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Interpolation vs. Classification
®0

Craig Interpolation

Craig Interpolation

Craig Interpolant

Given ¢ and ¢ in a theory 7 s.t. ¢ A ¢ =7 L, a formula /is a (reverse) interpolant of ¢
and ¢ if (1) ¢ =7 15 (2) INY =7 L; and (3) var(/) C var(¢) N var(y).
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Craig Interpolant

Given ¢ and ¢ in a theory 7 s.t. ¢ A ¢ =7 L, a formula /is a (reverse) interpolant of ¢
and ¢ if (1) ¢ =7 15 (2) INY =7 L; and (3) var(/) C var(¢) N var(y).

Example (over nonlinear 7) .
J—
A= X244 +X —4>0A—X —x2+3-y >0 A &
B:=-3x2—%24+1>0AX—2>0 ‘ “
N
/::—3+2x1+x12+§xz2>0 ]
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Craig Interpolation

Interpolation-based Verification

© The bottleneck of existing formal verification techniques lies in scalability.
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Interpolation vs. Classification
oe
Craig Interpolation

Interpolation-based Verification

© The bottleneck of existing formal verification techniques lies in scalability.
© Interpolation helps in scaling these verification techniques due to its inherent
capability of local and modular reasoning :
= Nelson-Oppen method : equivalently decomposing a formula of a composite
theory into formulas of its component theories;
® SMT : combining different decision procedures to verify programs with
complicated data structures;
m Bounded model-checking : generating invariants to verify infinite-state systems
due to McMillan;
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® SMT : combining different decision procedures to verify programs with
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© Well-established methods to synthesize interpolants for various theories, e.g.,
decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.
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Craig Interpolation

Interpolation-based Verification

© The bottleneck of existing formal verification techniques lies in scalability.
© Interpolation helps in scaling these verification techniques due to its inherent
capability of local and modular reasoning :

= Nelson-Oppen method : equivalently decomposing a formula of a composite
theory into formulas of its component theories;

® SMT : combining different decision procedures to verify programs with
complicated data structures;

m Bounded model-checking : generating invariants to verify infinite-state systems
due to McMillan;

© Well-established methods to synthesize interpolants for various theories, e.g.,
decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.

O Little work on synthesizing nonlinear ones : [Kupferschmid & Becker, FORMATS '11], [Dai
et al,, CAV'13], [Gan et al., IJCAR'16], [Gao & Zufferey, TACAS'16], [Okudono et al., APLAS'17].
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Interpolation vs. Classification
o

Binary Classification

Binary Classification

Binary Classification

Given a training dataset X = X+ w X~ of positive/negative sample points, find a
classifier C: X+— {T,L},s.t. (1) VX € XT. C(X) = T;and (2) X € X—. C(X) = L.
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Interpolation vs. Classification
o

Binary Classification

Binary Classification

Binary Classification

Given a training dataset X = X+ w X~ of positive/negative sample points, find a
classifier C: X+— {T,L},s.t. (1) VX € XT. C(X) = T;and (2) X € X—. C(X) = L.

X+ X~

G[C\\ G

There could be (infinitely) many valid classifiers.
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Interpolation vs. Classification
o

Binary Classification

Binary Classification

Binary Classification

Given a training dataset X = X+ w X~ of positive/negative sample points, find a
classifier C: X+— {T,L},s.t. (1) VX € XT. C(X) = T;and (2) X € X—. C(X) = L.

X+ X~

Support Vector Machine (SVM) finds a separating hyperplane that yields the largest
distance (functional margin) to the nearest positive and negative samples (support
vectors), which boils down to convex optimizations.
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Interpolation vs. Classification
°

Interpolants as Classifiers

Interpolation vs. Classification

© Linear interpolants can be viewed as hyperplane classifiers, [Sharma et al., CAV'12] :
sampling from [¢] and [+'] — building a hyperplane classifier — refining by CEs.
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Interpolation vs. Classification
°

Interpolants as Classifiers

Interpolation vs. Classification

© Linear interpolants can be viewed as hyperplane classifiers, [Sharma et al., CAV'12]
sampling from [¢] and [[¢/] — building a hyperplane classifier — refining by CEs.

© Xt and X~ might not be linearly separable (often the case when sampled from
nonlinear ¢ and ), resp.) :

A = (x<25=y>2sin(x)) ) ,/"7\\
AX>25AX< 5= y>0.125% + 0.41) 3 / I
AX>5AX<6=y>6.04 —0.5%) \

B := (x<3=y< xcos(0.1e") — 0.083)

AX>3AX< 6= y< —x% + 10x— 22.35) B !

©Kupferschmid & Becker, FORMATS 11
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Interpolants as Classifiers

Interpolation vs. Classification

© Linear interpolants can be viewed as hyperplane classifiers, [Sharma et al., CAV'12]
sampling from [¢] and [[¢/] — building a hyperplane classifier — refining by CEs.

© Xt and X~ might not be linearly separable (often the case when sampled from
nonlinear ¢ and ), resp.) :

A = (x<25=y>2sin(x) 4 77\\
AX>25AX<5=>y>0.1255 + 0.41) 0 |
AX>5AX<6=y>6.04 — 0.5%)

B := (x<3=y< xcos(0.1e") — 0.083)
AX>3AX<6=y< —x> + 10x — 22.35) B

©Kupferschmid & Becker, FORMATS 11

© Encoding interpolants as logical combinations of linear constraints.
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Interpolation vs. Classification

© Linear interpolants can be viewed as hyperplane classifiers, [Sharma et al., CAV'12]
sampling from [¢] and [[¢/] — building a hyperplane classifier — refining by CEs.

© Xt and X~ might not be linearly separable (often the case when sampled from
nonlinear ¢ and ), resp.) :

A = (x<25=y>2sin(x) 4 77\\
AX>25AX<5=>y>0.1255 + 0.41) 0 |
AX>5AX<6=y>6.04 — 0.5%)

B := (x<3=y< xcos(0.1e") — 0.083)
AX>3AX<6=y< —xX + 10x— 22.35) B

©Kupferschmid & Becker, FORMATS 11
© Encoding interpolants as logical combinations of linear constraints.

@ Yielding rather complex interpolants (even of an infinite length in the worst case).
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Interpolation vs. Classification
°

Interpolants as Classifiers

Interpolation vs. Classification

© Linear interpolants can be viewed as hyperplane classifiers, [Sharma et al., CAV'12] :
sampling from [¢] and [«/] — building a hyperplane classifier — refining by CEs.

© XT and X~ might not be linearly separable (often the case when sampled from
nonlinear ¢ and v, resp.) :

A = (x<25=y>2sin(x))
A(X>25AX<5=y>0.1255 + 0.41)
AX>5AXx<6=y>6.04 —0.5%)

B := (x<3=y< xcos(0.1e") — 0.083)
AX>3AX<6=y< —xX + 10x— 22.35)

©Chen et al., CADE-27

© Encoding interpolants as logical combinations of linear constraints.
@ Yielding rather complex interpolants (even of an infinite length in the worst case).

© NIL : learning nonlinear interpolants.
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Learning Nonlinear Interpolants
m SVMs with Nonlinear Space Transformation
m The NIL Algorithm and its Variants
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Nonlinear SVMs

Space Transformation & Kernel Trick

Figure — 2-dimensional input space
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Learning Nonlinear Interpolants
o

Nonlinear SVMs

Space Transformation & Kernel Trick

Figure — 2-dimensional input space ~— 3-dimensional feature (monomial) space with linear separation.
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Learning Nonlinear Interpolants
o

Nonlinear SVMs

Space Transformation & Kernel Trick

Figure — 2-dimensional input space ~— 3-dimensional feature (monomial) space with linear separation.

Optimal-margin classifier /:

Y s (X, x) =0
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Nonlinear SVMs

Space Transformation & Kernel Trick

Figure — 2-dimensional input space ~— 3-dimensional feature (monomial) space with linear separation.

Optimal-margin classifier /:

kernel function

Y air(X;, x) =0

support vectors
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Nonlinear SVMs

Space Transformation & Kernel Trick

Figure — 2-dimensional input space ~— 3-dimensional feature (monomial) space with linear separation.

Optimal-margin classifier /:

kernel function
Sy ain(Xpx) = 2(X) T 0 (x) =0

support vectors
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Nonlinear SVMs

Space Transformation & Kernel Trick

Figure — 2-dimensional input space ~— 3-dimensional feature (monomial) space with linear separation.

Optimal-margin classifier /:

kernel function
Sy ain(Xpx) = (%) T0(x) = (BX x +0)" =0

support vectors
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Learning Nonlinear Interpolants
o

Nonlinear SVMs

Space Transformation & Kernel Trick

Figure — 2-dimensional input space ~— 3-dimensional feature (monomial) space with linear separation.

Optimal-margin classifier /:

kernel function
Yy ain(Xpx) = 2(X)T0(x) = (BX x + 0)" =0

support vectors polynomial degree describing

complexity of the monomial space
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Learning Nonlinear Interpolants
[ JeYole}

The NIL Algorithm & its Variants

The NIL Algorithm

Given mutually contradictory nonlinear ¢ and ¢) over common variables x.

[#]
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The NIL Algorithm & its Variants

The NIL Algorithm

Given mutually contradictory nonlinear ¢ and ¢) over common variables x.
Generate sample points by, e.g., (uniformly) scattering random points.
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The NIL Algorithm

Given mutually contradictory nonlinear ¢ and ¢) over common variables x.
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The NIL Algorithm

Given mutually contradictory nonlinear ¢ and ¢) over common variables x.
Generate sample points by, e.g., (uniformly) scattering random points.
Find a classifier by SVMs (with kernel-degree m) as a candidate interpolant.
Refine the candidate by CEs till it being verified as a true interpolant.
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Learning Nonlinear Interpolants
[ JeYole}

The NIL Algorithm & its Variants

The NIL Algorithm

Given mutually contradictory nonlinear ¢ and ¢) over common variables x.
Generate sample points by, e.g., (uniformly) scattering random points.
Find a classifier by SVMs (with kernel-degree m) as a candidate interpolant.
Refine the candidate by CEs till it being verified as a true interpolant.

© Sound, and complete when [[¢] and [¢] are bounded sets with positive functional margin.
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Learning Nonlinear Interpolants
[ JeYole}

The NIL Algorithm & its Variants

The NIL Algorithm

Given mutually contradictory nonlinear ¢ and ) over common variables x.
Generate sample points by, e.g., (uniformly) scattering random points.
Find a classifier by SVMs (with kernel-degree m) as a candidate interpolant.
A Refine the candidate by CEs till it being verified as a true interpolant.

© Sound, and complete when [¢] and [+ ] are bounded sets with positive functional margin.

©® Quantifier Elimination (QE) is involved in checking interpolants and generating CEs".

1. SMT-solving techniques over nonlinear arithmetic do not suffice.
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Learning Nonlinear Interpolants
[ JeYole}

The NIL Algorithm & its Variants

The NIL Algorithm

Given mutually contradictory nonlinear ¢ and ) over common variables x.
Generate sample points by, e.g., (uniformly) scattering random points.
Find a classifier by SVMs (with kernel-degree m) as a candidate interpolant.
Refine the candidate by CEs till it being verified as a true interpolant.

[~ B

© Sound, and complete when [¢] and [+ ] are bounded sets with positive functional margin.

©

Quantifier Elimination (QE) is involved in checking interpolants and generating CEs".

© May not terminate in cases with zero functional margin.

1. SMT-solving techniques over nonlinear arithmetic do not suffice.
CADE-27 - Natal, Brazil
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The NIL Algorithm & its Variants

Comparison with Naive QE-Based Method

QE-based method NIL
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Learning Nonlinear Interpolants
[e] Yole}

The NIL Algorithm & its Variants

Comparison with Naive QE-Based Method

QE-based method NIL

strongest : Jy. ¢(x,y)
weakest : >3z, (x, z)

Logical strength medium = robust
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The NIL Algorithm & its Variants

Comparison with Naive QE-Based Method

QE-based method

NIL

strongest : Jy. ¢(x,y)
weakest : >3z, (x, z)

Complexity of /  direct projection = complicated

Logical strength

medium = robust

single polynomial = simple
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The NIL Algorithm & its Variants

Comparison with Naive QE-Based Method

QE-based method NIL

strongest : Jy. ¢(x,y)
weakest : >3z, (x, z)

Complexity of /  direct projection = complicated  single polynomial = simple

Logical strength medium = robust

Efficiency doubly exponential n x doubly exponential
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The NIL Algorithm & its Variants

Comparison with Naive QE-Based Method

QE-based method NIL

strongest : Jy. ¢(x,y)
weakest : >3z, (x, z)

Complexity of /  direct projection = complicated  single polynomial = simple

Logical strength medium = robust

Efficiency doubly exponential n x doubly exponential

QE + template?
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Learning Nonlinear Interpolants
[e] Yole}

The NIL Algorithm & its Variants

Comparison with Naive QE-Based Method

QE-based method NIL

strongest : Jy. ¢(x,y)
weakest : >3z, (x, z)

Complexity of /  direct projection = complicated  single polynomial = simple

Logical strength medium = robust

Efficiency doubly exponential n x doubly exponential

QE + template ? = Too many unknown parameters.

Naijun Zhan - ISCAS NIL : Learning Nonlinear Interpolants CADE-27 - Natal, Brazil



Learning Nonlinear Interpolants
[eleY Yo}

The NIL Algorithm & its Variants

NILs : For Cases with Zero Functional Margin

[#]
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Learning Nonlinear Interpolants
[eleY Yo}

The NIL Algorithm & its Variants

NILs : For Cases with Zero Functional Margin

© §-sound, and 6-complete if [¢] and [[¢/] are bounded sets even with zero functional margin.
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Learning Nonlinear Interpolants
[eleY Yo}

The NIL Algorithm & its Variants

NILs : For Cases with Zero Functional Margin

© §-sound, and 6-complete if [¢] and [[¢/] are bounded sets even with zero functional margin.

® May not converge to an actual interpolant when [¢] or [[¢] is unbounded.
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The NIL Algorithm & its Variants

NIL; 5 : For Unbounded Cases with Varying Tolerance

[#] [v]
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The NIL Algorithm & its Variants

NIL; 5 : For Unbounded Cases with Varying Tolerance

[#] [v]

)

/
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The NIL Algorithm & its Variants

NIL; 5 : For Unbounded Cases with Varying Tolerance
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The NIL Algorithm & its Variants

NIL; 5 : For Unbounded Cases with Varying Tolerance

\\ 28
[] \ M

\\\

© The sequence of candidate interpolants converges to an actual interpolant.
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Outline

Implementation and Evaluation
m Performance over Benchmarks
m Perturbations in Parameters
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Implementation & Evaluation
©000

Performance over Benchmarks

Implementation Issues

NIL: learning nonlinear interpolant

Ni

=
~

:an open-source tool in Wolfram Mathematica.

LIBSVM : SVM classifications;
Reduce ?: verification of candidate interpolants;

FindInstance : generation of counterexamples;

Rational recovery : rounding off floating-point
computations [Lang, Springer NY'12].

©NIL, 2019

2. CAD implementation for quantifier-free fragment of a first-order theory of polynomials over the reals and
its appropriate extension to transcendental functions [Strzebonski, J. Symb. Comput. 11].
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Performance over Benchmarks

Benchmark Examples

Implementation & Evaluation
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Implementation & Evaluation
[oYeY Yo}

Performance over Benchmarks

Visualizations in NIL

Beyond the scope of concave quadratic formulas as required in [Gan et al., [JCAR'16] :
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Implementation & Evaluation
[oYeY Yo}

Performance over Benchmarks

Visualizations in NIL

Adjacent and sharper cases as in [Okudono et al.,, APLAS'17] :
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Implementation & Evaluation
[oYeY Yo}

Performance over Benchmarks

Visualizations in NIL

Formulas sharing parallel or coincident boundaries :
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Implementation & Evaluation
[oYeY Yo}

Performance over Benchmarks

Visualizations in NIL

Transcendental cases from [Gao & Zufferey, TACAS"16] and [Kupferschmid & Becker,
FORMATS '11], yet with simpler interpolants :
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Implementation & Evaluation
[oYeY Yo}

Performance over Benchmarks

Visualizations in NIL

Three-dimensional case from [Dai et al., CAV'13], yet with simpler interpolants :
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Performance over Benchmarks

Interpolants of Simpler Forms

Implementation & Evaluation
ocooe

Name Interpolants by NIL Interpolants from the sources

1JCAR16-1 1 321 -2 <o —342n +x3+ 43 >0

CAV13-1 71+§7%+%’7§<0 436.45(x2—2y2—4)+%§0
— 14620.26 + 2983.44x3 + 10972.97:3 +
207.62xy + 207.64xgx3 + 0.02%X3 + 9625.61x3 —
1161.80x3x3 + 0.01x3x3 + 811.93x3+

105x% + X2 (1402 + 24y(52 + 7) + 352(3z + 8))+ 2745.14x3 — 10648.11x; + 3101.42x; X3+
aviza 2(7083 7 + 5y% (1222 + 212+ 28) — 14y(62° + 572+ 8646.17x) X3 + 511.84x; X3 — 1034x) Xo X3+
i 10) — 35(32% + 822 + 42— 9)) < 14x(202 (2 + 1)+ 0.02x) X203 + 9283.66x1 X3 + 1342.55x] Xax3 —
1002 (z+ 2) — 3y(42% — 5z + 4) — 202(2 + 2)) 138.70x; X5 + 11476.61x3 — 3737.70X;x3+

4071.65x3x% — 2153.00x1aX3 + 373.14x3 xgx3+
7616.18)3 X3 + 8950.77x; + 1937.92x3 x3 —
64.07x3xy + 4827.25x] > 0

CAV133 —14 2;;1 <o —1.3983vc; + 69.358 > 0

Sharper-1 24y <y 342 — 68y — 102 > 0

Sharper-2 y>0 sy+ 42 >0

LCAR16-2 X < xp —x x>0
716.77 + 1326.74(ya) + 1.33(ya)? + 433.90(ya)> +

CAV13-4 2xa+ 4ya > 5 668.16(xa) — 155.86(xa) (ya) + 317.29(xa) (ya) >+
222.00(xa)2 + 592.39(xa) (ya) + 271.11(xa)> > 0
Y> 1.8V (0.59 <y<1.8A-1.35 <x< 1.35)V

TACAS16 15x2 < 4+ 20y (0.09 <y < 0.59 A —0.77 < x < 0.7TT)V

ear Interpolants

Y>0A-03<x<0.3)
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Implementation & Evaluation
ocooe

Performance over Benchmarks

Interpolants of Simpler Forms

Name Interpolants by NIL Interpolants from the sources
1JCAR16-1 1 3% -2 <o —342n +x3+ 43 >0
CAV13-1 71+§7%+%’7§<0 436.45(x2—2y2—4)+%§0
— 14620.26 + 2983.44x3 + 10972.97:3 +
207.62xy + 207.64xgx3 + 0.02%X3 + 9625.61x3 —
1161.80x3x3 + 0.01x3x3 + 811.93x3+
105x% + X2 (1402 + 24y(52 + 7) + 352(3z + 8))+ 2745.14x3 — 10648.11x; + 3101.42x; X3+
aviza 2(7083 2 + 5y% (1222 + 212+ 28) — 14y(62° + 572+ 8646.17x) X3 + 511.84x; X3 — 1034x) Xo X3+
i 10) — 35(32% + 822 + 42— 9)) < 14x(20:2 (2 + 1)+ 0.02x) X203 + 9283.66x1 X3 + 1342.55x] Xax3 —
1002 (z+ 2) — 3y(42% — 5z + 4) — 202(2 + 2)) 138.70x; X3 + 11476.61x5 — 3737.70X; x3+
4071.65x3x% — 2153.00x1aX3 + 373.14x3 xgx3+
7616.18)3 X3 + 8950.77x; + 1937.92x3 x3 —
64.07x3xy + 4827.25x] > 0
CAV133 —14 2;;1 <o —1.3983vc; + 69.358 > 0
Sharper-1 24y <y 342 — 68y — 102 > 0
Sharper-2 y>0 sy+ 42 >0
LCAR16-2 X < xp —x x>0
716.77 + 1326.74(ya) + 1.33(ya)? + 433.90(ya)> +
CAV13-4 2xa+ 4ya > 5 668.16(xa) — 155.86(xa) (ya) + 317.29(xa) (ya) >+

222.00(xa)? + 592.39(xa)2 (ya) + 271.11(xa)> > 0

y>1.8V (059 <y<1.8A—1.35<x< 1.35)V
TACAS16 152 < 4 + 20y (0.09 <y < 0.59 A —0.77 < x < 0.77)V
0A—0.3 0.3)
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Implementation & Evaluation
°

Perturbations in Parameters

Perturbation-Resilient Interpolants

(a) e-perturbations in the radii (b) Interpolant resilient to e-perturbations

Figure — Introducing e-perturbations (say with € up to 0.5) in ¢ and . The synthesized interpolant is hence resi-
lient to any e-perturbation in the radii satisfying —0.5 < ¢ < 0.5.
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Concluding Remarks
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B Concluding Remarks
® Summary
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Concluding Remarks
®0

Summary

Concluding Remarks

Problem : We face that

= polynomial constraints have been shown useful to express invariant properties for
programs and hybrid systems,

m little work on synthesizing nonlinear interpolants, which either restricts the input
formulae or yields complex results.
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Concluding Remarks
®0

Summary

Concluding Remarks

Problem : We face that

= polynomial constraints have been shown useful to express invariant properties for
programs and hybrid systems,

m little work on synthesizing nonlinear interpolants, which either restricts the input
formulae or yields complex results.

Status: We present

= aunified, counterexample-guided method for generating polynomial interpolants
over the general quantifier-free theory of nonlinear arithmetic,

m soundness of NIL, and sufficient conditions for its completeness and convergence,

= Experimental results indicating that our method suffices to address more
interpolation tasks, including those with perturbations in parameters, and in many
cases synthesizes simpler interpolants.
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Concluding Remarks
®0

Summary

Concluding Remarks

Problem : We face that

= polynomial constraints have been shown useful to express invariant properties for
programs and hybrid systems,

m little work on synthesizing nonlinear interpolants, which either restricts the input
formulae or yields complex results.

Status: We present

= aunified, counterexample-guided method for generating polynomial interpolants
over the general quantifier-free theory of nonlinear arithmetic,

m soundness of NIL, and sufficient conditions for its completeness and convergence,

= Experimental results indicating that our method suffices to address more
interpolation tasks, including those with perturbations in parameters, and in many
cases synthesizes simpler interpolants.

Future Work : We plan to

m improve the efficiency of NIL by substituting the general purpose QE procedure with
alternative methods,

= combine nonlinear arithmetic with EUFs, by resorting to, e.g., predicate-abstraction
techniques,

m investigate the performance of NIL over different classification techniques, e.g., the
widespread regression-based methods.

m Efficient and complete methods for general non-linear formulas (on-going, substantja

progress) ISCAS (®)

O
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Concluding Remarks
oce

Summary

Errata

Theorem (Soundness of NIL)

NIL(¢,2,m) terminates and returns Iif-and-only if | is an m-polynomial interpolant of ¢
and ).
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