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Abstract. It is well known that informal simulation-based design of
embedded systems has a low initial cost and delivers early results; yet
it cannot guarantee the correctness and reliability of the system to be
developed. In contrast, the correctness and reliability of the system can
be thoroughly investigated with formal design, but it requires a larger
effort, which increases the development cost. Therefore, it is desirable
for a designer to move between formal and informal design. This paper
describes how to translate Hybrid CSP (HCSP) formal models into
Simulink graphical models, so that the models can be simulated and
tested using a MATLAB platform, thus avoiding expensive formal veri-
fication if the development is at a stage where it is considered unneces-
sary. Together with our previous work on encoding Simulink/Stateflow
diagrams into HCSP, it provides a two-way path in the design of embed-
ded systems, so that the designer can flexibly shift between formal and
informal models. The translation from HCSP into Simulink diagrams is
implemented as a fully automatic tool, and the correctness of the trans-
lation is justified using Unifying Theories of Programming (UTP).

Keywords: Simulink · HCSP · UTP · Verification · Hybrid systems

1 Introduction

Correct and efficient design of complex embedded systems is a grand challenge
for computer science and control theory. Model-based design (MBD) is thought
to be an effective solution. This approach begins with an abstract model of
the system to be developed. Extensive analysis and verification of the abstract
model are then performed so that errors can be identified and corrected at a
very early stage. Then the higher-level abstract model is refined to step by step
to more detailed models till a level where the system can be built with existing
components or a few newly developed ones.

Many MBD approaches targeting embedded systems have been proposed
and used in industry and academia. These approaches can be simulation-
based informal ones such as Simulink/Stateflow [1,2], Modelica [3], SysML [4],
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MARTE [5], or they can be verification based like Metropolis [6], Ptolemy [7],
hybrid automata [8], CHARON [9], HCSP [10,11], Differential Dynamic Logic
[12], Hybrid Hoare Logic [13]. It is evident that informal design of embedded
systems has a low initial cost and is intuitively appealing, because simulations
give results early on, but it cannot fully guarantee the correctness and reliability
of the system to be developed; in contrast, the correctness and reliability of the
system can be thoroughly investigated with formal design, but the cost is higher
and it requires specialized skills. Therefore, it is desirable to provide a two-way
path between formal and informal approaches for a designer.

The first contribution of this paper is to provide one lane of this path. It
takes a formal model and translates it automatically to a Simulink model. The
other lane has been developed in previous work [14,15]. The translation from the
formal to informal model presented here, is implemented as a fully automatic
tool. Another contribution of this paper is to provide a justification of the cor-
rectness of the translation. To this end, we define a UTP semantics for Simulink
and a UTP semantics for HCSP, and then establish a correspondence between
the two. Due to lack of space, the implementation and a case study on a lunar
lander have been omitted and can be found in [16].

1.1 Related Work

There has been a range of works on translating Simulink/Stateflow into mod-
elling formalisms supported by analysis and verification tools. Mathworks itself
released a tool named Simulink Design Verifier [17] (SDV) for formal analysis of
Simulink/Stateflow models. However, currently, SDV can only be used to detect
low-level errors such as integer overflow, dead logic, array access violation, divi-
sion by zero, and so on, in blocks of a model, but not system-level properties
of the complete model with the physical and environmental aspects taken into
account.

Simulation-based verification [18] can be used to verify system-level proper-
ties in a bounded time, but cannot be applied for unbounded verification. Thus
there is work on translating Simulink into other modelling formalisms, for which
analysis and verification tools are developed. Tripakis et al. [19] presented an
algorithm of translating discrete-time Simulink models to Lustre, a synchronous
language developed with formal semantics and a number of tools for validation
and analysis, and later extended the work by incorporating a subset of State-
flow [20]. Cavalcanti et al. [21] presented a semantics for discrete-time Simulink
diagrams using Circus [22], a combination of Z and CSP. Meenakshi et al. [23]
gave an algorithm that translates a subset of Simulink intothe input language
of model checker NuSMV. Sifakis et al. proposed a translation into BIP in [24].
BIP [25] stands for Behaviour, Interaction and Priority, which is a component-
based formal model for real-time concurrent systems. These works do not con-
sider continuous time models of Simulink. This is considered in the follpwing
works. Yang and Vyatkin [26] translate Simulink into Function Blocks. Zhou
and Kumar investigated how to translate Simulink into Input/Output Hybrid
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Automata [27], while the translation of both discrete and continuous time frag-
ments of Simulink into SpacEx Hybrid Automata was considered in [28]. In [29],
Chen et al. translates Simulink models to a real-time specification language
Timed Interval Calculus (TIC). In this, continuous Simulink diagrams can be
analyzed by a theorem prover. However, the translation is limited as it handles
only continuous blocks whose outputs can be represented explicitly by a math-
ematical relation on inputs. In contrast, in [14] is a translation from Simulink
into HCSP which handles all continuous blocks using the notion of differential
equations and invariants.

Contract-based frameworks for Simulink are described in [30,31]. In [30],
Simulink diagrams are represented by SDF graphs, and discrete-time blocks are
specified by contracts with pre/post-conditions. Then sequential code is gener-
ated from the SDF graph, and the code is verified using traditional refinement-
based techniques. In [31], Simulink blocks are annotated with rich types, then
the SimCheck tool extracts verification conditions from the Simulink model and
the annotations, and submits them to an SMT solver for verification. While in
our approach, all Simulink/Stateflow models can be specified and verified using
Hybrid Hoare Logic and its deductive verification techniques.

In [32], a compositional formal semantics built on predicate transformers
was proposed for Simulink, based on which, a tool for verification of Simulink
blocks was reported in [33], consisting of two components: a translator from
Simulink hierarchical block diagrams into predicate transformers and an imple-
mentation of the theory of predicate transformers in Isabelle. The UTP semantics
of Simulink/Stateflow defined here is quite similar to the one given in [32].

There have been several formal semantics defined for HCSP. In He’s original
work on HCSP [10], an algebraic semantics of HCSP was given. Subsequently, a
Duration Calculus (DC) based semantics for HCSP was presented in [11]. These
two original formal semantics of HCSP are very restrictive and incomplete, for
example, it is unclear whether the set of algebraic rules defined in [10] is com-
plete, and super-dense computations and recursion are not well handled in [11].
In [13,34–36], operational, axiomatic and DC-based denotational semantics for
HCSP are proposed, and the relations among them are discussed. In this paper,
we re-investigate the semantics of HCSP by defining its simulation semantics
using Simulink and its UTP-based denotational semantics, and study the corre-
spondence between the two semantics.

The rest of this paper introduces HCSP and Simulink in Sect. 2, Sect. 3
presents the translation from HCSP into Simulink. Section 4 presents a jus-
tification of the translation by proving consistency of the UTP semantics. A
conclusion is in Sect. 5.

2 Preliminaries

HCSP [10,11,34] is a language for describing hybrid systems. It extends the
well-known language of Communicating Sequential Processes (CSP) with tim-
ing constructs, interrupts, and differential equations for modelling continuous
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evolution. Data exchange among processes is confined to instantaneous synchro-
nous communication, avoiding shared variables between parallel processes.

Simulink [1] is an interactive platform for modelling, simulating and ana-
lyzing multidomain dynamic and embedded systems. It provides a graphical
block diagramming tool and a customizable set of block libraries for building
executable models.

2.1 Hybrid CSP (HCSP)

The syntax of HCSP processes is given below:

P ::= skip | x := e | ch?x | ch!e | P ;Q | B → P | P � Q | P ∗

| 〈F (ṡ, s) = 0&B〉 | 〈F (ṡ, s) = 0&B〉 � �i∈I(ioi → Qi)
S ::=P | S‖S

Here x and s stand for variables, B and e are conventional Boolean and arith-
metic expressions. P,Q,Qi are sequential processes; and ioi stands for a commu-
nication event, which is either ch?x or ch!e, and ch for a channel name. A system
S is either a sequential process, or a parallel composition of several sequential
processes.

The processes taken from CSP, skip, x := e (assignment), ch?x (input), ch!e
(output), P ;Q (sequential composition), B → P (conditional statement), P ∗

(repetition), P � Q (internal choice), and S‖S (parallel composition) have their
standard meaning.

The evolution statement is 〈F (ṡ, s) = 0&B〉, where s represents a vector
of real variables and ṡ the first-order time derivative of s. It forces s to evolve
according to the differential equations defined by the functional F as long as B
holds, and it terminates immediately when B becomes false.

The process 〈F (ṡ, s) = 0&B〉 � �i∈I(ioi → Qi) behaves like 〈F (ṡ, s) = 0&B〉,
except that the evolution is preempted as soon as one of the communications ioi

occurs. That is followed by the respective Qi. However, if the evolution state-
ment terminates before a communication occurs, then the process terminates
immediately.

2.2 Simulink

A Simulink model contains a set of blocks, subsystems, and wires, where blocks
and subsystems cooperate by setting values on the wires between them. An
elementary block gets input signals and computes the output signals. However, to
make Simulink more useful, almost every block in Simulink contains some user-
defined parameters to alter its functionality. One typical parameter is sample
time which defines how frequently the computation is. done. Two special values,
0 and −1, may be set for sample time, where the sample time 0 indicates that
the block is used for simulating the physical environment and hence computes
continuously, and −1 signifies that the sample time of the block is not set, it
will be determined by the sample times of the in-going wires to the block. Thus,
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Fig. 1. v̇ = 1, ṡ = v + 2 Fig. 2. skip statement

blocks are classified into two categories, i.e. continuous and discrete, according
to their sample times.

Blocks and subsystems in a Simulink model receive inputs and compute out-
puts in parallel, and wires specify the data flow between blocks and subsystems.
Computation in a block takes no time and the output is delivered immediately
to its receiver.

As a convention, in the sequel, when describing Simulink diagrams, we use x
to stand for the input signal on in-port In x, x′ for the output signal on out-port
Out x, possibly with a subscript to indicate which subsystem the signal belongs
to. For instance, x′

P indicates an output signal on Out x inside a subsystem P.

3 From HCSP to Simulink

The translation from HCSP processes into graphical Simulink models starts from
the most basic ingredients, i.e. expressions, to primitive statements and then is
followed by compositional components.

3.1 Expressions

Arithmetic expressions in HCSP are translated to a normal subsystem in
Simulink. A variable x is encoded into an input block of the subsystem, a con-
stant c into a constant block with corresponding value, and parentheses deter-
mine priority of the computation. As for the operations over reals, a sequence
of + and − (or ∗ and /) is shrunk into a sum (or product) block with multiple
input signals in Simulink. In the example for assignment in Fig. 3 is included
the Simulink subsystem for the expression x + y ∗ z. Boolean expressions are
translated similarly.

3.2 Differential Equations

The syntax of differential equations in HCSP is F =̂ ṡ = e | F, F , where s stands
for a continuous variable, ṡ is the time derivative of s, and F, F indicates a group
of differential equations that evolve simultaneously over time.

Each single differential equation is encoded into a continuous integrator block
with an input signal of the value of e and an output signal of s; equations in the
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same group are a normal subsystem in Simulink. For example, v̇ = 1, ṡ = v + 2,
becomes the block in Fig. 1, the integrator block of s takes the value of v+2 and
an internal initial value s0 to calculate the integral and then generate a signal
of s, i.e. s(t) =

∫ t

t0
(v(t) + 2)dt + s0.

3.3 skip Statement

In HCSP, skip terminates immediately with no effect on the process, and thus
there is intuitively no need to draw anything in Simulink diagrams. However,
blocks and subsystems in a Simulink model are running inherently in parallel,
but processes in HCSP can be executed sequentially, thus we need a mechanism
to specify sequential execution in a Simulink diagram. Inspired by UTP [37], we
introduce Boolean signals ok and ok′ into each subsystem to represent initiation
and termination. Whenever ok′ is false, the process has not terminated and the
final values of the process variables are unobservable. Similarly, when ok is false,
the process has not started and even the initial values are unobservable. These
conventions permit translation of sequential composition. Both ok and ok′ are
local to each HCSP process, and they never occur in expressions.

In a Simulink subsystem ok and ok′ are given by an in-port In ok and an out-
port Out ok respectively. Since skip does nothing and terminates instantly, the
subsystem for skip in Simulink in Fig. 2 has ok′ = ok, indicating that whenever
skip starts, it terminates immediately without any effect.

3.4 Assignment

Figure 3 illustrates the subsystem in Simulink with an example of assignment
x := x + y ∗ z, where for ease of understanding, we unpack the subsystem
of arithmetic expression e. The output signals are computed by the following
equations:

ok′ = ok x′ =

⎧

⎨

⎩

x′
new, ok ∧ ¬d(ok)

x, ¬ok ∧ ¬d(ok)
d(x′), d(ok)

u′ = u

Here, u stands for the set of signals that are not processed by the current sub-
system, i.e. y and z in this example. x′

new represents the newly computed signal,
here produced by block Add1. Moreover, we use d(x) to denote the value of x in
the previous period. It is kept through a unit delay block that holds its input
for one period of the sample time.

3.5 Continuous Evolution

The Simulink diagram translated from an evolution in HCSP is shown in Fig. 4,
where the group of differential equations F and the Boolean condition B are
encapsulated into a single subsystem respectively. The enabled subsystem F
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Fig. 3. x := x + y ∗ z Fig. 4. Continuous evolution

contains a set of integrator blocks corresponding to the vector s of continu-
ous variables, and executes continuously whenever the value of the input signal,
abbreviated as en, on the enable-port is positive. Intuitively, subsystem B guards
the evolution of subsystem F by taking the output signals of F as its inputs, i.e.
sB = s′

F , and partially controlling the enable signal of F via its output Boolean
signal, denoted by B. As a consequence, an algebraic loop occurs between subsys-
tem B and F which is not allowed in Simulink, the simple solution is to introduce
a unit delay block with an initial value 1 inserted after subsystem B. Thus the
boundary condition is evaluated after completion of an integrator step. Formally,
given inputs, the output signals are computed by the following equations:

en = ok ∧ d(B) ok′ = ok ∧ ¬d(B) s′ =
{

s′
F , ok

s, ¬ok

3.6 Conditional Statement

Figure 5 illustrates the translation from a conditional statement of HCSP into
a Simulink diagram. In most cases, subsystem B and P share the same group of
input signals x, and for those distinct input signals, we add corresponding in-
ports for B or P, which is not presented in Fig. 5. Accordingly, the output signals
are computed according to

okP = ok ∧ B ok′ =
{

ok′
P , B

ok, ¬B
x′ = x′

P .

3.7 Internal Choice

Given an internal choice P � Q, we use outSigs(P) and outSigs(Q) to represent
the set of output signals (including ok′) of subsystem P and Q respectively, and
encode the random choice according to the following two situations.

– For each x′ ∈ outSigs(P)∩outSigs(Q), we introduce a switch block in Simulink
diagrams for signal routing, which switches x′ between x′

P from P and x′
Q from

Q based on the value of the second input.
– For each y′ ∈ outSigs(P) − outSigs(Q), we directly output the signal y′

P from
P as the final value of y′, because in case that P is not chosen by the system,
y′ stays unchanged. For each z′ ∈ outSigs(Q) − outSigs(P), analogously.
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Fig. 5. Conditional statement Fig. 6. Internal choice

Figure 6 illustrates a pattern to implement the above two cases. In order
to guarantee that only one process in the internal choice is switched on, every
switch block here needs to share exactly the same switching condition. As shown
in Fig. 6, the two switch blocks share a common criteria (> 0) for passing first
input as well as an identical second input signal, abbreviated as Ran, generated
by an oracle that provides a non-deterministic signal1. The computation of signal
ok and ok′ can be formalized as

{

okP = ok ∧ Ran
okQ = ok ∧ ¬Ran

ok′ =
{

ok′
P , Ran

ok′
Q, ¬Ran

3.8 Sequential Composition

An essential work in translating sequential composition into Simulink models, is
to construct the initiation and termination of a process, which has already been
done by introducing ok and ok′ signals in connection with the skip process.

Fig. 7. Sequential composition

Figure 7 illustrates a straightforward encoding of sequential composition into
Simulink diagrams. For exclusive signals y and z, we draw corresponding ports
independently for subsystem P and Q. The set of common signals x processed by

1 An oracle that interprets non-determinism is none of the blocks in Simulink library,
inasmuch as the random block provided by Simulink generates pseudo random num-
bers, which is in itself deterministic.
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both P and Q is linked sequentially from P to Q, and the same happens for ok and
ok′.

okP = ok okQ = ok′
P ok′ = ok′

Q xP = x xQ = x′
P x′ = x′

Q

3.9 Repetition

The basic idea in encoding repetition is to link the outputs of subsystem P back
into its in-ports, and we need to specify a finite random number N to control
the number of times that P executes.

Fig. 8. Repetition

The integrated pattern to encode repetition p∗ into Simulink diagrams is
elaborated in Fig. 8. Here, a unit delay block with an initial value of 0 is intro-
duced to break the algebraic loop that occurs when we link the outputs of P

back. Besides, we introduce an oracle carrying a non-negative random number
N to specify the number of repetitions of subsystem P. The update of variables
is formulated as the following equations:

n = ok × (d(n) + d(ok′
P ∧ ¬d(ok′

P ))) ok′ = ok ∧ ok′
P ∧ (n ≥ N)

okP = ok ∧ (n == d(n) ∨ n ≥ N) xP =
{

d(x′
P ), n > 0

x, n == 0

3.10 Communication Events

For each communication event, either a sender (ch!e) or a receiver (ch?x), we
construct a subsystem in Simulink to deliver the message along ch for the match-
ing pair of events. In order to synchronise the interaction, we introduce another
pair of Boolean signals re and re′ (re is short for ready) into each subsystem that
corresponds to a communication event. re indicates whether the matching event
is ready for the communication, while re′ indicates whether the event itself is
ready for the communication.
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A communication along channel ch takes place as soon as both rech and re′
ch

are true, then both the sending and the receiving parties are ready, otherwise
one or both sides must wait. Additionally, re and re′ are local signals, which
never occur in the process statements. Furthermore, re and re′ in a Simulink
subsystem are constructed as an in-port signal named In re and an out-port
signal named Out re respectively. Figure 9 illustrates the Simulink diagrams that
interpret communication events, which can be elaborated in the following two
parts.

Fig. 9. Communication events

– For a sender ch!e, the output signals are computed according to

re′ = ok ∧ ¬ok′ ok′ = f(d(re ∧ re′)) e′ =
{

e, ¬d(ok)
d(e′), d(ok) ,

where the keep pattern f(s(t)) = ok(t)∧ (s(t)∨f(s(t−1))) for t > cnow, with
f(s(t)) = 0 for t ∈ [cnow, cnow + 1), here cnow is the current time. This is to
keep ok′ true since the communication is finished, i.e., since both re and re′

turn true.
– For a receiver ch?x, the output signals are computed according to

re′ = ok ∧ ¬ok′ ok′ = f(d(re ∧ re′))

x′ =
{

x, if ¬ok′

¬d(ok′) × ch + d(ok′) × d(x′), otherwise

3.11 Parallel

For P‖Q, we consider the following two cases:

Without communications. This is a trivial case that we draw a subsystem encap-
sulating the two subsystems in terms of P and Q, but without any wires (except
those carrying ok, ok′) between the two subsystems, as shared variables are not
allowed in HCSP. Specifically, we set okP = okQ = ok, and ok′ = ok′

P ∧ ok′
Q.
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With communications. As for a parallel process P‖Q with inter-communications
along a set of common channels comChan(P,Q), we draw a subsystem containing
the subsystems corresponding to P and Q, as well as some additional wires to
bind all channels in comChan(P,Q) and deliver messages along them.

Fig. 10. Parallel e := 0; ch!e; < ė = 1&e < 2 >; ch!e‖x := 3; ch?x; ch?x

We elaborate the above idea by showing a Simulink diagram corresponding
to a parallel process in Fig. 10, where the signals relevant to communications
are attached with subscripts to specify the name of the common channel and
the distinctive events corresponding to the same channel. Suppose that there
are m and n events relevant to ch in subsystem P and Q respectively, then the
computation in Fig. 10 is done by

okP = okQ = ok ok′ = ok′
P ∧ ok′

Q rech P =
∨n

i=1
re′

ch i Q rech Q =
∨m

j=1
re′

ch j P

indicating that the two subsystems in parallel are activated simultaneously when
the system starts, and the parallel process terminates when both P and Q termi-
nate. Furthermore, the channel ch on one side claims ready to the other side if
either of its involved events is ready, which means that the communication events
on different parties of a common channel are matched dynamically during the
execution. Moreover, the value that Q receives along channel ch is computed as
chQ =

∑m
j=1 re

′
ch j P × ch′

j P .

3.12 External Choice by Communications

As a subcomponent of interruption in HCSP, the external choice �i∈I(ioi → Qi)
waits until one of the communications ioi takes place, and then it is followed
by the respective Qi, where I is a non-empty finite set of indices, and {ioi}i∈I

are communication events, i.e. either ch!e or ch?x. In addition, if more than
one among {ioi}i∈I are ready simultaneously, only one of them executes, this
is determined randomly by the system. Thus, if the matching side of every ioi

involved is ready for communication, then the external choice degenerates to
internal choice. Besides, the syntax (ioi → Qi) actually indicates a sequential
composition (ioi → skip ;Qi), to which the translation approach already has
been introduced above.
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Taking P � R as an example, where P =̂io1;Q1 and R=̂io2;Q2, then the ok
signal of P can be computed by okP = f(ok ∧ reP ∧ (¬reR ∨ (Ran < 0))). This
means that when the external choice starts (ok = 1) and the matching event of
io1 is ready (reP = 1), P is chosen to execute if either the matching event of
io2 is not ready (reR = 0), or the random number Ran, where Ran ∈ [−1, 1),
occurs to be negative (Ran < 0) when both of the matching event are ready.
A keep pattern f(s) is used here to keep the signal okP true, otherwise it may
jump back to false after that the communication terminates. The subsystem R

is handled analogously. Thus, the output signals of the subsystem of P � R are

given by ok′ = ok′
P ∨ ok′

R, x′ =

⎧

⎨

⎩

x′
P , ok′

P

x′
R, ok′

R

x, ¬ok′
P ∧ ¬ok′

R

.

3.13 Interruption

Obviously, 〈F (ṡ, s) = 0&B〉 � �i∈I(ioi → Qi) is equivalent
to 〈F (ṡ, s) = 0&(B ∧ ¬re′

R)〉; re′
R → �i∈I(ioi → Qi), where re′

R = f
(∨

i∈I re
′
oii

)

,
and the translation rules can be composed in a semantic-preserving way (see
Sect. 4). Hence, translating an interruption into a Simulink diagram becomes
a composition of translating various components that have been illustrated in
previous subsections.

4 Correctness of the Translation

In this section, we define UTP semantics both for HCSP constructs and the
corresponding Simulink diagrams; proving the consistency of the two semantics
is then a justification of the correctness of the translation from HCSP processes
to Simulink diagrams.

UTP is a relational calculus based on first-order logic, which is intended
for unifying different programming paradigms. In UTP, a sequential program
(possibly nondeterministic) is represented by a design D = (α, P ), where α
denotes the set of state variables (called observables). Each state variable comes
in an unprimed and a primed version, denoting respectively the pre- and the
post-state value of the execution of the program. In addition to the program
variables and their primed versions such as x and x′, the set of observables
includes two designated Boolean variables, ok and ok′, denoting termination and
stability of the program, respectively. P stands for the construct, p(x) 
 R(x, x′),
which is defined as

(ok∧p(x)) ⇒ (ok′∧R(x, x′)).

It means that if the program is activated in a stable state, ok, where the pre-
condition p(x) holds, the execution will terminate, ok′, in a state where the
postcondition R holds; thus the post-state x′ and the initial state x are related
by relation R. We use pre.D and post.D to denote the pre- and post-conditions
of D, respectively. If p(x) is true, then P is shortened as 
 R(x, x′).
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Refinement

Let D1 = (α, P1) and D2 = (α, P2) be two designs with the same alphabet. D2

is a refinement of D1, denoted by D1 � D2, if ∀x, x′, ok, ok′. (P2 ⇒ P1). Aslo, let
D1 = (α1, P1) and D2 = (α2, P2) be two designs with possible different alphabets
α1 = {x, x′} and α2 = {y, y′}. D2 is a data refinement of D1 over α1×α2, denoted
by D1 �d D2, if there is a relation ρ(y, x′) s.t. ρ(y, x′);D1 � D2; ρ(y, x′).

In UTP the domain of designs forms a complete lattice with the refinement
partial order, and true corresponding to abort (false corresponding to miracle)
is the smallest (largest) element of the lattice. Furthermore, this lattice is closed
under the classical programming constructs. These fundamental mathematical
properties ensure that the domain of designs is a proper semantic domain for
sequential programming languages.

Concurrent and Reactive Designs

Semantics of concurrent and reactive programs is defined by the notion of reactive
designs with an additional Boolean observable wait that denotes suspension of a
program. A design P is a reactive design if it is a fixed point of H′, i.e. H′(P ) = P ,
where

H′(p 
 R)=̂(
 ∧x∈α(P ) x′ = x ∧ wait′ = wait) � wait � (p 
 R). (1)

P1�b�P2 is a conditional statement, which means if b holds then P1 else P2,
where b is a Boolean expression and P1 and P2 are designs. Informally, Eq. (1)
says that if a reactive system (a reactive design) waits for a response from the
environment (i.e., wait holds), it will keep waiting and do nothing (i.e., keep
program variables unchanged), otherwise its function (p 
 R) will be executed.

Adaptation to Dynamical Systems

Obviously, hybrid systems are concurrent and reactive systems, so the UTP
semantics of a hybrid system should satisfy the UTP healthiness condition. On
the other hand, hybrid systems show some additional features, like real-time
and the mixture of discrete and continuous dynamics. For specifying these addi-
tional features, we have to extend the notion of reactive design in UTP to admit
function variables, and quantifications over functions, as in a real-time setting,
program variables and channels are interpreted as functions over time. For spec-
ifying locality, higher-order quantifications are inevitable. So, UTP will become
higher-order, rather than first-order. In addition, the derivative of a variable
is allowed in a predicate. Therefore, strictly speaking, we extend the relational
calculus of UTP to the combined theory of ordinary differential equations and
timed traces with higher-order quantification.

In order to deal with real-time, a system variable now is introduced, which
stands for the starting time. Correspondingly, now′ stands for the ending time
of a process.
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Another point is that synchronization can only block discrete dynamics and
keep discrete variable unchanged, it cannot block the evolution of continuous
dynamics; time does not stop. So, given a hybrid system S, say p 
 P , with
continuous variables s and discrete variables x, whose continuous dynamics is
modeled as 〈F (ṡ, s) = 0&B〉, written SC

2, then the healthiness condition of
reactive designs should be changed to

H(S) = S, where (2)
H(S) =̂(
 x′ = x ∧ wait′ = wait ∧ SC) � wait � S. (3)

A design that meets the healthiness condition (2) is called a hybrid design. For
simplicity, we will denote the left side of wait in Eq. (3) by ΠH in the sequel.

For convenience, for each channel ch, we introduce two Boolean functions
over time ch! and ch?. ch!(t) means that ch is ready for sending at time t,
similarly, ch?(t) means that ch is ready for receiving at time t. In addition,
Periodic(ch*, st) denotes ∀n ∈ N. t = n ∗ st ⇒ ch*(t), which means that the
communication event ch* is ready periodically with period st. Also, maximal
synchronization semantics is adopted, i.e.,

∀t ≥ 0. (ch?(t) ∧ ch!(t)) ⇒ (¬ch?′(t) ∧ ¬ch!′(t)), (4)

which means that when a synchronization is ready, it takes place immediately.

4.1 UTP Semantics for Simulink

For each Simulink construct C, the observables of C include the inputs in, out-
puts out, the user defined parameters, and some auxiliary variables that are
introduced for defining the semantics. Some output(s) may be also input(s),
i.e. outi = in′

j , but we will uniformly use outi instead of in′
j as output in the

semantics. Also, we use cnow to denote the current time. Now the semantics is
a predicate denoted by [[C]].

Blocks. As pointed out in [38], it is natural to interpret each block of a Simulink
diagram as a predicate relating its inputs to the outputs. The behavior of a
block can be divided into a set of sub-behaviors, each guarded by a condition.
Moreover, these guards are exclusive and complete, i.e., the conjunction of any
two of them is unsatisfiable and the disjunction of all of them is valid. So,
each sub-behavior can be further specified as a predicate over input and output
signals. Additionally, for each discrete block (diagram), it is assumed that its
input signals from outside are available at each sampling point. So, it can be
represented by a UTP formula of the form:

[[B(ps, in, out)]]

=̂H(Ass 
 out(0) = ps.init ∧
m
∧

k=1

(Bk(ps, in) ⇒ Pk(ps, in, out))), (5)

2 We always assume time evolution is modeled in SC , i.e., it contains ˙now = 1.
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which means that in case the environment satisfies Ass (the precondition), the
behaviour of a block is specified by the formula at the right side of 
 (the
postcondition). We use ps to denote a family of user-set parameters that may
change the functionality of the block. As explained previously,

∨m
k=1 Bk(ps, in),

and ¬(Bi(ps, in) ∧ Bj(ps, in)) for any i �= j, always hold.
Thus the UTP semantics of a continuous block has the following form:

[[CB(ps, in, out)]] =̂ H(in! 
 out(0) = ps.init ∧
(
(

B1(in, ps) ⇒ F1( ˙out, out, in, ps) = 0 ∧ · · · ∧
Bm(in, ps) ⇒ Fm( ˙out, out, in, ps) = 0

)

∧ out!)),

where Fi( ˙out, out, in, ps) = 0 models the continuous evolution if Bi holds. In this
case, wait =̂¬out? , which means that the continuous evolution will be inter-
rupted by outputting to the environment. Thus, Eq. (2) holds with the maximal
synchronization assumption in Eq. (4).

Correspondingly, the UTP semantics of a discrete block is

[[DB(ps, in, out)]] =̂ H(Periodic(in!, ps.st) ∧ Periodic(out?, ps.st) � out(0) = ps.init ∧
Periodic(out!, ps.st) ∧ (∃n ∈ N. cnow = n ∗ st) ⇒

(

B1(in, ps) ⇒ [[Pcomp1(in, out, ps)]] ∧ · · · ∧
Bm(in, ps) ⇒ [[Pcompm(in, out, ps)]]

)

),

where [[Pcompi
(in, out, ps)]] stands for the UTP semantics of the i-th discrete

computation, which can be obtained in a standard way (see [37]). The precon-
dition says that the environment should periodically input to and output from
the block. In this case, wait is set as ¬∃n ∈ N. cnow = n ∗ st and its continuous
is ˙cnow = 1, meaning that the block keeps waiting (idle) except for the periodic
points at which discrete jumps happen.

Example 1. As an illustration, we show how to concretize the UTP semantics for
some basic Simulink blocks including Constant, Divide, Not, Or, Relational,
Switch, Delay and Integrator. We treat Constant and Delay as continuous
blocks, although they can also be treated as discrete blocks in a similar way.

A Constant block generates a scalar constant value:

[[Constant(ps.c, out)]] =̂ H(
 out(0) = c ∧ ˙out = 0 ∧ out!).

The design inside H is equivalent to 
 out = c ∧ out!, which is 
 out(cnow) =
c ∧ out!(cnow). Analogous remarks apply for the following.

Similarly, the UTP semantics for the Divide block is as follows:

[[Divide(ps.I, ps.{sni}i∈I , {ini}i∈I , out)]]
=̂ H(∧i∈IPeriodic(ini !, ps.st) ∧ Periodic(out?, ps.st) 
 Periodic(out!, ps.st) ∧

((∃n ∈ N. cnow = n ∗ ps.st) ⇒ out =
∏

i∈I
sini) ∧

(sni =′∗′ ⇒ sini = ini) ∧ (sni =′/′ ⇒ sini = 1/ini)).
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The logical operator blocks Not and Or respectively perform the specified
logical operations on their inputs, whose UTP semantics are given by

[[Not(in, out)]] =̂ H(Periodic(in!, ps.st) ∧ Periodic(out?, ps.st) � Periodic(out!, ps.st) ∧
∃n ∈ N. cnow = n ∗ ps.st ⇒ out = ¬in),

[[Or(ps, {ini}i∈I , out)]]
=̂ H(∧i∈IPeriodic(ini !, ps.st) ∧ Periodic(out?, ps.st) 
 Periodic(out!, ps.st) ∧

∃n ∈ N. cnow = n ∗ ps.st ⇒ out =
∨

i∈I
ini),

The Relational operator block compares two inputs using the relational
operator parameter ps.op, and outputs either 1 (true) or 0 (false); its UTP
semantics is given by

[[Relational(ps.op, in1, in2, out)]]
=̂ H(Periodic(in1!, ps.st) ∧ Periodic(in2!, ps.st) ∧ Periodic(out?, ps.st) 


Periodic(out!, ps.st) ∧ ∃n ∈ N. cnow = n ∗ ps.st ⇒ out = ps.op(in1, in2)).

The Switch block passes through the first input or the third input based on
the value of the second input, thus its UTP semantics is:

[[Switch(ps, in1, in2, in3, out)]]
=̂ H(∧3

i=1Periodic(ini !, ps.st) ∧ Periodic(out?, ps.st) 
 Periodic(out!, ps.st) ∧
(∃n ∈ N. cnow = n ∗ ps.st) ⇒

(

ps.op(in2, ps.c) ⇒ out = in1∧
¬ps.op(in2, ps.c) ⇒ out = in3

)

).

A Delay block holds and delays its input by one sample period, therefore its
UTP semantics is:

[[Delay(ps, in, out)]]=̂H(in! �
(
cnow < ps.st ⇒ out(cnow) = ps.init∧
cnow ≥ ps.st ⇒ out(cnow) = in(cnow − ps.st)

)
∧ out!).

An Integrator block outputs the value of the integral of its input signal
with respect to time, so its UTP semantics is given by

[[Integrator(ps, in, out)]] =̂ H(in! 
 out(0) = ps.init ∧ ( ˙out = in ∧ out!)).

Diagrams. A diagram is a set of blocks with connecting wires. W.l.o.g.,
consider a diagram D consisting of m continuous blocks and n discrete
blocks, which are connected via a set of wires. The UTP semantics for blocks
were defined above. Let therefore the semantics for the continuous blocks
be [[CBi(psi, {ini}i∈Ii , outi)]] for i = 1, . . . ,m, and for the discrete blocks be
[[DBj(ps′j , {in′

i}j∈Jj
, out′j)]] for j = 1, . . . , n.
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Then the UTP semantics of D can be represented by

[[D(ps∗, {in∗
i }i∈I , {out∗i }i∈J )]]

=̂ ∃ ∪m
i=1 {ini}i∈Ii − {in∗

i }i∈IC , ∃ ∪n
j=1 {in′

j}j∈Jj
− {in∗

i }i∈ID ,

∃{out1, . . . outm} − {out∗i }i∈JC
, ∃{out′1, . . . , out′n} − {out∗i }i∈JD

.

H(∧k∈IDPeriodic(in∗
k !, ps

∗.st) ∧ ∧k∈IC in∗
k! ∧ ∧k∈JD

Periodic(out∗k?, ps
∗
k .st)

� ∧ ∧k∈J out∗k(0) = ps∗
k.init ∧ ∧k∈JC

out∗k!

∧ ∧m
i=1 [[CBi(psi, {ini}i∈Ii , outi)]] ∧ ∧n

j=1(out
′
j(0) = ps′

j .init)[σ, ρ] ∧
(∃n ∈ N. cnow = n ∗ GCD(ps′

1.st, · · · , ps′
n.st)) ⇒ (∧n

j=1ps
′
j .st | cnow ⇒

(
Bj1({in′

i}j∈Jj
, ps′

j)[σ, ρ] ⇒ [[Pcompj1(ps
′
j , {in′

i}j∈Jj
, out′j)]][σ, ρ] ∧ · · · ∧

Bjm({in′
i}j∈Jj

, ps′
j)[σ, ρ] ⇒ [[Pcompjm(ps′

j , {in′
i}j∈Jj

, out′j)]][σ, ρ]

)
)),

where GCD computes the greatest common divisor, and

{in∗
i }i∈IC = ∪m

i=1{ini}i∈Ii − ({out1, . . . outm} ∪ {out′1, . . . , out′n}),
{in∗

i }i∈ID = ∪n
j=1{in′

j}j∈Jj
− ({out1, . . . outm} ∪ {out′1, . . . , out′n}),

{out∗i }i∈JC
= {out1, . . . outm} − (∪m

i=1{ini}i∈Ii ∪ ∪n
j=1{in′

j}j∈Jj
),

{out∗i }i∈JD
= {out′1, . . . , out′n} − (∪m

i=1{ini}i∈Ii ∪ ∪n
j=1{in′

j}j∈Jj
);

IC and ID stand for the dangling inputs for continuous and discrete blocks
after the composition, thus I = IC ∪ ID is the set of inputs of D; JC and
JD stand for the dangling outputs for continuous and discrete blocks after the
composition, thus J = JC ∪ JD is the set of outputs of D; and σ and ρ stand
for the substitutions that replace the local input signals and input channels by
the corresponding output signals and channels with the common names among
these blocks (continuous and discrete) in each block, respectively. Furthermore,
we set in this case

wait=̂ ∧m
i=1 ¬outi? ∧ ¬∃n ∈ N. cnow = n ∗ GCD(ps′1.st, · · · , ps′n.st).

Example 2. Consider the diagram Diag performing out = in + c . According to
the above discussion, its UTP semantics can be given as

[[Diag(ps, in, out)]]
=̂∃out′.H(Periodic(in!, ps.st) ∧ Periodic(out?, ps.st) 
 ([[Constant(ps, out′]]]∧

[[Add(ps, {+1,+1}, {in1, in2}, out)]][in/in1, out′/in2]).

Subsystems

Normal Subsystems. A normal subsystem has a set of blocks and wires that
specify the signal connections. Actually, a normal subsystem can be seen as a
diagram by flattening, i.e., connecting the external inputs of the inside blocks
with the inputs of the subsystem and the external outputs of the inside blocks
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with the outputs of the subsystem. Suppose a normal subsystem NSub with a
set of inputs {ini}i∈I and a set of outputs {outj}j∈J , and its inside blocks form
a diagram Diag with a set of external inputs {in′

i}i∈I′ and {out′j}j∈J ′ . Let σ be
the mapping to relate {ini}i∈I with {in′

i}i∈I′ , and {out′j}j∈J ′ with {outj}j∈J ,
then the UTP semantics of it can be easily defined as

[[NSub(ps, {ini}i∈I , {outj}j∈J ]] =̂ [[Diag(ps, {in′
i}i∈I′ , {out′j}j∈J ′ ]][σ].

Enabled Subsystems. A normal subsystem is enabled by adding an enabled block.
It executes each simulation step when the enabling signal has a positive value,
otherwise holds the states so they keep their most recent values. So, its UTP
semantics can be defined as follows:

[[ESub(ps, {ini}i∈I , en, {outj}j∈J )]]
=̂ en(now) > 0 ⇒ [[NSub(ps, {ini}i∈I , en, {outj}j∈J)]]∧

en(now) ≤ 0 ⇒ out(now) = out(now − ps.st).

Theorem 1. Given a Simulink diagram C, its UTP semantics [[C]] satisfies the
healthiness condition in Eq. (2), that is

H([[C]]) = [[C]].

Proof. It is straightforward by the definition of [[C]]. ��

4.2 UTP Semantics for HCSP

As advocated by Hoare and He [37], a reactive system can be identified by the
set of all possible observations of that system. As usual, an alphabet is attached
to a system P (and its with the following constituents: V(P ): the set of both
continuous and discrete variable names, which is arranged as a vector v, iΣ(P ):
the set of input channel names, and oΣ(P ): the set of output channel names.
Together the latter two form Σ(P )=̂iΣ(P ) ∪ oΣ(P ), which is arranged as a
vector chP .

Given a hybrid system, its timed observation is the tuple 〈now,v, fv, rech∗,
msgch〉. Here now is the start point and now′ the end point of a time interval of an
observation i. The initial values of variables are v, and v′ are the final values at
termination. The vector fv contains of real-valued functions over the time interval
[now,now′] that record the values of v, evidently with fv(now) = v, fv(now′) =
v′. The vector rech∗ of {0, 1}-valued Boolean functions over [now,now′], indicates
whether communication events ch∗ are ready for communication. The vector
msgch, of real-valued functions over [now,now′] records the values passed along
channels ch. We further define

const(f ,b, t1, t2)=̂∀t ∈ [t1, t2]. f(t) = b,

constl(f ,b, t1, t2)=̂∀t ∈ [t1, t2). f(t) = b,

constr(f ,b, t1, t2)=̂∀t ∈ (t1, t2]. f(t) = b.
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Using the UTP timed observations, the HCSP constructs can be defined as
follows.

The skip statement, which does not alter the program state, is the relational
identity:

[[skip]]=̂H(
 now′ = now ∧ v′ = v ∧ const(fv,v,now,now′)∧
const(rech∗,0,now,now′) ∧ const(msgch,msgch(now),now,now′)).

As skip terminates immediately, wait is equivalent to false in this case. Hereafter,
let

RE =̂ const(rech∗,0,now,now′) ∧ const(msgch,msgch(now),now,now′).

The assignment of e to a variable x is modelled as setting x to e and keeping all
other variables (denoted by u) constant:

[[x := e]]=̂H(
 now′ = now ∧ x′ = e ∧ u′ = u ∧ const(fx, e,now,now′)∧
const(fu,u,now,now′) ∧ RE).

As an assignment process terminates immediately, wait is equivalent to false
here.

An evolution process says that the system waits, while it is evolving until the
domain constraint becomes false. So, the UTP semantics is the following hybrid
design

[[〈F (ṡ, s) = 0&B〉]] =̂ (
 F (ṡ, s = 0) ∧ ṫ = 1) � B � [[skip]].

Obviously, in this case wait is equivalent to B.

The conditional statement behaves according to whether the condition holds
or not: [[B → P ]] =̂ [[P ]] � B � [[skip]], and internal choice is interpreted as a
non-deterministic selection between two operands: [[P � Q]] =̂ ([[P ]] ∨ [[Q]]).

In order to define sequential and parallel composition, we introduce two
semantic operators.

Let H1 and H2 be two hybrid designs with

H1=̂(
 ∧x∈V(H1) x′ = x ∧ wait′H1
= waitH1 ∧ SH1) � waitH1 � (pH1 
 RH1),

H2=̂(
 ∧x∈V(H2) x′ = x ∧ wait′H2
= waitH2 ∧ SH2) � waitH2 � (pH2 
 RH2),

which satisfy the healthiness condition in Eq. (2). The sequential composition of
H1 and H2, denoted by H1 � H2 is defined by

H1 � H2 =̂ ∃waitH1 ,waitH2 . ∃vH1 ,nowH1 , okH1 .

∃fvH1
, rechH1∗,msgchH1

, fvH2
, rechH2∗,msgchH2

.

(
 (waitH1 ⇒ ΠH1) ∧ (waitH2 ⇒ ΠH2) ∧ wait′ = wait) � wait �
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(¬waitH1 ∧ waitH2 ∧ rH1 
 RH1)σH1 ∧
(¬waitH1 ∧ ¬waitH2 ∧ rH2 
 RH2)σH2 ∧

∀t ∈ [now,nowH1). wait(t) = waitH1(t) ∧
fv(t) = fvH1

(t) ∧ rech∗(t) = rechH1∗(t) ∧ msgch(t) = msgchH1
(t) ∧

∀t ∈ [nowH1 ,now
′]. wait(t) = waitH2(t) ∧

fv(t) = fvH2
(t) ∧ rech∗(t) = rechH2∗(t) ∧ msgch(t) = msgchH2

(t).

where

σH1 = [vH1/v
′,nowH1/now

′, okH1/ok
′][fvH1

/fv, rechH1∗/rech∗,msgchH1
/msgch],

σH2 = [vH1/v,nowH1/now, okH1/ok][fvH2
/fv, rechH2∗/rech∗,msgchH2

/msgch].

In the above,

∃vH1 ,nowH1 , okH1 . ∃fH1
v , rechH1∗,msgchH1

, fH2
v , rechH2∗,msgchH2

.

(¬waitH1 ∧ waitH2 ∧ rH1 
 RH1)σH1 ∧ (¬waitH1 ∧ ¬waitH2 ∧ rH2 
 RH2)σH2

is essentially equivalent to the sequential composition of the two designs
(¬waitH1 ∧ waitH2 ∧ rH1 
 RH1) and (¬waitH1 ∧ ¬waitH2 ∧ rH2 
 RH2) by
the theory of UTP [37].

It is easy to see that if H1 and H2 satisfy the healthiness condition of hybrid
designs, so does H1 � H2. Hence, H1 � H2 is still a hybrid design, which implies
that hybrid designs are closed under sequential composition.

The parallel composition of H1 and H2, denoted by H1 ‖ H2 is defined

H1‖H2 =̂∃nowH1 ,nowH2 , okH1 , okH2 . H1[ok/okH1 ] ∧ H2[ok/okH2 ]∧
now′ = max{now′

H1
,now′

H2
} ∧ (ok′ = ok′

H1
∧ ok′

H2
)∧

(∀t ∈ (now′
H1

,now′]. fvH1
(t) = fvH1

(now′
H1

)∧
rechH1∗(t) = rechH1∗(now

′
H1

) ∧ msgchH2
(t) = msgchH2

(now′
H2

))∧
(∀t ∈ (now′

H2
,now′]. fvH2

(t) = fvH2
(now′

H2
)∧

rechH2∗(t) = rechH2∗(now
′
H2

) ∧ msgchH2∗(t) = msgchH2∗(now
′
H2

)).

It can be further be proved that

H1‖H2 ⇔ ∃nowH1 ,nowH2 , okH1 , okH2 .



(

waitH1 ⇒ ΠH1∧
waitH2 ⇒ ΠH2

)

� waitH1 ∧ waitH2 �
(

(pH1 
 RH1)[ok/okH1 ]∧
(pH2 
 RH2)[ok/okH2 ]

)

∧

now′ = max{now′
H1

,now′
H2

} ∧ (ok′ = ok′
H1

∧ ok′
H2

)∧
(∀t ∈ (now′

H1
,now′]. fvH1

(t) = fvH1
(now′

H1
)∧

rechH1∗(t) = rechH1∗(now
′
H1

) ∧ msgchH2
(t) = msgchH2

(now′
H2

))∧
(∀t ∈ (now′

H2
,now′]. fvH2

(t) = fvH2
(now′

H2
)∧

rechH2∗(t) = rechH2∗(now
′
H2

) ∧ msgchH2∗(t) = msgchH2∗(now
′
H2

)).
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Therefore,also H1 ‖ H2 satisfies the healthiness condition of hybrid designs.
Hence, H1 ‖ H2 is a hybrid design, which implies that hybrid designs are closed
under parallel composition.

Now, given two HCSP processes P and Q, their sequential composition is
defined [[P ;Q]] =̂ [[P ]] � [[Q]], and their parallel composition by [[P ‖ Q]] =̂ [[P ]] ‖
[[Q]].

A process variable X is interpreted as a predicate variable. Without confusion
in the context, we use X to represent the predicate variable corresponding to
process variable X, i.e. [[X]] =̂ X.

The semantics for recursion is defined as the least fixed point of the corre-
sponding recursive predicate by [[recX.P ]] =̂ μX.[[P ]]. An HCSP process P ∗ is
thus defined as P ∗ ⇔ rec X.(skip � (P ; X)). As discussed above, its semantics
is given by [[P ∗]] ⇔ ∃N.[[PN ]], where P 0 =̂ skip.

A receiving event can be modelled by [[ch?x]] =̂ 
 LHS � rech? ∧ ¬rech! � RHS,
where LHS=̂ ˙now = 1 ∧ x′ = x ∧ u′ = u, and

RHS=̂now′ = now + d ∧ re′
ch? = 0 ∧ re′

ch! = 0 ∧ u′ = u ∧ x′ = msgch(now
′)∧

constl(rech?, 1,now,now′) ∧ constl(rech!, 0,now,now′).

Here, wait =̂ rech? ∧ ¬rech!, i.e., the process waits until its dual event becomes
ready. The sending event [[ch!e]] can be defined similarly.

The communication interruption can be defined as

[[〈F (ṡ, s) = 0&B〉 � �i∈I(ioi → Qi)]] =̂ [[〈F (ṡ, s) = 0&(B ∧ ¬Γ )〉;
Γ → �i∈I(ioi → Qi)]]

where Γ =̂
∨

i∈I re
′
ioi

, and ioi stands for the dual communication event with
respect to ioi, for instance ch? = ch!.

To prove whether the UTP semantics of other HCSP constructs satisfies the
healthiness condition is mathematically straightforward and thus omitted here.
It can be further deduced that the domain of hybrid designs forms a complete
lattice with a refinement partial order, on which the classical programming oper-
ations are closed.

4.3 Justification of Correctness

Having defined a UTP semantics respectively for the HCSP components and the
Simulink diagrams, we justify the translation by checking the semantic equiva-
lence of a Simulink diagram with its corresponding HCSP construct (Theorem2).
Here are several remarks to be noted during the proofs:

1. We set the sample times of all discrete blocks to −1 in the translation, that
is, all the generated discrete blocks share a globally identical sample time gst,
which will be configured by the user before triggering the simulation.
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2. It is assumed that the In ok signal in a subsystem firstly turns true at
the first sample point, i.e. min{t|In ok(t) = 1} = gst. Similarly, we use τ
to denote the earliest time at which the Out ok signal becomes true, i.e.
τ =̂min{t|Out ok(t) = 1}.

3. Hereafter we use [[Wires]] to indicate implicitly the entire group of variable
substitutions within a subsystem, and blocks are referred to as their abbre-
viated names with potential identifiers, for instance, Swt1 in the assignment
structure stands for the block Switch1 in Fig. 3.

4. Unless otherwise stated, the parameters of a block will be elided in the seman-
tic function for simplicity. Besides, to distinguish the input/output signals of
blocks, the leading characters of input/output signals of a subsystem are cap-
italized.

Theorem 2. Given an HCSP process P , denote the translated Simulink dia-
gram by H2S(P ). Suppose there is a correspondence (denoted by EA) between [[P ]]
and [[H2S(P )]], i.e., now = gst, now′ = τ , ok = In ok(gst) = �, ok′ = Out ok(τ),
v = In v(gst), v′ = Out v(τ), fv = Out v|[gst,τ ], rech∗ = Out rech∗|[gst,τ ], and
msgch = Out rech|[gst,τ ], then

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ⇒ (

[[P ]] ⇔ [[H2S(P )]]|[gst,τ ]
)

(6)

as gst → 0.

Proof. By induction on the structure of HCSP components. For simplicity, we
use ch∗ to denote the local communication events inside of H2S(P ) in what
follows.

skip: It is easy to see that under the assumptions,

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ⇒ ([[skip]] ⇔ [[H2S(skip)]]|[gst,τ ]
)

.

Assignment: Without loss of generality, we use [[Diage]] to denote the semantics
of the diagram which computes the right-hand side of the assignment.

[[H2S(x := e)]]

=̂ ∃ch∗.[[Wires]] ∧ [[Diage]] ∧ [[Del1]] ∧ [[Del2]] ∧ [[Swt1]] ∧ [[Swt2]]

⇔ Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) � Periodic(out!, ps.gst)∧
∀t ≥ 0. (t < gst ⇒ out Del1(t) = 0) ∧ (t ≥ gst ⇒ out Del1(t) = In ok(t − gst))∧

(t < gst ⇒ out Del2(t) = 0) ∧ (t ≥ gst ⇒ out Del2(t) = Out x(t − gst))∧
(∃n ∈ N. cnow = n ∗ ps.gst ⇒

(In ok(cnow) > 0 ⇒ out Swt1(cnow) = out Diage(cnow))∧
(In ok(cnow) ≤ 0 ⇒ out Swt1(cnow) = In x(cnow))∧
(out Del1(cnow) > 0 ⇒ out Swt2(cnow) = out Del2(cnow))∧
(out Del1(cnow) ≤ 0 ⇒ out Swt2(cnow) = out Swt1(cnow))∧
Out x(cnow) = out Swt2(cnow) ∧ Out ok(cnow) = In ok(cnow)
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Using the left-hand side of (6) and restricting the time interval, we get the
desired result.

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ∧ [[H2S(x := e)]]|[gst,τ ]
⇔ (∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [gst, τ ]) ⇒ (Out ok(cnow) = In ok(cnow)∧

Out x(cnow) = out Diage(cnow))

⇔ ok′ ∧ τ = now ∧ x′ = e ∧ const(fx, e,now, τ)∧
u′ = u ∧ const(fu,u,now, τ) ∧ RE (gst → 0, EA)

Evolution statement: By the defined UTP semantics, it follows

[[H2S(〈F (ṡ, s) = 0&B〉)]]=̂ ∃ch∗.[[Wires]] ∧ [[NSubB]] ∧ [[ESubF]] ∧ [[Del]]∧
[[Not]] ∧ [[And1]] ∧ [[And2]] ∧ [[Swt]]

⇔ Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) � Periodic(out!, ps.gst)∧
∀t ≥ 0. (out And1(t) > 0 ⇒ out ESubF(t) = S(t))∧

(out And1(t) ≤ 0 ⇒ out ESubF(t) = out ESubF(t − gst))∧
(t < gst ⇒ out Del(t) = 1) ∧ (t ≥ gst ⇒ out Del(t) = out NSubB(t − gst))∧

(∃n ∈ N. cnow = n ∗ ps.gst) ⇒
out NSubB(cnow) = B(cnow) ∧ out Not(cnow) = ¬out Del(cnow)∧
out And1(t) = (In ok(cnow) ∧ out Del(t)) ∧ out And2(t) = (In ok(cnow)∧
out Not(cnow)) ∧ (In ok(cnow) > 0 ⇒ out Swt(cnow) = out ESubF(cnow))∧
(In ok(cnow) ≤ 0 ⇒ out Swt(cnow) = In s(cnow))∧
Out s(cnow) = out Swt(cnow) ∧ Out ok(cnow) = out And2(cnow)

Using the left-hand side of (6) and restricting the time interval, we have

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ∧ ok ∧ [[H2S(〈F (ṡ, s) = 0&B〉)]]|[gst,τ−gst]

⇔ Out ok(τ) = � ∧ τ − gst = gst + (τ − 2 ∗ gst) ∧ Out s(τ − gst) = S(τ − 2 ∗ gst)∧
(∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [gst, τ)) ⇒ out NSubB(cnow − gst)∧

fs(cnow) = S(cnow − gst)) ∧ ¬out NSubB(τ − gst)∧
out ESubF(cnow) = out ESubF(cnow − gst)

⇔ ok′ ∧ u′ = u ∧ const(fu,u,now, τ) ∧ RE∧
(B ∧ τ = now + d ∧ s′ = S(d) ∧ ∀t ∈ [now, τ ]. fs(t) = S(t − now)∨

¬B ∧ s′ = s) (gst → 0, EA)

⇔ ([[F (ṡ, s) = 0]] � B � [[skip]])

Thereby the semantics can be proved consistent on the interval [gst, τ −gst],
moreover, when the user-defined sample time gst → 0, we have the desired
result.
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Conditional: By the definition of H2S and the UTP semantics of Simulink:

[[H2S(B → P )]] =̂ ∃ch∗.[[Wires]] ∧ [[NSubB]] ∧ [[NSubP]] ∧ [[And]] ∧ [[Swt]]

⇔ Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) � Periodic(out!, ps.gst)∧
(∃n ∈ N. cnow = n ∗ ps.gst) ⇒

out NSubB(cnow) = B(cnow) ∧ [[NSubP(inok = out And(cnow))]]∧
out And(cnow) = (In ok(cnow) ∧ out NSubB(cnow))∧
(out NSubB(cnow) > 0 ⇒ out Swt(cnow) = out NSubP ok(cnow))∧
(out NSubB(cnow) ≤ 0 ⇒ out Swt(cnow) = In ok(cnow))∧
Out x(cnow) = out NSubP x(cnow) ∧ Out ok(cnow) = out Swt(cnow)

It follows

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ∧ [[H2S(B → P )]]|[gst,τ ]
⇔ (B ∧ [[P ]]) ∨ (¬B ∧ ok′ ∧ τ = now ∧ v′ = v ∧ const(fv, v, now, τ) ∧ RE)∧

u′ = u ∧ const(fu,u,now, τ) ∧ RE (gst → 0, EA)

⇔ [[P ]] � B � [[skip]]

Thus we have the desired result.
Internal choice: This is proved as for the conditional process.
Sequential composition: As shown in Fig. 7, x are the set of common signals

processed by both P and Q, while y and z are the respective exclusive signals.

[[H2S(P ;Q)]]|[gst,τ ] =̂ ∃ch∗.[[Wires]]|[gst,τ ] ∧ [[NSubP]]|[gst,τ ] ∧ [[NSubQ]]|[gst,τ ]
⇔ [[NSubP(inok = In ok(cnow), inx = In x(cnow), iny = In y(cnow))]]|[gst,τ ]∧

[[NSubQ(inok = out NSubP ok(t), inx = out NSubP x(t), inz = In z(t))]]|[gst,τ ]∧
(∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [gst, τ ]) ⇒

Out ok(cnow) = out NSubQ ok(cnow) ∧ Out x(cnow) = out NSubQ x(cnow)∧
Out y(cnow) = out NSubP y(cnow) ∧ Out z(cnow) = out NSubQ z(cnow)

⇔ (∃xm,nowm, okm. (out NSubP ok(nowm) ⇔ ok)∧
[[NSubP]][xm/x′, okm/ok′] ∧ [[NSubQ]][xm/x, okm/ok]∧
∀t ≥ 0.y(t) = out NSubP y(t) ∧ x(t) = out NSubQ x(t)∧

z(t) = out NSubQ z(t)) (gst → 0, EA and Induction Hypothesis)

This gives the desired result.
Recursion: We only consider tail recursion, i.e., repetition. General recursion

can be proved similarly. As shown in Fig. 8, a random number N , generated
by an oracle, is used in the Simulink diagram as the number of iterations
of subsystem P. Since [[P ∗]] is defined by the least fixed point, it is clear
that the inverse direction holds: Periodic(in!, ps.gst)∧Periodic(out?, ps.gst) ⇒
(

[[P ∗]] ⇐ [[H2S(P ∗)]]|[gst,τ ]
)

. For the other direction, suppose [[P ∗]] holds, then
according to the semantics, there must exist N such that [[PN ]] holds. We then
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apply the oracle, to generate the same number N , to control the execution
of the Simulink diagram H2S(P ∗), to execute for N times. The fact is thus
proved, i.e.

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ⇒ ([[P ∗]] ⇒ [[H2S(P ∗)]]|[gst,τ ]
)

.

Communication events: By the definition of H2S and the UTP semantics of
Simulink given in Sect. 4.1, it follows

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ∧ [[H2S(ch?x)]]|[gst,τ ]
⇔ (∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [gst, τ ]) ⇒

Out re(cnow) = (In ok(cnow) ∧ ¬Out ok(cnow))∧
Out ok(cnow) = f(In re(cnow − gst) ∧ Out re(cnow − gst))∧
(¬Out ok(cnow) ⇒ Out x(cnow) = In x(cnow))∧
(Out ok(cnow) ⇒ Out x(cnow) = (¬Out ok(cnow − gst)) ∗ In ch(cnow))

⇔ Out ok(τ) = �∧
(∃n ∈ N. cnow = n ∗ ps.gst) ⇒

cnow ∈ [gst, τ − gst] ⇒ Out re(cnow) = 1 ∧ In re(t) = 0 ∧ In re(τ − gst) = 1∧
cnow ∈ (τ − gst, τ ] ⇒ Out re(cnow) = 0 ∧ In re(cnow) = 0∧
cnow ∈ [gst, τ) ⇒ Out x(cnow) = In x(cnow) ∧ Out x(τ) = In ch(τ)

⇔ ok′ ∧ now′ = now+ d ∧ const(rech?, 1,now,now′)∧
constl(rech!, 0,now,now′) ∧ rech!(now

′) = 1 ∧ re′
ch?(now

′) = 0 ∧ re′
ch!(now

′) = 0∧
constl(fx, x,now,now′) ∧ fx(now

′) = msgch(now
′)∧

const(fu,u,now,now′) ∧ u′ = u ∧ x′ = msgch(now
′) (gst → 0, EA)

⇔ (LHS � rech? ∧ ¬rech! �RHS)

Therefore, we get

Periodic(in!, ps.gst) ∧ Periodic(out?, ps.gst) ⇒ ([[ch?x]] ⇔ [[H2S(ch?x)]]|[gst,τ ]
)

.

The equivalence for sending events can be proved similarly.
Interruption: It is trivial to prove that Theorem2 holds for communication

interruption, inasmuch as it can be interpreted by the sequential composition
and conditional statement, for which we have already proved validation of
Theorem 2.

Parallel: As shared variables are not allowed in HCSP, we use y and z to denote
the set of exclusive signals (including re and msg) respectively for P and Q.
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Let τP=̂min{t|out NSubP ok(t) = 1}, and τQ=̂min{t|out NSubQ ok(t) = 1}.
Then, according to the definitions, we have

[[H2S(P‖Q)]]|[gst,τ ] =̂ ∃ch∗.[[Wires]]|[gst,τ ] ∧ [[NSubP]]|[gst,τ ] ∧ [[NSubQ]]|[gst,τ ]
⇔ [[NSubP(inok = In ok(cnow), iny = In y(cnow))]]|[gst,τ ]∧

[[NSubQ(inok = In ok(cnow), inz = In z(cnow))]]|[gst,τ ]∧
(∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [gst, τ ]) ⇒
(τP = τ ∨ τQ = τ) ∧ (Out ok(cnow) = out NSubP ok(cnow) ∨ out NSubQ ok(cnow))∧

(∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [τP , τ ]) ⇒ Out y(cnow) = out NSubP y(τP )∧
(∃n ∈ N. cnow = n ∗ ps.gst ∧ cnow ∈ [τQ, τ ]) ⇒ Out z(cnow) = out NSubQ z(τQ)∧

⇔ [[P‖Q]] (gst → 0, EA and Induction Hypothesis)

It thus follows immediately that Theorem2 holds for the parallel composi-
tion. ��

5 Conclusion

In this paper, we presented a translation from HCSP formal models into Simulink
graphical models, so that the models can be simulated and tested using a MAT-
LAB platform, thus avoiding expensive formal verification if the development is
at a stage where it is considered unnecessary. Together with our previous work
on encoding Simulink/Stateflow diagrams into HCSP, it provides a two-way path
in the design of embedded systems. In addition, we proposed a justification of
the translation, which uses UTP as a main vehicle for arguing formally for the
correspondence between the two semantics.
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