
1

Local Search and Its Application in

CDCL/CDCL(T) Solvers for SAT/SMT

Shaowei Cai

Institute of Software, Chinese Academy of Sciences

FMCAD 2023

October 23 to 27, 2023,

Ames, Iowa, USA

2/83

SAT, SMT

SAT: Propositional Satisfiability

(A ∨ B) ∧ (¬C ∨ ¬B) ∧ (¬C ∨ A)

SMT: Satisfiability Modulo Theories

¬(b+2 = c) ∧ (A[3] ≠ A[c-b+1] ∨ s =10)

Engines in formal Tools:

EDA, program analysis,

software verification ...

To solve SAT and SMT:

• conflict-driven clause learning (CDCL)

• local search
...

3/83

• Local Search for SAT

• Basis and Early Methods

• Modern Local Search Solvers

• Local Search for SMT

• Local Search for Bit Vectors //slides in this part provided by Aina Niemetz

• Local Search for Arithmetic Theories

• Improving CDCL/CDCL(T) solvers by Local Search

Outline

4/83

• Local Search for SAT

• Basis and Early Methods

• Modern Local Search Solvers

• Local Search for SMT

• Local Search for Bit Vectors //slides in this part provided by Aina Niemetz

• Local Search for Arithmetic Theories

• Improving CDCL/CDCL(T) solvers by Local Search

Outline

5/83

• Boolean variables: 𝑥1, 𝑥2, …

• A literal is a Boolean variable 𝑥 (positive literal) or its negation ¬𝑥 (negative literal)

• A clause is a disjunction (∨) of literals

𝑥2 ∨ 𝑥3,

¬𝑥1 ∨ ¬𝑥3 ∨ 𝑥4 ({¬𝑥1, ¬𝑥3, 𝑥4})

• A Conjunctive Normal Form (CNF) formula is a conjunction (∧) of clauses.

e.g., 𝜑 = (𝑥1∨ ¬𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (𝑥2 ∨ ¬𝑥4) ∧ (¬𝑥1 ∨ ¬𝑥3 ∨ 𝑥4)

SAT

Definition Boolean Satisfiability/Propositional Satisfiability/SAT

Given a propositional formula φ, test whether there is an assignment to the

variables that makes φ true.

6/83

Local Search

F={¬𝑥1 ∨ ¬𝑥2, 𝑥1 ∨ 𝑥2, ¬𝑥2 ∨ ¬𝑥3, 𝑥2∨ 𝑥3, ¬𝑥1 ∨ 𝑥2 ∨ ¬𝑥3}

Assignment
(𝑥1, 𝑥2, 𝑥3)

Cost falsified Clauses

0 0 0 2 𝑥1 ∨ 𝑥2 , (𝑥2 ∨ 𝑥3)

0 0 1 1 𝑥1 ∨ 𝑥2

0 1 0 0 None √

0 1 1 1 (¬𝑥2 ∨ ¬𝑥3)

1 0 0 1 (𝑥2 ∨ 𝑥3)

1 0 1 1 (¬𝑥1 ∨ 𝑥2 ∨ ¬𝑥3)

1 1 0 1 (¬𝑥1 ∨ ¬𝑥2)

1 1 1 2 ¬𝑥1 ∨ ¬𝑥2 , (¬𝑥2 ∨ ¬𝑥3)

000

100 101

011010

001

110
111

Search space:

all complete assignments

a CNF with 3 variables

Organized by neighboring relation

 Local search walks in the search space,

trying to visit a satisfying assignment

--- incomplete, cannot prove unsatisfiability.

7/83

search space S (consists of all candidate solutions)

SAT: set of all complete truth assignments to variables

solution set S′ ⊆ S

SAT: models of given formula

neighbourhood relation N ⊆ S × S

SAT: Hamming distance 1

objective function f : S → R+

SAT: number of falsified clauses under given assignment

evaluation function g : S → R

𝑐𝑜𝑠𝑡(𝛼)=number of falsified clauses under given assignment

We can have other cost functions...

Local Search

 Local search views

SAT as a minimization

problem.

8/83

Neighboring relation→ defined by operators

An operator defines how to modify the candidate solution in one step.

(e.g., Hamming distance 1 neighboring relation → operator of flipping one variable)

When an operator is instantiated with a variable (and a value), we obtain an operation.

(e.g., flip(𝑥1))

Operator

Flip operator for SAT

𝛼

𝛼′

9/83

We need an evaluation function to guide the search.

Instead of calculating cost function for candidate

solutions, we calculate scoring function for

operations.

(We have efficient method for calculating scores.)

Scoring Function

A common function: 𝒔𝒄𝒐𝒓𝒆 𝒙 = 𝒄𝒐𝒔𝒕 𝜶 − 𝒄𝒐𝒔𝒕(𝜶′)

Assignment
(𝑥1, 𝑥𝟐, 𝑥3)

Cost falsified Clauses

0 1 1 1 (¬𝑥2 ∨ ¬𝑥3)

1 1 1 2 ¬𝑥1 ∨ ¬𝑥2 , (¬𝑥2 ∨ ¬𝑥3)

0 0 1 1 𝑥1 ∨ 𝑥2

0 1 0 0 None

Example.

F={¬𝑥1 ∨ ¬𝑥2, 𝑥1 ∨ 𝑥2, ¬𝑥2 ∨ ¬𝑥3, 𝑥2∨ 𝑥3, ¬𝑥1 ∨ 𝑥2 ∨ ¬𝑥3}

𝑠𝑐𝑜𝑟𝑒 𝑥1 = 𝑐𝑜𝑠𝑡 011 − 𝑐𝑜𝑠𝑡 111 = −1
𝑠𝑐𝑜𝑟𝑒 𝑥2 = 𝑐𝑜𝑠𝑡 011 − 𝑐𝑜𝑠𝑡 001 = 0
𝑠𝑐𝑜𝑟𝑒 𝑥3 = 𝑐𝑜𝑠𝑡 011 − 𝑐𝑜𝑠𝑡 010 = 1

10/83

Cache based computation

• Initially calculate score(x) for each variable

• When flip a variable x, only score for those in 𝑁 𝑥 should be updated

• Go through all clauses where x appears, need to update scores in 4 cases

• 2-satisfied → 1 satisfied

• 1-satisfied → falsified

• falsified → 1-satisfied

• 1-satisfied → 2-satisfied

Non-cache computation

• Simply compute score according to definition, by going through the x’s clauses and compute

the contribution (either +1 or -1) of each clause

Score Computation

𝑁 𝑥 ={variables share clauses with 𝑥}

11/83

Mainly consider the objective function

• make(x): the number of currently falsified clauses that would become satisfied by flipping x.

• break(x): the number of currently satisfied clauses that would become falsified by flipping x.

• It is easy to see that score(x) = make(x)-break(x).

• score(x)B

• A-break(x)

• ...

May also consider the algorithm’s behavior

• age(x): the number of steps since the last time x was flipped.

• score(x)+age(x)/T

• …

Dynamic Scoring functions

• Change the parameters or the expression of the scoring function during the search

More Scoring Functions

12/83

Design of local search SAT algorithms

• operator

• initialization

• Scoring functions

• Search heuristics

Local Search for SAT

Scoring
functions

Search
strategies

//PickVar

13/83

GSAT [SelmanLevesqueMitchell, AAAI’92]

GSAT

S := a random complete assignment;

while (!termination condition)

if (S is a solution) return S;

x := a variable with the best score;

S := S with x flipped;

return S;

Tested on hard random 3-SAT, and instances encoded from graph coloring and N-queens,

showing promising results at that time.

14/83

WalkSAT[SelmanKautzCohen,AAAI’94]

WalkSAT-PickVar

C := a random falsified clause

If ∃ variable with 0-break

x := a 0-break variable, breaking ties randomly;

else

with probability p

x := a random variable in C;

otherwise

x := a variable with the smallest break, randomly;

Random Walk [Papadimitriou,FOCS’91]

Focus on complexity analysis

 WalkSAT (with p=0.567)

performs very well on random 3-SAT,

tested on up to half million variables

[KrocSabharwalSelman,SAT’10]

15/83

Local search algorithms for SAT mainly fall into two types:

• focused random walk (also called focused local search):

always picks the flip variable from an unsatisfied clause. (conflict driven)

• two-mode local search

switches between global mode (usually for intensification) and focused mode (usually
for diversification).

16/83

Novelty

[McAllesterSelmanKautz,

AAAI’97]

Focused Random Walk

Novelty-PickVar

Select a random unsatisfied clause;

if the best-score variable is not most recently flipped in the clause

x:=the best-score variable;

else

with probability p, x:=the second-best-score variable;

with probability 1-p, x:=the best-score variable;

Novelty+
[Hoos,AAAI’99]

Novelty++
[LiHuang,SAT’05]

AdaptiveNovelty+

[Hoos,AAAI’02]

adapt wp during the search (initially wp:=0)

• if no improvement in a period of time, wp:=wp+(1-wp)∙𝜃
• if improvement is observed, wp:=wp-wp ∙𝜃/2

With a fixed probability wp, choose a random variable from the clause; //PAC

The remaining case, do as Novelty;

With a fixed probability dp, choose the oldest variable from the clause;

The remaining case, do as Novelty;

17/83

GWSAT [SelmanKautz, IJCAI’93]

Two mode Local Search

S := a random complete assignment;

while (!termination condition)

if (S is a solution) return S;

with probability p

x := a variable in a random unsatisfied clause

otherwise

x := a variable with the best score

S := S with x flipped;

return S;

18/83

G2WSAT

[LiHuang,SAT’05]

Two mode Local Search

G2WSAT-PickVar

if ∃ promising decreasing variables

x:=the best-score promising variable;

else

x:= the variable picked by Novelty++ heuristic;

gNovelty+
[PhamThorntonGretton

Sattar, AAI’07]

Sparrow
[BalintFröhlich,SAT’10]

use AdaptNovelty+ in the focused mode

use clause weighting

use a probability-based heuristic in focused mode

use clause weighting

promising decreasing: becomes decreasing (i.e., positive score) due to

the flip of other variables

19/83

Clause weighting serve as a form of diversification in local search.

● Associate each clause with a weight, and use weighted cost function：

𝑤𝑐𝑜𝑠𝑡 𝐹, 𝛼 = Σc∈𝑈𝐶(𝐹,𝛼)𝑤(𝐶)

then,

𝑠𝑐𝑜𝑟𝑒 𝑥 = 𝑤𝑐𝑜𝑠𝑡 𝐹, 𝛼 − 𝑤𝑐𝑜𝑠𝑡(𝐹, 𝛼′)

● Date back to the Breakout method for SAT [Morris,AAAI’93]

increase the weight of each falsified clause by one when reaching local optima.

Clause Weighting

 The basic idea of using weight penalties, or Lagrangian multipliers, to solve discrete optimization

problems was developed in the operations research (OR) community much earlier. [Everett, OR’63]

20/83

Clause weighting schemes usually have a mechanism to decrease clause weights.

• Decrease weights by subtraction

• Discrete Lagrangian method (DLM) [WuWah,AAAI’00] , PAWS [Thorton et al,JAR’05]:

decreases clause weights by a constant amount after a fixed number of increases.

• Probabilistic PAWS: with a probability, decrease the weights of clauses with large weights

• Pull to the mean value

• 𝑤 𝑐 = 𝜌𝑤 𝑐 + 1 − 𝜌 𝑤 or 𝑤 𝑐 = 𝜌𝑤 𝑐 + 1 − 𝜌 𝑤𝑠𝑎𝑡

SDF[SchuurmansSouthey AIJ’01], ESG [SchuurmansSoutheyHolte IJCAI’01], SAPS[HutterTompkinsHoos,CP’02]

• DDWF: transfer weights from neighbouring satisfied clauses to falsified ones. [Ishtaiwi et.al,CP’05]

Clause Weighting

 Clause weighting has been the most significant line in recent progress of local search for MaxSAT,

including SATLike [AAAI’20] NuWLS [AAAI’23] // need to distinguish hard and soft clauses

21/83

• Local Search for SAT

• Basis and Early Methods

• Modern Local Search Solvers

• Local Search for SMT

• Local Search for Bit Vectors //slides in this part provided by Aina Niemetz

• Local Search for Arithmetic Theories

• Improving CDCL/CDCL(T) solvers by Local Search

Outline

22/83

After 2010, more attention on evaluating local search solvers on structured instances,

including crafted and industrial instances, with promising results.

This happens with new LS solvers: Sattime, probSAT, CCASat/CCAnr...

• Sattime ranked 4th in the crafted track, the top 3 were portfolios.

• complementary with CDCL solvers on crafted benchmarks. (top 3 solvers are CDCL+LS in SC’14)

• CCAnr (or its variant) shows good performance on instances from test generation, spectrum

allocation, and math problems [Brown et al, AAAI’16;Fröhlich et al,AAAI’15;Cai et al, CP’21]

• local search solver for SAT instances from matrix multiplication [HeuleKauersSeidl,SAT’19]

 No random track in SAT Competition after 2017.

Efficient Local Search on Structured Formulas

23/83

CCAnr (two-mode local search)

developed: Cai, 2013

[AIJ’13,SAT’15]

• configuration checking

• second level score

• clause weighting

Two Modern Local Search SAT Solvers

probSAT (focused local search)

developed: Balint, 2012

[SAT’12, SAT’14]

• probability distribution using break

• second-/multi-level break

24/83

Example. Given an assignment {𝑥1 =1, 𝑥2 =1, 𝑥3 =0, 𝑥4 =1, 𝑥5 =1}

c1=𝑥1 ∨ 𝑥2 ∨ ¬𝑥3 ∨ 𝑥4 ∨ ¬𝑥5, c2=𝑥1 ∨ ¬𝑥2 ∨ 𝑥3 ∨ ¬𝑥4 ∨ ¬𝑥5

1-satised clauses are the most endangered satisfied clauses.

→encourage 1-satisfied clauses change to 2-satisfied.

Second Level Scoring Functions [CaiSu, AIJ’13, AAAI’13]

• 𝑚𝑎𝑘𝑒2(x) is the number of 1-satifised clauses → 2-satisfied by flipping x.

• 𝑏𝑟𝑒𝑎𝑘2(x) is the number of 2-satifised clauses → 1-satisfied by flipping x.

• 𝑠𝑐𝑜𝑟𝑒2 𝑥 = 𝑚𝑎𝑘𝑒2 𝑥 − 𝑏𝑟𝑒𝑎𝑘2 𝑥

• First used in CCASat (with name ‘subscore’), formally defined in WalkSATlm,

also used in CScoreSAT, probSAT, Sattime2014r...

Second Level Scoring Functions

Both clauses are satisfied.

But c1 is a 4-satised clause, while c2 is 1-satised.
 Satisfaction degree

25/83

Second Level Scoring Functions

This proposition says, second level functions are not suitable for 3-SAT

formulas, as at least half clauses are 1-satisfied under any solution.

Generally, this indicates it is likely that second level functions are not helpful

for formulas with short clauses.

In fact, all local search solvers using second/multi-level functions only use

them for 5- and 7-SAT, while the experiment studies show that it is not good

for 3-SAT.

Proposition For a random 3-SAT formula F(n,m), under any satisfying

assignment 𝛼 to F, the number of 1-satised clauses is more than m/2.

[CaiSu,AIJ’13]

26/83

Configuration Checking (CC)

A simple CC for SAT: if the configuration of 𝑥 has not changed

since 𝑥's last flip, then it is forbidden to flip.

Definition the configuration of a variable 𝑥 is a vector 𝐶𝑥 consisting of truth

value of all variables in 𝑁(𝑥) under current assignment 𝛼 (i.e., 𝐶𝑥 = 𝛼ȁ𝑁(𝑥)).

[AAAI’12,AIJ’13]
𝑁 𝑥 ={variables share clauses with 𝑥}

 CC aims to address cycling

problem, i.e., revisiting

candidate solutions
0

1

1

0

 We can have different

definitions of CC

01

1 10

27/83

Efficient implementation of CC:

• Auxiliary data structure --- CC array

• CC[x] = 1 means the configuration of x has changed since x's last flip;

• CC[x] = 0 on the contrary.

• Maintain the CC array

• for each variable x, CC[x] is initialized as 1.

• when flipping x, CC[x] is reset to 0, and for each 𝑦 ∈ N 𝑥 , CC[y] is set to 1.

Configuration Checking

Observation when a variable is flipped, the configuration of all its

neighboring variables has changed.

28/83

The effectiveness of the typical CC is related to the neighborhood of variables.

When to use (or not use) CC?

Proposition. For a uniform random k-SAT formula F, its the number of variables

n and the clause-variable ratio r, if ln 𝑛 − 1 <
𝑘 𝑘−1 𝑟

𝑛−1
, then each variable is

expected to have a complete neighborhood, and thus the CC strategy degrades

to the trivial case that forbids only one variable.

𝑓 𝑛 = 𝑙𝑛 𝑛 − 1 −
𝑘 𝑘−1 𝑟

𝑛−1
is a monotonic increasing with 𝑛 (𝑛 > 1).

𝑓 𝑛 < 0 (thus cc fails) iff 𝑛 ≤ 𝑛∗ , where n* is a number s.t.𝑓 𝑛∗ = 0.

This table list the n∗ value near phase transition for k-SAT.

3-SAT

(𝒓 = 𝟒. 𝟐)
4-SAT

(𝒓 = 𝟗. 𝟎)
5-SAT

(𝒓 = 𝟐𝟎)
6-SAT

(𝒓 = 𝟒𝟎)
7-SAT

(𝒓 = 𝟖𝟓)

𝑛∗ 11.652 32.348 90.093 223.095 564.595

 Generally, CC is effective

for formulas with short

clauses.

29/83

CCASat and CCAnr

CCD:={x|score(x)>0 and CC[x]=1}.

SD:={x|score(x) > 𝑤}

CCA-PickVar

If ∃ 𝑪𝑪𝑫 variables //configuration checking

x:=the best-score CCD variable;

else if ∃ 𝑺𝑫 variables // aspiration

x:=the best-score SD variable;

else

Select a random unsatisfied clause;

x:=pick a variable from the clause

x:= oldest variable from the clause x:= best variable from the clause

CCASat (won random track of SAT Challenge 2012)

• Variants ranked top 3 in random SAT track in

following SCs.

• using second level score for k-SAT

CCAnr

• good at structured instances

• not using second level score

30/83

probSAT (won random SAT track of SC’13)

• Choose a random unsatisfied clause C;

• Pick a variable from C according to probability
𝑓(𝑥)

σ𝑧∈𝐶 𝑓(𝑧)

probSAT and YalSAT

𝑓 𝑥 = 𝑐𝑏−𝑏𝑟𝑒𝑎𝑘(𝑥) → 𝑓 𝑥 =ෑ

𝑙

𝑐𝑏𝑙
−𝑏𝑟𝑒𝑎𝑘𝑙(𝑥)

𝑓 𝑥 = (1 + 𝑏𝑟𝑒𝑎𝑘(𝑥))−𝑐𝑏 → 𝑓 𝑥 =ෑ

𝑙

(1 + 𝑏𝑟𝑒𝑎𝑘𝑙)
−𝑐𝑏𝑙

 3-SAT: only use 𝑏𝑟𝑒𝑎𝑘(𝑥)

 Two scenarios for 5-SAT and 7-SAT

• use 𝑏𝑟𝑒𝑎𝑘 𝑥 𝑎𝑛𝑑 𝑏𝑟𝑒𝑎𝑘2(𝑥)

• use all 𝑏𝑟𝑒𝑎𝑘𝑙 𝑥 for 𝑙 ∈ {1,2, … , 𝑘}

Besides the traditional random k-SAT

instances, random SAT track of SC’17

also includes random instances of a

model called sgen.

YalSAT (won random SAT track of SC’17)

[Biere,SC-Proc’14]

• implements several variants of probSAT

• these variants are scheduled by Luby restarts.

2nd level and multi-level break
[BalintSchöningFröhlichBiere,SAT’14]

Original probSAT

[Balint Schöning,SAT’12]

31/83

NLocalSAT[Zhang et,al.,IJCAI’20]:

using Gated Graph Convolutional Network to predict solution, used as initial assignment

Improving Local Search via Machine Learning

improve local search solvers, tested on uniform random

instances and those generated by Balyo’s model in SC’18

32/83

PbO-CCSAT [LuoHoosCai,PPSN’20]

CC-based local search framework

larger design space → automatic configuration by SMAC [HutterHoosBrown,LION’11]

Improving Local Search via Machine Learning

 Improve LS on application

benchmarks

 Better than CDCL solvers in

some problems

33/83

• Local Search for SAT

• Basis and Early Methods

• Modern Local Search Solvers

• Local Search for SMT

• Local Search for Bit Vectors //slides in this part provided by Aina Niemetz

• Local Search for Arithmetic Theories

• Improving CDCL/CDCL(T) solvers by Local Search

Outline

34/83

SMT

SMT SAT

BVEUF

LIA NIA

ArrayList

Theories

𝑥1 − 𝑥2 ≤ 13 ∨ 𝑓(𝑥2) ≠ 𝑓(𝑥3) ∧ 𝐵1 → 𝑥4 > 𝑥5 ∧ ¬𝐵2

Satisfiability Modulo Theories

35/83

Example:
𝜙 = 𝑥1 − 𝑥2 ≤ 13 ∨ 𝑥2 ≠ 𝑥3 ∧ 𝐵1 → 𝑥4 > 𝑥5 ∧ ¬𝐵2

Propositional Skeleton PSΦ=(𝑏1 ∨ ¬𝑏2) ∧ 𝐵1 → 𝑏3 ∧ ¬𝐵2

 𝑏1: 𝑥1 − 𝑥2 ≤ 13

𝑏2: 𝑥2 = 𝑥3

𝑏3: 𝑥4 > 𝑥5

SMT

36/83

• Fixed Sized Bit vectors (BV)

(x << 001) ≥s 000 ∧ x <u 100 ∧ (x ・ 010) mod 011 = x + 001

• Linear integer/real arithmetic (LIA/LRA)

𝑥1 − 𝑥2 ≤ 13 ∨ 𝑥2 ≠ 𝑥3 ∧ 𝐵1 → 𝑥4 > 𝑥5 ∧ ¬𝐵2

• Nonlinear integer/real arithmetic (NIA/NRA)

𝐵1 ∨ 𝑥1𝑥2 ≤ 2 ∧ B2 ∨ 3𝑥2
3𝑥4 + 4𝑥4 + 5𝑥5 = 12 ∨ 𝑥2 − 𝑥3 ≤ 3

SMT

37/83

WalkSMT [Griggio,Phan,Sebastiani,Tomasi FroCos 2011]

Combine WalkSAT and MathSAT, for LRA

• WalkSAT is used to solve the Boolean skeleton of the SMT formula,

• the conjunction of the literals in the solution 𝜇 is sent to the theory solver to check.

• Learn lemmas: if 𝜇 is inconsistent, sample some of the literals to check consistency, if

they are inconsistent, we learn a lemma

Experiment results:

• SMTLIB: “globally MATHSAT4 performs much better than WALKSMT, often by orders of

magnitude.”

• Random instances: “a very small difference ”

Local Search at Boolean Skeleton

38/83

BV-SLS [FröhlichBiereWintersteigerHamadi,AAAI’15] in Z3,

Boolector

• Represent formula as a directed acyclic graph (DAG) with

(possibly) multiple roots

• Use single bit operators

Local Search for Bit Vector

39/83

• A function score to evaluate each possible assignment obtained by each operation.

• Recursively defined, compute via bottom-up way, i.e., starting from the inputs

Local Search for Bit Vector

Boolean literal

𝑠 𝑥, 𝛼 = 𝛼 𝑥
𝑠 ¬𝑥, 𝛼 = ¬𝛼 𝑥

and-expression

𝑠 𝑎 ∧ 𝑏, 𝛼 =
1

2
(𝑠 𝑎, 𝛼 + 𝑠 𝑏, 𝛼)

𝑠 ¬(𝑎 ∧ 𝑏), 𝛼 = 𝑚𝑎𝑥(𝑠 ¬𝑎, 𝛼 + 𝑠(¬𝑏, 𝛼))
(as ¬ 𝑎 ∧ 𝑏 ≡ ¬𝑎 ∨ ¬𝑏)

equality expression inequality expression

40/83

Local Search for Bit Vector

Clause weighting:

updated whenever no improving move

could be found

single bit operations

• compute the score of each possible assignment
obtained by each bit operation,

• then choose the best one.

If no improving operation was found, then perform

a random step

41/83

Path Propagation

extends BV-SLS [AAAI’15] by

path propagation

[NiemetzPreinerFröhlichBiere,

DIFTS’15]

42/83

Path propagation (aka. backtracing)

• Force root r to assume its target value to be 1.

• propagate this information along a path towards the primary inputs, update assignment

• propagate this information along another path towards the primary inputs, update assignment

• ...

Path Propagation

43/83

Path Propagation

44/83

Path Propagation

45/83

Path Propagation

46/83

Path Propagation

[1]

To change the value of ‘ite’ node from 0 to 1,

we need to change the value of variable y.

47/83

Path Propagation: How to Choose A Path

Definition An input to a node is controlling, if the node can not assume a given target

value as long as the value of the input does not change.

For each node, prefer to pick to choose a controlling input, otherwise pick a random input

How to extend a path?

48/83

Path Propagation

Path propagation (aka. backtracing)

• Force root r to assume its target

value to be 1.

• Iteratively propagate this information

along a path towards the primary

inputs.

49/83

Path Propagation

Path propagation (aka. backtracing)

• Force root r to assume its target

value to be 1.

• Iteratively propagate this information

along a path towards the primary

inputs.

50/83

Path Propagation

 prioritizes selecting controlling inputs, else choose randomly

51/83

● Two scenarios

● Propagation (Bprop) vs. LS moves (frw) with a ratio

● Propagation moves only

Path Propagation

Implemented in Boolector: Bit blasting + focused random walk + path propagation

52/83

Word Level Propagation

Definition An input to a node is controlling (essential), if the node can not assume a

given target value as long as the value of the input does not change.

Lift propagation

from bit level to word level

[NiemetzPreinerBiere, CAV’16]

53/83

Word Level Propagation

54/83

• Local Search for SAT

• Basis and Early Methods

• Modern Local Search Solvers

• Local Search for SMT

• Local Search for Bit Vectors //slides in this part provided by Aina Niemetz

• Local Search for Arithmetic Theories

• Improving CDCL/CDCL(T) solvers by Local Search

Outline

55/83

LS-LIA→ LocalSMT (LIA and NIA) [Cai,Li,Zhang, CAV’22,TOCL’23]

A Local Search Algorithm for Arithmetic Theories

Initialization
Integer(Real)

Mode

Boolean

Mode

𝑛𝑜𝑛_𝑖𝑚𝑝𝑟𝑜𝑣𝑒_𝑠𝑡𝑒𝑝𝑠 > 𝐿 × 𝑃𝑖

𝑛𝑜𝑛_𝑖𝑚𝑝𝑟𝑜𝑣𝑒_𝑠𝑡𝑒𝑝𝑠 > 𝐿 × 𝑃𝑏

𝑃𝑏 , 𝑃𝑖 : the proportion of Boolean and integer literals to all literals in falsified clauses

Consecutively performing X (Boolean or Integer) operations can help

algorithm focus on the subformula with only X variables

 Top level of

LocalSMT

56/83

The critical move operator, 𝑐𝑚(𝑥, ℓ), assigns an integer variable 𝑥 to the threshold value

making literal ℓ true, where ℓ is a falsified literal containing 𝑥.

Critical Move

Example

given two literals 𝑙1: 2𝑏 − 𝑎 ≤ −3 and 𝑙2: 5𝑐 − 𝑑 + 3𝑎 = 5 and the assignment

{𝑎 = 𝑏 = 𝑐 = 𝑑 = 0}

• 𝑐𝑚 𝑎, 𝑙1 refers to assigning 𝑎 to 3, 𝑐𝑚 𝑐, 𝑙2 assign 𝑐 to 1.

• Note that there exists no 𝑐𝑚(𝑎, 𝑙2) since 3 ∤ 5

LIA: let Δ = σ𝑖 𝑎𝑖𝛼(𝑥𝑖) − 𝑘

• for the case ℓ:σ𝑖 𝑎𝑖𝑥𝑖 ≤ 𝑘, 𝑐𝑚 𝑥𝑖 , ℓ 𝑚𝑎𝑘𝑒𝑠 𝛼(𝑥𝑖) = ȁ
Δ

𝑎𝑖
ȁ for each 𝑥𝑖

• for the case ℓ:σ𝑖 𝑎𝑖𝑥𝑖 = 𝑘, 𝑐𝑚 𝑥𝑖 , ℓ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝛼(𝑥𝑖) 𝑏𝑦 −
Δ

𝑎𝑖
, if 𝑎𝑖ȁΔ

...

57/83

The critical move operator, 𝑐𝑚(𝑥, ℓ), assigns an integer variable 𝑥 to the threshold value

making literal ℓ true, where ℓ is a falsified literal containing 𝑥.

Critical Move

NIA: Suppose 𝑥 has 𝑛 different roots for σ𝑖 𝑎𝑖𝑚𝑖(𝑥) = 𝑘, listed as 𝑟1 < 𝑟2 < ⋯ < 𝑟𝑛

for the case ℓ: σ𝑖 𝑎𝑖𝑚𝑖 ≤ 𝑘,

𝑐𝑚𝑁𝐼𝐴 𝑥, ℓ = −𝑗∊𝑆ڂ 𝑜𝑝 𝑥, 𝐼𝑚𝑖𝑛 𝑟𝑗 , 𝑟𝑗+1 , 𝑜𝑝 𝑥, 𝐼𝑚𝑎𝑥 𝑟𝑗 , 𝑟𝑗+1

for the case ℓ: σ𝑖 𝑎𝑖𝑚𝑖 = 𝑘,

𝑐𝑚𝑁𝐼𝐴 𝑥, ℓ = {𝑜𝑝(𝑥, 𝑟𝑗)ȁ𝑟𝑗 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑟𝑜𝑜𝑡}

...

 For a variable, there may be more than one critical moves w.r.t. a literal

58/83

The critical move operator, 𝑐𝑚(𝑥, ℓ), assigns an integer variable 𝑥 to the threshold value

making literal ℓ true, where ℓ is a falsified literal containing 𝑥.

Critical Move

Example. literal 𝑙 : −2𝑏𝑐2 + 3 𝑎𝑏 + 𝑐 ≤ −3

current assignment 𝑎 = 1, 𝑏 = 1, 𝑐 = 1, 𝑑 = 1 .

solve

−2𝑐2 + 𝑐 + 6 ≤ 0

feasible intervals: −∞,−1.5 ∪ [2,∞)

largest and smallest integer in these intervals: -2, 2.

→ 𝑐𝑚𝑁𝐼𝐴 𝑐, 𝑙 contains two operations: assigning 𝑐 to -2

and 2 respectively.

Substitute all variables

but 𝑥 with their values
Solve feasible intervals Determine the largest and smallest

integer in each feasible interval

59/83

To find a decreasing cm operation: whenever one exists, we need to scan all

cm operations on false literals.

Two-level heuristic

The set of cm operations 𝐷

𝑆 ⊆ 𝐷, 𝑆 = {𝑐𝑚 𝑥, ℓ ȁℓ 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑓𝑎𝑙𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑙𝑎𝑢𝑠𝑒}

Time
consuming!

if fail

search for a decreasing cm operation from S

search for decreasing cm operation from D\S

Two-level heuristic
1. Efficiency of picking operation

2. Conflict driven

60/83

• LocalSMT switches between Boolean mode and integer mode

• Each mode is based on the “two-mode local search”(global step and focused
random walk)

LocalSMT Algorithm

Picking Operation in Integer Mode of LocalSMT

If ∃ decreasing cm operation in falsified clauses

op:=the best-score cm operation;

else if ∃ decreasing cm operation in satisfied clauses

op:=the best-score cm operation;

else

update clause weights according to PAWS;

c:=select a random falsified clause;

op:=pick a cm operation from c with best dscore;

Two level heuristic

61/83

Distance to truth (dtt):

Given an assignment 𝛼 and a literal ℓ, the distance to truth of ℓ is

● Inequality literal σ𝑖 𝑎𝑖𝑥𝑖 ≤ 𝑘: its 𝑑𝑡𝑡 ℓ, 𝛼 = 𝑚𝑎𝑥{σ𝑖 𝑎𝑖𝛼 𝑥𝑖 − 𝑘, 0}.

● Boolean or equality σ𝑖 𝑎𝑖𝑥𝑖 = 𝑘 : 𝑑𝑡𝑡 ℓ, 𝛼 = 0 if ℓ is true under 𝛼 and 1 otherwise.

Score Based on Distance to Satisfaction

Example.
𝐶 = ℓ1 ∨ 𝑙2 ∨ 𝑙3 = 𝑎 + 𝑏 ≥ 1 ∨ 𝑏 ≥ 2 ∨ (𝑐 ≤ −3)

𝛼 = {𝑎 = 𝑏 = 𝑐 = 0}
Then, 𝑑𝑡𝑡(ℓ1) = 1, 𝑑𝑡𝑡(ℓ2) = 2, 𝑑𝑡𝑡(ℓ3) = 3,
𝑎𝑛𝑑 𝑑𝑡𝑠(𝐶) = 1

Distance to satisfaction (dts):

Given an assignment 𝛼 and a clause 𝐶,

𝑑𝑡𝑠 𝐶, 𝛼 = min
𝑙∈𝐶

{𝑑𝑡𝑡(ℓ, 𝛼)}

Distance score (dscore)

For an operation 𝑜𝑝, 𝑑𝑠𝑐𝑜𝑟𝑒 𝑜𝑝 = σ𝑐∈𝐹(𝑑𝑡𝑠 𝑐, 𝛼 − 𝑑𝑡𝑠 𝑐, 𝛼′)

where 𝛼, 𝛼′ denotes the assignment before and after performing 𝑜𝑝

62/83

LocalSMT on Integer Arithmetic Benchmarks

Tested on SMTLIB benchmarks of LIA, IDL and NIA, cutoff=1200s

63/83

• LocalSMT(RA), supports linear and multi-linear real arithmetic

• e.g. 𝑥𝑦 + 5𝑦𝑧 − 2𝑥𝑦𝑧 ≤ 100 (multi-linear)

Local Search for Linear/Multi-linear Real Arithmetic

solution: interval-based operation

1. interval division

2. Consider a few options in a selected interval

issue: infinite possible values for a variable

 [Li,Cai,FMCAD’23]

64/83

For a literal of linear/multi-linear constraint, when all variables but one (say 𝑥) is substituted

with their values, we can solve the constraint and get the satisfying interval of 𝑥

→either 𝑥 ≤ 𝑢𝑏 or 𝑥 ≥ 𝑙𝑏 (for strict inequation, 𝑥 < 𝑢𝑏 or 𝑥 > 𝑙𝑏)

For a clause with more than one literal, the satisfying interval of 𝑥 is the union of its

satisfying intervals w.r.t. all literals it appears.

Satisfying Interval

(1) (2)

(3) (4)

the whole R

65/83

• Consider all falsified clauses, for a variable 𝑥, put all satisfying intervals
together:

Satisfying Interval

(1)

(3)

(2)

 There is no case with crossing intervals.

Suppose they are derived from two clauses

C1and C2, then at least one of them is

satisfied.

Example. C1: 𝑥 ≥ 1, C2: 𝑥 ≤ 2, then

not matter what value 𝑥 is assigned,

at least one of them is satisfied.

This is the general case

66/83

• Consider all falsified clauses, for a variable 𝑥, we obtain an interval division:

Equi-make Intervals

(3)

This is the general case

For each of the resulting intervals:

Assigning 𝑥 to any value in the interval have the

same 𝑚𝑎𝑘𝑒 value (making the same number of

falsified clauses become true).

→such an interval is called euqi-make interval.

Example:

𝐹 = 𝐶1 ∧ 𝐶2
= 𝑎 − 𝑏 > 4 ∨ 2𝑎 − 𝑏 ≥ 7 ∨ 2𝑎 − 𝑐 ≤ −5
∧ 𝑎 − 𝑐 ≥ 2 ,
assignment 𝑎 = 𝑏 = 𝑐 = 0 , 𝐶1𝑎𝑛𝑑 𝐶2 falsified

for variable 𝑎:

• interval 3.5,∞ can satisfy 2 clauses;

• both interval −∞,−2.5 and 2, 3.5 can

satisfy 1 clause

𝐿𝐵 𝑥, 𝐶2𝑈𝐵 𝑥, 𝐶1 𝐿𝐵 𝑥, 𝐶1

2 3 4-2 -1 0 1-3-4

67/83

• After choosing an equi-make interval, we need to choose a value 𝑣.

Four options

→ obtain an operation op(𝑥, 𝑣)

Choosing an Operation from Equi-make Interval

1）Threshold: 𝑙, 𝑈

2）Median: (𝑙 + 𝑈)/2

3）Largest/Smallest integer in interval:𝑍1 > 𝑙, 𝑍2 < 𝑈

4) For
𝑏

𝑎
,
𝑑

𝑐
, another option is

𝑏+𝑑

𝑎+𝑐

LocalSMT(LRA):
• based on the framework of LocalSMT

• global step: collect K such operations, pick the best-score one.

68/83

LocalSMT for LRA/MLRA

69/83

Extension of the above algorithm to nonlinear real arithmetic need to deal with

additional challenges:

1. Efficiency: while there are well-known algorithms for root isolation in higher-degree

polynomials, they are time consuming and should be used sparingly.

• Computation is especially slow when algebraic numbers are involved.

Example. for constraint 𝑥2 + 𝑦2 = 3, if 𝑥 is assigned to 1, then 𝑦 = ± 2.

2. Unlike linear equations, not all higher-degree polynomials have feasible solution for

each variable.

Additional improvements address the above issues, yielding a local search

method that is competitive with state-of-the-art complete algorithms.

Local Search for Nonlinear Real Arithmetic

70/83

A challenge: equality constraints (e.g. 𝑥2 + 𝑦2 = 3) may force assignment of variables

to irrational (algebraic) numbers, making computation very slow.

• We relax the equality constraints that force irrational assignments during most of

local search.

• After approximate solutions are found, these equalities are restored, and solved to

obtain an exact solution.

Relaxation and Restoration of Equalities

𝑥

𝑦

𝑥2 + 𝑦2 = 3

𝑥

𝑥2 + 𝑦2 < 3 + 𝜖
𝑥2 + 𝑦2 > 3 − 𝜖

𝑦

relax equality ➔

rational, approx.

solution

𝑥

𝑦

𝑥2 + 𝑦2 = 3

approx. solution for

all constraints ➔

restore exact

solution

[WangZhanLiCai, VMCAI’24]

71/83

Local Search for Nonlinear Real Arithmetic

local search for NRA, competitive with complete algorithms such as

MCSAT on the satisfiable instances QF_NRA in SMT-LIB.

72/83

• Local Search for SAT

• Basis and Early Methods

• Modern Local Search Solvers

• Local Search for SMT

• Local Search for Bit Vectors //slides in this part provided by Aina Niemetz

• Local Search for Arithmetic Theories

• Improving CDCL/CDCL(T) solvers by Local Search

Outline

73/83

Challenge of Combining CDCL and Local Search

Challenge 7: Demonstrate the successful combination of stochastic search and
systematic search techniques, by the creation of a new algorithm that outperforms
the best previous examples of both approaches.

[Bart Selman, Henry Kautz and David McAllester, AAAI 1997]

74/83

• Local search as main body

• hybridGM （SAT 2009）, SATHYS （LPAR 2010）

• GapSAT: use CDCL as preprocessor before local search (SAT 2020)

• Use resolution in local search (AAAI 1996, AAAI 2005)

• DPLL/CDCL as main body

• HINOTOS: local search finds subformulas for CDCL to solve (SAT 2008)

• WalkSatz: calls WalkSAT at each node of a DPLL solver Satz (CP 2002)

• CaDiCaL and Kissat: a local search solver is called when the solver resets the saved phases and is

used only once immediately after the local search process (2019)

• Sequential portfolio

• Sparrow2Riss, CCAnr+glucose, SGSeq

Challenge of Combining CDCL and Local Search

75/83

CDCL Solver Overview

CDCL solver

• Analyze-Conflict : non-chronological backtracking + clause learning + vivification

• Decide : Branching strategy and phasing strategy

• Clause learning

• Clause management

• Lazy data structures

• Restarting

• Branching

• Phasing

• Mode Switching

• …

76/83

CDCL Solver Overview

CDCL solver

• Analyze-Conflict : non-chronological backtracking + clause learning + vivification

• Decide : Branching strategy and phasing strategy → can be improved by local search

• Clause learning

• Clause management

• Lazy data structures

• Restarting

• Branching

• Phasing

• Mode Switching

• …

77/83

Deep Cooperation of CDCL and Local Search

CDCL focuses on a local space in a certain period

→Better to integrate reasoning techniques

Local search walks in the whole search space

→Better at sampling

[Cai,Zhang, SAT ’21] (best paper).

Relaxed CDCL:
Plug LS into a CDCL solver

 How to create a full initial

assignment?

Relax CDCL and complete the partial

assignment by alternating decisions and

propagations while ignoring all conflicts

• BCP when possible

• Pick a random unassigned variable,

assign it with phase saving heuristic

A short history of this work and similar

works independently by Biere is described

in [Cai,Zhang,Fleury,Biere, JAIR ’22]

78/83

Branching with conflict frequency in local search:

• calculate the conflict frequency: frequency of occurring in falsified clauses

• multiply 𝑙𝑠_𝑐𝑜𝑛𝑓𝑙_𝑓𝑟𝑒𝑞(x) with 100 , resulting 𝑙𝑠_𝑐𝑜𝑛𝑓𝑙_𝑛𝑢𝑚(x)

• improve VSIDS: for each variable 𝑥, its activity is increased by 𝑙𝑠_𝑐𝑜𝑛𝑓𝑙_𝑛𝑢𝑚(𝑥)

• improve LRB: for each variable 𝑥, the number of learnt clause during its period 𝐼 is

increased by 𝑙𝑠_𝑐𝑜𝑛𝑓𝑙_𝑛𝑢𝑚(𝑥).

Improve Branching Heuristics via Local Search

CDCL is powerful owing largely to the utilization of conflict information

CDCL solvers prefer the variable which may cause conflicts faster (e.g. VSIDS)

Can local search information be used to enhance branching heuristics?

79/83

Local Search Rephasing

Local search rephasing

• After each restart of CDCL, reset the saved phases of all variables with assignments by local search.

Phase selection is an important component of a CDCL solver.
Most modern CDCL solvers utilize the phase saving heuristic [PipatsrisawatDarwiche, SAT’07]

𝛼_𝑙𝑜𝑛𝑔𝑒𝑠𝑡_𝐿𝑆 ∶ the assignment of the local search procedure in which the initial

solution is extended from the longest branch during past CDCL search.

𝛼_𝑏𝑒𝑠𝑡_𝐿𝑆: the assignment with smallest cost among all local search

procedures.

𝛼_𝑙𝑎𝑡𝑒𝑠𝑡_𝐿𝑆: the assignment of the latest local search procedure.

(the assignment of a local search procedure is the best found assignment)

Phase Name α_longest_LS α_latest_LS α_best_LS no change

Probability 20% 65% 5% 10%

80/83

Most winners of main track in recent competitions

use this method or similar idea.

Deep Cooperation of CDCL and Local Search

20 51

9 24

21 62

9 67

3 17

5 10

#SAT_bonus: solved by hybrid solver, but

both original CDCL and LS fail.

81/83

When CDCL(T) finds a

satisfying assignment

to Boolean skeleton

Lift the Hybrid Method to SMT

extract a subformula

F of the true literals run local search at F

CDCL(T) guides local search:

𝑝1 ∨ ¬𝑝2 ∧ (¬(3𝑥1𝑥2 ≤ 2) ∨ (−𝑥2 − 3𝑥4 ≤ 0))

Boolean skeleton: (𝑝1 ∨ ¬𝑝2) ∧ (¬𝑝σ1 ∨ 𝑝σ2)

satisfying assignment to skeleton

{𝑝1 → 𝑇, 𝑝σ1 → 𝐹, 𝑝2 → 𝐹}

(𝑝1 ∨ ¬𝑝2) ∧ ¬(3𝑥1𝑥2 ≤ 2)

Example

Assignments

Conflict Clauses

CDCL

Solver

Theory

Solver

CDCL(T): CDCL deals with the

skeleton, while theory solver

solve the conjunction of theory

literals and learn lemmas.

82/83

Lift the Hybrid Method to SMT

word-level assignments

by local search

assignments to

Boolean encoders

used in phasing

heuristic of CDCL

Local search enhances phasing heuristic:

Local search enhances ordering (branching) heuristic:

calculate the conflict frequency of each Boolean encoder (i.e., atomic formula),

add to VSIDS scoring function.

83/83

Z3++

• integrating local search solvers for arithmetic

theories into Z3.

• Cooperation between CDCL(T) and local search

Z++ in SMT-Comp 2022 and 2023

• Biggest Lead Model Validation

• Largest Contribution Model Validation

• Winning “single query” and “model validation”

tracks of LIA, NIA, NRA Divisions

Integrate Local Search in Z3

Local Search and Its Application in

CDCL/CDCL(T) Solvers for SAT/SMT

Shaowei Cai

Institute of Software, Chinese Academy of Sciences

caisw@ios.ac.cn

mailto:caisw@ios.ac.cn

	默认节
	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51
	幻灯片 52
	幻灯片 53
	幻灯片 54
	幻灯片 55
	幻灯片 56
	幻灯片 57
	幻灯片 58
	幻灯片 59
	幻灯片 60
	幻灯片 61
	幻灯片 62
	幻灯片 63
	幻灯片 64
	幻灯片 65
	幻灯片 66
	幻灯片 67
	幻灯片 68
	幻灯片 69
	幻灯片 70
	幻灯片 71
	幻灯片 72
	幻灯片 73
	幻灯片 74
	幻灯片 75
	幻灯片 76
	幻灯片 77
	幻灯片 78
	幻灯片 79
	幻灯片 80
	幻灯片 81
	幻灯片 82
	幻灯片 83
	幻灯片 84

