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Abstract. Verification by simulation, based on covering the set of time-bounded
trajectories of a dynamical system evolving from the initial state set by means of a
finite sample of initial states plus a sensitivity argument, has recently attracted in-
terest due to the availability of powerful simulators for rich classes of dynamical
systems. System models addressed by such techniques involve ordinary differen-
tial equations (ODEs) and can readily be extended to delay differential equations
(DDEs). In doing so, the lack of validated solvers for DDEs, however, enforces
the use of numeric approximations such that the resulting verification procedures
would have to resort to (rather strong) assumptions on numerical accuracy of
the underlying simulators, which lack formal validation or proof. In this paper,
we pursue a closer integration of the numeric solving and the sensitivity-related
state bloating algorithms underlying verification by simulation, together yielding
a safe enclosure algorithm for DDEs suitable for use in automated formal verifi-
cation. The key ingredient is an on-the-fly computation of piecewise linear, local
error bounds by nonlinear optimization, with the error bounds uniformly covering
sensitivity information concerning initial states as well as integration error.

1 Introduction

Delayed coupling between state variables of dynamic systems occurs in many domains.
Prominent examples include population dynamics, where birth rate follows changes in
population size with a delay related to reproductive age, spreading of infectious dis-
eases, where delay is induced by the incubation period, exhaust gas control in internal
combustion engines, where relevant sensors, like the A probe, are located downstream
the exhaust system such that gas transport induces a delay between the controlled com-
bustion processes and sensing their effect, or networked control systems with their as-
sociated transport delays when forwarding data through the communication network,
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to name just a few. Most examples feature feedback dynamics and it should be obvi-
ous that the presence of feedback delays reduces controllability due to the impossibility
of immediate reaction and enhances likelihood of transient overshoot or even oscilla-
tion in the feedback system. In fact, the introduction of delays into a feedback system
may reduce stabilization rates of or even destabilize an otherwise stable system, it may
provoke overshoot and drive the system to otherwise unreachable states, it is likely to
stretch dwell times, and it may induce residual error that never cancels. As this implies
that safety or stability certificates obtained on idealized, delay-free models of systems
prone to delayed coupling may be erratic, automated methods for system verification
ought to address models of system dynamics reflecting delays, rendering verification
tools only addressing ordinary differential equations (ODE) and their derived models,
like hybrid automata, vastly insufficient. It can well be argued that such tools should
better address delay differential equations (DDE), as introduced in [2].

Generalizing techniques developed for ODE to DDE is not as straightforward as it
may seem at first glance. The reason is that the future evolution of a DDE is no longer
governed by the current state instant only, but depends on a chunk of its past trajectory,
such that introducing a delay immediately renders a system with finite-dimensional
state into an infinite-dimensional dynamical system. Consequently, approximate nu-
merical methods for solving DDEs as well as methods for stability analysis have well
been developed in the field of control, while in automatic verification, hitherto only few
approaches address the effects of delays due to the immediate impact of delays on the
structure of the state spaces to be traversed by state-exploratory methods.

In this paper, we address this problem by suitably adapting the paradigm of ver-
ification by simulation to delay differential equations. Verification by simulation pro-
vides bounded-time verification of dynamical systems based on covering the full set of
time-bounded trajectories of a dynamical system evolving from the initial state set by
means of a finite sample of initial states plus a sensitivity argument. To achieve this,
a sufficiently dense sample of initial states is drawn from the set of all possible initial
states, numeric simulation is then used for obtaining the trajectories originating from
the sample points, and finally a quantitative sensitivity argument permits to pessimisti-
cally over-approximate the “tube” of trajectories originating from arbitrary start states
by means of “bloating” the individual simulated trajectories into a neighborhood of
the radius given by the bound on sensitivity on the start state, see e.g. [7,19,8,14]. If
a validated numerical solver is used for the simulations, the above procedure will im-
mediately yield a safe over-approximation of the set of possible trajectories; else, more
aggressive bloating additionally covering the possible inaccuracies of numeric integra-
tion of differential equations has to be employed to obtain a sound, validated method.

The class of systems we approach features delayed differential dynamics governed
by DDE of the following form:

X(t):f(X(t),X(t*T’l),...,X(t*Tk))7 tG[0,00) (1)
X(t) = g(t)a te [_Tmaxvo}

It thus involves a combination of ODE and DDE with multiple constant delays r; >
0,i=1,...,k. Here, rmax = max{ry,...,r} is the maximal delay, x : R>_, _  +>
R™ is a trajectory, f : (R™")k*1 s R™ a vector field, and g : [~7pax, 0] — R” is
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a continuous function providing the initial condition. This form of equations has been
successfully used to model various real world systems in the fields of, e.g., biology,
control theory, and economics.

Generally speaking, formal verification of temporally unbounded reachability prop-
erties of system dynamics governed by Eq. (1) inherits undecidability from similar
properties for ODE. Therefore, and also due to our wish to use simulation as an under-
lying mechanism of system analysis, we restrict ourselves to time-bounded reachability
problems. Such a time-bounded reachability problem for a given model of the form (1)
is parameterized by a temporal horizon (i.e., a time bound) set by the user, a set of initial
states which in the case of DDE generalizes to constant functions over the time frame
[—7max, 0] immediately preceding system start, and a set of unsafe states that system
dynamics is expected to avoid. The proof obligation is to determine whether there exists
a trajectory of the model starting in some initial state which reaches any unsafe state
within the time bound. In our approach, we first trigger a set of numerical approxima-
tions of the behaviours from a finite sampling of the initial states. Such a simulation does
not yield a trajectory, but rather a timed trace, i.e., a sequence of time-stamp value pairs.
Along each simulation run, we bloat each snapshot, i.e., each time-stamp value pair by
a distance determined via an error bound computed automatically on-the-fly, where the
error bound incorporates coverage and sensitivity information concerning the sampled
start states as well as the integration error incurred by numerical solving. The union of
these bloatings covers all time-bounded trajectories possibly evolving from all initial
states, and thus yields an over-approximation of the states reachable from the initial set
within the time bound. If this over-approximation proves safety in the sense that the
cover of the reachable states is disjoint from the unsafe states, or conversely if the sim-
ulation produces a valid counter-example in the sense that it can prove that a trajectory
inevitably hits the unsafe states, then the algorithm generates the corresponding verdict.
Otherwise, it refines the sample drawn from the initial states, thus requiring less aggres-
sive bloating of simulation runs, and computes a more precise over-approximation.

Our approach is distinguished from competing approaches by providing a validated
verification-by-simulation paradigm for DDE. Given that validated methods for DDE
enclosure are not readily available, it achieves this by pursuing a closer than traditional
integration of the numeric solving and the sensitivity-related state bloating algorithms
underlying verification by simulation, together yielding a safe enclosure algorithm for
DDE guaranteed to contain the true solution. The key ingredient is an on-the-fly compu-
tation of piecewise linear, local error bounds by nonlinear optimization, which provides
an alternative to established methods computing discrepancy bounds from Lipschitz
constants and Jacobians, as employed in [12].

To illustrate our approach, some experimental results obtained on several bench-
mark systems involving delayed differential dynamics are demonstrated.

Related work. Zou, Frinzle et al. proposed in [26] a procedure for generating stability
and safety certificates for the simplest class of DDEs of the form x(t) = f(x(t — r)).
This is achieved by iterating interval-based Taylor over-approximations of the time-
wise segments of the solution to a DDE, which depends essentially on the fact that the
interval coefficients of the solution over the time interval (n,n + 1] can be represented
as a function of those of the solution over (n — 1, n]. Extracting the operator mapping
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coefficients at one time frame to those of the next, one obtains a time-invariant discrete-
time dynamical system. Thus, stability analysis and safety verification of the original
DDE is reduced to appropriate counterparts encoding these properties on the resulting
time-invariant discrete-time dynamical system. This approach does not immediately
generalize to mixed ODE-DDE forms as in Eq. (1), as the delayed parts of the dynamics
would there function as inputs to an ODE with input, rendering the above operator time-
variant. Though this is doable in principle, we have herein opted for the more immediate
approach of verification by simulation.

In [21], Pola et al. proposed an approach abstracting incrementally input-to-state
stable (4-ISS) nonlinear control systems with constant and known delays to finite-state
symbolic models, and establish approximate bisimilarity between them. In [20], they
extended the work in [21] to incrementally-input-delay-to-state stable (§-IDSS) nonlin-
ear control systems with time-varying and unknown delays, and proved that the original
4-IDSS nonlinear control systems and the corresponding symbolic models are alternat-
ing approximately bisimilar. The crucial differences between their work and ours lie
in, firstly, their approach being confined to ¢-ISS nonlinear control systems, while our
approach being applicable to any kind of nonlinear control systems with constant and
known time delays. So, our method relaxes a problematic applicability condition. Sec-
ond, their approach can do unbounded verification of time-delay systems, while our
approach currently can only conduct bounded verification. Third, their approach can be
applied to J-IDSS nonlinear control systems with time-varying and unknown delays,
while our approach cannot yet. It is a crucial aspect of our future work to extend our
approach to nonlinear control systems with time-varying and unknown delays, without
sacrificing its applicability beyond §-IDSS systems.

Verifying delayless dynamical systems, in particular ODE, using numerical simula-
tions has well been studied, e.g., in [7,19,8,14], where similar concepts based on sen-
sitivity information provided by discrepancy functions or simulation functions, respec-
tively, have been presented to bloat the traces obtained from simulations to “trajectory
tubes” over-approximating time-bounded reach sets. While the first settings resorted to
user-supplied sensitivity information, Fan and Mitra in [12] proposed an algorithm for
automatically computing piecewise exponential discrepancy functions. This algorithm
pessimistically estimates the sensitivity of the ODE on its initial value, but also takes as-
sumed error bounds of the numerical simulation, which in that case is Matlab’s ode45
solver, into account. This, however, renders the soundness of this algorithm dependent
on the assumption that Matlab’s built-in ODE solver can always guarantee those nu-
merical error bounds, while it is possible to find extremely stiff ODEs as follows for
which the solver returns very inaccurate results.

(t) = 1+ 6, (x — V/2), with Ja(y) —y?/a® ?)

04(y) approximates the Dirac § function [6] modelling a tall narrow spike around y = 0,
where the spike shrinks as @ — 0. When Eq. (2) is simulated with a = 10~2 by Matlab’s
ODE solver ode45, results show that the solver can detect the sharp increment of
the derivative with a user-specified MaxStep as 0.01, while not the case with 0.1.
Furthermore, adjusting the simulation step width could not essentially cure the problem,
yet just shifts it to a smaller a for which the solver fails to identify the leaping trajectory
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and instead follows straight-line dynamics. This motivates us to address the issue of
numerical errors in discrepancy computation. Moreover, the method in [12] requires
computations of a global Lipschitz constant as well as a bound on the eigenvalues of
the Jacobians within a region, which may not be feasible in some dynamical systems.

2 Problem Formulation

Notations. For a vector x € R", x; refers to its ith component, and ||x|| denotes the
£2-norm. The notation || - || extends to an n x n real matrix A € R™"*" with ||A|| =

Amax (AT A), where Aoy (A) is the largest eigenvalue of A. For x,x’ € R™, ||x’—x]||
is the Euclidean distance between the points, and we define for § > 0, Bs(x) = {x’ €
R™|||x" — x|| < 46} as the closed ball of radius ¢ centered at x. For a set S C R™,
Bs(S) = UxesBs(x). The diameter of a compact set S is dia(S) = supy e [[x—X']],
and a d-cover of S is a finite collection of points X’ such that S C UyxexBs(x). For a
set S C R™, its convex hull is denoted as conv(.S).

Delayed dynamical systems. We consider a timed-bounded delayed dynamical system
of the form

{X(t)f(X(t),X(tTl),...,X(trk))7 tG[0,00) (3)

X(t)EX()GQ, t e [—'I"k,O} 3,

where x is the time-dependent state vector in R”, x denotes its temporal derivative
dx/dt, and ¢ is a real variable modelling time. The discrete delays are assumed to
be ordered as r, > ... > r; > 0, and the initial states are generalized to a constant
function over [—ry, 0] taking values from a compact set ©.

Let the vector-valued function f : (R™)**1 i R™ be continuous and continuously
differentiable in the first argument, which implies that the system has a unique maximal
solution (or trajectory) from each constant initial condition valued xg € R", denoted
as &x, (t) : [-7rg, £) = R™, where £ = oo holds if f is Lipschitz.

Example 1 (Gene Regulation [11,23]). The control of gene expression in cells is often
modelled with time delays in equations of the form
{ “T.l(t) = g(gjn(t - Tn)) - alml(t)
el _ Y A . “)
Zi(t) = g(wj—1(t —rj-1)) —ajz;(t), 1 <j<n,

where the gene is transcribed producing mRNA (z;), which is translated into enzyme
29 that turn produces another enzyme x5 and so on. The end product x,, acts to repress
the transcription of the gene by ¢ < 0. Time delays are introduced to account for
time involved in transcription, translation, and transport. The a;; > 0 represent decay
rates of the species. The dynamic described in Eq. (4) falls exactly into the scope of
systems considered in this paper, and in fact, it instantiates a more general family of
systems known as monotone cyclic feedback systems (MCFS) [18], which includes

neural networks, testosterone control, and many other effects in systems biology.

3 In general, the initial condition is represented by x(t) = &(t), for t € [—rg,0], where
€0 € X C C°[~7,0],R™), C°([—rk, 0] ,R™) stands for all continuous functions mapping
from [—rg, 0] to R™, X is compact and bounded. So, we can let © = Ugcx&([—7%,0]).
Clearly, © is compact and bounded.
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Safety verification problem. Given a set Y C R"™ of unsafe or otherwise bad states,
a delayed dynamical system of shape (3) is said to be (time-bounded) safe iff all the
trajectories originating from any xo € @ do not intersect with ¢/ (within the given time
bound T), otherwise it is called unsafe.

3 Verification of Delayed Dynamical Systems via Simulation

Generating formal guarantees for DDEs of the form (3) tends to be challenging due to
unavailability of guaranteed for solving them. We are trying to alleviate that problem
by adopting approximate numeric methods, enhancing them with methods for rigorous
error tracking, thus rendering them validated numerical methods, and adding sensitivity
information for being able to cover sets of initial states based on simulating and bloating
the trajectories originating from finitely many samples. This approach has been inspired
by similar approaches for ODE, in particular the discrepancy functions of [12].

We will now expose in detail the overall procedure of simulation by verification,
which hinges on the validated simulation of DDE that we will turn to in Sect. 4. For
the sake of simplifying the exposition, we first consider the special case of delayed
dynamical systems featuring a single delay, as in

{x(t)f(x(t),x(tr)), t €[0,00) 5)
x(t) =% €06, te[-r0]

In this case, the differential dynamics is a function f(x,u) of two states, namely the
current state x and the past state u.

The basic idea of simulation-based verification of a DDE (5), as implemented by
Algorithm 1, can be sketched as follows:
First, we build on a validated simulation procedure Simulation, whose design is shown
in Sect. 4. Given a delayed dynamical system as above, a subset X, C © of the initial

states, and a time bound 7', Simulation yields a simulation trace (tg,yo), .- -, (tn,¥n)
consisting of pairs of time stamps ¢; € [0, 7] and states y; € R™ with yo = xg, as well
as a sequence of local error bounds dy,d1, . ..,d, > 0 providing a validation of this

trace observing the following two properties:

Pl: 0=ty <t1 <...<t, =1T,i.e., the time stamps in the trace are ascending and
cover the temporal horizon of interest.

P2: For each of the trajectories &, (t) of (5) starting from any point xg € Xjp, the
validation property

(xo (1), 1) € conv ((Ba, (yi) x {t:}) U (Ba,., (yi+1) X {tis1})) (6)

holds for each t € [t;,t;41], 4 = 0,1,...,n — 1. Le., the reported error bounds d;
span a piecewise linear tube around the points (y;,¢;) in the simulation trace such
that &, (t) is properly enclosed for any xo € Aj and any ¢ € [0, 7).

Then, time-bounded safety verification of system (5) can be obtained as follows:
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Algorithm 1: Simulation-based Verification for Delayed Dynamical Systems

input : The dynamics f(x, u), delay term r, initial set Xy, unsafe set ¢, time bound 7", precision e.
/* initialization =*/

1 R+ 0; 6§+ dia(Xo)/2; T + 70;
2 X « §-Partition(Xy);

3 while X # 0 do

4 if § < e then

5 | return (UNKNOWN, R);

for Bs(xo) € X do

6

7 (t,y,d) < Simulation(Bs(xo0), f(x,u),r, 7,T);

8 T + Un=g conv(Ba,, (yn) U Ba,  , (¥n+1)):

9 if 7 NU = 0 then

10 | X« X\Bs(x0); R+ RUT;

11 elseif 3i. Ba, (y:) € U then

12 | return (UNSAFE, T);

13 else .

14 | X« X\Bs(x0); X < X U $-Partition(Bs(x0));
15| 5« 0/2;

16 return (SAFE, R);

1. At the beginning, we cover the given initial set A by a finite set of balls of ra-
dius d; so, d-Partition(Xy) in line 2 of Algorithm. 1 returns a finite §-cover of the
compact set AXy. We then call Simulation to each of these balls. For each ball B,
we collect all states contained in the bloating of the /NV-step simulation trace y as
Baly) = Ug;ol conv(Ba, (yn) U Ba,, ., (¥n+1)), cf. line 8. This yields an over-
approximation of the states reachable from B following (5) within time up to 7.

2. If the over-approximation of the reachable set thus obtained is disjoint to the unsafe
set (line 9), then (5) is safe when starting in B; otherwise, if there exists a sampling
point in the simulation which has its full bloating with the corresponding local error
bound being contained in the unsafe set (line 11), then (5) is definitely unsafe. If
none of these two conditions applies, we compute a finer partition of B (line 14),
and we repeat the above procedure until the granularity of the partition becomes
finer than the given threshold. In this case, we cannot give an answer whether or
not (5) is safe and terminate with the inconclusive result unknown.

Obviously, our approach is different from existing approaches providing simulation-
based verification for dynamical systems modeled by ordinary differential equations,
like [7,8]. In our approach, the simulation procedure provides a rigorous validation
of the above property P2, rather than relying on assumptions concerning numerical
accuracy of the underlying simulator. Second, our approach covers rigorous simulation-
based formal verification of DDE rather than just ODE. The correctness of the resulting
algorithm is captured by the following theorem:

Theorem 1 (Correctness). If Simulation satisfies above properties P1 and P2 (which
will be verified in the next section), then Algorithm I terminates and its outputs are
guaranteed to satisfy the following soundness properties:

— it reports (SAFE,R) only if the system is safe.
— it reports (UNSAFE, T) only if the system is unsafe and T is a counter-example.
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The general case of multiple different delays in Eq. (3) can be dealt with analogously
to the case (5) of a single delay: we only need to allow u to have more components,
meanwhile, we need to revise Algorithm 2 accordingly by introducing multiple different
m; as my < r1/T,...,my < ri/7. Thus, the delayed states y,,_,,s can be exactly
located when computing ¢, +1 by f(Yn, Yn—mys- - - » Yn—m,, ) (line 6 in Algorithm 2) as
well as when finding the minimal e (line 7 in Algorithm 2).

4 Validated Simulation

In this section, we elaborate on simulation and on computation of rigorous local er-
ror bounds to guarantee the enclosure property P2. Instead of directly computing the
error bounds dy, . . ., d,, accompanying the simulation trace (to,yo), - - -, (tn,yn), We
compute an initial error bound dy and a sequence e, . . ., e, of error slopes recursively
defining error bounds E(¢) for each t € [0,7] — and thus not only for time stamps in
the simulated trace— as follows:

oy
E(t) = do- T =0, (7)
E(tl) + (t - ti)ei-',-h if t e [ti,ti+1].

The validation property (P2) can thus be rewritten as

P2’: For each of the trajectories &x, (t) of system (5) starting from any point xo € Xj,
the validation property

®)

t—=4)yi + (Lig1 — 1)y
fx[)(t) e BE(t) (( )yt ( +t1 )y +1>
i+l — b

holds for each t € [t;, t;4+1]-

Le., the e;’s provide the slopes of piecewise conic enclosures around the linear interpo-
lations between the points (¢;,y;) in the simulation trace.

The Simulation Algorithm. Inferring formal proofs from simulations essentially at-
tributes to a validated numerical solver which can produce rigorous error bounds on
the generated sampling points. We present in Algorithm 2 a procedure* Simulation that
provides a trace of sampling points bundled with their local error bounds thus giving an
over-approximation of the reachable set in terms of an initial state space.

The algorithm is provided with an initial ball B;5(x) and it proceeds with a discrete
simulation starting from x( paced by a fixed stepsize 7. Three /ist structures (denoted
as [-]) with the same length are introduced respectively as (1) t: storing a sequence of
time stamps on which the approximations are computed, (2) y: keeping a sequence of
sampling points that approximates the trajectory starting from xg, and (3) d: capturing
the corresponding sequence of local error bounds. Due to the nature of DDEs where the
evolving of states may refer to those ahead of time ¢y = 0, we index the lists beginning

* For ease of presentation, we demonstrate the approach on DDEs with one single delay, and it
readily extends to that with multiple delays as discussed in Sect. 3.
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Algorithm 2: Simulation: a validated DDE solver producing rigorous bounds

input : The initial set Bs(x¢), dynamics f(x, u), delay term r, stepsize 7, time bound 7T'.
output: A triple (t, y, d), where the components represent lists, with the same length, respectively for the
time points, numerical approximations (possibly multi-dimensional), and the rigorous local error
bounds.
/* initializing the lists, whose indices start from -1 x/
1 t <+ [—7,0]; ¥y + [%0,x%0]; d «+ [0, 5];
/* r has to be divisible by 7 (in FP numbers) =/
2 n<+ 0; m«+r/T;
3 whilet,, < T do

4 tpg1 < tn + 73
/* approximating yYn41 using forward Euler method =/
5 Yn+1 < Yn + .f(anynfmr) * T

/* computing error slope by constrained optimization, where o is a
positive slack constant =*/
6 en < Find minimum e s.t.

[fx+txfutt*g)— f(Yn, yn-m)ll < e—o, for
vt € [0, 7]

Vx € Ba,, (¥yn)

Yu € Ba,,_,. (¥Yn—m)

VE € Be(F(Yn:Yn—m))

Vg € Ben,m (.f(yn—"m Yn—2m))§

©

7 dpt1 = dp + Ten;

/* updating the lists by appending the extrapolation =/
8 t < [t tnr1]s ¥y < [y, ynsals d < [d, dnga];
9 n+<n+1;

o return (t,y,d);

from —1 and assume that all the evaluations of y and d with a negative index return the
element at —1, namely y o = y_; °, and analogously for d.

At to = 0, the corresponding local error is initialized with the radius of the initial
set dg = 9 (line 1). An offest m is computed in line 2 such that y,,_,, locates the
delayed approximation at ¢,, — r. In each iteration of the simulation loop, the state is ex-
trapolated in line 6 using the well-known forward Euler method, which computes y,, 11
explicitly from previous points y,, and y,—,,. Higher-order Runge-Kutta methods [1]
could be employed here to obtain more precise approximations. Line 7 derives a local
error bound d,, 1 based on the local error slope e,, satisfying the enclosure property
(P2’). The computation of e, is reduced to a constrained optimization problem (line 6).

Correctness of Simulation. Note that the constrained optimization problem (9) need not
have a finite solution, in which case our algorithm fails to provide a useful enclosure.
Straightforward continuity arguments do, however, show that for small enough stepsize
T, it will always have a solution, which motivated us to implement stepsize control,
as discussed below. When being able to compute useful, i.e., finite error slopes, the
simulation delivers a safe enclosure satisfying (P2):

Theorem 2 (Correctness). Suppose the maximum index of the lists generated by Algo-
rithm 2 is N, then ¥t € [0,T] and Vx € B;s(xo),

N-1
&(t) S comv(Ba,(yn) UBa, ., (Yns1)).

3 For a general initial condition g(t), y is initialized as y < [g(—7),g(—7 +7),...,g(0)].
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Algorithm 3: Simulation: a simulation procedure with local stepsize control

input : Bs(xo), f(x,u), r, 70, T.
output: (t,y,d)

1 t <+ [—70,0]; ¥y + [x0,%0]; d « [0,46];
2 n <+ 0
3 whilet,, < T do
4 T < To; m 4 1/T;

/* relocating the bias m by a backward search =/
5 for j < Length(t); 7 > 1; j — — do
6 ift, —r € (t;j_1,t;] then
7 m<—n —j;
8 Break;
9 while True do
10 tnt1 < tn + 7 Ynt1 < Yo + F(Yn, Yn—m) * 7}
1 if minimal e satisfying Eq. (10) under the constraints of (9) is found then
12 en < €, dnt1 < dn + Ten;
13 Break;
14 else
15 | 7+ 7/2

/+ Smaller e, tighter the bloating. */

16 t < [t tnr1]s ¥y < [y, yn+1]; d « [d, dny1];
17 n<+<n-+1;

s return (t,y,d);

The completeness result can be formally stated as follows:

Theorem 3 (Completeness). Suppose the function f in Eq. (5) is continuously differ-
entiable in both arguments and the dynamical system is solvable for time interval [0, T,
then for any € > 0, there exists §, T and o such that the optimization problem (9) has a
solution e,, for alln < % and moreover d,, < ¢.

Extension to variable stepsize. Local stepsize control reducing the current stepsize
whenever Eq. (9) has no finite solution seems natural. An improved simulation proce-
dure with flexible stepsize control is presented in Algorithm 3, where in each step of
simulation, the procedure first tries to find a finite upper bound e satisfying Eq. (9) with
an initial stepsize 7. If it fails, the current interval is split into two (line 15) and the
above operations repeat. Termination of refining the stepsize is guaranteed by the con-
tinuous differentiability of f in both of its arguments. Along with variation of 7, the
bias locating the delayed state within the list of sampling points need to be recomputed
in each step by a backward search (line 8). This may generate extra error, as the nearest
sampling point y,,_,, may not feature exactly the desired delay. This additional error is
accounted for by modifying the first line of the constrained optimization (9) into

|‘(X+t1*f7u+t2*g)_f(yn7yn7m)”Se_a (10)

for any t1,t2 € [0,7]. The correctness and completeness arguments for Algorithm 3
are akin to Theorem 2.
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5 Implementation and Experimental Results

To evaluate the approach of verification along simulations, we have implemented the
proposed algorithms with local stepsize control as a prototype® in Matlab. It takes a
time-bounded safety verification problem of delayed dynamical systems as input, and
it terminates with one of the three results SAFE, UNSAFE, or UNKNOWN, reflecting
the fact that a fine enough over-approximation has been found to prove the system safe
or unsafe, respectively, or that the maximum permitted density of covering the initial
set was insufficient for obtaining a definite answer.

As our algorithm relies on solving the constrained optimization problems (9) or
(10), resp., for determining validated bounds, we have tried different solvers for dis-
charging that optimization problem, namely the numerical (and thus devoid of formal
guarantees concerning completeness and soundness) procedure fmincon provided by
Matlab and the optimization-modulo-theory procedure offered by the nonlinear SAT-
modulo theory solver HySAT II’ [15]. The constrained optimization problems (9)
and (10) involve a universally quantified constraint of the shape

find min{e > 0 | Va : ¢(x,e) = ¥(z,e)} , (11)

which is outside the scope of the above solving procedures, as these handle existential
constraints only. We therefore have substituted (11) by the existentially constrained
optimization problem

find max{e > 0| 3z : ¢p(z,e) A )(z,e)} . (12)

Due to the linear ordering on R>, problem (12) is guaranteed to yield an upper bound
on the solution of (11), which is safe in our context. Both fmincon and HySAT ITI
proved to be able to efficiently solve (9) and (10) in the formulation (12), with Hy SAT
IT being able to provide a validated solution due to global search based on a combina-
tion of interval constraint propagation with optimization-modulo-theory solving.
HySAT ITI [15]is a sat-modulo-theory (SMT) solver accepting formulas contain-
ing arbitrary boolean combinations of theory atoms involving linear, polynomial and
transcendental functions. It internally rewrites these formulae into an equi-satisfiable
conjunctive normal form by means of a definitional translation introducing auxiliary
propositional and numeric variables representing the truth values of sub-formulae and
the numeric values of subexpressions, resp., thus generalizing the well-known Tseitin
transformation [24]. HySAT IT then solves the resulting CNF through a tight inte-
gration of the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [5] in its conflict-
driven clause learning (CDCL) variant with interval constraint propagation (ICP) [3].
Details of the algorithm, which operates on interval valuations for both the Boolean and
the numeric variables and alternates between choice steps splitting such intervals and
deduction steps narrowing them based on logical deductions computed through ICP or
Boolean constraint propagation (BCP), can be found in [13]. Implementing a branch-
and-prune search in interval lattices and conflict-driven learning of clauses comprising

6 Available from http://lcs.ios.ac.cn/~chenms/tools/DDEChecker_v1.0.
tar.bz2
7 Available from https://www.uni-oldenburg.de/en/hysat/
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irreducible atoms in those lattices, it can be classified as an early implementation of
abstract conflict-driven clause learning (ACDCL) [4].

By this ACDCL proof search, HySAT II will successively construct a cover of
the actual solution set of the constraint problem by tiny interval boxes, a sequence of
so-called candidate solution boxes together enclosing all solutions. Optimization then is
based on a branch-and-prune search over the candidate solution boxes, which is straight-
forward to integrate into the ACDCL proof search by biasing the ACDCL splitting rule
to better values when splitting along the variable representing the optimization crite-
rion, plus learning bounds that impose blocking on any solutions worse than the best
value up-to-now found.

The soundness of this procedure for solving the optimization problems (9) or (10) in
the formulation (12) follows immediately from the soundness properties of ICP, which
narrows the search space by chopping off regions not containing any solution, but will
never remove solutions [3]. It consequently is an invariant of the iSAT algorithm’s proof
search, as implemented in HySAT IT, that its residual search space internally repre-
sented by interval boxes plus the already reported solution boxes together safely over-
approximate the actual solution space [13]. This in turn implies that the maximum found
by HySAT IT always is a safe upper bound of the actual maximum, irrespective of pos-
sible non-convexity of the optimization problem at hand. We can conclude that solving
the optimization problems (9) or (10) in the formulation (12) with HySAT II will pro-
vide a safe upper bound on the actual optimal value of (12), which in turn is an upper
bound on (9) or (10), resp., in the original form (11). As any upper bound renders the
enclosure in Algorithm 2 or 3, resp., correct, we can conclude that HySAT ITI’s opti-
mization procedure guarantees soundness of the overall algorithm. The possible failure
of HySAT I1I’s optimization procedure in determining a sharp over-approximation of
the optimal value will at most impact performance, as it may enforce an unnecessar-
ily dense cover by simulation traces due to overly pessimistic bloating of the original
traces.

In the following, we demonstrate our approach by verification of some quintessen-
tial DDEs.

Delayed Logistic Equation. In 1948, G. Hutchinson [16] introduced the delayed logistic
equation
n(t) =a[l —n(t —T)/K]n(t)

to model a single population whose percapita rate of growth at time t
n(t)/n(t) =all —n(t —T)/K]

depends on the population size 7" times units in the past. This would be a reasonable
model for a population that features a significant minimum reproductive age or depends
on a resource, like food, needing time to grow and those to recover its availability. If we
let N(t) = n(t)/K and rescale time, then we get the discrete-delay logistic equation

N(t) = N(t)[1 = N(t —r)],t > 0. (13)

Arguments in [23] established that for any initial function Ny > 0, there exists a unique
non-negative solution N (¢, t) defined for all ¢ > 0. Wright’s conjecture [25], still un-
solved, is that if » < 7/2 then N(¢,t) — 1 ast — oo for all solutions of Eq. (13)
satisfying Ny > 0.
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numerical solution N(t) 1 —— numerical solution N(t)

= = = over-approximation by bloating factor d(y) | = = over-approximation by blaating factor d() B S
== lower bound of the unsafe set ’

Fig. 1: Over-approximation of the solutions of Eq. (13) origi-  Fig.2: Over-approximation rigorously proving Eq. (13) un-
nating from region Bg.o1(1.49) under delay » = 1.3.Initial ~ safe, with » = 1.7, Xo = Bo.025(0.425), 790 = 0.1,

stepsize 7o = 0.01, time bound T" = 10s. T =5sandUd = {N|N > 1.6}.
1.B[ - -mmmm s D 1B - - mmmm o s s LB - - mm s s s s s
1.4( 1.4 1.4
1.2} 127
“ 1 7 1\/
0.8 08l )
0.6 o 0.6 06 IRt eeeemsen
O'40 1 2 : ¢ 3 4 5 0'40 1 Zt 3 4 5 O'40 1 2 ¢ 3 4 5
(a) An initial over-approximaion of trajectories start- (b) All trajectories starting from Bo.125(1.375) (c¢) Initial state set Bo.125(1.125) is verified to be safe
ing from By, 225(1.25). It overlaps with the unsafe set are proven safe within the time bound, as the over- as well.
(s. circle). Initial set is consequently split (cf. Figs. 3b, approximation does not intersect with the unsafe set.
3c).

1.6f-emnemnenes e S 1 LB~ R

1.4 ] 14 1.4
Zl/\ “1
0.8 0.8
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1z 3 4 5 i 5,3 4 s 1z 3 4 s

(d) Bo.25(0.75) yields overlap w. unsafe; the ball is (€) All trajectories originating from Bo.125(0.875) (f) All trajectories originating from Bo.125(0.625)
partitioned again (Figs. 3e, 3f). are provably safe. are provably safe as well.

Fig. 3: The logistic system (13) is proven safe through 6 rounds of simulation with base stepsize 79 = 0.1. Delay r = 1.3,
initial state set Xo = {N|N € [0.5, 1.5]}, time bound T' = 5s, unsafe set { N|N > 1.6}.
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Fig. | illustrates an over-approximation of trajectories of Eq. (13) in terms of a spe-
cific initial set. It provides an intuitive description of our simulation approach equipped
with computation of on-the-fly linear local error bounds. To investigate Wright’s con-
jecture, we further explore the safety verification framework based upon validated sim-
ulations with a delay » = 1.3 < 7/2, for which the trajectories are expected to con-
verge within a time interval. The detailed verification process is elaborated in Fig. 3.
Meanwhile, we also successfully falsified an unsafe case with » = 1.7 where the over-
approximation of a diverging trajectory can be rigorously shown to violate the safety

property (see Fig. 2).

Delayed Microbial Growth.
Ellermeyer et al. [9,10] intro- ik
duced a delay in the standard
bacterial growth model in a

s
chemostat which, after scaling J:/,‘%
time and the dependent vari- gl » Q‘“‘:
ables, can be written as y (:
. N W
St)=1-S@)— f(S(t)z(t),
z(t) =e " f(S{Et—r))x(t—T7)
_m(t) ’ or

(14)
where f(S) = aS/(B + S),
and S(t) denotes the substrate
(food for bacteria) concentra- sl ‘

T T
‘‘‘‘‘ upper bound of the unsafe set
numerical solution (Six)

— = — over-approximation around sampling point

= = = initial state space

tion, while () is the biomass 04 -02
concentration of bacteria. The
delay r reflects the assump-

14

Fig.4: Eq. (14) is proven safe by 17 rounds of simulation w. 79 = 0.45. The
simulated trajectories start from within a cover of Xy (the red dashed circle on

tion that whereas cellular ab- the right) and converge eventually to a basin of attraction (marked by a small
blue rectangle). Here, « = 2e, 8 = 1, r = 0.9, Xy = Bo.3((1;0.5)),

sorption of substrate is as- ;; _ {(g.:2)|S+ 2 < 0} 7 — 8s.
sumed to be an instantaneous

process, a resulting increase in microbial biomass reflecting assimilation is assumed to
lag by a fixed amount of time r. A specific verification problem of Eq. (14) is shown in
Fig. 4, where different rounds of simulation are depicted together in the phase space of
S and x, and for a clear presentation, we only sketch the over-approximations around

those numerically computed sampling points.

Gene Regulation. To further investigate the scalability of our approach to high dimen-
sions, we recall an instantiation of Example | by setting n = 5, namely with 5 state

components x = (x1;x2;...;x5) and 5 delay terms r = (ry;7o;..

.;7r5) involved.

This essentially yields, in each step of simulation, an optimization procedure of the
form (10) with 23 scalar variables, i.e., e,t1,%, and x,u,f,g € R®. By further set-
ting r = (0.1;0.2;0.4;0.8;1.6), Xy = Bo.2((1;1;1;1;1)), U = {x[z; < 0}, and
T = 2s, the system of Eq. (4) is rigorously proven unsafe, which means that the dosage

of mRNA might degrade to negative in this hypothetical setting.

As an intuitive observation, the verification time consumed by our prototype is fairly
sensitive to the specific setting of the verification problem, including the initial set Ajp,
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the delays r, the unsafe set I/, and the time bound 7" as well. However, the optimization
routine proved well scalable to high dimensions, and particularly, verifications of the
above benchmark systems all completed successfully in a handful of minutes.

6 Conclusion and Future Work

We have exposed an approach for automated formal verification of time-bounded reach-
ability properties of a class of systems that feature delayed differential dynamics gov-
erned by delay differential equations (DDE) with multiple different delays (including
0, i.e., direct feedback). This class of system models has successfully been used to
model various real-world systems in the field of biology, control theory, economics,
and other domains. Our approach is based on adapting the paradigm of verification-by-
simulation to DDEs. It provides bounded-time verification by covering the full set of
time-bounded trajectories of a dynamical system evolving from the initial state set by
means of investigating a finite sample of initial states plus generalization via a sensitiv-
ity argument. Initially, it triggers a finite set of numerically approximate simulations of
the dynamic behaviors, thereby generating a finite set of approximate simulation traces
originating from a finite sample of the initial states. As the sample does not cover all ini-
tial states, and as simulation is only approximate, we bloat each time-stamp value pair
returned from the simulation by a distance determined via an error bound computed au-
tomatically on-the-fly during simulation. This error bound incorporates both sensitivity
information concerning start states and rigorous bounds on integration error incurred
by numerical solving. Hence, the union of the state sets reached by all the individual
bloated trajectories provides a safe over-approximation of the states actually reachable
from the initial set within the time bound. If this over-approximation proves safety in
the sense that the reachable states do not intersect the unsafe states, or conversely if
the simulation produces a valid counter-example in the sense that it can prove that a
trajectory hits the unsafe states, then the algorithm generates the corresponding verdict.
Otherwise, our algorithm refines its sample of initial states and repeats the previous
steps to compute a more precise over-approximation.

Based on that approach, we have implemented a prototype of a validated solver for
DDE. Using it, we have successfully demonstrated the method on several benchmark
systems involving delayed differential dynamics.

As a future work, we plan to replace Euler’s direct method by high-order Runge-
Kutta methods [1] in order to obtain more precise approximations. Furthermore, the
method of Zou et al. [26] can be extended to provide a safe enclosure algorithm for
the class of systems (3) suitable for use in unbounded formal verification, based on the
fact that the iSAT constraint solver [13] used therein supports unbounded verification
by means of Craig interpolation. In addition, it could be quite interesting to investigate
how to combine the technique of conformance testing for hybrid systems [22,17] with
our approach. The potential merits of such combination is twofold: on the one hand, it
can extend the conformance testing technique to deal with hybrid systems with delays;
on the other hand, it may improve the efficiency of the conformance testing technique
by using simulation-based approach to over-approximate the reachable set instead of
directly computing.
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Appendix: Proofs for Theorems and Lemmas

The following is the proof for Theorem 2.
Proof. We only need to prove that for any ¢ € [0, 7],
Hx(t’!l + t) - X(tn) - t.f(ynyynfm)H < ten, (15)

as this directly implies the enclosure property

||x(tn + t) —¥Yn — tf(yn7 yn—m)H
< x(tn) = yall + [1x(En + 1) = x(tn) = tF(Yn, yn-m)ll < dn + ten.

basically equivalent to (P2’). From that, Theorem 2, i.e. (P2), immediately follows from the fact

t t
Ba, +tey, (yn + tf(ynayn*m» = (1 - ;)Bdn (yn) S5 ;Bdn"!"ren (yn + T.f(ynvyn*m»a

where @ stands for Minkowski sum, i.e., A®@ B={a+b|a€ Abec B}.

In order to prove Eq. (15), assume that there exists some ¢ € [0, 7] which violates inequal-
ity (15). Let Tn = {t € [0, 7] | [|x(¢tn +t) — x(tn) — tf(¥Yn,Yn-m)|| > ten}. Clearly, T, is a
nonempty compact set, so we denote by ¢ty = min 7. Then Eq. (15) holds for ¢ € [0, ¢o), and

[x(tn +to) = x(tn) = tof (¥n, yn-m)l = toen (16)
due to the continuity of x. Applying the mean value theorem,
X(tn +t0) — X(tn) = toX(tn + <) = tof (X(tn + ), x(tn + 5 — 1)), a7
for some ¢ € (0, ¢o). Note that x(¢,,) € Bq,, (y»), and from Eq. (15),
F(x(tn +¢),x(tn + < —1)) € Be(f(Yns Yn—m))

Similarly, we have
X(th +s—7)=u+cg
forsomeu € Ba,,_,, (yn-m),and g € Be,, .. (f(¥n—m,Yn—2m)). Then from Eq. (9), we have

[f (x(tn + ), x(tn +5 = 7)) = F(¥n, yn-m)ll <en, (18)
which contradicts to Eq. (16) and Eq. (17). Consequently, Eq. (15) holds. O

In order to prove Theorem 3, we first assume that the function f and its partial
derivatives satisfies the boundness property, i.e., there are constants ¢, ¢1, co such that
I f(x1,%x2)|| < e, H%(Xl,XQ)” < ¢1,and |§—)£(X1,XQ)|| < ¢, for all possible values
(x1,X2) in our discussion. An obvious consequence of this assumption is that

| f(x1,%2) = f(y1, y2)ll < eillxi — yill + eallx2 — yall, (19)

for all (x1,x2) and (y1, y2). With this assumption, the feasibility of optimization prob-
lem (9) and controllability of d,, is from the following lemma, and then the complete-
ness theorem can be proved by making the boundness assumption without loss of gen-
erality.
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Lemma 1. Suppose the boundess property holds and ciT < 1. Then, the optimization
problem (9) has a solution with e,, < oteleite)rilateldn 4y g < 0+ cr +

l—ci7

c1+tco
g ) T—cy7 T
ci+c2

Proof. We first prove that the constraint of Eq. (9) is satisfied by

o+ c(er + )T+ (e1 + ¢2)dy,
1— 1T

)

then the solution e,, of the optimization problem exsits and satisfies e,, < e. By invoking
Eq. (19), the inequality

||f(x+t*f7u+t*g>_f(y'rHYnfm)H <e—o

can be deduced from
e—ozalx+txf—yull+erfuttxg—ynml,
which can be verified from the following facts:

[ +t+f —yall < [Ix =yl +t]f]

<dp +t(If = £V Yn—m) | + 1 F (s yr—m)|])
<d,+tle+c) <d,+ecr+er,

lutt%g — Yol < 1= Yoo + tlgl

< o+ 10112~ F s Yn2m) |+ [y 2]
<dp_mttlen—m+c) <dpn_m+7(€n—m +¢)

=dp_me1 +cr <d, +c7

and

e—o=cre+clecr + )T+ (c1 + e2)dy,
=c1(d, + er +e7) + co(dy, + 7).

To show the upper bound of d,,, we note that

dn+1 = dn + Ten

< 1+ CQTdn n o7+ c(cy + c2)72
1-— 1T 1-— 1T

for all n > 0. Then it is easily verified that

p <(1—|—627')nd +a7’—|—c(cl+cz)7'2 (ﬁ%)n_l
"= 1—61’7' 0 ].—617' %tgi—l
14 cor, o 14 cor,
= (29)"6 + (e + )" - 1),

1—017' c1+ Co 1—617’
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Note that

1+ cor c1tes
2 )’ﬂ < eT—cr 7

(

)

1—c7
and nT < 7T, thus,

cq1+e
et 1)

ci1+eo
d,, < SeT-eir L 4 (e +

01+CQ

c1+teo
el—cer

<(0+ecr+

c1+ c2

Now, Theorem 3 can be proved as follows:

Proof. (Sketch) Let R £ {&,,(t) | 0 < t < T} be the set of points in the trajectory
between time interval [0,7], and R. £ {x | infycr|x — y|| < €} its e-inflation.

Obviously, both R and R, are compact sets. Since f, aa—jl and E?sz are continuous func-

tions, we can put ¢ = maxx, x,er, || f(X1,X2)|, c1 = maxx, x,en. ||88—xf1(x1,X2)

)

d
and co = MaXx, ,x;€R. || axf2 (Xla XQ)H'
Now we claim that the result holds for 0, o and 7 satisfying ¢;7 < 1 and

g c1teg
)e 17c11—T g .

(0+cr+
€1+ c2
In fact we can prove by induction on n that ||y, — &, (n7)|| < e during the execution
of Algorithm 2, and thus all the involved states would be in R. (and the details can
be checked by following the proof of Lemma 1). It further implies that the boundness
property holds for such ¢, ¢; and ¢, then the result is straightforward from Lemma 1.
O
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