
Configuration Checking Based

Local Search

Institute of Software, Chinese Academy of Sciences

Shaowei Cai

S o C S 2 0 2 1 14th Annual Symposium on Combinatorial Search

Outl ine

01. Local Search and Cycling Issue

02. Configuration Checking for Assignment Problems

03. Configuration Checking for Subset Problems

04. Conclusions and Challenges

Local Search
and Cycling Issue

PART ONE

1

Combinatorial Problems

Page 4

𝜑 = (𝑥1 ∨ ¬𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (𝑥2 ∨ ¬𝑥4) ∧ (¬𝑥1 ∨ ¬𝑥3 ∨ 𝑥4) SAT, MaxSAT

Bin Packing

Graph Coloring Max Clique Vertex Cover

Spectrum AllocationTravel Salesman Problem

Local Search: A Heuristic Search Method

Many important combinatorial problems are NP-hard.

Resort to heuristic methods to tackle hard combinatorial problems practically.

Page 5

"The name heuristics

applies to every rule,

conclusion, evaluation,

and principle that works

in certain situations most

of the time, but not

always."

“The algorithms …called heuristics: for most

of them we know that they do not work on

worst-case instances, but there is good

evidence that they work very well on many

instances of practical interest.”

---Sanjeev Arora (theoretical computer

scientist)

Local Search: A Heuristic Search Method

Local Search is a stochastic heuristic search method,

and is one of the most effective methods for solving NP hard combinatorial problems.

Systematic Search Stochastic Search

Page 6

Basic Concepts of Local Search

From “Stochstic Local Search: Foundations and Applications” (2005), Hoos and Stützle

• The search space S is organized as a network, by defining the neighborhood relation

N ⊆ S × S (usually characterized by operator: 𝒔→𝒔′)

• There is an objective function which needs to be minimized (maximized) that can be

computed for each point

op

Page 7

The SAT Problem

• Boolean satisfiability (SAT) --- the first problem proved to be NP complete

SAT usually adopts the Conjunctive Normal Form (CNF):

e.g., 𝜑 = (𝑥1∨ ¬𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (𝑥2 ∨ ¬𝑥4) ∧ (¬𝑥1 ∨ ¬𝑥3 ∨ 𝑥4)

test whether there exists an assignment to the variables in 𝜑 that satisfies all the clauses.

• Boolean variables have two possible values: True, False.

• A literal is a Boolean variable 𝑥 or its negation ¬𝑥

• A clause is a disjunction (∨) of literals

Page 8

Example: SAT

• objective function: (minimize) the number of unsatisfied clauses.

• search space: for a SAT instance with n variables, there are 2𝑛 complete assignments.

• Hamming distance between two assignments 𝛼 and 𝛽

𝑑 𝛼, 𝛽 = 𝑥 𝛼 𝑥 ≠ 𝛽 𝑥 |

• a neighborhood relation: 𝑵 = 𝛼, 𝛽 𝑑 𝛼, 𝛽 = 1},

equally described by the 𝑓𝑙𝑖𝑝 operator (flipping the value of a variable).

Page 9

Basic Concepts of Local Search

How does local search work?

• starts from a candidate solution

• iteratively moves from current position to a neighboring position (modifies the candidate

solution by an operation)

Choose which neighboring position (which operation to perform)?

• scoring functions

• search strategies

Page 10

Basic Concepts of Local Search

• Pros:

• simple and easy to implement

• use limited memory

• able to find reasonable solutions in large search space

• easy to parallelize

• Cons:

• often incomplete

• often difficult to analyze theoretically

Page 11

The Cycling Issue of Local Search

Local search suffers from the cycling problem, i.e., revisiting candidate

solutions (stuck in plateaus, limited areas)

• wastes time

• prevents it from getting out of local minima

Cycling is an inherent problem of local search

• local search does not allow to memorize all previously visited parts of the search space.

• Addressing the issue is also related to the “intensification vs. diversification” balance of local

search

Page 12

Previous methods on dealing with cycling

Naive methods .

• Random walk

• Non-improving search [simulated annealing]

• Restart

The tabu mechanism [Glover, ORSA J. Comput. 1989]

• forbids reversing the recent changes

• has a parameter called tabu tenure, which controls the strength of forbidding

Example 1 (SAT): if the value of a variable was changed from T to F, then it is forbidden

to change from F to T in the next t steps.

Example 2 (Vertex Cover): if a solution vertex is removed, then it is forbidden to be

selected in the next t steps.

Page 13

Configuration Checking

Address cycling problem by Configuration Checking (CC)

[Cai et al. Artificial Intelligence 2011]

• Consider the circumstance information (formally defined as configuration) of the variables

• Reduce cycling by avoid local structure cycling

CC is particularly effective for two types of combinatorial problems:

• Assignment Problems: find an assignment to all variables to reach some goal(s).

• SAT, MaxSAT, Graph Coloring

• Subset Problems: find a subset from the universal set to reach some goal(s).

• Vertex Cover, Max Clique, Dominating Set

Page 14

Configuration Checking
for Assignment Problems

PART TWO

2

Local Search Framework for SAT

Scoring

functions

Search

strategies

Page 16

Configuration Checking for SAT

A key concept in the CC strategy is the configuration of variables.

• A typical definition: the configuration of a variable 𝑥 is a vector consisting of truth value of all

variables in 𝑁(𝑥).

• 𝑵 𝒙 = {𝑦|𝑦 𝑎𝑛𝑑 𝑥 𝑜𝑐𝑐𝑢𝑟 𝑖𝑛 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑐𝑙𝑎𝑢𝑠𝑒}

Example:

• (𝒙𝟏∨ ¬𝒙𝟐 ∨ 𝒙𝟑) ∧ (¬𝒙𝟑 ∨ 𝒙𝟒 ∨ ¬𝒙𝟓) ∧ (¬𝒙𝟒 ∨ 𝒙𝟔 ∨ ¬𝒙𝟕)

𝛼 = 1010101

• the configuration of 𝑥3 under 𝛼

< 𝛼 𝑥1 , 𝛼 𝑥2 , 𝛼 𝑥4 , 𝛼 𝑥5 > = < 1,0,0,1 >

Factor graph

Page 17

𝑵 𝒙𝟑

Configuration Checking for SAT

• CC for SAT: if the configuration of 𝑥 has not changed since 𝑥's last flip, then it should

not be flipped.

Avoid local structure cycles

Shaowei Cai, Kaile Su: Local search for Boolean Satisfiability with configuration checking and subscore. Artif. Intell. (2013)

Page 18

Configuration Checking for SAT

Naïve implementation of CC

Implement CC according to the definition

• Store the configuration for a variable x when it is flipped

• Check the configuration when considering flipping a variable

Complexity per step:

Δ 𝐹 = max{#𝑁 𝑥 : 𝑥 ∈ 𝑉(𝐹)}

• It needs O(Δ 𝐹) for both storing and checking the configuration of a variable.

• The worst case complexity of CC in each step is O(Δ 𝐹) + O(Δ 𝐹 𝑛)

Page 19

Configuration Checking for SAT

An efficient Implementation of CC

Observation: when a variable is flipped, the configuration of all its neighboring variables has

changed.

Data structure: CC array

• CC[x] = 1 means x meets the CC criterion (its configuration has changed since x's last flip).

• CC[x] = 0 on the contrary. → forbidden to be flipped.

Updating rules

• Rule 1: for each variable x, CC[x] is initialized as 1.

• Rule 2: when flipping x, CC[x] is reset to 0, and for each 𝑦 ∈ N 𝑥 , CC[y] is set to 1.

Page 20

Configuration Checking for SAT

An efficient Implementation of CC

Complexity of the implementation per step

• O(1) for checking whether a variable is configuration changed (check whether CC[x]=1).

• updating CC values for N(x) needs O(#(𝑁(𝑥))= O(Δ 𝐹)

• Thus, the worst case complexity of CC in each step is O(𝑛) + O(Δ 𝐹)

• Suppose the number of candidate variables for flipping is O(𝑛), which is usually much smaller

Shaowei Cai, Kaile Su: Local search for Boolean Satisfiability with configuration checking and subscore. Artif. Intell. 204: 75-98 (2013)

Page 21

Configuration Checking for SAT

CC-based Variable Selection

• 𝑠𝑐𝑜𝑟𝑒 𝑥 : the decrement on the number (or

total weight) of unsatisfied clauses if 𝑥

were to be flipped.

• 𝐺𝑜𝑜𝑑𝑉𝑎𝑟𝑠 = {𝑥|𝑠𝑐𝑜𝑟𝑒 𝑥 > 0 & 𝐶𝐶(𝑥) = 1}

Comparing Swcc with Swtabu and winners of

random track of SAT Comp 2009 and 2011 on

the 2011 competition 3-SAT benchmark

PickVar-CC
𝑖𝑓(𝐺𝑜𝑜𝑑𝑉𝑎𝑟𝑠 ≠ ∅)
return a variable 𝑥 ∈ 𝐺𝑜𝑜𝑑𝑉𝑎𝑟𝑠 with the highest 𝑠𝑐𝑜𝑟𝑒;

𝑒𝑙𝑠𝑒
pick a random unsatisfied clause c ;
return the oldest variable 𝑥 from c ;

Page 22

Configuration Checking for SAT

Configuration Checking with Aspiration

• The CC strategy forbids all variables failing to meet the CC criterion, regardless of

the benefit its flip can bring.

→improve CC by introducing an aspiration mechanism

Comparing Swcc, Swcca and winner of SAT-

Comp 2011 random track on 3-SAT

benchmark

PickVar-CCA
𝑖𝑓(𝐺𝑜𝑜𝑑𝑉𝑎𝑟𝑠 ≠ ∅)
return a variable 𝑥 ∈ 𝐺𝑜𝑜𝑑𝑉𝑎𝑟𝑠 with the highest 𝑠𝑐𝑜𝑟𝑒;

𝑒𝑙𝑠𝑒 𝑖𝑓({𝑥|𝑠𝑐𝑜𝑟𝑒 𝑥 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑠𝑐𝑜𝑟𝑒} ≠ ∅)
return such a variable with the highest 𝑠𝑐𝑜𝑟𝑒;

𝑒𝑙𝑠𝑒
pick a random unsatisfied clause c ;
return the oldest variable 𝑥 from c ;

Page 23

Configuration Checking for SAT

CCASat won the random track of SAT Challenge 2012 with a large margin.

• 423(70.5%) vs 321(53.5%）

CCAnr: well known for its good performance on solving non-random instances

• CCAnrglucose ranked 2nd in the hard-combinatorial track of SAT Competition 2014.

• Integrated in some winners of main track in recent SAT Competitions.

Page 24

Configuration Checking for SAT

OK, the CC strategy works practically for SAT.

Any theoretical analysis?

• Why does it work?

• Can it lower the complexity of local search?

Page 25

Configuration Checking for SAT

The effectiveness of CC is related to the neighborhood of variables.

Consider an extreme case: each variable is a neighbor to all other vars.

→ CC becomes trivial and is equal to tabu method with t=1.

Theorem: For random k-SAT model 𝑭𝒌(𝒏, 𝒓), the neighborhood based CC becomes trivial that

forbids only one variable when 𝒍𝒏 𝒏 − 𝟏 <
𝒌 𝒌−𝟏 𝒓

𝒏−𝟏
(r is the clause-variable ratio).

• Let 𝒇(𝒏) = 𝒍𝒏 𝒏 − 𝟏 −
𝒌 𝒌−𝟏 𝒓

𝒏−𝟏
, 𝒇(𝒏) monotonically increase with n (n>1).

Thus, f(n)<0 iff 𝒏 ≤ 𝒏∗ , where 𝒇(𝒏∗) = 𝟎

Page 26

Variants of Configuration Checking for SAT

Different definitions of configuration → different CC variants

• Clause-based CC: configuration of a variable 𝑥 is a vector consisting of status of all clauses

in 𝐶𝐿(𝑥).

Example:

• (𝒙𝟏∨ ¬𝒙𝟐 ∨ 𝒙𝟑) ∧ (¬𝒙𝟑 ∨ 𝒙𝟒 ∨ ¬𝒙𝟓) ∧ (¬𝒙𝟒 ∨ 𝒙𝟔 ∨ ¬𝒙𝟕)

𝛼 = 1010101

• 𝒙𝟏 ∨ ¬𝒙𝟐 ∨ 𝒙𝟑: satisfied

¬𝒙𝟑 ∨ 𝒙𝟒 ∨ ¬𝒙𝟓: unsatisfied

• the configuration of 𝑥3 under 𝛼

< 𝑠 𝐶1 , 𝑠 𝐶2 > = < satisfied, unsatisfied >

FrwCB: with clause-based CC

Solve random 3-SAT near

phase transition (r=4.2) with

4 million vars within 3hs,

while other algorithms failed

at 2 million vars

When combined with SP, can

reach to 10 millions.

Chuan Luo, Shaowei Cai, Wei Wu, Kaile Su: Focused Random Walk with Configuration Checking and Break Minimum for Satisfiability. CP 2013: 481-496

Page 27

Variants of Configuration Checking for SAT

Different ways of checking

• Quantitative CC: the CC value counts the times that a variable’s configuration has changed

since its last flip.

Chuan Luo, Kaile Su, Shaowei Cai: Improving Local Search for Random 3-SAT Using Quantitative Configuration Checking.

ECAI 2012: 570-575

Combine with other heuristics

• The Novelty heuristic + CC → NCCA

• Combining different CC strategies automatically

André Abramé, Djamal Habet, Donia Toumi: Improving configuration checking for satisfiable random k-SAT instances. Ann.

Math. Artif. Intell. 79(1-3): 5-24 (2017)

Chuan Luo, Holger Hoos, Shaowei Cai: PBOCCSAT: Boosting Local Search for SAT via Programming by Optimization

Page 28

Variants of Configuration Checking for SAT

CC has been widely used in local search for SAT and MaxSAT, including

at least 10 medal awarding solvers.

• CCASat

• CCAnr

• NCCA+

• CCLS

• CCEHC

• SC2016

• ….

Page 29

Graph Coloring Problem

• A coloring is an assignment of colors to vertices such that no two adjacent vertices

share the same color.

• A coloring can be viewed as a partition of the vertex set V into independent sets

{V1, V2,…, Vk } such that no two adjacent vertices are in the same Vi.

• The Graph Coloring Problem (GCP) is to find a coloring of a graph while minimizing

the number of colors.

Page 30

Weighted Graph Coloring Problem

WGCP is to find a feasible coloring S= {V1, V2,…, Vk } which minimizes cost 𝑆 =

σ𝑖=1
𝑘 𝑚𝑎𝑥𝑣∈𝑉𝑖𝑤(𝑣).

S = {V1, V2, V3}

= {{𝑣1 , 𝑣5 }, {𝑣2, 𝑣6}, {𝑣3 , 𝑣4} }

cost 𝑆 =෍
𝑖=1

3

𝑚𝑎𝑥𝑣∈𝑉𝑖𝑤(𝑣)

= 3 + 4 + 5 = 12

Page 31

Local Search Operator for WGCP

The operator move<v,Vi,Vj>

• move v from its color class Vi to another color class Vj

Measure the benefits of operations

• Number of conflicts: g(S)

• Value of the cost function: cost(S)

A good operation reduces

both g(S) and cost(S).

Page 32

Configuration Checking for WGCP

Original CC:

Data structure: CC array

• CC[v] = 1 means v meets the CC criterion (its configuration has changed since v changed the

value).

• CC[v] = 0 on the contrary. → forbidden to change color.

Updating rules

• Rule 1: for each vertex v, CC[v] is initialized as 1.

• Rule 2: when changing the color of v, CC[v] is reset to 0, and for each 𝑦 ∈ N 𝑣 , CC[y] is set to

1.

Page 33

Configuration Checking for WGCP

Use CC as an “encouraging” mechanism to explore the sequential operations

following good operations.

When a good operation is performed

• Moving v to a more suitable set, it is reasonable to adjust the colors of its neighbors

in the following steps.

→ encourage vertices in 𝑁(𝑣) to be moved by setting their cc values to 1.

For other operations

• we do not modify cc values

An operation is good if it

reduces both g(S) and

cost(S).

Page 34

Configuration Checking for WGCP

CC rule for WGCP:

After performing an operation move<v,Vi,Vj>

• cc[v] is set to 0;

• if move<v,Vi,Vj> is a good operation, cc[y] is set to 1 for y∈N(v).

Example:

After performing < 𝒗𝟐, 𝑽𝟏, 𝑽𝟐 >

Update cc values of 𝑣2 and its neighbors

ቊ
𝑐𝑐 𝑣2 : = 0

𝑐𝑐 𝑣1 : = 𝑐𝑐 𝑣3 : = 𝑐𝑐 𝑣4 : = 1

Page 35

Configuration Checking for Graph Coloring

Our CC based local search WGCP algorithm:

• On COLOR and matrix decomposition benchmarks (59 instances): outperforms AFISA [Sun et

al. 2018] and MWSS [Cornaz, Furini, and Malaguti 2017] on 48 and 55 instances, respectively.

• On large graphs from Network Data Repository (65 with more than 105 vertices): obtains better

solutions on 60 instances.

• Compare with alternative versions replacing CC with tabu (under different t parameters)

Particularly better on

sparse graphs.

Page 36

Optimal Golomb Ruler

Example of a conference

room with proportions of a

[0, 2, 7, 8, 11] Golomb ruler,

making it configurable to

10 different sizes.

OGR is optimal if its length is the

minimum for the given order.

A Golomb ruler G of order m and length n comprises m integers 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 such that

each difference 𝑑𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗 where 𝑖 > 𝑗 is unique.

Note that by definition 𝑛 = 𝑥𝑚 − 𝑥1 and without loss of generality, one can easily assume

𝑥1 = 0, 𝑥𝑚 = 𝑛.

Page 37

Optimal Golomb Ruler

Finding an optimal Golomb ruler (OGR) is an extremely challenging problem.

• the search for a 19 marks OGR took approximately 36,200 CPU hours on a Sun Sparc

workstation (1998)

• it took 5 years to find an OGR of 27-mark by 19,919 participants. It has been stated by Cotta

et al. about the distributed.net projects (2007)

Page 38

Configuration Checking for OGR

A constraint-based local search algorithm uses both tabu and CC performs very

fast on solving OGR problems.

• Finds the optimal solution of 19-mark OGR in 40 CPU hours. Much faster.

CC is used when the domain of a variable xi becomes one (i.e., containing only

its current value).

• This might happen because the marks are all sorted and the domain of xi is dynamically

restricted [keeping feasibility].

• the variable is kept locked for any future changes until any of its neighbouring variables

have changed their values.

Page 39

Configuration Checking for OGR

“the use of CC effectively reduces the

number of restarts required during

search and thus mitigates the cycling

problem of local search for OGR.”

The algorithm restarts when the

platueau search steps achieve a

threshold.

Md. Masbaul Alam, M. A. Hakim Newton, Abdul Sattar: Constraint-based search for optimal Golomb rulers. J. Heuristics (2017)

Page 40

The version that uses both tabu and CC

better than only using tabu

Configuration Checking
for Subset Problems

PART THREE

3

The Vertex Cover Problem

Red vertices constitute a vertex cover

Vertex Cover: Given an undirected graph G = (V,E), a vertex cover is

a subset 𝑆 ⊆ 𝑉 such that every edge in G has at least one endpoint in 𝑆.

• Minimum Vertex Cover (MinVC): to find a vertex cover of the smallest size.

• K-Vertex-cover: find a k-sized vertex cover for a given k.

Page 42

A Local Search Framework for MinVC

An iterative framework for MinVC

• A popular framework is to solve MinVC by solving its decision problem iteratively.

→ whenever finding a k-sized vertex cover, the algorithm goes on to search for a (k-

1)-sized vertex cover.

• So, the core is to solve the K-vertex-cover problem.

Page 43

A Local Search Framework for MinVC

Choose which two vertices

to exchange?

• Which to remove

• Which to add

Scoring function:

𝑠𝑐𝑜𝑟𝑒 𝑣 = 𝑐𝑜𝑠𝑡 𝐶 − 𝑐𝑜𝑠𝑡(𝐶′)
𝐶′ is obtained from C by changing the state of v

Solving the K-vertex-cover problem

• Maintain a candidate solution S of k vertices, and modify the set by exchanging

vertices, trying to cover all edges.

Page 44

Configuration Checking for Vertex Cover

Configuration of v

Page 45

1
2

3
4 2

5
7

4
3
7 8

9

3

6

8

3 1

7

vv

Only considering N(v) Considering N(v) and edge weights,

when employing edge weighting tech.

Configuration Checking for Vertex Cover

Exchange

choose a vertex 𝑢∈𝐶 greedily w.r.t score;

𝐶≔C\{u};

choose an uncovered edge e randomly

choose a vertex 𝑢∈𝑒 satisfying CC criterion, and with higher score;

𝐶≔C∪{v};

Updating rules for CC array :

• Rule 1: all CC[𝑣] are initialized to 1.

• Rule 2: When removing a solution vertex 𝑣, CC[𝑣] is reset to 0.

• Rule 3: When a vertex 𝑣 changes its state, for each 𝑦∈𝑁[𝑣], CC[𝑦] is set to 1.

• Rule 4 (optional): When updating the weight of edge e(u, v), CC[u] and CC[v] are set to 1.

Page 46

Configuration Checking for Vertex Cover

NuMVC uses greedy heuristics

when choosing vertices, which

tends to make it easily stuck at

local optima, while the

equipment of CC significantly

reduces the cycling.

Shaowei Cai, Kaile Su, Chuan Luo, Abdul Sattar: NuMVC: An Efficient Local Search Algorithm for Minimum Vertex Cover. J. Artif. Intell. Res. (2013)

NuMVC

• a popular state of the art local search algorithm for MinVC. Currently, it is among best-

performing solvers on popular benchmarks, even it was published 8 years ago.

Page 47

Max Clique and Its Relaxed Versions

5-clique 2-plex with 5 vertices 0.7-quasi clique

edge density of the

subgraph is 7 / 10 = 0.7.

Each vertex at most misses

1 connection in the clique

Clique, k-plex and quasi-clique

• K-plex: a subset 𝑆⊆𝑉 is a k-plex, if |𝑁(𝑣)∩𝑆|≥|𝑆|−𝑘 for all 𝑣∈𝑆. (each vertex at most

misses k-1 connections)

• λ-quasi-clique: is a subset 𝑆⊆𝑉 such that the edge density of the subgraph induced

by S is at least λ.

Page 48

Configuration Checking for Max (Weight) Clique

Three operators:

• Add: add a vertex while maintaining feasibility

• Swap: remove a solution vertex and add another vertex, keeping feasibility

• Remove: remove some solution vertices

CC is used as an encouraging mechanism on good operations

• The configuration of a vertex is defined as its neighborhood.

• When a good operation is performed, it causes CC updating.

• Otherwise, no CC updating.

Page 49

Configuration Checking for Max (Weight) Clique

Wang et. al. SCCWalk: An efficient local search algorithm and its improvements for maximum weight clique problem. Artif. Intell. (2020)

SCCWalk:

• state of the art performance on a wide range of benchmarks

Page 50

Local Search for Max K-plex

Three operators:

• Add: add a vertex while maintaining S feasible

• Swap: remove a solution vertex and add another vertex, keeping S feasible

• Remove: remove some solution vertices

Page 51

Dynamic Configuration Checking

Recall that the original CC becomes ineffective on dense instances, as

analyzed on random k-SAT formulas.

Address this drawback: use dynamic threshold CC

Configuration: the neighborhood of v.

Updating Rule

• A vertex v is locked (CC[v]:=0) when it is removed from S.

• When a vertex changes its state, CC[y]++ for each 𝑦 ∈ 𝑁 𝑣 .

• A vertex v is unlocked if CC[v]>threshold[v].

• The threshold[v] depends on the degree of v and the frequency of v being selected.

→ to increase the forbidding strength on the vertices that are frequently selected.
Page 52

Configuration Checking for K-plex and Quasi-clique

Dynamic CC enables self-adaptive forbidding
strength, robust on graphs with various density.

Dynamic CC based local search algorithms push the state of the art for

Max K-plex and Quasi-clique problems

• good performance on graphs with various densities.

• Best-performing on DIMACS, BHOSLIB and large graphs from Network Repository.

Chen et. al: Local Search with Dynamic-threshold Configuration Checking and Incremental Neighborhood Updating for Maximum k-plex Problem. AAAI (2020)

Chen et. al: NuQClq: An Effective Local Search Algorithm for Maximum Quasi-Clique Problem. AAAI (2021) Page 53

Conclusions
and Challenges

PART FOUR

4

Conclusions and Challenges

55

Configuration Checking is a generic idea for local search algorithms.

• Core idea: for a solution component (a variable, or a vertex), if after the value is

changed or it is removed, its circumstance information remains unchanged, then

this component (the value) is forbidden to be put in the solution again.

CC particularly works well for assignment problems and subset problems.

• You may have a try if you are solving similar problems.

Conclusions and Challenges

Page 56

A list of problems using CC:

SAT // winners in SAT COMPs

MaxSAT //winners in MaxSAT Evaluations

SMT(IDL) // YicesLS 1st in QF_IDL theory of SMT COMP 2021

Abstract Argumentation

Graph Coloring Problem

MaxClique and variants

Vertex Cover and variants

Dominating Set

Set Cover

Packing Problems

Black and White Problem

Combinatorial Auction

Golomb Rule Problem

…

Nearly 70 papers,

pushing state of the art in many

combinatorial problems.

Conclusions and Challenges

57

The intuition of CC is that by reducing cycling on local structure, we reduce the

cycling of local search

• Or, is it the main reason for its power?

• Do we have better understanding on this idea?

• Any theoretical/experimental analysis?

It has been successfully used to assignment problems

and subset problems

• Can it be used to other kinds of combinatorial problems,

e.g., permutation problems?

caisw@ios.ac.cn

S o C S 2 0 2 1 14th Annual Symposium on Combinatorial Search

THANK YOU

