) and
(1,0,1) are in the set of points satisfying H, denoted as S(H), but % (0,0,1) +
~(1,0,1)=(3,0,1) is not in S(H)).

* Indeed, S(G) consists of S, _,. for each equationx; = y;.
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LRA is Convex

* Suppose, then, that F -G :V;_, ,x; = y;, butfornoi € {1..n} does F = x; = y;.

* Then there must be two points u and v in S(F), they are in separate subsets of
S(G).
« otherwise, if all points are in the same subset, that means all points satisfy the same
equality, F - x; = y; for some 1.

By the arguments above, the points on the line segment between 1 and v are not
in S(G) and thus not in S(F).

= F i1s not convex.

This leads to a contradiction.
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So why is convexity important ?

*Recall: @:1<xAx<2ApG)A—p(1)A—Dp(2)

x € 7

Arithmetic over Z

Uninterpreted

predicates
1<x p(x)
x <2 ~p(1)
p(2)

* Neither theories imply an equality, and both are satisfiable.
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Propagate Disjunction for Non-Convex Theories
* But: 1 < x Ax < 2 imply the disjunctionx =1V x = 2
» Since the theory is non-convex we cannot propagate either x = 1 or x = 2.

* We can only propagate the disjunction itself.
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Propagate Disjunction for Non-Convex Theories

* Propagate the disjunction and perform case-splitting.

Arithmetic over Z Uninterpreted
predicates
l=x p(x)
x=2 ~p(L)A=p(2)
x=1vx =2 x=1vx =2 ©5plit!

(MAx=1| ()Ax=2

False False




The Nelson-Oppen Method: the Full Algorithm

1. Purifydintod: F; A--AE,
2. If 3i, F; is unsatisfiable, return "unsatisfiable’ .

3. If 3i,j. F; implies an equality not implied by F; , add it to F; and goto step 2.

4. It3i, F; > (xy =y, V- VX, = yp)but 3j F;» x; = y;, apply recursively to ¢’A
X1 = Vi, - @ A X, = yg. If any of them is satisfiable, return ‘satisfiable’.
Otherwise return ‘unsatisfiable’.

5. Return “satisfiable’.

The algorithm runs in exponential time, even if the conjunctive
fragments of T; and T, can be decided in polynomial time.
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Why the theories need to be Stably Infinite?

Example.

* T, : 2; ={f,=}, axioms enforce solutions with at most two distinct values.
T, : ¥, ={g,=}, axioms..

f and g are function symbols.

* The combined theory T; @T, contains the union of the axioms, and thus, the solution
to any formula ¢ € T;®T, cannot have more than two distinct values.

Consider this formula: f(x;) # f(x) A g(xq) # g(x3) A g(xy) #= g(x3)

No equalitifes are propagated, and the algorithm Fy (a Z1-formula)| Fs (a Za-formula)
returns Satisfiable. Error!

In fact, the formula is unsatisfiable, because any flx1) # f(z2) | g(x1) # g(2:
assignment satisfying it must use three different 9(z2) # 9(z:
values for x, x, and x;.

27



Stably Infinite Theories

A ¥ -theory is stably infinite if every satisfiable formula
has a model with an infinite domain.

Examples of Stably infinite theories
« LIA and LRA: Linear integer arithmetic, Linear real arithmetic
« EUF: Equality logic with uninterpreted functions

Examples of non-stably infinite theories
e>={a,b,=}axiom: Vx.x=aVx=>b
 Theory of fixed width bit vectors: BV

There are extensions of Nelson-Oppen method that can handle non-stably infinite theories.
C. Tinelli and C. Zarba. Combining non-stably infinite theories.
Journal of Automated Reasoning, 34(3):209{238, 2005.
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Nelson-Oppen Method: Nondeterministic Version

* In practice, Nelson-Oppen method is based on the deterministic method we just
described.

 There is a nondeterministic version, which is easier to understand and to prove
the correctness.

 The purification phase is the same.

* For the equality propagation phase, the nondeterministic version adopts a guess-
and-check favor, instead of the construction favor in the deterministic version.

29



Nelson-Oppen Method: Nondeterministic Version

Purification phase separates (=, U X,)-formula F into two formulas, Z,-formula F; and Z,-
formula F,.

F; and F, are linked by a set of shared variables.

* Let V = shared(F;, F,) = free(F;) N free(F,)
* Let E be an equivalence relation over shared (Fy, F,).
* The arrangement a(V, E) of Vinduced by E is the formula:

alV.E) : /\ uw=v A /\ u#v

uv € V., uFv uv € V. a(uEv)

F is T, ®T, -satisfiable iff there exists an equivalence relation E of V such that F;
A a(V,E) is T; —satisfiable, and F, A a(V, E) is T, —satisfiable.
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Nelson-Oppen Method: Nondeterministic Version

We can check the equivalence relation over V, one by one

* Once an equivalence relation E makes F; A a(V, E) be T; —satistfiable and F,
A a(V, E) be T,—satisfiable, then we show that F is satisfiable

o If all the equivalence relations over V have been checked and failed, then F is
unsatisfiable.

31



Example

Example
F:1<xAx<2Af(x)=f()Af(x)=#f(2)

The purification phase separates it into a ¥,-formula F; and a Z;;z-formula F,.

F11SX/\XS2/\W1=1/\W2=2
N\

Fp: f(x) # fw) Af(x) # f(wy)

Then, V = shared(F,, F,)= {x,w{,w,}
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Example

 There are 5 equivalence relations to consider:

1. {{z,wy,wa}}, t.e., z = wy = wy: Fg Aa(V, E) is Tg-unsatisfiable because
it cannot be the case that both x = wy and f(z) # f(w,).

2. {{z,wy },{wa}}, ie, * = wy, x # wy: Fg A a(V,E) is Tg-unsatisfiable
because it cannot be the case that both = w; and f(z) # f(wy).

3. {{z, w2}, {w1}}, i.e., * = wa, * # wyr: Fg A a(V, F) is Tg-unsatisfiable
because it cannot be the case that both x = wy and f(z) # f(wsy).

4. {{z}, {wy,wa}}, ie, x # wy, wy = wy: Fg A a(V, E) is Tz-unsatisfiable
because it cannot be the case that both wy; = wy and wy; =1 A wy = 2.

5. {{z}, {w1}, {wa}}, i.e., z # wy, T # wo, wy # wa: Fg Aa(V,FE) is Tg-
unsatisfiable because it cannot be the case that both x # w; A 2z # w;
andr=w1 =1Vr=ws=2(sincel <z <2impliesthatzr =1Vv =2

in Tz).
Hence, F'is (Te U Tz )-unsatisfiable. =
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Nelson-Oppen Method: Nondeterministic Version

 Phase 2 is formulated as “guess and check”: first, guess an equivalence relation E, then
check the induced arrangement.

« Unfortunately, the number of equivalence relations is given by the sequence of Bell
numbers, which grows super-exponentially.

 For example, just 12 shared variables induce over four million equivalence relations.

« However, there is no need to guess the entire equivalence relation at once; instead,
construct it incrementally.

34



Correctness of the Nelson-Oppen Method

* We reason at the level of arrangements, which is more suited to the nondeterministic
version of the method.

« However, we have shown how to construct an arrangement in the deterministic version,
so the proof can be extended to the deterministic version.

« We assume the purification phase is correct.

35



Correctness of the Nelson-Oppen Method

Theorem (Sound & Complete of Nelson-Oppen).

Consider stably infinite theories T; and T, such that £; n X, = {=}.

For conjunctive quantifier-free ¥, -formula F; and conjunctive quantifier-free
Y, -formula F,, F; A F, is (T, @ T,)-satisfiable iff

there exists an arrangement K = a(shared(F,, F,),E) such that F; AKis T, -
satisfiable and F, A K is T, -satisfiable.

36



Proof of Soundness

Soundness if straightforward.
 Suppose that F; A F, is (T; @ T,)-satisfiable with a satisfying (T; @ T,)-interpretation I.

 Extract from I the equivalence relation E such that the arrangement
K = a(V = shared(F,, F,),E) is satisfied by I.

* Then F; A K and F, A K are both satisfied by I, which can be viewed as both a T; -
interpretation and a T, -interpretation, so that they are T,-satisfiable and T, -satisfiable,

respectively.

 In other words, if the N.O. returns unsatisfiable, then F; A F, is unsatisfiable.
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Proof of Completeness

* Let K = a(V = shared(F,, F,),E) be an arrangement such that F; A K is T, -satisfiable and
F, A K is T,-satisfiable. We want to prove that, F; A F, is (T; @ T,)-satistiable.

Proof sketch:
« We suppose that F; A F, is (T; @ T,)-unsatisfiable, and derive a contradiction.
* F; AF, is (T; @ T,)-unsatisfiable = F; —» —F,

 Using Craig Interpolation Lemma, we show that

there is a quantifier-free formula H, such that F; — H over all infinite T;-interpretations,
and H —» —F,, equally F, - —H, over all infinite T,-interpretations.

* We then show that K - H, which means F, - =K over all infinite T2-interpretations.

* In other words, no infinite T2-interpretation satisfies F, A K.

* But, if T}, is stably infinite and F, A K is T,-satisfiable as assumed, then F, A K is satisfied
by some infinite T,-interpretation, a contradiction.
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Compactness Theorem. A countable set of first-order formulae S is simultaneously
satisfiable iff the conjunction of every finite subset is satisfiable.

 Let S; be conjunction of a finite subset of axioms of T; and S, a conjunction of a finite
subset of axioms of T,. Choose S; and S, to include the axioms that imply reflexivity,
symmetry, and transitivity of equality.

* Since F; A F, is (T; @ T,)-unsatisfiable, the Compactness Theorem tells us S; A F; A S, A
F, is unsatisfiable.

* Then, rearranging, we have S; AF; = =S, V=F, (a)



Craig Interpolation Lemma

If p; — ¢,, then there exists a formula H such that ¢, - H and H — ¢,, and each
free variable, function symbol, and predicate symbol of H appears in ¢, and ¢-.

 Using Craig Interpolation Lemma, according to (a), there exists an interpolant H’ such
that free(H’) = shared(F;, F,) and Sy AF; = H and S, AH' = —F, (b)

(The latter implication is derived by rearranging H' = =S, V =F,)
* Because = is the only predicate or function shared between S; A F; and S, A F,,
H’ is of a special form: its atoms are equalities between variables of shared(F;, F,) .

« However, H’ may have quantifiers.
« We prove next that in fact a “weak” quantifier free interpolant H exists.
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* What is “weakly equivalent™?

* We define =+ as a weaker form of implication: F =x* G iff G is true on every
interpretation I that has an infinite domain and that satisfies F.

e Similarly, weaken & to .

 If F =* G, we say that F weakly implies G;
* if F ©x G, we say that F is weakly equivalent to G.

* Note: since we are considering only stably infinite theories, we need only consider
interpretations with infinite domains. We can extend a T1- or T2-interpretation with a
finite domain to a T1- or T2-interpretation with an infinite domain.



Lemma (Weak Quantifier Elimination for Pure Equality). Consider any stably infinite
theory T with equality. For each pure equality formula F, there exists a quantifier-free
pure equality formula F’ such that F is weakly T-equivalent to F’.

Proof. Consider pure equality formula dz. G[z, 7], where G is quantifier-free
with free variables x and 7. Define

Go: G{z =z + true, = =y, + false, ..., x =y, — false}
and, for i € {1,..., n}, . .
It is weak because equivalence
Gi: Glz— yi} . is only guaranteed to hold on

We claim that Jz. G is weakly T-equivalent to infinite interpretations.

¥ : Gy VGy V -+ VG,.

For GG’ asserts that x is either equal to some free variable y; or not. Because
we consider only interpretations with infinite domains, it is always possible
for  not to equal any ;.
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* By Lemma(Weak Quantifier Elimination for Pure Equality), according to (b), we claim
that there exists a quantifier-free pure equality formula H over shared(F1, F2) such that

Sl/\Fl ﬁ*HandSZAH =% _IFZ



Next step:

 Recall from the beginning of the proof that F; A K is T;-satisfiable and F, A K is
T,-satisfiable, where K = a(V = shared(F;, F,),E) is an arrangement.

* Thus, S;AF;AK and S, AF, AK

* Moreover, as T; and T, are stably infinite, each of these formulae has an
interpretation with an infinite domain.



Now, let’s look at K.

* We know K is a conjunction of equalities and disequalities between pairs of
variables of shared(Fy, F,).

* Now, we construct the formula K’ by conjoining additional equality literals:

» for each pair of variables u, v € shared(F;, F,), conjoin either u = voru # v,
depending on which maintains the satisfiability of K’ in a theory with equality.

* Since S; A F; A K is satisfiable, then so is S; A F; A K', indeed by the same
interpretations



We claim that the DNF representation of H must include K’ or a (conjunctive)
subformula of K’ as a disjunct.

 Suppose not; then every disjunct of the DNF representation of H contradicts the

satisfying interpretations of S; A F; A K. But we know at least one interpretation
satisfies S; AF; AK'.

* So, K’ = H, and because K and K’ are equivalent in a theory with equality, thus
K=H.



SZ NH =x _IFZ

Rearranging,
Sz N F2 = —H

From K=H, we have =H = =K, so
SZ N F2 — _IK

 But this weak implication contradicts that S, A F, A K is satisfied by some infinite
interpretation.

Proof finished o

» The Nelson-Oppen method is correct.



Thank you!
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