SOCS 2021 14th Annual Symposium on Combinatorial Search

Configuration Checking Based Local Search

Shaowei Cai

Institute of Software, Chinese Academy of Sciences

01. Local Search and Cycling Issue

02. Configuration Checking for Assignment Problems

03. Configuration Checking for Subset Problems

04. Conclusions and Challenges

Local Search and Cycling Issue

Combinatorial Problems

 $\varphi = (x_1 \lor \neg x_2) \land (x_2 \lor x_3) \land (x_2 \lor \neg x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$ SAT, MaxSAT

Travel Salesman Problem

Bin Packing

Spectrum Allocation

Local Search: A Heuristic Search Method

Many important combinatorial problems are NP-hard.

Resort to heuristic methods to tackle hard combinatorial problems practically.

"The name heuristics applies to every rule, conclusion, evaluation, and principle that works in certain situations most of the time, but not always." "The algorithms ...called heuristics: for most of them we know that they do not work on worst-case instances, but there is good evidence that they work very well on many instances of practical interest."

---Sanjeev Arora (theoretical computer scientist)

Local Search: A Heuristic Search Method

Local Search is a stochastic heuristic search method, and is one of the most effective methods for solving NP hard combinatorial problems.

Basic Concepts of Local Search

• The search space S is organized as a network, by defining the neighborhood relation

 $N \subseteq S \times S$ (usually characterized by **operator**: $s \rightarrow s'$)

• There is an **objective function** which needs to be minimized (maximized) that can be computed for each point

From "Stochstic Local Search: Foundations and Applications" (2005), Hoos and Stützle

• Boolean satisfiability (SAT) --- the first problem proved to be NP complete

SAT usually adopts the Conjunctive Normal Form (CNF):

e.g.,
$$\varphi = (x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_2 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$$

test whether there exists an assignment to the variables in φ that satisfies all the clauses.

- Boolean variables have two possible values: True, False.
- A literal is a Boolean variable x or its negation $\neg x$
- A clause is a disjunction (V) of literals

- objective function: (minimize) the number of unsatisfied clauses.
- search space: for a SAT instance with n variables, there are 2^n complete assignments.
- Hamming distance between two assignments α and β $d(\alpha, \beta) = |\{x \mid \alpha(x) \neq \beta(x)\}|$

Basic Concepts of Local Search

How does local search work?

- starts from a candidate solution
- iteratively moves from current position to a neighboring position (modifies the candidate solution by an operation)

Choose which neighboring position (which operation to perform)?

- scoring functions
- search strategies

Basic Concepts of Local Search

- Pros:
 - simple and easy to implement
 - use limited memory
 - able to find reasonable solutions in large search space
 - easy to parallelize
- Cons:
 - often incomplete
 - often difficult to analyze theoretically

The Cycling Issue of Local Search

Local search suffers from the cycling problem, i.e., revisiting candidate solutions (stuck in plateaus, limited areas)

- wastes time
- prevents it from getting out of local minima

Cycling is an inherent problem of local search

- local search does not allow to memorize all previously visited parts of the search space.
- Addressing the issue is also related to the "intensification vs. diversification" balance of local search

Previous methods on dealing with cycling

Naive methods

- Random walk
- Non-improving search [simulated annealing]
- Restart

The tabu mechanism [Glover, ORSA J. Comput. 1989]

- forbids reversing the recent changes
- has a parameter called tabu tenure, which controls the strength of forbidding

Example 1 (SAT): if the value of a variable was changed from T to F, then it is forbidden to change from F to T in the next *t* steps.

Example 2 (Vertex Cover): if a solution vertex is removed, then it is forbidden to be selected in the next *t* steps.

Configuration Checking

Address cycling problem by Configuration Checking (CC) [Cai et al. Artificial Intelligence 2011]

- Consider the circumstance information (formally defined as configuration) of the variables
- Reduce cycling by avoid local structure cycling

CC is particularly effective for two types of combinatorial problems:

- Assignment Problems: find an assignment to all variables to reach some goal(s).
 - SAT, MaxSAT, Graph Coloring
- Subset Problems: find a subset from the universal set to reach some goal(s).
 - Vertex Cover, Max Clique, Dominating Set

Configuration Checking for Assignment Problems

Local Search Framework for SAT

A key concept in the CC strategy is the configuration of variables.

- A typical definition: the configuration of a variable *x* is a vector consisting of truth value of all variables in *N*(*x*).
- $N(x) = \{y | y \text{ and } x \text{ occur in at least one clause} \}$

Example:

- $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_3 \lor x_4 \lor \neg x_5) \land (\neg x_4 \lor x_6 \lor \neg x_7)$ $\alpha = 1010101$
- the configuration of x_3 under α < $\alpha(x_1), \alpha(x_2), \alpha(x_4), \alpha(x_5) > = < 1,0,0,1 >$

• **CC for SAT**: if the configuration of *x* has not changed since *x*'s last flip, then it should not be flipped.

Shaowei Cai, Kaile Su: Local search for Boolean Satisfiability with configuration checking and subscore. Artif. Intell. (2013)

Naïve implementation of CC

Implement CC according to the definition

- Store the configuration for a variable x when it is flipped
- Check the configuration when considering flipping a variable

Complexity per step:

 $\Delta(F) = \max\{\#N(x) \colon x \in V(F)\}$

- It needs $O(\Delta(F))$ for both storing and checking the configuration of a variable.
- The worst case complexity of CC in each step is $O(\Delta(F)) + O(\Delta(F)n)$

An efficient Implementation of CC

Observation: when a variable is flipped, the configuration of all its neighboring variables has changed.

Data structure: CC array

- CC[x] = 1 means x meets the CC criterion (its configuration has changed since x's last flip).
- CC[x] = 0 on the contrary. \rightarrow forbidden to be flipped.

Updating rules

- Rule 1: for each variable x, CC[x] is initialized as 1.
- Rule 2: when flipping x, CC[x] is reset to 0, and for each $y \in N(x)$, CC[y] is set to 1.

An efficient Implementation of CC

Complexity of the implementation per step

- O(1) for checking whether a variable is configuration changed (check whether CC[x]=1).
- updating CC values for N(x) needs $O(\#(N(x)) = O(\Delta(F)))$

- Thus, the worst case complexity of CC in each step is $O(n) + O(\Delta(F))$
 - Suppose the number of candidate variables for flipping is O(n), which is usually much smaller

Shaowei Cai, Kaile Su: Local search for Boolean Satisfiability with configuration checking and subscore. Artif. Intell. 204: 75-98 (2013)

CC-based Variable Selection

- score(x): the decrement on the number (or total weight) of unsatisfied clauses if x were to be flipped.
- $GoodVars = \{x | score(x) > 0 \& CC(x) = 1\}$

PickVar-CC

 $if(GoodVars \neq \emptyset)$ return a variable $x \in GoodVars$ with the highest score; else

pick a random unsatisfied clause c; return the oldest variable x from c;

Comparing Swcc with Swtabu and winners of random track of SAT Comp 2009 and 2011 on the 2011 competition 3-SAT benchmark

Configuration Checking with Aspiration

 The CC strategy forbids all variables failing to meet the CC criterion, regardless of the benefit its flip can bring.

→improve CC by introducing an **aspiration** mechanism

```
PickVar-CCAif(GoodVars \neq \emptyset)return a variable x \in GoodVars with the highest score;else \ if(\{x | score(x) > threshold\_score\} \neq \emptyset)return such a variable with the highest score;
```

else

pick a random unsatisfied clause c; return the oldest variable x from c;

Comparing Swcc, Swcca and winner of SAT-Comp 2011 random track on 3-SAT benchmark Page 23

CCASat won the random track of SAT Challenge 2012 with a large margin.

• 423(70.5%) vs 321(53.5%)

Set	k = 3	k = 4	k = 5	k = 6	k = 7
	4.2	9	20	40	85
1	40000	10000	1600	400	200
2	4.208	9.121	20.155	40.674	85.558
2	35600	8800	1420	360	180
2	4.215	9.223	20.275	41.011	85.837
3	31400	7800	1280	340	170
4	4.223	9.324	20.395	41.348	86.116
4	27200	6800	1140	320	160
5	4.23	9.425	20.516	41.685	86.395
2	23000	5800	1000	300	150
6	4.237	9.526	20.636	42.022	86.674
0	18800	4800	860	280	140
7	4.245	9.627	20.756	42.359	86.953
1	14600	3800	720	260	130
0	4.252	9.729	20.876	42.696	87.232
0	10400	2800	580	240	120
0	4.26	9.83	20.997	43.033	87.511
9	6200	1800	440	220	110
10	4.267	9.931	21.117	43.37	87.79
10	2000	800	300	200	100

CCAnr: well known for its good performance on solving non-random instances

- CCAnrglucose ranked 2nd in the hard-combinatorial track of SAT Competition 2014.
- Integrated in some winners of main track in recent SAT Competitions.

OK, the CC strategy works practically for SAT.

Any theoretical analysis?

- Why does it work?
- Can it lower the complexity of local search?

Theory is when you know everything but nothing works.

Practice is when everything works but no one knows why.

In this lab, theory and practice are combined: nothing works and no one knows why.

The effectiveness of CC is related to the neighborhood of variables.

Consider an extreme case: each variable is a neighbor to all other vars.

 \rightarrow CC becomes trivial and is equal to tabu method with t=1.

Theorem: For random k-SAT model $F_k(n, r)$, the neighborhood based CC becomes trivial that forbids only one variable when $ln(n-1) < \frac{k(k-1)r}{n-1}$ (r is the clause-variable ratio).

• Let $f(n) = ln(n-1) - \frac{k(k-1)r}{n-1}$, f(n) monotonically increase with n (n>1).

Thus, f(n)<0 iff $n \leq \lfloor n^* \rfloor$, where $f(n^*) = 0$

7-SAT	6-SAT	5-SAT	4-SAT	3-SAT	Formulas
(r = 85)	(r = 40)	(r = 20)	(r = 9.0)	(r = 4.2)	and a second second
564.595	223.095	90.093	32.348	11.652	n*
	223.095	90.093	32.348	11.652	<i>n</i> *

Variants of Configuration Checking for SAT

Different definitions of configuration \rightarrow different CC variants

 Clause-based CC: configuration of a variable x is a vector consisting of status of all clauses in CL(x).

Example:

- $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_3 \lor x_4 \lor \neg x_5) \land (\neg x_4 \lor x_6 \lor \neg x_7)$ $\alpha = 1010101$
- $x_1 \lor \neg x_2 \lor x_3$: satisfied $\neg x_3 \lor x_4 \lor \neg x_5$: unsatisfied
- the configuration of x_3 under α < $s(C_1), s(C_2) > = <$ satisfied, unsatisfied >

FrwCB: with clause-based CC Solve random 3-SAT near phase transition (r=4.2) with 4 million vars within 3hs, while other algorithms failed at 2 million vars When combined with SP, can reach to 10 millions.

Chuan Luo, Shaowei Cai, Wei Wu, Kaile Su: Focused Random Walk with Configuration Checking and Break Minimum for Satisfiability. CP 2013: 481-496

Variants of Configuration Checking for SAT

Different ways of checking

 Quantitative CC: the CC value counts the times that a variable's configuration has changed since its last flip.

Chuan Luo, Kaile Su, Shaowei Cai: Improving Local Search for Random 3-SAT Using Quantitative Configuration Checking. ECAI 2012: 570-575

Combine with other heuristics

- The Novelty heuristic + $CC \rightarrow NCCA$
- Combining different CC strategies automatically

André Abramé, Djamal Habet, Donia Toumi: Improving configuration checking for satisfiable random k-SAT instances. Ann. Math. Artif. Intell. 79(1-3): 5-24 (2017)

Chuan Luo, Holger Hoos, Shaowei Cai: PBOCCSAT: Boosting Local Search for SAT via Programming by Optimization

Variants of Configuration Checking for SAT

CC has been widely used in local search for SAT and MaxSAT, including at least 10 medal awarding solvers.

- CCASat
- CCAnr
- NCCA+
- CCLS
- CCEHC
- SC2016

Graph Coloring Problem

- A coloring is an assignment of colors to vertices such that no two adjacent vertices share the same color.
- A coloring can be viewed as a partition of the vertex set V into independent sets {V1, V2,..., Vk } such that no two adjacent vertices are in the same Vi.

• The Graph Coloring Problem (GCP) is to find a coloring of a graph while minimizing the number of colors.

Weighted Graph Coloring Problem

WGCP is to find a feasible coloring S= { $V_1, V_2, ..., V_k$ } which minimizes $cost(S) = \sum_{i=1}^k max_{v \in V_i} w(v)$.

$$S = \{V_{1}, V_{2}, V_{3}\}$$

= \{\{v_{1}, v_{5}\}, \{v_{2}, v_{6}\}, \{v_{3}, v_{4}\}\}
$$\cos(S) = \sum_{i=1}^{3} \max_{v \in V_{i}} w(v)$$

= 3 + 4 + 5 = 12

Local Search Operator for WGCP

The operator move $\langle v, V_i, V_j \rangle$

• move v from its color class V_i to another color class V_j

Measure the benefits of operations

- Number of conflicts: g(S)
- Value of the cost function: cost(S)

Configuration Checking for WGCP

Original CC:

Data structure: CC array

- CC[v] = 1 means v meets the CC criterion (its configuration has changed since v changed the value).
- CC[v] = 0 on the contrary. \rightarrow forbidden to change color.

Updating rules

- Rule 1: for each vertex v, CC[v] is initialized as 1.
- Rule 2: when changing the color of v, CC[v] is reset to 0, and for each y ∈ N(v), CC[y] is set to
 1.

Configuration Checking for WGCP

Use CC as an "encouraging" mechanism to explore the sequential operations following good operations.

When a good operation is performed

- Moving v to a more suitable set, it is reasonable to adjust the colors of its neighbors in the following steps.
- \rightarrow encourage vertices in N(v) to be moved by setting their cc values to 1.

For other operations

• we do not modify *cc* values

reduces both g(S) and

cost(S).

Configuration Checking for WGCP

CC rule for WGCP:

After performing an operation move $\langle v, V_i, V_j \rangle$

- *cc*[*v*] is set to 0;
- if move $\langle v, V_i, V_j \rangle$ is a good operation, cc[y] is set to 1 for $y \in N(v)$.

Configuration Checking for Graph Coloring

Our CC based local search WGCP algorithm:

- On COLOR and matrix decomposition benchmarks (59 instances): outperforms AFISA [Sun et al. 2018] and MWSS [Cornaz, Furini, and Malaguti 2017] on **48** and **55** instances, respectively.
- On large graphs from Network Data Repository (65 with more than 10⁵ vertices): obtains better solutions on 60 instances.
- Compare with alternative versions replacing CC with tabu (under different t parameters)

Page

Optimal Golomb Ruler

A Golomb ruler G of order m and length n comprises m integers $x_1 < x_2 < \cdots < x_m$ such that each difference $d_{ij} = x_i - x_j$ where i > j is unique. Note that by definition $n = x_m - x_1$ and without loss of generality, one can easily assume $x_1 = 0, x_m = n$.

OGR is optimal if its length is the minimum for the given order.

Example of a conference room with proportions of a [0, 2, 7, 8, 11] Golomb ruler, making it configurable to 10 different sizes.

Finding an optimal Golomb ruler (OGR) is an extremely challenging problem.

- the search for a 19 marks OGR took approximately 36,200 CPU hours on a Sun Sparc workstation (1998)
- it took 5 years to find an OGR of 27-mark by 19,919 participants. It has been stated by Cotta et al. about the distributed.net projects (2007)

Tab	Table 1 A 16-mark optimal Golomb ruler with marks $(x_k)_{1 \le k \le m}$															
k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
x_k	0	1	4	11	26	32	56	68	76	115	117	134	150	163	168	177

Configuration Checking for OGR

A constraint-based local search algorithm uses both tabu and CC performs very fast on solving OGR problems.

• Finds the optimal solution of 19-mark OGR in 40 CPU hours. Much faster.

CC is used when the domain of a variable xi becomes one (i.e., containing only its current value).

- This might happen because the marks are all sorted and the domain of xi is dynamically restricted [keeping feasibility].
- the variable is kept locked for any future changes until any of its neighbouring variables have changed their values.

Configuration Checking for OGR

The version that uses both tabu and CC better than only using tabu

"the use of CC effectively reduces the number of restarts required during search and thus mitigates the cycling problem of local search for OGR."

The algorithm restarts when the platueau search steps achieve a threshold.

05 if (plateauSize > MaxPlateauSize)
 06 Restart(solution), plateauSize = 0

Md. Masbaul Alam, M. A. Hakim Newton, Abdul Sattar: Constraint-based search for optimal Golomb rulers. J. Heuristics (2017)

Page 40

Configuration Checking for Subset Problems

The Vertex Cover Problem

Vertex Cover: Given an undirected graph G = (V,E), a vertex cover is

a subset $S \subseteq V$ such that every edge in G has at least one endpoint in S.

- Minimum Vertex Cover (MinVC): to find a vertex cover of the smallest size.
- K-Vertex-cover: find a k-sized vertex cover for a given k.

A Local Search Framework for MinVC

An iterative framework for MinVC

- A popular framework is to solve MinVC by solving its decision problem iteratively.
- → whenever finding a k-sized vertex cover, the algorithm goes on to search for a (k-1)-sized vertex cover.
- So, the core is to solve the K-vertex-cover problem.

A Local Search Framework for MinVC

Solving the K-vertex-cover problem

• Maintain a candidate solution S of k vertices, and modify the set by exchanging vertices, trying to cover all edges.

Configuration Checking for Vertex Cover

Configuration of v

Configuration Checking for Vertex Cover

Exchange

```
choose a vertex u \in C greedily w.r.t score;

C := C \setminus \{u\};

choose an uncovered edge e randomly

choose a vertex u \in e satisfying CC criterion, and with higher score;

C := C \cup \{v\};
```

Updating rules for CC array :

- Rule 1: all CC[v] are initialized to 1.
- Rule 2: When removing a solution vertex v, CC[v] is reset to 0.
- Rule 3: When a vertex v changes its state, for each $y \in N[v]$, CC[y] is set to 1.
- Rule 4 (optional): When updating the weight of edge e(u, v), CC[u] and CC[v] are set to 1.

Configuration Checking for Vertex Cover

NuMVC

• a popular state of the art local search algorithm for MinVC. Currently, it is among bestperforming solvers on popular benchmarks, even it was published 8 years ago.

DDLLCC

Table 1: Experime	ent res	sults of NuM	IVC and Nu	IMVC w	thout CC on t	he represent	tative DIM	ACS and	
BHOSLIB benchm	arks.								
Instance	V	initial size	NuMVC			NuMVC without CC			
			#iter	#repeat	#repeat/#iter	#iter	#repeat	#repeat/#iter	
brock800_4	800	774	1000000	185445	0.01854	1000000	1627269	0.16273	
C2000.9	2000	1920	1000000	72708	0.00727	10000000	1337073	0.13371	
DSJC1000.5	1000	985	51024	18	0.00035	15588	2166	0.13895	
gen400_p0.9_75	400	325	3403	0	0.00000	2516	19	0.00755	
hamming10-4	1024	984	46332	163	0.00352	19080	3676	0.19266	
keller6	3361	3302	429550	716	0.00167	1101418	245155	0.22258	
MANN_a81	3321	2221	1000000	5355	0.00054	1000000	526714	0.05267	
p_hat1500-3	1500	1406	17699	728	0.04113	77922	48932	0.62796	
frb59-26-1	1534	1475	1000000	43559	0.00436	1000000	2559511	0.25595	
frb59-26-2	1534	1475	1000000	43968	0.00440	10000000	2594888	0.25949	
frb59-26-3	1534	1475	1000000	44915	0.00449	1000000	2412643	0.24126	
frb59-26-4	1534	1475	1000000	45687	0.00457	1000000	2433095	0.24331	
frb59-26-5	1534	1475	1000000	45615	0.00456	1000000	2514596	0.25146	
frb100-40	4000	3900	1000000	2800	0.00028	1000000	902380	0.09024	

NuMVC uses greedy heuristics when choosing vertices, which tends to make it easily stuck at local optima, while the equipment of CC significantly reduces the cycling.

Shaowei Cai, Kaile Su, Chuan Luo, Abdul Sattar: NuMVC: An Efficient Local Search Algorithm for Minimum Vertex Cover. J. Artif. Intell. Res. (2013)

Max Clique and Its Relaxed Versions

Clique, k-plex and quasi-clique

- K-plex: a subset S⊆V is a k-plex, if |N(v)∩S|≥|S|-k for all v∈S. (each vertex at most misses k-1 connections)
- λ -quasi-clique: is a subset $S \subseteq V$ such that the edge density of the subgraph induced by S is at least λ . Each vertex at most misses edge density of the

Configuration Checking for Max (Weight) Clique

Three operators:

- Add: add a vertex while maintaining feasibility
- Swap: remove a solution vertex and add another vertex, keeping feasibility
- Remove: remove some solution vertices

CC is used as an encouraging mechanism on good operations

- The configuration of a vertex is defined as its neighborhood.
- When a good operation is performed, it causes CC updating.
- Otherwise, no CC updating.

Configuration Checking for Max (Weight) Clique

SCCWalk:

• state of the art performance on a wide range of benchmarks

Comparative results for SCCWalk and five competitors on the classical benchmarks.											
Benchmark	#inst	ReTS1 #win	ReTS2 #win	FastWClq #win	RRWL #win	WLMC #win	SCCWalk #win				
DIMACS BHOSLIB WDP DGCA	80 40 22 7	78 38 17 5	77 38 17 5	63 0 11 2	77 29 17 6	63 1 15 5	79 40 22 7				
Total	149	138	137	76	129	84	148				

Comparative results for SCCWalk4L and five competitors on the massive graphs.										
Benchmark	#inst	ReTS1 #win	ReTS2 #win	FastWClq #win	RRWL #win	WLMC #win	SCCWalk4L #win			
real-world massive graphs	137	48	48	123	133	137	137			
large-scaled FRB	20	7	3	0	0	0	20			
Total	157	55	51	123	133	137	157			

Wang et. al. SCCWalk: An efficient local search algorithm and its improvements for maximum weight clique problem. Artif. Intell. (2020)

Local Search for Max K-plex

Three operators:

- Add: add a vertex while maintaining S feasible
- Swap: remove a solution vertex and add another vertex, keeping S feasible
- Remove: remove some solution vertices

$$S = \{1,2,4\}$$

SaturatedSet = $\{1,4\}$
AddSet(S) = $\{3\}$
SwapSet(S) = $\{5\}$

Dynamic Configuration Checking

Recall that the original CC becomes ineffective on dense instances, as analyzed on random k-SAT formulas.

Address this drawback: use dynamic threshold CC

Configuration: the neighborhood of v. Updating Rule

- A vertex v is locked (CC[v]:=0) when it is removed from S.
- When a vertex changes its state, CC[y]++ for each $y \in N(v)$.
- A vertex v is unlocked if CC[v]>threshold[v].
 - The threshold[v] depends on the degree of v and the frequency of v being selected.
 - \rightarrow to increase the forbidding strength on the vertices that are frequently selected.

Configuration Checking for K-plex and Quasi-clique

Dynamic CC based local search algorithms push the state of the art for Max K-plex and Quasi-clique problems

- good performance on graphs with various densities.
- Best-performing on DIMACS, BHOSLIB and large graphs from Network Repository.

Dynamic CC enables self-adaptive forbidding strength, robust on graphs with various density.

Chen et. al: Local Search with Dynamic-threshold Configuration Checking and Incremental Neighborhood Updating for Maximum k-plex Problem. AAAI (2020) Chen et. al: NuQClq: An Effective Local Search Algorithm for Maximum Quasi-Clique Problem. AAAI (2021)

Conclusions and Challenges

Conclusions and Challenges

Configuration Checking is a generic idea for local search algorithms.

• Core idea: for a solution component (a variable, or a vertex), if after the value is changed or it is removed, its circumstance information remains unchanged, then this component (the value) is forbidden to be put in the solution again.

CC particularly works well for assignment problems and subset problems.

• You may have a try if you are solving similar problems.

Conclusions and Challenges

A list of problems using CC:

SAT // winners in SAT COMPs MaxSAT //winners in MaxSAT Evaluations SMT(IDL) // YicesLS 1st in QF_IDL theory of SMT COMP 2021 Abstract Argumentation

Graph Coloring Problem MaxClique and variants Vertex Cover and variants Dominating Set Set Cover Packing Problems

Black and White Problem Combinatorial Auction Golomb Rule Problem Nearly 70 papers, pushing state of the art in many combinatorial problems.

Conclusions and Challenges

The intuition of CC is that by reducing cycling on local structure, we reduce the cycling of local search

- Or, is it the main reason for its power?
- Do we have better understanding on this idea?
- Any theoretical/experimental analysis?

It has been successfully used to assignment problems and subset problems

 Can it be used to other kinds of combinatorial problems, e.g., permutation problems?

SOCS 2021 14th Annual Symposium on Combinatorial Search

THANK YOU caisw@ios.ac.cn