Local Search and Its Application in CDCL/CDCL(T) Solvers for SAT/SMT

Shaowei Cai

Institute of Software, Chinese Academy of Sciences

FMCAD 2023

October 23 to 27, 2023,

Ames, Iowa, USA

SAT, SMT

SAT: Propositional Satisfiability $(A \lor B) \land (\neg C \lor \neg B) \land (\neg C \lor A)$

SMT: Satisfiability Modulo Theories $\neg(b+2 = c) \land (A[3] \neq A[c-b+1] \lor s = 10)$

To solve SAT and SMT:

- conflict-driven clause learning (CDCL)
- local search

. . .

Outline

- Local Search for SAT
 - Basis and Early Methods
 - Modern Local Search Solvers
- Local Search for SMT
 - Local Search for Bit Vectors //slides in this part provided by Aina Niemetz
 - Local Search for Arithmetic Theories
- Improving CDCL/CDCL(T) solvers by Local Search

Outline

- Local Search for SAT
 - Basis and Early Methods
 - Modern Local Search Solvers
- Local Search for SMT
 - Local Search for Bit Vectors //slides in this part provided by Aina Niemetz
 - Local Search for Arithmetic Theories
- Improving CDCL/CDCL(T) solvers by Local Search

SAT

Definition Boolean Satisfiability/Propositional Satisfiability/SAT Given a propositional formula φ , test whether there is an assignment to the variables that makes φ true.

- Boolean variables: $x_1, x_2, ...$
- A literal is a Boolean variable x (positive literal) or its negation $\neg x$ (negative literal)
- A clause is a disjunction (v) of literals

 $x_2 \lor x_3,$ $\neg x_1 \lor \neg x_3 \lor x_4 \quad (\{\neg x_1, \neg x_3, x_4\})$

• A Conjunctive Normal Form (CNF) formula is a conjunction (∧) of clauses.

e.g., $\varphi = (x_1 \lor \neg x_2) \land (x_2 \lor x_3) \land (x_2 \lor \neg x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

Local Search

$$\mathsf{F} = \{ \neg x_1 \lor \neg x_2, \ x_1 \lor x_2, \neg x_2 \lor \neg x_3, x_2 \lor x_3, \ \neg x_1 \lor x_2 \lor \neg x_3 \}$$

Assignment (x_1, x_2, x_3)	Cost	falsified Clauses
000	2	$(x_1 \lor x_2), (x_2 \lor x_3)$
001	1	$(x_1 \lor x_2)$
010	0	None 🗸
011	1	$(\neg x_2 \lor \neg x_3)$
100	1	$(x_2 \lor x_3)$
101	1	$(\neg x_1 \lor x_2 \lor \neg x_3)$
110	1	$(\neg x_1 \lor \neg x_2)$
111	2	$(\neg x_1 \lor \neg x_2), (\neg x_2 \lor \neg x_3)$

a CNF with 3 variables

Search space: all complete assignments

Organized by neighboring relation

Local search walks in the search space, trying to visit a satisfying assignment

--- incomplete, cannot prove unsatisfiability.

Local Search

search space S (consists of all candidate solutions)

SAT: set of all complete truth assignments to variables

solution set $S' \subseteq S$

SAT: models of given formula

neighbourhood relation $N \subseteq S \times S$

SAT: Hamming distance 1

objective function $f: S \rightarrow R+$

SAT: number of falsified clauses under given assignment

evaluation function $g: S \rightarrow R$

 $cost(\alpha)$ =number of falsified clauses under given assignment We can have other cost functions... Local search views SAT as a minimization problem.

Operator

Neighboring relation \rightarrow defined by operators

An operator defines how to modify the candidate solution in one step.

(e.g., Hamming distance 1 neighboring relation $\leftarrow \rightarrow$ operator of flipping one variable)

Flip operator for SAT

When an operator is instantiated with a variable (and a value), we obtain an operation. (e.g., $flip(x_1)$)

Scoring Function

We need an evaluation function to guide the search.

Instead of calculating cost function for candidate solutions, we calculate scoring function for operations.

(We have efficient method for calculating scores.)

A common function: $score(x) = cost(\alpha) - cost(\alpha')$

Example.

$$\mathsf{F} = \{ \neg x_1 \lor \neg x_2, \ x_1 \lor x_2, \neg x_2 \lor \neg x_3, x_2 \lor x_3, \ \neg x_1 \lor x_2 \lor \neg x_3 \}$$

Assignment (x_1, x_2, x_3)	Cost	falsified Clauses
011	1	$(\neg x_2 \lor \neg x_3)$
<u>1</u> 11	2	$(\neg x_1 \lor \neg x_2), (\neg x_2 \lor \neg x_3)$
0 <u>0</u> 1	1	$(x_1 \lor x_2)$
0 1 <u>0</u>	0	None

 $score(x_1) = cost(011) - cost(111) = -1$ $score(x_2) = cost(011) - cost(001) = 0$ $score(x_3) = cost(011) - cost(010) = 1$

Score Computation

Cache based computation

 $N(x) = \{ \text{variables share clauses with } x \}$

- Initially calculate score(x) for each variable
- When flip a variable x, only score for those in N(x) should be updated
 - Go through all clauses where x appears, need to update scores in 4 cases
 - 2-satisfied \rightarrow 1 satisfied
 - 1-satisfied \rightarrow falsified
 - falsified \rightarrow 1-satisfied
 - 1-satisfied \rightarrow 2-satisfied

Non-cache computation

• Simply compute score according to definition, by going through the x's clauses and compute the contribution (either +1 or -1) of each clause

More Scoring Functions

Mainly consider the objective function

- make(x): the number of currently falsified clauses that would become satisfied by flipping x.
- break(x): the number of currently satisfied clauses that would become falsified by flipping x.
- It is easy to see that score(x) = make(x)-break(x).
- score(x)^B
- A-break(x)
- ...

May also consider the algorithm's behavior

- age(x): the number of steps since the last time x was flipped.
- score(x)+age(x)/T
- ...

Dynamic Scoring functions

• Change the parameters or the expression of the scoring function during the search

Local Search for SAT

Design of local search SAT algorithms

operator

initialization

• Scoring functions

• Search heuristics

GSAT

GSAT [SelmanLevesqueMitchell, AAAI'92]

Tested on hard random 3-SAT, and instances encoded from graph coloring and N-queens, showing promising results at that time.

Random Walk [Papadimitriou,FOCS'91] Focus on complexity analysis Start with any truth assignment. While there are unsatisfied clauses, pick one and flip a random literal in it.

WalkSAT[SelmanKautzCohen,AAAI'94]

WalkSAT-PickVar

C := a random falsified clause

If \exists variable with 0-break

x := a 0-break variable, breaking ties randomly;

else

```
with probability p
    x := a random variable in C;
otherwise
    x := a variable with the smallest break, randomly;
```

WalkSAT (with p=0.567) performs very well on random 3-SAT, tested on up to half million variables [KrocSabharwalSelman,SAT'10] Local search algorithms for SAT mainly fall into two types:

 focused random walk (also called focused local search): always picks the flip variable from an unsatisfied clause. (conflict driven)

• two-mode local search

switches between global mode (usually for intensification) and focused mode (usually for diversification).

Focused Random Walk

Novelty [McAllesterSelmanKautz, AAAI'97]

Novelty+ [Hoos,AAAI'99]

Novelty++ [LiHuang,SAT'05]

AdaptiveNovelty+ [Hoos,AAAI'02]

Novelty-PickVar

Select a random unsatisfied clause; if the best-score variable is not most recently flipped in the clause x:=the best-score variable;

else

with probability p, x:=the second-best-score variable; with probability 1-p, x:=the best-score variable;

With a fixed probability wp, choose a random variable from the clause; //PAC The remaining case, do as Novelty;

With a fixed probability dp, choose the oldest variable from the clause; The remaining case, do as Novelty;

adapt wp during the search (initially wp:=0)

- if no improvement in a period of time, wp:=wp+(1-wp) $\cdot \theta$
- if improvement is observed, wp:=wp-wp $\cdot \theta/2$

Two mode Local Search

GWSAT [SelmanKautz, IJCAI'93]

```
\begin{split} S &:= a \text{ random complete assignment}; \\ \text{while (!termination condition)} \\ & \text{if (S is a solution) return S;} \\ & \text{with probability p} \\ & x &:= a \text{ variable in a random unsatisfied clause} \\ & \text{otherwise} \\ & x &:= a \text{ variable with the best score} \\ & S &:= S \text{ with x flipped;} \\ \\ & \text{return S;} \end{split}
```

Two mode Local Search

G2WSAT [LiHuang,SAT'05]

G2WSAT-PickVar

if ∃ promising decreasing variables
 x:=the best-score promising variable;

else

x:= the variable picked by Novelty++ heuristic;

promising decreasing: becomes decreasing (i.e., positive score) due to the flip of other variables

gNovelty+ [PhamThorntonGretton Sattar, AAI'07]

use AdaptNovelty+ in the focused mode use clause weighting

Sparrow [BalintFröhlich,SAT'10] use a probability-based heuristic in focused mode use clause weighting

Clause Weighting

Clause weighting serve as a form of diversification in local search.

• Associate each clause with a weight, and use weighted cost function:

 $wcost(F, \alpha) = \sum_{c \in UC(F,\alpha)} w(C)$

then,

$$score(x) = wcost(F, \alpha) - wcost(F, \alpha')$$

• Date back to the Breakout method for SAT [Morris, AAAI'93]

increase the weight of each falsified clause by one when reaching local optima.

□ The basic idea of using weight penalties, or Lagrangian multipliers, to solve discrete optimization problems was developed in the operations research (OR) community much earlier. [Everett, OR'63]

Clause Weighting

Clause weighting schemes usually have a mechanism to decrease clause weights.

- Decrease weights by subtraction
 - Discrete Lagrangian method (DLM) [WuWah,AAAI'00], PAWS [Thorton et al,JAR'05]: decreases clause weights by a constant amount after a fixed number of increases.
 - Probabilistic PAWS: with a probability, decrease the weights of clauses with large weights
- Pull to the mean value
 - $w(c) = \rho w(c) + (1 \rho)\overline{w}$ or $w(c) = \rho w(c) + (1 \rho)\overline{w_{sat}}$

SDF[SchuurmansSouthey AIJ'01], ESG [SchuurmansSoutheyHolte IJCAI'01], SAPS[HutterTompkinsHoos,CP'02]

- DDWF: transfer weights from neighbouring satisfied clauses to falsified ones. [Ishtaiwi et.al,CP'05]
- Clause weighting has been the most significant line in recent progress of local search for MaxSAT, including SATLike [AAAI'20] NuWLS [AAAI'23] // need to distinguish hard and soft clauses

Outline

- Local Search for SAT
 - Basis and Early Methods
 - Modern Local Search Solvers
- Local Search for SMT
 - Local Search for Bit Vectors //slides in this part provided by Aina Niemetz
 - Local Search for Arithmetic Theories
- Improving CDCL/CDCL(T) solvers by Local Search

Efficient Local Search on Structured Formulas

After 2010, more attention on evaluating local search solvers on structured instances, including crafted and industrial instances, with promising results.

This happens with new LS solvers: Sattime, probSAT, CCASat/CCAnr...

- Sattime ranked 4th in the crafted track, the top 3 were portfolios.
- complementary with CDCL solvers on crafted benchmarks. (top 3 solvers are CDCL+LS in SC'14)
- CCAnr (or its variant) shows good performance on instances from test generation, spectrum allocation, and math problems [Brown et al, AAAI'16;Fröhlich et al, AAAI'15;Cai et al, CP'21]
- local search solver for SAT instances from matrix multiplication [HeuleKauersSeidl,SAT'19]

□ No random track in SAT Competition after 2017.

Two Modern Local Search SAT Solvers

CCAnr (two-mode local search) developed: Cai, 2013 [AIJ'13,SAT'15]

- configuration checking
- second level score
- clause weighting

probSAT (focused local search) developed: Balint, 2012 [SAT'12, SAT'14]

- probability distribution using break
- second-/multi-level break

Second Level Scoring Functions

Example. Given an assignment { $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1, x_5 = 1$ }

 $C1=x_1 \vee x_2 \vee \neg x_3 \vee x_4 \vee \neg x_5, \quad C2=x_1 \vee \neg x_2 \vee x_3 \vee \neg x_4 \vee \neg x_5$

Both clauses are satisfied. But c1 is a 4-satised clause, while c2 is 1-satised.

□ Satisfaction degree

1-satised clauses are the most endangered satisfied clauses.

 \rightarrow encourage 1-satisfied clauses change to 2-satisfied.

Second Level Scoring Functions [CaiSu, AIJ'13, AAAI'13]

- $make_2(x)$ is the number of 1-satifised clauses \rightarrow 2-satisfied by flipping x.
- $break_2(x)$ is the number of 2-satifised clauses \rightarrow 1-satisfied by flipping x.
- $score_2(x) = make_2(x) break_2(x)$
- First used in CCASat (with name 'subscore'), formally defined in WalkSATIm, also used in CScoreSAT, probSAT, Sattime2014r...

Second Level Scoring Functions

Proposition For a random 3-SAT formula F(n,m), under any satisfying assignment α to F, the number of 1-satised clauses is more than m/2. [CaiSu,AIJ'13]

This proposition says, second level functions are not suitable for 3-SAT formulas, as at least half clauses are 1-satisfied under any solution.

Generally, this indicates it is likely that second level functions are not helpful for formulas with short clauses.

In fact, all local search solvers using second/multi-level functions only use them for 5- and 7-SAT, while the experiment studies show that it is not good for 3-SAT.

Configuration Checking (CC)

Definition the configuration of a variable *x* is a vector C_x consisting of truth value of all variables in N(x) under current assignment α (i.e., $C_x = \alpha|_{N(x)}$). [AAAI'12,AIJ'13] $N(x) = \{variables share clauses with x\}$

CC aims to address cycling problem, i.e., revisiting candidate solutions

We can have different definitions of CC

A simple CC for SAT: if the configuration of x has not changed since x's last flip, then it is forbidden to flip.

Configuration Checking

Observation when a variable is flipped, the configuration of all its neighboring variables has changed.

Efficient implementation of CC:

- Auxiliary data structure --- CC array
 - CC[x] = 1 means the configuration of x has changed since x's last flip;
 - CC[x] = 0 on the contrary.
- Maintain the CC array
 - for each variable x, CC[x] is initialized as 1.
 - when flipping x, CC[x] is reset to 0, and for each $y \in N(x)$, CC[y] is set to 1.

When to use (or not use) CC?

The effectiveness of the typical CC is related to the neighborhood of variables.

Proposition. For a uniform random k-SAT formula F, its the number of variables n and the clause-variable ratio r, if $\ln(n-1) < \frac{k(k-1)r}{n-1}$, then each variable is expected to have a complete neighborhood, and thus the CC strategy degrades to the trivial case that forbids only one variable.

	3-SAT (r = 4.2)	4-SAT (r = 9.0)	5-SAT $(r = 20)$	6-SAT $(r = 40)$	7-SAT ($r = 85$)
<i>n</i> *	11.652	32.348	90.093	223.095	564.595

Generally, CC is effective for formulas with short clauses.

 $f(n) = ln(n-1) - \frac{k(k-1)r}{n-1}$ is a monotonic increasing with $n \ (n > 1)$. f(n) < 0 (thus cc fails) iff $n \le \lfloor n^* \rfloor$, where n^* is a number s.t. $f(n^*) = 0$. This table list the n^* value near phase transition for k-SAT.

CCASat and CCAnr

x:= oldest variable from the clause

CCASat (won random track of SAT Challenge 2012)

- Variants ranked top 3 in random SAT track in following SCs.
- using second level score for k-SAT

x:= best variable from the clause

CCAnr

- good at structured instances
- not using second level score

probSAT and YalSAT

probSAT (won random SAT track of SC'13)

- Choose a random unsatisfied clause C;
- Pick a variable from C according to probability $\frac{f(x)}{\sum_{z \in C} f(z)}$

$$f(x) = cb^{-break(x)} \rightarrow f(x) = \prod_{l} cb_{l}^{-break_{l}(x)}$$

$$f(x) = (1 + break(x))^{-cb} \rightarrow$$

$$f(x) = \prod_{l} (1 + break_l)^{-cb_l}$$

Original probSAT [Balint Schöning,SAT'12] 2nd level and multi-level break [BalintSchöningFröhlichBiere,SAT'14]

YalSAT (won random SAT track of SC'17)

[Biere,SC-Proc'14]

- implements several variants of probSAT
- these variants are scheduled by Luby restarts.

Besides the traditional random k-SAT instances, random SAT track of SC'17 also includes random instances of a model called sgen.

- **D** 3-SAT: only use break(x)
- $\hfill\square$ Two scenarios for 5-SAT and 7-SAT
- use break(x) and $break_2(x)$
- use all $break_l(x)$ for $l \in \{1, 2, ..., k\}$

Improving Local Search via Machine Learning

NLocalSAT[Zhang et,al.,IJCAI'20]:

using Gated Graph Convolutional Network to predict solution, used as initial assignment

Solver	Predefined(165)	Uniform(90)	Total(255)
CCAnr CCAnr with <i>NLocalSAT</i>	$\begin{array}{c} 107.3 \pm 1.2 \\ 165.0 \pm 0.0 \end{array}$	$\begin{array}{c} 18.0 \pm 0.8 \\ 12.7 \pm 0.9 \end{array}$	$\begin{array}{c} 125.3 \pm 1.2 \\ 177.7 \pm 0.9 \end{array}$
Sparrow Sparrow with <i>NLocalSAT</i>	$\begin{array}{c} 126.7 \pm 0.5 \\ 165.0 \pm 0.0 \end{array}$	$\begin{array}{c} 23.7 \pm 1.7 \\ 31.0 \pm 0.8 \end{array}$	$\begin{array}{c} 150.3 \pm 1.2 \\ \textbf{196.0} \pm \textbf{0.8} \end{array}$
CPSparrow CPSparrow with <i>NLocalSAT</i>	$\begin{array}{c} 128.0 \pm 0.8 \\ 165.0 \pm 0.0 \end{array}$	$27.0 \pm 1.6 \\ 32.0 \pm 0.8$	$\begin{array}{c} 155.0 \pm 1.4 \\ 197.0 \pm 0.8 \end{array}$
YalSAT YalSAT with <i>NLocalSAT</i>	75.0 ± 0.0 165.0 ± 0.0	$\begin{array}{c} 49.5 \pm 1.5 \\ 37.3 \pm 0.9 \end{array}$	$\begin{array}{c} 124.5 \pm 1.5 \\ \textbf{202.3} \pm \textbf{0.9} \end{array}$
probSAT probSAT with <i>NLocalSAT</i>	$75.7 \pm 0.5 \\ 165.0 \pm 0.0$	$\begin{array}{c} 51.0 \pm 0.0 \\ 40.7 \pm 1.2 \end{array}$	$\begin{array}{c} 126.7 \pm 0.5 \\ \textbf{205.7} \pm \textbf{1.2} \end{array}$
Sparrow2Riss gluHack MapleLCMDistBT	$165 \\ 165 \\ 165$	$\begin{array}{c} 23 \\ 0 \\ 0 \end{array}$	188 165 165

improve local search solvers, tested on uniform random instances and those generated by Balyo's model in SC'18

Improving Local Search via Machine Learning

PbO-CCSAT [LuoHoosCai,PPSN'20]

CC-based local search framework

larger design space \rightarrow automatic configuration by SMAC [HutterHoosBrown,LION'11]

- Improve LS on application benchmarks
- Better than CDCL solvers in some problems

Outline

- Local Search for SAT
 - Basis and Early Methods
 - Modern Local Search Solvers
- Local Search for SMT
 - Local Search for Bit Vectors //slides in this part provided by Aina Niemetz
 - Local Search for Arithmetic Theories
- Improving CDCL/CDCL(T) solvers by Local Search

Satisfiability Modulo Theories

 $(x_1 - x_2 \le 13 \lor f(x_2) \ne f(x_3)) \land (B_1 \rightarrow x_4 > x_5) \land \neg B_2$

SMT

Example: $\phi = (x_1 - x_2 \le 13 \lor x_2 \ne x_3) \land (B_1 \rightarrow x_4 > x_5) \land \neg B_2$

Propositional Skeleton $PS_{\Phi} = (b_1 \vee \neg b_2) \wedge (B_1 \rightarrow b_3) \wedge \neg B_2$

 $b_1: x_1 - x_2 \le 13$ $b_2: x_2 = x_3$ $b_3: x_4 > x_5$

• Fixed Sized Bit vectors (BV)

 $(x \le 001) \ge 000 \land x \le 100 \land (x \cdot 010) \mod 011 = x + 001$

• Linear integer/real arithmetic (LIA/LRA)

$$(x_1 - x_2 \le 13 \lor x_2 \ne x_3) \land (B_1 \rightarrow x_4 > x_5) \land \neg B_2$$

• Nonlinear integer/real arithmetic (NIA/NRA)

$$(B_1 \lor x_1 x_2 \le 2) \land (B_2 \lor 3x_2^3 x_4 + 4x_4 + 5x_5 = 12 \lor x_2 - x_3 \le 3)$$
Local Search at Boolean Skeleton

WalkSMT [Griggio, Phan, Sebastiani, Tomasi FroCos 2011]

Combine WalkSAT and MathSAT, for LRA

- WalkSAT is used to solve the Boolean skeleton of the SMT formula,
- the conjunction of the literals in the solution μ is sent to the theory solver to check.
- Learn lemmas: if μ is inconsistent, sample some of the literals to check consistency, if they are inconsistent, we learn a lemma

Experiment results:

- SMTLIB: "globally MATHSAT4 performs much better than WALKSMT, often by orders of magnitude."
- Random instances: "a very small difference "

Local Search for Bit Vector

BV-SLS [FröhlichBiereWintersteigerHamadi,AAAI'15] in Z3, Boolector

- Represent formula as a directed acyclic graph (DAG) with (possibly) multiple roots
- Use single bit operators

- Single Bit Flips:
 - $v_{[7]} := 0000001$
 - $v_{[7]} := 0000010$
 - $v_{[7]} := 0000100$
 - $v_{[7]} := 0001000$
 - $v_{[7]} := 0010000$
 - $v_{[7]} := 0100000$
 - $v_{[7]} := 1000000$

- Increment
 - $\circ v_{[7]} := 0000001$
- Decrement
 - $\circ v_{[7]} := 1111111$
- Bit-Wise Negation

 v_[7] := 1111111

Local Search for Bit Vector

- A function score to evaluate each possible assignment obtained by each operation.
- Recursively defined, compute via **bottom-up** way, i.e., starting from the inputs

Boolean literal

 $s(x, \alpha) = \alpha(x)$ $s(\neg x, \alpha) = \neg \alpha(x)$

equality expression

$$\begin{split} s(a=b,\alpha) &= \begin{cases} 1.0 & \text{if } \alpha(a) = \alpha(b) \\ c_1 \cdot \left(1 - \frac{h(\alpha(a), \ \alpha(b))}{n}\right) & \text{otherwise} \end{cases} \\ s(a \neq b, \alpha) &= \begin{cases} 1.0 & \text{if } \alpha(a) \neq \alpha(b) \\ 0.0 & \text{otherwise.} \end{cases} \end{split}$$

and-expression $s(a \land b, \alpha) = \frac{1}{2}(s(a, \alpha) + s(b, \alpha))$ $s(\neg (a \land b), \alpha) = max(s(\neg a, \alpha) + s(\neg b, \alpha))$ $(as \neg (a \land b) \equiv \neg a \lor \neg b)$

inequality expression

$$s(a < b, \alpha) = \begin{cases} 1.0 & \text{if } \alpha(a) < \alpha(b) \\ c_1 \cdot \left(1 - \frac{m_{<}(\alpha(a), \alpha(b))}{n}\right) & \text{otherwise} \end{cases}$$
$$s(a \ge b, \alpha) = \begin{cases} 1.0 & \text{if } \alpha(a) \ge \alpha(b) \\ c_1 \cdot \left(1 - \frac{m_{\ge}(\alpha(a), \alpha(b))}{n}\right) & \text{otherwise.} \end{cases}$$

Local Search for Bit Vector

for i = 1 to ∞ $\alpha = initialize(F)$ for j = 1 to maxSteps(i) $V = selectCandidates(F, \alpha)$ $move = findBestMove(f, \alpha, V)$ if $move \neq none$ then $\alpha = update(\alpha, move)$ else $\alpha = randomize(\alpha, V)$ _____ If not

single bit operations

- compute the score of each possible assignment obtained by each bit operation,
- then choose the best one.

If no improving operation was found, then perform a random step

Clause weighting:

updated whenever no improving move could be found

	QF_BV	SAGE2
CCAnr	5409	64
CCASat	4461	8
probSAT	3816	10
Sparrow	3806	12
VW2	2954	4
PAWS	3331	143
YalSAT	3756	142
Z3 (Default)	7173	5821
BV-SLS	6172	3719

Example.

 $\phi \equiv 274177_{[65]} * v_{[65]} = 18446744073709551617_{[65]}$

Candidate: $v_{[65]} := 000000...000000$ (initial)

Assume: no preprocessing (rewriting, simplification)

```
\longrightarrow 355837 moves, 21 restarts
```

 \rightarrow unable to determine (single) solution $v_{[65]} = 67280421310721_{[65]}$

within a time limit of 1200 seconds
on a 3.4GHz Intel Core i7-2600 machine

 \longrightarrow solved within \mathbf{one} single propagation move

extends BV-SLS [AAAI'15] by path propagation

[NiemetzPreinerFröhlichBiere, DIFTS'15]

٠

. . .

Path propagation (aka. backtracing)

- Force root r to assume its target value to be 1.
- propagate this information along a path towards the primary inputs, update assignment
- propagate this information along another path towards the primary inputs, update assignment

Example.

 $\phi \equiv c_1 \wedge c_2 \wedge c_3$

- 1 initial assignment $\{v_{[7]} := 0000000, x_{[1]} := 0, y_{[1]} := 0\}$
- **2** force $c_1 = 1$
- 3 choose path and propagate down

1 Boolean \land

- \longrightarrow justification-based selection
 - $\circ~0 \rightarrow 1:$ choose single controlling input
 - else choose randomly

Example.

$$\phi \equiv c_1 \wedge c_2 \wedge c_3$$

To change the value of 'ite' node from 0 to 1, we need to change the value of variable y.

Path Propagation: How to Choose A Path

Definition An input to a node is controlling, if the node can not assume a given target value as long as the value of the input does not change.

How to extend a path?

For each node, prefer to pick to choose a controlling input, otherwise pick a random input

Down Propagation of Assignments

- via inverse computation
- Restricted set of bit-vector operations
 - Unary operations bynot extract
- for some operations no well-defined inverse operation exists
 - \longrightarrow produce non-unique values
 - \longrightarrow via randomization of bits or bit-vectors

e.g.
$$c_{[4]} := a_{[4]} \land b_{[4]}$$
 assume as fixed: $b := 1011$
down propagated:
 $c := 0001$ $don't care$

Path propagation (aka. backtracing)

- Force root r to assume its target value to be 1.
- Iteratively propagate this information along a path towards the primary inputs.

Down Propagation of Assignments (cntd.)

• if no inverse found

 $\circ c_{[n]} := a_{[n]} \text{ op } b_{[n]}$

- \longrightarrow disregard b
- \longrightarrow choose inverse value for *a* that matches assignment of *c*

e.g.
$$c_{[4]} := a_{[4]} \land b_{[4]}$$
 disregard $b := 1110$
down propagated: selected path, choose $a := 0001$

 $\circ c_{[n]} := a_{[n]} \text{ op } bvconst_{[n]}$

- \longrightarrow assignments of b and c are conflicting
- \longrightarrow no value for *a* found
- $\longrightarrow\,$ recover with regular SLS move

Path propagation (aka. backtracing)

- Force root r to assume its target value to be 1.
- Iteratively propagate this information along a path towards the primary inputs.

□ prioritizes selecting controlling inputs, else choose randomly

- Two scenarios
 - Propagation (Bprop) vs. LS moves (frw) with a ratio
 - Propagation moves only

Implemented in Boolector: Bit blasting + focused random walk + path propagation

	Solved [#]	Time [s]		
Bb	14806	2623801		
Bb+Bprop+frw (1s)	14844	2538616	+38	97.1%
Bb+Bprop+frw (2s)	14852	2535600	+46	96.9%
Bb+Bprop+frw (3s)	14858	2534900	+52	96.9%
Bb+Bprop+frw (4s)	14861	2538266	+55	97.1%
Bb+Bprop+frw (5s)	14862	2544488	+56	97.3%
Bb+Bprop+frw (6s)	14862	2551784	+56	97.6%
Bb+Bprop+frw (7s)	14862	2558002	+56	97.9%
Bb+Bprop+frw (8s)	14862	2565357	+56	98.1%
Bb+Bprop+frw (9s)	14862	2572600	+56	98.0%

Time limit: 1200 seconds, Memory limit: 7GB

Word Level Propagation

Definition An input to a node is controlling (essential), if the node can not assume a given target value as long as the value of the input does not change.

Word Level Propagation

Boolector Configurations:

- Bit-blasting engine: Bb winner of QF_BV main track of SMT-COMP'15
- Propagation-based: Pw
- Sequential portfolio: Bb+Pw
 Bb with Pw as a preproc. step

Results:

	Pw	Bb	Bb+Pw	
time limit	1 sec	1200 sec	1200 sec	
# solved	7632	14806	14866	+60
total time	9106	2611840	2513348	

Outline

- Local Search for SAT
 - Basis and Early Methods
 - Modern Local Search Solvers
- Local Search for SMT
 - Local Search for Bit Vectors //slides in this part provided by Aina Niemetz
 - Local Search for Arithmetic Theories
- Improving CDCL/CDCL(T) solvers by Local Search

A Local Search Algorithm for Arithmetic Theories

LS-LIA → LocalSMT (LIA and NIA) [Cai,Li,Zhang, CAV'22,TOCL'23]

 P_b , P_i : the proportion of Boolean and integer literals to all literals in falsified clauses

Solution of the subformula with only X variables

Critical Move

The critical move operator, $cm(x, \ell)$, assigns an integer variable x to the threshold value making literal ℓ true, where ℓ is a falsified literal containing x.

LIA: let $\Delta = \sum_i a_i \alpha(x_i) - k$

• for the case $\ell: \sum_i a_i x_i \le k$, $cm(x_i, \ell)$ makes $\alpha(x_i) = \left| \left| \frac{\Delta}{a_i} \right| \right|$ for each x_i

• for the case
$$\ell: \sum_{i} a_{i}x_{i} = k$$
, $cm(x_{i}, \ell)$ increases $\alpha(x_{i})$ by $-\frac{\Delta}{a_{i}}$, if $a_{i}|\Delta$

Example

...

given two literals $l_1: 2b - a \le -3$ and $l_2: 5c - d + 3a = 5$ and the assignment $\{a = b = c = d = 0\}$

- $cm(a, l_1)$ refers to assigning *a* to 3, $cm(c, l_2)$ assign *c* to 1.
- Note that there exists no $cm(a, l_2)$ since $3 \nmid 5$

Critical Move

. . .

The critical move operator, $cm(x, \ell)$, assigns an integer variable x to the threshold value making literal ℓ true, where ℓ is a falsified literal containing x.

NIA: Suppose *x* has *n* different roots for $\sum_{i} a_{i}m_{i}(x) = k$, listed as $r_{1} < r_{2} < \cdots < r_{n}$ for the case $\ell: \sum_{i} a_{i}m_{i} \leq k$,

 $cm_{NIA}(x,\ell) = \bigcup_{j \in S^{-}} \{ op(x, I_{min}[r_j, r_{j+1}]), op(x, I_{max}[r_j, r_{j+1}]) \}$ for the case $\ell : \sum_i a_i m_i = k$, $cm_{NIA}(x,\ell) = \{ op(x, r_j) | r_j \text{ is an integer root} \}$

□ For a variable, there may be more than one critical moves w.r.t. a literal

Critical Move

The critical move operator, $cm(x, \ell)$, assigns an integer variable x to the threshold value making literal ℓ true, where ℓ is a falsified literal containing x.

Substitute all variables \rightarrow Solve feasible intervals \rightarrow Determine the largest and smallest integer in each feasible interval

Example. literal $l:-2bc^2+3 ab + c \le -3$ current assignment $\{a = 1, b = 1, c = 1, d = 1\}$. solve

 $-2c^2 + c + 6 \le 0$

feasible intervals: $(-\infty, -1.5] \cup [2, \infty)$ largest and smallest integer in these intervals: -2, 2. $\rightarrow cm_{NIA}(c, l)$ contains two operations: assigning *c* to -2 and 2 respectively.

Two-level heuristic

To find a decreasing cm operation: whenever one exists, we need to scan all cm operations on false literals.

Time consuming!

The set of cm operations D

 $S \subseteq D$, $S = \{cm(x, \ell) | \ell \text{ appears in at least one falsified clause} \}$

□ Two-level heuristic

- 1. Efficiency of picking operation
- 2. Conflict driven

search for a decreasing cm operation from S if fail search for decreasing cm operation from D\S

LocalSMT Algorithm

- LocalSMT switches between Boolean mode and integer mode
 - Each mode is based on the "two-mode local search" (global step and focused random walk)

Picking Operation in Integer Mode of LocalSMT

If \exists decreasing cm operation in falsified clauses

op:=the best-score cm operation;

else if ∃ decreasing cm operation in satisfied clauses

op:=the best-score cm operation;

else

update clause weights according to PAWS;

c:=select a random falsified clause;

op:=pick a cm operation from c with best dscore;

Two level heuristic

Score Based on Distance to Satisfaction

Distance to truth (dtt):

Given an assignment α and a literal ℓ , the distance to truth of ℓ is

- Inequality literal $\sum_i a_i x_i \le k$: its $dtt(\ell, \alpha) = max\{\sum_i a_i \alpha(x_i) k, 0\}$.
- Boolean or equality $\sum_i a_i x_i = k : dtt(\ell, \alpha) = 0$ if ℓ is true under α and 1 otherwise.

Distance to satisfaction (dts):

Given an assignment α and a clause C,

$$dts(C,\alpha) = \min_{l \in C} \{dtt(\ell,\alpha)\}$$

Example. $C = \ell_1 \lor l_2 \lor l_3 = (a + b \ge 1) \lor (b \ge 2) \lor (c \le -3)$ $\alpha = \{a = b = c = 0\}$ Then, $dtt(\ell_1) = 1$, $dtt(\ell_2) = 2$, $dtt(\ell_3) = 3$, and dts(C) = 1

Distance score (dscore)

For an operation *op*, $dscore(op) = \sum_{c \in F} (dts(c, \alpha) - dts(c, \alpha'))$ where α, α' denotes the assignment before and after performing *op*

LocalSMT on Integer Arithmetic Benchmarks

	#inst	MathSAT5	CVC5	Yices2	73	LocalSMT	Z3+LS
	# 1115t	101011107110	0105	110052	25	Localomi	23113
LIA_no_bool	6,670	6,442	6,242	5,994	6,385	6,478	6,536
LIA_with_bool	1,842	1,619	766	1,662	1,617	912	1,625
Total	8,512	8,061	7,008	7,656	8,002	7,390	8,161
IDL_no_bool	841	363	539	654	653	687	687
IDL_with_bool	770	514	586	658	665	319	661
Total	1,611	877	1,125	1,312	1,318	1,006	1,348
NIA_without_bool	16,439	10,497	7,535	9,157	11,806	12,132	12,946
NIA_with_bool	1,980	1,906	1,908	1,942	1,959	1,669	1,952
Total	18,419	12,403	9,443	11,099	13,765	13,801	14,898

Instances without and with Boolean variables are denoted by "no_bool" and "with_bool" respectively.

Tested on SMTLIB benchmarks of LIA, IDL and NIA, cutoff=1200s

Local Search for Linear/Multi-linear Real Arithmetic

- LocalSMT(RA), supports linear and multi-linear real arithmetic
 - e.g. $xy + 5yz 2xyz \le 100$ (multi-linear)

issue: infinite possible values for a variable

solution: interval-based operation

- 1. interval division
- 2. Consider a few options in a selected interval

□ [Li,Cai,FMCAD'23]

Satisfying Interval

For a literal of linear/multi-linear constraint, when all variables but one (say x) is substituted with their values, we can solve the constraint and get the satisfying interval of x

```
\rightarrow either x \le ub or x \ge lb (for strict inequation, x < ub or x > lb)
```

For a clause with more than one literal, the satisfying interval of x is the union of its satisfying intervals w.r.t. all literals it appears.

Satisfying Interval

• Consider all falsified clauses, for a variable *x*, put all satisfying intervals together:

There is no case with crossing intervals.
 Suppose they are derived from two clauses C₁ and C₂, then at least one of them is satisfied.

Example. C_1 : $x \ge 1$, C_2 : $x \le 2$, then not matter what value x is assigned, at least one of them is satisfied.

Equi-make Intervals

• Consider all falsified clauses, for a variable *x*, we obtain an interval division:

For each of the resulting intervals:

Assigning x to any value in the interval have the same *make* value (making the same number of falsified clauses become true).

 \rightarrow such an interval is called euqi-make interval.

Example:

 $F = C_1 \wedge C_2$ $= (a - b > 4 \lor 2a - b \ge 7 \lor 2a - c \le -5)$ $\land (a - c \ge 2),$ $assignment {a = b = c = 0}, C_1 and C_2 falsified$

for variable *a*:

- interval [3.5, ∞) can satisfy 2 clauses;
- both interval (-∞, -2.5] and [2, 3.5) can satisfy 1 clause

Choosing an Operation from Equi-make Interval

- After choosing an equi-make interval, we need to choose a value v.
 Four options
 - 1) Threshold: *l*, *U*
 - 2) Median: (l + U)/2
 - 3) Largest/Smallest integer in interval: $Z_1 > l$, $Z_2 < U$
 - 4) For $\left(\frac{b}{a}, \frac{d}{c}\right)$, another option is $\frac{b+d}{a+c}$
 - \rightarrow obtain an operation op(*x*, *v*)

LocalSMT(LRA):

- based on the framework of LocalSMT
- global step: collect K such operations, pick the best-score one.

LocalSMT for LRA/MLRA

TABLE I: Results on instances from SMTLIB-LRA

	#inst	cvc5	Yices	Z3	OpenSMT	LocalSMT(RA)
2017-Heizmann	8	4	3	4	4	7
2019-ezsmt	84	61	61	53	62	35
check	1	1	1	1	1	1
DTP-Scheduling	91	91	91	91	91	91
LassoRanker	271	232	265	256	262	240
latendresse	16	9	12	1	10	0
meti-tarski	338	338	338	338	338	338
miplib	22	14	15	15	15	4
sal	11	11	11	11	11	11
sc	108	108	108	108	108	108
TM	24	24	24	24	24	11
tropical-matrix	10	1	6	4	6	0
tta	24	24	24	24	24	24
uart	36	36	36	36	36	30
Total	1044	954	995	966	992	900

TABLE III: Results on instances from SMTLIB-MRA

	#inst	cvc5	Yices	Z3	SMT-RAT	LocalSMT(RA)
20170501-Heizmann	51	1	0	4	0	17
20180501-Economics	28	28	28	28	28	28
2019-ezsmt	32	31	32	32	21	28
20220314-Uncu	12	12	12	12	12	12
LassoRanker	347	312	124	199	0	297
meti-tarski	423	423	423	423	423	423
UltimateAutomizer	48	34	39	46	18	48
zankl	38	24	25	28	30	38
Total	979	865	683	772	532	891

Local Search for Nonlinear Real Arithmetic

Extension of the above algorithm to nonlinear real arithmetic need to deal with additional challenges:

- 1. Efficiency: while there are well-known algorithms for root isolation in higher-degree polynomials, they are time consuming and should be used sparingly.
 - Computation is especially slow when algebraic numbers are involved.

Example. for constraint $x^2 + y^2 = 3$, if x is assigned to 1, then $y = \pm \sqrt{2}$.

2. Unlike linear equations, not all higher-degree polynomials have feasible solution for each variable.

Additional improvements address the above issues, yielding a local search method that is competitive with state-of-the-art complete algorithms.

Relaxation and Restoration of Equalities

A challenge: equality constraints (e.g. $x^2 + y^2 = 3$) may force assignment of variables to irrational (algebraic) numbers, making computation very slow.

- We *relax* the equality constraints that force irrational assignments during most of local search.
- After approximate solutions are found, these equalities are restored, and solved to obtain an exact solution.

Local Search for Nonlinear Real Arithmetic

Category	#inst	Z3	cvc5	Yices	Ours	Unique
20161105-Sturm-MBO	120	0	0	0	84	84
20161105-Sturm-MGC	2	2	0	0	0	0
20170501-Heizmann	60	3	1	0	6	5
20180501-Economics-Mulligan	93	93	89	91	87	0
2019-ezsmt	61	54	51	52	18	0
20200911-Pine	237	235	201	235	224	0
20211101-Geogebra	112	109	91	99	100	0
20220314-Uncu	74	73	66	74	73	0
LassoRanker	351	155	304	122	284	15
UltimateAtomizer	48	41	34	39	26	2
hycomp	492	311	216	227	272	12
kissing	42	33	17	10	33	1
meti-tarski	4391	4391	4345	4369	4356	0
zankl	133	70	61	58	99	26
Total	6216	5570	5476	5376	5662	145

local search for NRA, competitive with complete algorithms such as MCSAT on the satisfiable instances QF_NRA in SMT-LIB.

Outline

- Local Search for SAT
 - Basis and Early Methods
 - Modern Local Search Solvers
- Local Search for SMT
 - Local Search for Bit Vectors //slides in this part provided by Aina Niemetz
 - Local Search for Arithmetic Theories
- Improving CDCL/CDCL(T) solvers by Local Search
Challenge of Combining CDCL and Local Search

Ten Challenges in Propositional Reasoning and Search Bart Selman, Henry Kautz, and David McAllester AT&T Laboratories 600 Mountain Avenue Murray Hill, NJ 07974 {selman, kautz, dmac}@research.att.com http://www.research, att.com/~selman/challenge

Challenge 7: Demonstrate the successful combination of stochastic search and systematic search techniques, by the creation of a new algorithm that outperforms the best previous examples of both approaches.

[Bart Selman, Henry Kautz and David McAllester, AAAI 1997]

Challenge of Combining CDCL and Local Search

- Local search as main body
 - hybridGM (SAT 2009), SATHYS (LPAR 2010)
 - GapSAT: use CDCL as preprocessor before local search (SAT 2020)
 - Use resolution in local search (AAAI 1996, AAAI 2005)
- DPLL/CDCL as main body
 - HINOTOS: local search finds subformulas for CDCL to solve (SAT 2008)
 - WalkSatz: calls WalkSAT at each node of a DPLL solver Satz (CP 2002)
 - CaDiCaL and Kissat: a local search solver is called when the solver resets the saved phases and is used only once immediately after the local search process (2019)
- Sequential portfolio
 - Sparrow2Riss, CCAnr+glucose, SGSeq

CDCL Solver Overview

CDCL solver

- Analyze-Conflict : non-chronological backtracking + clause learning + vivification
- Decide : Branching strategy and phasing strategy

- Clause learning
- Clause management
- Lazy data structures
- Restarting
- Branching
- Phasing
- Mode Switching

• ...

CDCL Solver Overview

CDCL solver

- Analyze-Conflict : non-chronological backtracking + clause learning + vivification
- Decide : Branching strategy and phasing strategy \rightarrow can be improved by local search

- Clause learning
- Clause management
- Lazy data structures
- Restarting
- Branching
- Phasing
- Mode Switching

• ...

Deep Cooperation of CDCL and Local Search

CDCL focuses on a local space in a certain period →Better to integrate reasoning techniques Local search walks in the whole search space

\rightarrow Better at sampling

[Cai,Zhang, SAT '21] (best paper).

A short history of this work and similar works independently by Biere is described in [Cai,Zhang,Fleury,Biere, JAIR '22]

How to create a full initial assignment?

Relax CDCL and complete the partial assignment by alternating decisions and propagations while ignoring all conflicts

- BCP when possible
- Pick a random unassigned variable, assign it with phase saving heuristic

Improve Branching Heuristics via Local Search

CDCL is powerful owing largely to the utilization of conflict information CDCL solvers prefer the variable which may cause conflicts faster (e.g. VSIDS)

Can local search information be used to enhance branching heuristics?

Branching with conflict frequency in local search:

- calculate the conflict frequency: frequency of occurring in falsified clauses
- multiply *ls_confl_freq*(x) with 100 , resulting *ls_confl_num*(x)
- improve VSIDS: for each variable x, its activity is increased by $ls_confl_num(x)$
- improve LRB: for each variable x, the number of learnt clause during its period I is increased by ls_confl_num(x).

Local Search Rephasing

Phase selection is an important component of a CDCL solver.

Most modern CDCL solvers utilize the phase saving heuristic [PipatsrisawatDarwiche, SAT'07]

Local search rephasing

• After each restart of CDCL, reset the saved phases of all variables with assignments by local search.

Phase Name	α_longest_LS	α_latest_LS	α_best_LS	no change
Probability	20%	65%	5%	10%

 $\alpha_longest_LS$: the assignment of the local search procedure in which the initial solution is extended from the longest branch during past CDCL search. α_best_LS : the assignment with smallest cost among all local search procedures.

 $\alpha_{latest_{LS}}$: the assignment of the latest local search procedure.

(the assignment of a local search procedure is the best found assignment)

Deep Cooperation of CDCL and Local Search

solver	#SAT	#UNSAT	#Solved	PAR2	#SAT	#UNSAT	#Solved	PAR2
		SC201	7(351)			SC201	8(400)	
glucose_4.2.1	83	101	184	5220.0	95	95	190	5745.9
glucose+rx	88	95	183	523	113	95	208	5283
glucose+rx+rp	112	94	206	4618.2	141	87	228	4698.3
glucose+rx+rp+cf	110	94	204	4668.5	150	91	241	4438.2
Maple-DL-v2.1	101	113	214	4531.0	133	102	235	4533.9
Maple-DL+rx	101	112	213	45 🞱 💼	149	101	250	4447.0
Maple-DL+rx+rp	111	103	214	4447 1	158	93	251	464.
Maple-DL+rx+rp+cf	116	107	223	4139.4	162	97	259	3927.6
Kissat_sat	115	114	229	3945.5	167	98	265	378 6 7
Kissat_sat+cf	113	113	226	4001.0	178	104	282	3409.4
CCAnr	13	N/A	13	9629.9	56	N/A	56	8622.0
	SC2019(400)			SC2020(400)				
glucose_4.2.1	118	86	204	5437.6	68	91	159	6494.6
glucose+rx	120	84	204	5493	93	88	181	6213
glucose+rx+rp	134	85	219	5096.3	130	85	215	5014.
glucose+rx+rp+cf	140	85	225	4923.6	134	87	221	4977.9
Maple-DL-v2.1	143	97	240	4601.8	86	104	190	5835.7
Maple-DL+rx	146	93	239	4600	121	105	226	46778
Maple-DL+rx+rp	155	94	249	4416.3	142	99	241	4589.2
Maple-DL+rx+rp+cf	154	95	249	4377.4	151	106	257	4171.1
Kissat_sat	159	88	247	4293	146	114	260	404848
Kissat_sat+cf	162	90	252	4211.7	157	113	270	3890.8
CCAnr	13	N/A	13	9678.3	45	N/A	45	8978.7

Most winners of main track in recent competitions use this method or similar idea.

#SAT_bonus: solved by hybrid solver, but both original CDCL and LS fail.

Solver	Analys	s for SAT			Analysis for UNSAT	
	#byLS	#SAT_bonus	#LS_call	LS_time(%)	$\#LS_call$	LS_time(%)
	SC2017	(351)		-		
glucose+rx	20	11	24.28	21.66	16.36	5.52
glucose+rx+rp	10	33	17.77	18.46	14.33	4.86
glucose+rx+rp+cf	17	29	22.7	22.19	15.3	5.81
Maple+rx	16	9	13.86	7.52	11.18	2.03
Maple+rx+rp	11	15	9.63	10.43	6.54	2.36
Maple+rx+rp+cf	6	16	12.59	7.49	8.59	2.12
	SC2018	(400)				
glucose+rx	50	4	11.27	20.66	29.62	4.94
glucose+rx+rp	47	31	9.46	18.4	21.66	5.64
glucose+rx+rp+cf	53	36	11.43	20.28	20.62	6.64
Maple+rx	52	7	4.8	13.02	11.69	2.81
Maple+rx+rp	56	13	4.84	15.21	8.7	3.04
Maple+rx+rp+cf	51	18	6.52	12.53	15.62	2.94
	SC2019	(400)				
glucose+rx	14	8	26.46	10.79	17.42	6.39
glucose+rx+rp	10	26	22.68	8.67	14.59	5.14
glucose+rx+rp+cf	11	26	20.39	11.82	15.51	5.95
Maple+rx	14	7	12.66	2.67	12.94	1.98
Maple+rx+rp	9	14	8.6	3.17	16.59	2.53
Maple+rx+rp+cf	12	15	11.21	3.05	17.23	2.22
	SC2020	(400)				
glucose+rx	30	9	14.94	11.75	14.67	10.27
glucose+rx+rp	23	37	13.17	10.79	9.4	9.71
glucose+rx+rp+cf	23	37	12.78	11.67	10.52	10.28
Maple+rx	19	13	14.21	6.69	10.24	5.25
Maple+rx+rp	30	29	8.53	6.62	11.7	6.18
Maple+rx+rp+cf	23	36	10.95	6.05	14.17	5.42

Lift the Hybrid Method to SMT

CDCL(T): CDCL deals with the skeleton, while theory solver solve the conjunction of theory literals and learn lemmas.

CDCL(T) guides local search:

When CDCL(T) finds a extract a subformula run local search at F satisfying assignment F of the true literals to Boolean skeleton

Example

Example

$$(p_1 \lor \neg p_2) \land (\neg (3x_1x_2 \le 2) \lor (-x_2 - 3x_4 \le 0))$$
Solean skeleton: $(p_1 \lor \neg p_2) \land (\neg p_{\sigma_1} \lor p_{\sigma_2})$
satisfying assignment to skeleton
 $\{p_1 \to T, p_{\sigma_1} \to F, p_2 \to F\}$
 $(p_1 \lor \neg p_2) \land \neg (3x_1x_2 \le 2)$

Lift the Hybrid Method to SMT

Local search enhances phasing heuristic:

word-level assignments	assignments to	used in phasing
by local search	Boolean encoders	heuristic of CDCL

Local search enhances ordering (branching) heuristic:

calculate the conflict frequency of each Boolean encoder (i.e., atomic formula), add to VSIDS scoring function.

Integrate Local Search in Z3

Z3++

- integrating local search solvers for arithmetic theories into Z3.
- Cooperation between CDCL(T) and local search

Z++ in SMT-Comp 2022 and 2023

- Biggest Lead Model Validation
- Largest Contribution Model Validation
- Winning "single query" and "model validation" tracks of LIA, NIA, NRA Divisions

Local Search and Its Application in CDCL/CDCL(T) Solvers for SAT/SMT

Shaowei Cai

Institute of Software, Chinese Academy of Sciences

caisw@ios.ac.cn