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Reminders: theories and signatures

• A first-order theory T is defined by the following components. 

1. Its signature Σ is a set of constant, function, and predicate symbols. 

2. Its set of axioms 𝒜 is a set of closed FOL formulae in which only constant, 
function, and predicate symbols of Σ appear. 

• A Σ-formula is constructed from constant, function, and predicate symbols of Σ, 
as well as variables, logical connectives, and quantifiers. 
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Reminders: T-satisfiability

• Given a FOL formula F and interpretation  𝐼: (𝐷𝐼 , 𝛼𝐼), we want to compute if F 
evaluates to true under interpretation I, I ⊨ F, or if F evaluates to false under 
interpretation I, I ⊭F.

• T – interpretation: an interpretation satisfying 𝐼 ⊨ A for every A ∈𝒜.

• A Σ-formula F is satisfiable in T , or T -satisfiable, if there is a T-interpretation I 
that satisfies F.



4

Combining Theories

• We know how to decide EUF and Linear Integer Arithmetic :

EUF: 𝑥1 = 𝑥2 ∨ ¬ 𝑓 𝑥2 = 𝑥3 ∧ ⋯

LIA: 3𝑥1 + 5𝑥2 ≥ 2𝑥3 ∧ 𝑥2 ≤ 4𝑥4…

• What about a combined formula ?

𝑥2 ≥ 𝑥1 ∧ (𝑥1 − 𝑥3 ≥ 𝑥2) ∧ (𝑥3 ≥ 0) ∧ 𝑓 𝑓 𝑥1 − 𝑓 𝑥2 ≠ 𝑓(𝑥3)
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The Theory-Combination problem

• Given theories T1 and T2 with signatures 1 and 2, the combined theory T1⊕T2

• has signature 1∪ 2 and 

• the union of their axioms.

• Let F be a 1∪2-formula.

• The problem:   Does T1⊕T2╞ F  ?
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The Theory-Combination problem

• The Theory-Combination problem is undecidable (even when the individual 
theories are decidable).

• Under certain restrictions, it becomes decidable.

• We will assume the following restrictions:  

• T1 and T2 are decidable, quantifier-free first-order theories with equality;

• Disjoint signatures (except =):   1 ∩ 2 = {=}  ;

• T1 and T2 are stably infinite (we will discuss this later).
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• We can reduce all theories to a common logic (e.g. Propositional Logic).

• But here, we focus on the Nelson-Oppen method 

• Combine decision procedures of the individual theories. 

• Greg Nelson and Derek Oppen, simplification by cooperating decision 
procedures, 1979 

The Theory-Combination problem
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The Nelson-Oppen method

By utilizing DPLL(T), when deciding combined theories, we can 
focus on conjunctive fragments.
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The Nelson-Oppen method

Step1: Purification: validity-preserving transformation of the formula after which 
predicates from different theories are not mixed.

Continue replacing a minimal “alien” expression e by a fresh variable a and add a 
= e until no more “alien” expressions.

E.g. Transform 𝑥1 ≤ 𝑓(𝑥1)

..into 𝑥1 ≤ 𝑎1 ∧ 𝑎1 = 𝑓(𝑥1)
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The Nelson-Oppen method

Step1: Purification: validity-preserving transformation of the formula after which 
predicates from different theories are not mixed.

𝑥2 ≥ 𝑥1 ∧ 𝑥1 − 𝑥3 ≥ 𝑥2 ∧ 𝑥3 ≥ 0 ∧ 𝑓 𝑓 𝑥1 − 𝑓 𝑥2 ≠ 𝑓(𝑥3)

𝑥2 ≥ 𝑥1 ∧ 𝑥1 − 𝑥3 ≥ 𝑥2 ∧ 𝑥3 ≥ 0 ∧ 𝑓 𝑎 ≠ 𝑓(𝑥3) ∧ a = 𝑓 𝑥1 − 𝑓 𝑥2

𝑥2 ≥ 𝑥1 ∧ 𝑥1 − 𝑥3 ≥ 𝑥2 ∧ 𝑥3 ≥ 0 ∧ 𝑓 𝑎 ≠ 𝑓 𝑥3
∧ a = 𝑎1 − 𝑎2 ∧ 𝑎1 = 𝑓 𝑥1 ∧ 𝑎2 = 𝑓 𝑥2
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The Nelson-Oppen method 

• After purification we are left with several sets of pure expressions 𝐹1…𝐹𝑛:

• 𝐹𝑖 belongs to some ‘pure’ theory which we can decide. 

• Shared variables are allowed.

•  is satisfiable ↔ 𝐹1 ∧ ⋯∧ 𝐹𝑛 is satisfiable

𝑥2 ≥ 𝑥1 ∧ 𝑥1 − 𝑥3 ≥ 𝑥2 ∧ 𝑥3 ≥ 0 ∧ 𝑓 𝑎 ≠ 𝑓 𝑥3
∧ a = 𝑎1 − 𝑎2 ∧ 𝑎1 = 𝑓 𝑥1 ∧ 𝑎2 = 𝑓 𝑥2

𝜙1: 𝑥2 ≥ 𝑥1 ∧ 𝑥1 − 𝑥3 ≥ 𝑥2 ∧ 𝑥3 ≥ 0 ∧ a = 𝑎1 − 𝑎2
∧

𝜙2: 𝑓 𝑎 ≠ 𝑓 𝑥3 ∧ 𝑎1 = 𝑓 𝑥1 ∧ 𝑎2 = 𝑓 𝑥2
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The Nelson-Oppen method: A Basic Algorithm

1. Purify  into 𝐹1 ∧ ⋯∧ 𝐹𝑛

2. If ∃i, 𝐹𝑖 is unsatisfiable, return `unsatisfiable’ .

3. If ∃i, 𝑗. 𝐹𝑖 implies an equality not implied by 𝐹𝑗 , add it to 𝐹𝑗 and goto step 2.

4. Return `satisfiable’.

The algorithm runs in polynomial time, if the conjunctive 
fragments of 𝑇1 and 𝑇2 can be decided in polynomial time. 
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Example

𝑥2 ≥ 𝑥1 ∧ (𝑥1 − 𝑥3 ≥ 𝑥2) ∧ (𝑥3 ≥ 0) ∧ 𝑓 𝑓 𝑥1 − 𝑓 𝑥2 ≠ 𝑓(𝑥3)

• Purification:

𝐹1: 𝑥2 ≥ 𝑥1 ∧ 𝑥1 − 𝑥3 ≥ 𝑥2 ∧ 𝑥3 ≥ 0 ∧ a = 𝑎1 − 𝑎2
∧

𝐹2: 𝑓 𝑎 ≠ 𝑓 𝑥3 ∧ 𝑎1 = 𝑓 𝑥1 ∧ 𝑎2 = 𝑓 𝑥2
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Example

Arithmetic EUF

𝑥2 ≥ 𝑥1
𝑥1 − 𝑥3 ≥ 𝑥2

x3 ≥ 0
𝑎1 = 𝑎2 − 𝑎3

𝑓(𝑎1) ≠ 𝑓(𝑥3)
𝑎2 = 𝑓(𝑥1)
𝑎3 = 𝑓(𝑥2)

𝑥1 = 𝑥2

𝑎1 = 0

False

𝑎2 = 𝑎3

𝑥3 = 0

𝑥1 = 𝑥2

𝑥3 = 0

𝑎2 = 𝑎3

𝑎1 = 0
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Wait, it’s not so simple…

• Consider: φ: 1 ≤ 𝑥 ∧ 𝑥 ≤ 2 ∧ 𝑝 𝑥 ∧ ¬ 𝑝 1 ∧ ¬ 𝑝 2

𝑥 ∊ Z

• Neither theories imply an equality, and both are satisfiable.

• But  is unsatisfiable!

Arithmetic over Z Uninterpreted 

predicates

1 ≤ 𝑥

𝑥 ≤ 2

𝑝 𝑥
¬ 𝑝 1
𝑝 2
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Convexity of Theories

• Definition: A Σ-theory T is convex if for every conjunctive Σ-formula 𝐹, 

F →ሧ
𝑖=1..𝑛

𝑥𝑖 = 𝑦𝑖 , 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 > 1 ⇒

F → 𝑥𝑖 = 𝑦𝑖 , 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 ∊ {1. . 𝑛}

where 𝑥𝑖, 𝑦𝑖 are some T variables.

• Convex: Linear Arithmetic over R, EUF 

• Non-convex: Almost anything else…
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Convexity of Theories: examples

Linear arithmetic over Z is not convex. 

For example, while

x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 ⇒ (x3 = x1 ∨ x3 = x2)

holds, neither
x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 ⇒ x3 = x1

nor
x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 ⇒ x3 = x2

holds
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LRA is Convex

Definition: A Σ-theory T is convex if for every conjunctive Σ-formula F, 

F →ሧ
𝑖=1..𝑛

𝑥𝑖 = 𝑦𝑖 , 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 > 1 ⇒ F → 𝑥𝑖 = 𝑦𝑖 , 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 ∊ {1. . 𝑛}

Denote G: ڀ𝑖=1..𝑛 𝑥𝑖 = 𝑦𝑖

Intuition: let us view an assignment of all variables as a point.

S(F): the set of points satisfying F; S(G) similarly.

F → G means, if a point is in S(F), then it is also in S(G) . 



19

Intuition:

F cannot be covered by any disjunction of equalities, no matter how many, if no 
single equality covers F.

A polyhedron F cannot be covered by a finite disjunction of planes unless at least 
one of the planes is F itself.
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LRA is Convex

Proof idea:

• F is a conjunction of linear rational equations/inequations. ⇒ F is convex.

• Suppose F →G, but for no 𝑖 ∊ {1. . 𝑛} does F → 𝑥𝑖 = 𝑦𝑖 , we will prove that then F is 
not convex. This leads to a contradiction.
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LRA is Convex

Proof:

• Each equality 𝑥𝑖 = 𝑦𝑖 is convex: for an equality x=y, if two points 𝑢, Ԧ𝑣 satisfies the 
equality, then for any 𝜆 ∈ 0,1 , 𝜆𝑢 + (1 − 𝜆) Ԧ𝑣 also satisfies the equality.

• But the disjunction G is not convex (e.g. H: 𝑥 = 𝑦 ∨ 𝑥 = 𝑧, the points (0,0,1) and 

(1,0,1) are in the set of points satisfying H, denoted as S(H), but 
1

2
0,0,1 +

1

2
1,0,1 =(

1

2
,0,1) is not in S(H)). 

• Indeed, S(G) consists of S𝑥𝑖=𝑦𝑖 for each equation𝑥𝑖 = 𝑦𝑖.
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LRA is Convex

• Suppose, then, that F →G : 𝑖=1..𝑛ڀ 𝑥𝑖 = 𝑦𝑖, but for no 𝑖 ∊ {1. . 𝑛} does F → 𝑥𝑖 = 𝑦𝑖.

• Then there must be two points 𝑢 𝑎𝑛𝑑 Ԧ𝑣 in S(F), they are in separate subsets of 
S(G). 
• otherwise, if all points are in the same subset, that means all points satisfy the same 

equality, F → 𝑥𝑖 = 𝑦𝑖 for some i.

• By the arguments above, the points on the line segment between 𝑢 𝑎𝑛𝑑 Ԧ𝑣 are not 
in S(G) and thus not in S(F). 

⇒ F is not convex. 

This leads to a  contradiction.
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So why is convexity important ? 

• Recall: φ: 1 ≤ 𝑥 ∧ 𝑥 ≤ 2 ∧ 𝑝 𝑥 ∧ ¬ 𝑝 1 ∧ ¬ 𝑝 2
𝑥 ∊ Z

• Neither theories imply an equality, and both are satisfiable.

Arithmetic over Z Uninterpreted 

predicates

1 ≤ 𝑥

𝑥 ≤ 2

𝑝 𝑥
¬ 𝑝 1
𝑝 2
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Propagate Disjunction for Non-Convex Theories

• But: 1 ≤ 𝑥 ∧ x ≤ 2 imply the disjunction 𝑥 = 1 ∨ x = 2

• Since the theory is non-convex we cannot propagate either 𝑥 = 1 or x = 2.

• We can only propagate the disjunction itself.
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Propagate Disjunction for Non-Convex Theories

• Propagate the disjunction and perform case-splitting.

Arithmetic over Z Uninterpreted 

predicates

1 ≤ 𝑥

𝑥 ≤ 2

𝑝 𝑥

¬ 𝑝 1 ∧¬ 𝑝 2

𝑥 = 1 ∨ 𝑥 = 2 𝑥 = 1 ∨ 𝑥 = 2

· ∧ x = 1

False

· ∧ x = 2

False

Split!
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The Nelson-Oppen Method: the Full Algorithm

1. Purify  into ’: 𝐹1 ∧ ⋯∧ 𝐹𝑛

2. If ∃i, 𝐹𝑖 is unsatisfiable, return `unsatisfiable’ .

3. If ∃i, 𝑗. 𝐹𝑖 implies an equality not implied by 𝐹𝑗 , add it to 𝐹𝑗 and goto step 2.

4. If ∃i, 𝐹𝑖 → 𝑥1 = 𝑦1 ∨ ⋯∨ 𝑥𝑘 = 𝑦𝑘 but ∃𝑗 𝐹𝑖↛ 𝑥𝑗 = 𝑦𝑗, apply recursively to φ’∧
𝑥1 = 𝑦1, …φ’ ∧ 𝑥𝑘 = 𝑦𝑘. If any of them is satisfiable, return ‘satisfiable’. 
Otherwise return ‘unsatisfiable’.

5. Return `satisfiable’.

The algorithm runs in exponential time, even if the conjunctive 
fragments of 𝑇1 and 𝑇2 can be decided in polynomial time. 
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Why the theories need to be Stably Infinite?

Example. 

• 𝑇1 : Σ1 ={𝑓,=}, axioms enforce solutions with at most two distinct values.

• 𝑇2 :  Σ1 ={𝑔,=},  axioms…

𝑓 and 𝑔 are function symbols.

• The combined theory 𝑇1⨁𝑇2 contains the union of the axioms, and thus, the solution 
to any formula 𝜙 ∈ 𝑇1⨁𝑇2 cannot have more than two distinct values.

No equalities are propagated, and the algorithm
returns Satisfiable. Error!
In fact, the formula is unsatisfiable, because any 

assignment satisfying it must use three different 
values for 𝑥1, 𝑥2 and 𝑥3.

Consider this formula: 𝑓 x1 ≠ 𝑓 𝑥2 ∧ 𝑔 𝑥1 ≠ 𝑔 𝑥3 ∧ 𝑔 𝑥2 ≠ 𝑔(𝑥3)
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Stably Infinite Theories

Examples of Stably infinite theories

• LIA and LRA: Linear integer arithmetic, Linear real arithmetic

• EUF: Equality logic with uninterpreted functions

Examples of non-stably infinite theories

• Σ = {a, b, = } axiom: ∀x. x = a ∨ x = b

• Theory of fixed width bit vectors: BV 

A Σ -theory is stably infinite if every satisfiable formula 
has a model with an infinite domain.

There are extensions of Nelson-Oppen method that can handle non-stably infinite theories.
C. Tinelli and C. Zarba. Combining non-stably infinite theories. 
Journal of Automated Reasoning, 34(3):209{238, 2005.
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Nelson-Oppen Method: Nondeterministic Version

• In practice, Nelson-Oppen method is based on the deterministic method we just 
described.

• There is a nondeterministic version, which is easier to understand and to prove 
the correctness.
• The purification phase is the same.

• For the equality propagation phase, the nondeterministic version adopts a guess-
and-check favor, instead of the construction favor in the deterministic version.
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Nelson-Oppen Method: Nondeterministic Version

Purification phase separates (1∪2)-formula F into two formulas, Σ1-formula F1 and Σ2-
formula F2.

F1 and F2 are linked by a set of shared variables.

• Let V = shared(𝐹1, 𝐹2) = free(𝐹1) ∩ free(𝐹2)

• Let E be an equivalence relation over shared (𝐹1, 𝐹2).

• The arrangement 𝛼(𝑉, 𝐸) of V induced by E is the formula:

F is 𝑇1⨁𝑇2 -satisfiable iff there exists an equivalence relation E of V such that 𝐹1
∧ 𝛼(𝑉, 𝐸) is 𝑇1−satisfiable, and 𝐹2 ∧ 𝛼(𝑉, 𝐸) is 𝑇2−satisfiable.
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Nelson-Oppen Method: Nondeterministic Version

We can check the equivalence relation over V, one by one

• Once an equivalence relation E makes 𝐹1 ∧ 𝛼(𝑉, 𝐸) be 𝑇1−satisfiable and 𝐹2
∧ 𝛼(𝑉, 𝐸) be 𝑇2−satisfiable, then we show that F is satisfiable

• If all the equivalence relations over V have been checked and failed, then F is 
unsatisfiable.
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Example

Example
𝐹: 1 ≤ 𝑥 ∧ 𝑥 ≤ 2 ∧ 𝑓 𝑥 ≠ 𝑓 1 ∧ 𝑓 𝑥 ≠ 𝑓 2

The purification phase separates it into a Σ𝕫-formula 𝐹1 and a Σ𝐸𝑈𝐹-formula 𝐹2.

𝐹1: 1 ≤ 𝑥 ∧ 𝑥 ≤ 2 ∧ 𝑤1 = 1 ∧ 𝑤2 = 2
∧

𝐹2: 𝑓 𝑥 ≠ 𝑓 𝑤1 ∧ 𝑓 𝑥 ≠ 𝑓 𝑤2

Then, V = shared(𝐹1, 𝐹2)= {𝑥, 𝑤1, 𝑤2}
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Example

• There are 5 equivalence relations to consider:
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Nelson-Oppen Method: Nondeterministic Version

• Phase 2 is formulated as “guess and check”: first, guess an equivalence relation E, then 
check the induced arrangement. 

• Unfortunately, the number of equivalence relations is given by the sequence of Bell 
numbers, which grows super-exponentially. 

• For example, just 12 shared variables induce over four million equivalence relations.

• However, there is no need to guess the entire equivalence relation at once; instead, 
construct it incrementally.
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Correctness of the Nelson-Oppen Method

• We reason at the level of arrangements, which is more suited to the nondeterministic 
version of the method.

• However, we have shown how to construct an arrangement in the deterministic version, 
so the proof can be extended to the deterministic version.

• We assume the purification phase is correct.
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Correctness of the Nelson-Oppen Method

Theorem (Sound & Complete of Nelson-Oppen).

Consider stably infinite theories 𝑇1 and 𝑇2 such that Σ1 ∩ Σ2 = {=}. 

For conjunctive quantifier-free Σ1 -formula 𝐹1 and conjunctive quantifier-free 
Σ2 -formula 𝐹2, 𝐹1 ∧ 𝐹2 is (𝑇1 ⊕𝑇2)-satisfiable   iff

there exists an arrangement K = α(shared(𝐹1, 𝐹2),E) such that 𝐹1 ∧ 𝐾 is 𝑇1 -
satisfiable and 𝐹2 ∧ 𝐾 is 𝑇2 -satisfiable.
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Proof of Soundness

Soundness if straightforward.

• Suppose that 𝐹1 ∧ 𝐹2 is (𝑇1 ⊕𝑇2)-satisfiable with a satisfying (𝑇1 ⊕𝑇2)-interpretation I. 

• Extract from I the equivalence relation E such that the arrangement 

K = α(V = shared(𝐹1, 𝐹2),E) is satisfied by I. 

• Then 𝐹1 ∧ 𝐾 and 𝐹2 ∧ 𝐾 are both satisfied by I, which can be viewed as both a 𝑇1 -
interpretation and a 𝑇2 -interpretation, so that they are 𝑇1-satisfiable and 𝑇2 -satisfiable, 
respectively.

• In other words, if the N.O. returns unsatisfiable, then 𝐹1 ∧ 𝐹2 is unsatisfiable.
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Proof of Completeness

• Let K = α(V = shared(𝐹1, 𝐹2),E) be an arrangement such that 𝐹1 ∧ 𝐾 is 𝑇1-satisfiable and 
𝐹2 ∧ 𝐾 is 𝑇2-satisfiable. We want to prove that, 𝐹1 ∧ 𝐹2 is (𝑇1 ⊕𝑇2)-satisfiable.

Proof sketch:

• We suppose that 𝐹1 ∧ 𝐹2 is (𝑇1 ⊕𝑇2)-unsatisfiable, and derive a contradiction.

• 𝐹1 ∧ 𝐹2 is (𝑇1 ⊕𝑇2)-unsatisfiable  ⇒ 𝐹1 → ¬𝐹2
• Using Craig Interpolation Lemma, we show that 

there is a quantifier-free formula H, such that 𝐹1 → 𝐻 over all infinite 𝑇1-interpretations, 
and 𝐻 → ¬𝐹2, equally 𝐹2 → ¬𝐻, over all infinite 𝑇2-interpretations.

• We then show that K → 𝐻, which means 𝐹2 → ¬𝐾 over all infinite T2-interpretations.

• In other words, no infinite T2-interpretation satisfies 𝐹2 ∧ 𝐾.

• But, if 𝑇2 is stably infinite and 𝐹2 ∧ 𝐾 is 𝑇2-satisfiable as assumed, then 𝐹2 ∧ 𝐾 is satisfied 
by some infinite 𝑇2-interpretation, a contradiction.
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• Let 𝑆1 be  conjunction of a finite subset of axioms of 𝑇1 and 𝑆2 a conjunction of a finite 
subset of axioms of 𝑇2. Choose 𝑆1 and 𝑆2 to include the axioms that imply reflexivity, 
symmetry, and transitivity of equality.

• Since 𝐹1 ∧ 𝐹2 is (𝑇1 ⊕𝑇2)-unsatisfiable, the Compactness Theorem tells us 𝑆1 ∧ 𝐹1 ∧ 𝑆2 ∧
𝐹2 is unsatisfiable.

• Then, rearranging, we have   𝑆1 ∧ 𝐹1 ⇒ ¬𝑆2 ∨ ¬𝐹2 (a)

Compactness Theorem. A countable set of first-order formulae S is simultaneously 
satisfiable iff the conjunction of every finite subset is satisfiable.
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Craig Interpolation Lemma

If 𝜙1 → 𝜙2, then there exists a formula H such that 𝜙1 → 𝐻 and 𝐻 → 𝜙2, and each 
free variable, function symbol, and predicate symbol of H appears in 𝜙1 and 𝜙2.

• Using Craig Interpolation Lemma, according to (a), there exists an interpolant H′ such 
that free(H′) = shared(𝐹1, 𝐹2) and 𝑆1 ∧ 𝐹1 ⇒ 𝐻′ 𝑎𝑛𝑑 𝑆2 ∧ 𝐻

′ ⇒ ¬𝐹2 (b)

(The latter implication is derived by rearranging H′ ⇒ ¬𝑆2 ∨ ¬𝐹2)

• Because = is the only predicate or function shared between 𝑆1 ∧ 𝐹1 and 𝑆2 ∧ 𝐹2, 

H′ is of a special form: its atoms are equalities between variables of shared(𝐹1, 𝐹2) .

• However, H′ may have quantifiers.

• We prove next that in fact a “weak” quantifier free interpolant H exists.
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• What is “weakly equivalent”?

• We define ⇒∗ as  a weaker form of implication: F ⇒∗ G iff G is true on every 
interpretation I that has an infinite domain and that satisfies F. 

• Similarly, weaken ⇔ to ⇔∗.

• If F ⇒∗ G, we say that F weakly implies G; 

• if F ⇔∗ G, we say that F is weakly equivalent to G.

• Note: since we are considering only stably infinite theories, we need only consider 
interpretations with infinite domains. We can extend a T1- or T2-interpretation with a 
finite domain to a T1- or T2-interpretation with an infinite domain.
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Lemma (Weak Quantifier Elimination for Pure Equality). Consider any stably infinite 
theory T with equality. For each pure equality formula F, there exists a quantifier-free 
pure equality formula F′ such that F is weakly T-equivalent to F′.

It is weak because equivalence 
is only guaranteed to hold on 
infinite interpretations.
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• By Lemma(Weak Quantifier Elimination for Pure Equality), according to (b), we claim 
that there exists a quantifier-free pure equality formula H over shared(F1, F2) such that

𝑆1 ∧ 𝐹1 ⇒∗ 𝐻 𝑎𝑛𝑑 𝑆2 ∧ 𝐻 ⇒∗ ¬𝐹2
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Next step:

• Recall from the beginning of the proof that 𝐹1 ∧ 𝐾 is 𝑇1-satisfiable and 𝐹2 ∧ 𝐾 is 
𝑇2-satisfiable, where K = α(V = shared(𝐹1, 𝐹2),E) is an arrangement.

• Thus,  S1 ∧ 𝐹1 ∧ 𝐾 and S2 ∧ 𝐹2 ∧ 𝐾

• Moreover, as 𝑇1 and 𝑇2 are stably infinite, each of these formulae has an 
interpretation with an infinite domain.
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Now, let’s look at K.

• We know K is a conjunction of equalities and disequalities between pairs of 
variables of shared(𝐹1, 𝐹2).

• Now, we construct the formula K′ by conjoining additional equality literals: 

• for each pair of variables u, v ∈ 𝑠ℎ𝑎𝑟𝑒𝑑 𝐹1, 𝐹2 , conjoin either u = v or u ≠ v, 
depending on which maintains the satisfiability of K′ in a theory with equality.

• Since S1 ∧ 𝐹1 ∧ 𝐾 is satisfiable, then so is S1 ∧ 𝐹1 ∧ 𝐾′, indeed by the same 
interpretations
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We claim that the DNF representation of H must include K′ or a (conjunctive) 
subformula of K′ as a disjunct.

• Suppose not; then every disjunct of the DNF representation of H contradicts the 
satisfying interpretations of S1 ∧ 𝐹1 ∧ 𝐾

′. But we know at least one interpretation 
satisfies S1 ∧ 𝐹1 ∧ 𝐾′.

• So, K′ ⇒ H, and because K and K′ are equivalent in a theory with equality, thus 

K⇒H.
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𝑆2 ∧ 𝐻 ⇒∗ ¬𝐹2
Rearranging, 
𝑆2 ∧ 𝐹2 ⇒∗ ¬H

From K⇒H, we have ¬H ⇒ ¬𝐾, so
𝑆2 ∧ 𝐹2 ⇒∗ ¬𝐾

• But this weak implication contradicts that S2 ∧ 𝐹2 ∧ 𝐾 is satisfied by some infinite 
interpretation. 

Proof finished □

• The Nelson-Oppen method is correct.
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Thank you!
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