Conflguratlon Checkmg Based

Shaowei Ca

Institute of Software, Chinese Academy of Sciences

Outline

01. Local Search and Cycling Issue

02. Configuration Checking for Assignment Problems

03. Configuration Checking for Subset Problems

04. Conclusions and Challenges

:

PART ONE . ocal Search
and Cycling Issue

Combinatorial Problems

Q= Vax) A Vaxz) A Vaxg) A(nxg Vaxg V) SAT, MaxSAT

Graph Coloring

Travel Salesman Problem Bin Packing

Vertex Cover

Spectrum Allocation

Page 4

Local Search: A Heuristic Search Method

Many important combinatorial problems are NP-hard.

Resort to heuristic methods to tackle hard combinatorial problems practically.

"The name heuristics “The algorithms ...called heuristics: for most
applies to every rule, of them we know that they do not work on
conclusion. evaluation worst-case instances, but there is good

evidence that they work very well on many

and principle that works _ y)
instances of practical interest.

In certain situations most
of the time, but not
always."

---Sanjeev Arora (theoretical computer
scientist)

Page 5

Local Search: A Heuristic Search Method

Local Search is a stochastic heuristic search method,
and is one of the most effective methods for solving NP hard combinatorial problems.

Systematic Search Stochastic Search
selected @@@@0 Local Search:
fo each : Hill Climbing
step 3 N queens (n=4)
. h CEeE el e CoN_ T CE
Al .. [
e] BC wy =]
X E BT e weT
Eau= ! ; il o
T I] o 13 E] £ la:.. __Z._.- 73 _gjl
X X X - = . : =
q B e |
]]
e B 4 B g

Page ©

Basic Concepts of Local Search

 The search space S is organized as a network, by defining the neighborhood relation
op
N €S x S (usually characterized by operator: s—s")
« There is an objective function which needs to be minimized (maximized) that can be
computed for each point

From “Stochstic Local Search: Foundations and Applications” (2005), Hoos and Stutzle

Page 7

The SAT Problem

* Boolean satisfiability (SAT) --- the first problem proved to be NP complete

» Boolean variables have two possible values: True, False.

« Aliteral is a Boolean variable x or its negation —x

« Aclause is a disjunction (V) of literals

Page 8

Exam|c_)le: SAT

objective function: (minimize) the number of unsatisfied clauses.

search space: for a SAT instance with n variables, there are 2™ complete assignments.

Hamming distance between two assignments « and f8

d(a,B) = [{x | alx) # B(x)}
aneighborhood relation: N = {(a,)| d(a, B) = 1},

A

B

0

0

0

!

1

0

0

equally described by the flip operator (flipping the value of a variable).

111

010

101

000

Page 9

Basic Concepts of Local Search

How does local search work?

» starts from a candidate solution

* Iteratively moves from current position to a neighboring position (modifies the candidate

solution by an operation)

Choose which neighboring position (which operation to perform)?

 scoring functions
« search strategies

(0,0.0}

{1.0.1)

f 0.1,0)

(1,1.1)

(0.1.1)

Page 10

Basic Concepts of Local Search

* Pros:
« simple and easy to implement
 use limited memory
 able to find reasonable solutions in large search space
« easy to parallelize

» Cons:
« often incomplete
« often difficult to analyze theoretically

Page 11

The Cycling Issue of Local Search

Local search suffers from the cycling problem, i.e., revisiting candidate
solutions (stuck in plateaus, limited areas)

* wastes time

« prevents it from getting out of local minima

Cycling is an inherent problem of local search

 |ocal search does not allow to memorize all previously visited parts of the search space.

« Addressing the issue is also related to the “intensification vs. diversification” balance of local
search

Page 12

Previous methods on dealing with cycling

Naive methods

« Random walk

* Non-improving search [simulated annealing]

* Restart

The tabu mechanism [Glover, ORSA J. Comput. 1989]

 forbids reversing the recent changes
* has a parameter called tabu tenure, which controls the strength of forbidding

Page 13

Configuration Checking

Address cycling problem by Configuration Checking (CC)
[Cai et al. Artificial Intelligence 2011]

« Consider the circumstance information (formally defined as configuration) of the variables

» Reduce cycling by avoid local structure cycling

CC is particularly effective for two types of combinatorial problems:

» Assignment Problems: find an assignment to all variables to reach some goal(s).
« SAT, MaxSAT, Graph Coloring

« Subset Problems: find a subset from the universal set to reach some goal(s).

» Vertex Cover, Max Cligue, Dominating Set

Page 14

y.

FARU TS Configuration Checking
for Assignment Problems

Local Search Framework for SAT

[=a] N L =Y L] [.

begin

o <— a complete assignment;

while not reach terminal condition do
if o satisfies F' then return o;

|_picl< a variable x:
o <— o with x flipped;

return “Solution not found™;

Algorithm : Local Search Framework for SAT Scoring
functions

O

©)
=0 Search
strategies

Page 16

Configuration Checking for SAT

A key concept in the CC strategy is the configuration of variables.

« Atypical definition: the configuration of a variable x is a vector consisting of truth value of all
variables in N(x).

 N(x) = {y|y and x occur in at least one clause}

Example: | 4)
.\ 3 /. . ®
* (x1Vx2 VXx3)A(mx3V X4V Xxs)A(mXgVXgVX7) . ° j‘\. 7 Factor graph
a =1010101 3
* the configuration of x; under a '.\\‘ ng)
< a(xy), a(x,), a(xy), alxs) > = < 1,0,0,1 > L | N

Page 17

Configuration Checking for SAT

« CC for SAT: if the configuration of x has not changed since x's last flip, then it should
not be flipped.

Avoid local structure cycles

Shaowei Cai, Kaile Su: Local search for Boolean Satisfiability with configuration checking and subscore. Artif. Intell. (2013)

Page 18

Configuration Checking for SAT

Naive implementation of CC

Implement CC according to the definition

« Store the configuration for a variable x when it is flipped

« Check the configuration when considering flipping a variable
Complexity per step:

A(F) = max{#N(x):x € V(F)}

It needs O(A(F)) for both storing and checking the configuration of a variable.
« The worst case complexity of CC in each step is O(A(F)) + O(A(F)n)

Page 19

Configuration Checking for SAT

An efficient Implementation of CC

Observation: when a variable is flipped, the configuration of all its neighboring variables has
changed.

Data structure: CC array

« CC[x] =1 means x meets the CC criterion (its configuration has changed since x's last flip).

« CC[x] =0 on the contrary. - forbidden to be flipped.

Updating rules

* Rule 1: for each variable x, CC[x] is initialized as 1.

* Rule 2: when flipping x, CC[X] is reset to 0, and for each y € N(x), CC|y] is set to 1.
Page 20

Configuration Checking for SAT

An efficient Implementation of CC

Complexity of the implementation per step

* O(1) for checking whether a variable is configuration changed (check whether CC[x]=1).
« updating CC values for N(x) needs O(#(N(x))= O(A(F))

« Thus, the worst case complexity of CC in each stepis 0(n) + O(A(F))

« Suppose the number of candidate variables for flipping is 0(n), which is usually much smaller

Shaowei Cai, Kaile Su: Local search for Boolean Satisfiability with configuration checking and subscore. Artif. Intell. 204: 75-98 (2013)

Page 21

Configuration Checking for SAT

CC-based Variable Selection

« score(x): the decrement on the number (or
total weight) of unsatisfied clauses if x
were to be flipped.

* GoodVars = {x|score(x) >0&CC(x) = 1}

PickVar-CC
if (GoodVars + @)

return a variable x € GoodVars with the highest score:;

else
pick a random unsatisfied clause c;
return the oldest variable x from c;

1000 g—
%or —=&— Swiabu
goor | TNM ,
Swee .
700k | —*— Sparrow2011 —
g |
7 600F 1
s
E s00f a9
o H
5
S 400f
:
300+
200+ :]
/ b _‘-’*'\
100} = / ¥R
- A
0 *’ "r' *’ *‘- * 1 * 4 1 1
0 02 04 06 08 1 12 14 16 18 2 22 24 2.6
fivariables x 10"

Comparing Swcc with Swtabu and winners of
random track of SAT Comp 2009 and 2011 on
the 2011 competition 3-SAT benchmark

Page 22

Configuration Checking for SAT

Configuration Checking with Aspiration

 The CC strategy forbids all variables failing to meet the CC criterion, regardless of

the benefit its flip can bring.

—>improve CC by introducing an aspiration mechanism

PickVar-CCA
if (GoodVars + @)
return a variable x € GoodVars with the highest score;
else if ({x|score(x) > threshold_score} # @)
return such a variable with the highest score;
else
pick a random unsatisfied clause c:
return the oldest variable x from c;

avg time (s)

800

700

600 -

&
S

400

8
=]

200

100

Swee
—#— Sparrow2011
—&— Sweca

fvariables

Comparing Swcc, Swcca and winner of SAT-

Comp 2011 random track

benchmark

on 3-SAT
Page 23

Configuration Checking for SAT

CCASat won the random track of SAT Challenge 2012 with a large margin.

Set | k=3 k=4 k=8 k=6 k=17
. 423(70.5%) vs 321(53.5%) T T T
40000 10000 1600 400 200

[3208 9.121 20.155 40674 85558
= | 35600 8800 1420 360 180

L, | 4215 9223 20215 41011 85837
° | 31400 7800 1280 340 170

s | 2223 9324 20395 4138 86116
27200 6800 1140 320 160

. | 323 9435 20516 41685 86395
2 | 23000 5800 1000 300 150

— [4237 9526 20636 42022 8664
5 | 18800 4800 860 280 140

[3235 9627 20756 42359 86953
" 14600 3800 720 260 130

8 4252 9.729 20.876 42 696 87.232
10400 2800 580 240 120

5 | 326 083 20997 43033 S350
6200 1800 440 220 110

0 | 3267 9931 2LIIT 4337 &9
2000 800 300 200 100

CCAnNr: well known for its good performance on solving non-random instances

« CCAnrglucose ranked 2" in the hard-combinatorial track of SAT Competition 2014.

 Integrated in some winners of main track in recent SAT Competitions.

Page 24

Configuration Checking for SAT

OK, the CC strategy works practically for SAT.

Any theoretical analysis?

 Why does it work?

« Can it lower the complexity of local search?

Theory is when you know

everything but nothing
works.

Practice is when

everything works but no
one knows why.

In this lab, theory and
practice are combined:
nothing works and no one
knows why.

Page 25

Configuration Checking for SAT

The effectiveness of CC is related to the neighborhood of variables.

- CC becomes trivial and is equal to tabu method with t=1.

Consider an extreme case: each variable is a neighbor to all other vars.

k(k—1)r

Theorem: For random k-SAT model Fy(n,r), the neighborhood based CC becomes trivial that

forbids only one variable when In(n —1) < (r is the clause-variable ratio).

c Let f(n)=In(n—1) —

k(k—1)r
n-1 '’

Thus, f(n)<0 iff n < |[n*|, where f(n*) = 0

f(m) monotonically increase with n (n>1).

Formulas | 3-SAT 4-SAT 5-SAT 6-SAT 7-SAT
(r=42) | (r=9.0) | (r=20) | (r=40) | (r =85)
n 11.652 32.348 90.093 | 223.095 | 564.595

Page 26

Variants of Configuration Checking for SAT

Different definitions of configuration = different CC variants
« Clause-based CC: configuration of a variable x is a vector consisting of status of all clauses

In CL(x).

Example:
* (x1Vx2 VX3) A(mx3V X4V Xxs)A(mXgVXgVX7)

a = 1010101

* X1V =Xy V x3: satisfied
—Xx3 V X4 V =X Unsatisfied

« the configuration of x; under «
< s(Cy),s(C,) > = < satisfied, unsatisfied >

FrwCB: with clause-based CC

Solve random 3-SAT near
phase transition (r=4.2) with
4 million vars within 3hs,
while other algorithms failed
at 2 million vars

When combined with SP, can
reach to 10 millions.

Chuan Luo, Shaowei Cai, Wei Wu, Kaile Su: Focused Random Walk with Configuration Checking and Break Minimum for Satisfiability. CP 2013: 481-496

Page 27

Variants of Configuration Checking for SAT

Different ways of checking

« Quantitative CC: the CC value counts the times that a variable’s configuration has changed
since its last flip.

Chuan Luo, Kaile Su, Shaowei Cai: Improving Local Search for Random 3-SAT Using Quantitative Configuration Checking.
ECAI 2012: 570-575

Combine with other heuristics

* The Novelty heuristic + CC - NCCA

« Combining different CC strategies automatically

André Abramé, Djamal Habet, Donia Toumi: Improving configuration checking for satisfiable random k-SAT instances. Ann.
Math. Artif. Intell. 79(1-3): 5-24 (2017)

Chuan Luo, Holger Hoos, Shaowei Cai: PBOCCSAT: Boosting Local Search for SAT via Programming by Optimization

Page 28

Variants of Configuration Checking for SAT

CC has been widely used in local search for SAT and MaxSAT, including

at least 10 medal awarding solvers.

CCASat
CCAnNr
NCCA+
CCLS
CCEHC
SC2016

Page 29

Graph Coloring Problem

« Acoloring is an assignment of colors to vertices such that no two adjacent vertices
share the same color.

« Acoloring can be viewed as a partition of the vertex set V into independent sets
{V1, V2,..., Vk } such that no two adjacent vertices are in the same V..

« The Graph Coloring Problem (GCP) is to find a coloring of a graph while minimizing
the number of colors.

Page 30

Weighted Graph Coloring Problem

S={Vy, V, V3}
= {{vl » Us }’ {UZ’ v6}’ {173 J 774.}}

3
cost(S) = z max,ecy,w(v)
i=1

=3+4+5=12

Page 31

Local Search Operator for WGCP

The operator move<v,V,,V;>

« move v from its color class V, to another color class V;

Measure the benefits of operations

* Number of conflicts: g(S)
» Value of the cost function: cost(S)

A good operation reduces
both g(S) and cost(S).

9(S)=4 cost(S)=4+5+1=10

<v2: v‘h v2>

g(S)=3 cost(S)=3+5+1=9

Page 32

Configuration Checking for WGCP

Original CC:

Data structure: CC array

 CC|v] =1 means v meets the CC criterion (its configuration has changed since v changed the
value).

 CCJ[v] =0 on the contrary. - forbidden to change color.

Updating rules

* Rule 1: for each vertex v, CC|[v] is initialized as 1.

* Rule 2: when changing the color of v, CC[v] is reset to 0, and for each y € N(v), CC|y] is set to
1.

Page 33

Configuration Checking for WGCP

Use CC as an “encouraging” mechanism to explore the sequential operations
following good operations.

An operation is good If it
reduces both ¢g(S) and
cost(S).

When a good operation is performed

« Moving v to a more suitable set, it is reasonable to adjust the colors of its neighbors
In the following steps.

- encourage vertices in N(v) to be moved by setting their cc values to 1.

For other operations
« we do not modify cc values

Page 34

Configuration Checking for WGCP

CC rule for WGCP:

After performing an operation move<v,V;,V;>

» cc[v]is setto O;
* If move<v,V, V> is a good operation, ccly] is set to 1 for yEN(v).

Example:

After performing < v,,V{,V, >

Update cc values of v, and its neighbors

Vy Vs Vs Vy Vs Ve
3
- { ccC [vz] = 0 a(S)=4 cost(S)=4+5+1=10 g(S)=3 cost(S)=3+5+1=9

Page 35

Configuration Checking for Graph Colorin

Our CC based local search WGCP algorithm:

« On COLOR and matrix decomposition benchmarks (59 instances): outperforms AFISA [Sun et
al. 2018] and MWSS [Cornaz, Furini, and Malaguti 2017] on 48 and 55 instances, respectively.

« On large graphs from Network Data Repository (65 with more than 10° vertices): obtains better
solutions on 60 instances.

« Compare with alternative versions replacing CC with tabu (under different t parameters)

10000
+ RedLS + RedlS

1800 + RedLS+T5 ¢ RedLS+T5
RedLS+T20 RedLS+T20

\\\ Particularly better on

"'“'"‘*'w
sparse graphs.

|||||||||| —

Objective solution
2 @ > b
Objective solut

The run time of RedLS and competitors (s)

The run time of RedLS and competitors (s)

(a) Results on instance rec-dating

(b) Results on instance sc-rel9 Pa g e 3 6

Optimal Golomb Ruler

A Golomb ruler G of order m and length n comprises m integers x; < x, < -+ < x,,, such that
each difference d;; = x; — x; where i > j Is unique.

Note that by definition n = x,,, — x; and without loss of generality, one can easily assume
x1 =0, x,, =n.

OGR is optimal if its length is the

minimum for the given order. Example of a conference
_ room with proportions of a
0 1 4 O [0, 2, 7, 8, 11] Golomb ruler,
— ' | making it configurable to
<] R N 10 different sizes.
«—— 33—
. 4 —»
< ~3 >
: O >

Finding an optimal Golomb ruler (OGR) is an extremely challenging problem.

Optimal Golomb Ruler

the search for a 19 marks OGR took approximately 36,200 CPU hours on a Sun Sparc

workstation (1998)

it took 5 years to find an OGR of 27-mark by 19,919 participants. It has been stated by Cotta

et al. about the distributed.net projects (2007)

Table 1 A 16-mark optimal Golomb ruler with marks (xg)<t <m

k 1 2 3 4 5 6 7 8 9 10 11 12 13
xa 01 4 11 26 32 5 68 76 115 117 134 150

14
163

15
168

177

Page 38

Configuration Checking for OGR

A constraint-based local search algorithm uses both tabu and CC performs very
fast on solving OGR problems.

 Finds the optimal solution of 19-mark OGR in 40 CPU hours. Much faster.

CC is used when the domain of a variable xi becomes one (i.e., containing only
Its current value).

« This might happen because the marks are all sorted and the domain of xi is dynamically
restricted [keeping feasibility].

« the variable is kept locked for any future changes until any of its neighbouring variables
have changed their values.

Page 39

Configuration Checking for OGR

“the use of CC effectively reduces the
number of restarts required during
search and thus mitigates the cycling
problem of local search for OGR.”

The version that uses both tabu and CC
better than only using tabu

12-mark OGR - 13-mark OGR
[/J 80 . - //
5 v :
The algorithm restarts when the
é # TabuAndCC Q‘ .
sTbwocc i, = Tobuandce platueau search steps achieve a
GRHEA 4 TabuNoCC
Rl I R IR DA NS R R RO I 0 ¥ GRHEA
T mensens threshold.
15-mark OGR

14-mark OGR 100

05 if (plateauSize = MaxPlateauSize)
06 Restart(solution), plateauSize = 0

Success Rate
Success Rate

TabuAndCC
#® TabuNoCC

R S R I I R T T ST S S

TabuAndCC
#® TabuNoCC

N2 A_DIAIDPONDRDP PR XD
Time in Hours Time in Hours

Md. Masbaul Alam, M. A. Hakim Newton, Abdul Sattar: Constraint-based search for optimal Golomb rulers. J. Heuristics (2017)

Page 40

3

AR RIS Configuration Checking
for Subset Problems

The Vertex Cover Problem

S 4 g

Red vertices constitute a vertex cover

« Minimum Vertex Cover (MinVC): to find a vertex cover of the smallest size.

« K-Vertex-cover: find a k-sized vertex cover for a given k.

Page 42

A Local Search Framework for MinVC

An iterative framework for MinVC
* A popular framework is to solve MinVC by solving its decision problem iteratively.

- whenever finding a k-sized vertex cover, the algorithm goes on to search for a (k-
1)-sized vertex cover.

* So, the core is to solve the K-vertex-cover problem.

Page 43

A Local Search Framework for MinVC

Solving the K-vertex-cover problem

« Maintain a candidate solution S of k vertices, and modify the set by exchanging
vertices, trying to cover all edges.

< Y Choose which two vertices
One step R to exchange?
; RS . Wh?ch to remove
i ~ | Which to add

(5,3)-partial vertex cover (5,2)-partial vertex cover

Scoring function:
score(v) = cost(C) — cost(C")
C' is obtained from C by changing the state of v

Page 44

Configuration Checking for Vertex Cover

Configuration of v

Considering N(v) and edge weights,

Only considering N(v
y g N(v) when employing edge weighting tech.

Page 45

Configuration Checking for Vertex Cover

Exchange

choose a vertex u& € greedily w.r.t score;

C:=C\{u};

choose an uncovered edge e randomly

choose a vertex u&e satisfying CC criterion, and with higher score;
C:=CU{v}

Updating rules for CC array
* Rule 1: all CC[v] are initialized to 1.

* Rule 2: When removing a solution vertex v, CC[v] is reset to O.
* Rule 3: When a vertex v changes its state, for each ye N[v], CC[y] is set to 1.
* Rule 4 (optional): When updating the weight of edge e(u, v), CCJ[u] and CC|v] are set to 1.
Page 46

Configuration Checking for Vertex Cover

NuMVC

« a popular state of the art local search algorithm for MinVC. Currently, it is among best-
performing solvers on popular benchmarks, even it was published 8 years ago.

Table 1: Experiment results of NuMVC and NuMVC without CC on the representative DIMACS and . .
BHOSLIB benchmarks.

Instance [V initial size NuMVC NuMVC without CC N u MVC USes g reedy heu rIStICS

#iter #Hrepeat #repeat/#iter| #Hiter #repeat #Hrepeat/Hiter . . .

brock800.4 (800 774 |10000000 185445 0.01854 | 10000000 1627269 0.16273 when ChOOSIﬂg vertices, which
C2000.9 2000 1920 [10000000 72708 0.00727 10000000 1337073 0.13371
DSJC1000.5 1000 985 |51024 18 0.00035 15588 2166 0.13895 N m k I || k
2end00_p0.9.75 400 325 13403 0 0.00000 2516 19 0.00755 te dS to aKe t eas y Stuc at
hammingl0-4 1024 984 |46332 163 0.00352 19080 3676 0.19266 . .
keller6 3361 3302 |429550 716 0.00167 1101418 245155 0.22258 Iocal Optlmal Whlle the
MANN_ag1 3321 2221 [10000000 5355 0.00054 10000000 526714 0.05267 . . .
p-hat1500-3 1500 1406 |17699 728 0.04113 77922 48932 0.62796 eq ul pment Of CC Slg N |flcant|y
frb59-26-1 1534 1475 |10000000 43559 0.00436 10000000 2559511 0.25595
frb59-26-2 1534 1475 |{10000000 43968 0.00440 10000000 2594888 0.25949 I
frb59-26-3 1534 1475 |10000000 44915 0.00449 10000000 2412643 0.24126 red UcCes the CyC| I ng '
frb59-26-4 1534 1475 |10000000 45687 0.00457 10000000 2433095 0.24331
frb59-26-5 1534 1475 |10000000 45615 0.00456 10000000 2514596 0.25146
frb100-40 4000 3900 {10000000 2800 0.00028 10000000 902380 0.09024

. J. Artif. Intell. Res. (2013)
Page 47

Max CIi

ue and Its Relaxed Versions

Cligue, k-plex and quasi-clique

« K-plex: a subset SCV is a k-plex, if [N(v)NS|2|S|-k for all vES. (each vertex at most

misses k-1 connections)

« A-gquasi-clique: is a subset SCV such that the edge density of the subgraph induced

by S is at least A.

Each vertex at most misses
1 connection in the clique

edge density of the
subgraphis 7/ 10 =0.7.

5-clique

2-plex with 5 vertices

w oW W

0.7-quasi clique

Page 43

Configuration Checking for Max (Weight) Cligue

Three operators:
- Add: add a vertex while maintaining feasibility
« Swap: remove a solution vertex and add another vertex, keeping feasibility

* Remove: remove some solution vertices

CC is used as an encouraging mechanism on good operations
» The configuration of a vertex is defined as its neighborhood.
 When a good operation is performed, it causes CC updating.

« Otherwise, no CC updating.

Page 49

Configuration Checking for Max (Weight) Cligue

SCCWalk:

 state of the art performance on a wide range of benchmarks

Comparative results for SCCWalk and five competitors on the classical benchmarks.

Benchmark #inst ReTS1 ReTS2 FastW(Clq RRWL WLIMC SCCwalk
#win #win #win #win #win #win

DIMACS 80 78 77 63 77 63 79
BHOSLIB 40 38 38 0 29 1 40
WDP 22 17 17 1 17 15 22
DGCA 7 5 5 2 6 5 7
Total 149 138 137 76 129 84 148

Comparative results for SCCWalk4L and five competitors on the massive graphs.
Benchmark #inst ReTS1 ReTS2 FastW(lg RRWL WLMC SCCWalk4L
#win #win #win #win #win #win
real-world massive graphs 137 48 == 123 133 137 137
large-scaled FRB 20 7 3 0 0 0 20
Total 157 55 51 123 133 137 157

. 40000
Wang et. al. SCCWalk: An efficient local search algorithm and its improvements for maximum weight clique problem. Artif. Intell. (2020)

Page 50

Local Search for Max K-plex

Three operators:

Add: add a vertex while maintaining S feasible

Swap: remove a solution vertex and add another vertex, keeping S feasible

Remove: remove some solution vertices

|

S =1{1,2,4}

Page 51

Dynamic Configuration Checking

Recall that the original CC becomes ineffective on dense instances, as
analyzed on random k-SAT formulas.

Address this drawback: use dynamic threshold CC

Configuration: the neighborhood of v.

Updating Rule

« Avertex v is locked (CC|[v]:=0) when it is removed from S.

* When a vertex changes its state, CC[y]++ for each y € N(v).
« Avertex v is unlocked if CCJv]>threshold]|v].

« The threshold[v] depends on the degree of v and the frequency of v being selected.

—> to increase the forbidding strength on the vertices that are frequently selected.
Page 52

Configuration Checking for K-plex and Quasi-cligue

Dynamic CC based local search algorithms push the state of the art for
Max K-plex and Quasi-cliqgue problems

« good performance on graphs

with various densities.

» Best-performing on DIMACS, BHOSLIB and large graphs from Network Repository.

Dynamic CC enables self-adaptive forbidding

strength, robust on graphs with various density.

Logy speedup ratio

\ 03 04 05 06 07
+ Edge density

Figure 2: Speedup ratio varying with edge density

AAAI (2021)

. AAAI (2020)

Page 53

4

PART FOUR Conclusions
and Challenges

Conclusions and Challenges

Configuration Checking is a generic idea for local search algorithms.

« Core idea: for a solution component (a variable, or a vertex), if after the value is
changed or it iIs removed, its circumstance information remains unchanged, then
this component (the value) is forbidden to be put in the solution again.

CC particularly works well for assignment problems and subset problems.
* You may have a try if you are solving similar problems.

5o

Conclusions and Challenges

A list of problems using CC:

SAT /I winners in SAT COMPs

MaxSAT /lwinners in MaxSAT Evaluations

SMT(IDL) //'YicesLS 1stin QF _IDL theory of SMT COMP 2021
Abstract Argumentation

Graph Coloring Problem
MaxClique and variants Nearly 70 papers,

Vertex Cover and variants pushing state of the art in many

Dominating Set combinatorial problems.

Set Cover
Packing Problems

Black and White Problem
Combinatorial Auction
Golomb Rule Problem

Page 56

Conclusions and Challenges

The intuition of CC is that by reducing cycling on local structure, we reduce the
cycling of local search

* Or, is it the main reason for its power?
* Do we have better understanding on this idea?
« Any theoretical/experimental analysis?

It has been successfully used to assignment problems

and subset problems

« Can it be used to other kinds of combinatorial problems,
e.g., permutation problems?

of

