${\sf Mingshuai\ Chen}^1, {\sf Jian\ Wang}^1, {\sf Jie\ An}^2, {\sf Bohua\ Zhan}^1, {\sf Deepak\ Kapur}^3, {\sf Naijun\ Zhan}^1$ 

<sup>1</sup> Institute of Software, Chinese Academy of Sciences

 $^2$ School of Software Engineering, Tongji University

<sup>3</sup>Department of Computer Science, University of New Mexico

Natal · August 27-30 2019





### Outline

- 1 Interpolation vs. Classification
- 2 Learning Nonlinear Interpolants
- 3 Implementation and Evaluation
- **4** Concluding Remarks

### Outline

- Interpolation vs. Classification
  - Craig Interpolation
  - Binary Classification
  - Interpolants as Classifiers
- 2 Learning Nonlinear Interpolant
  - SVMs with Nonlinear Space Transformation
  - The NIL Algorithm and its Variants
- 3 Implementation and Evaluation
  - Performance over Benchmarks
  - Perturbations in Parameters
- 4 Concluding Remarks
  - Summary

## **Craig Interpolation**

#### Craig Interpolant

Given  $\phi$  and  $\psi$  in a theory  $\mathcal T$  s.t.  $\phi \wedge \psi \models_{\mathcal T} \bot$ , a formula I is a *(reverse) interpolant* of  $\phi$  and  $\psi$  if (1)  $\phi \models_{\mathcal T} I$ ; (2)  $I \wedge \psi \models_{\mathcal T} \bot$ ; and (3)  $\mathit{var}(I) \subseteq \mathit{var}(\phi) \cap \mathit{var}(\psi)$ .

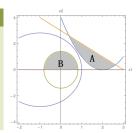
Implementation & Evaluation

•000

Interpolation vs. Classification

## Craig Interpolation

#### Craig Interpolant


Given  $\phi$  and  $\psi$  in a theory  $\mathcal T$  s.t.  $\phi \wedge \psi \models_{\mathcal T} \bot$ , a formula I is a *(reverse) interpolant* of  $\phi$ and  $\psi$  if (1)  $\phi \models_{\mathcal{T}} I$ ; (2)  $I \land \psi \models_{\mathcal{T}} \bot$ ; and (3)  $var(I) \subseteq var(\phi) \cap var(\psi)$ .

#### Example (over nonlinear $\mathcal{T}$ )

$$A := -x_1^2 + 4x_1 + x_2 - 4 \ge 0 \land -x_1 - x_2 + 3 - y^2 > 0$$

$$B := -3x_1^2 - x_2^2 + 1 \ge 0 \land x_2 - z^2 \ge 0$$

$$I := -3 + 2x_1 + x_1^2 + \frac{1}{2}x_2^2 > 0$$



## Interpolation-based Verification

© The bottleneck of existing formal verification techniques lies in scalability.

## Interpolation-based Verification

- © The bottleneck of existing formal verification techniques lies in scalability.
- Interpolation helps in scaling these verification techniques due to its inherent capability of local and modular reasoning:
  - Nelson-Oppen method: equivalently decomposing a formula of a composite theory into formulas of its component theories;
  - SMT: combining different decision procedures to verify programs with complicated data structures;
  - Bounded model-checking: generating invariants to verify infinite-state systems due to McMillan;

## Interpolation-based Verification

- © The bottleneck of existing formal verification techniques lies in scalability.
- © Interpolation helps in scaling these verification techniques due to its inherent capability of local and modular reasoning:
  - Nelson-Oppen method: equivalently decomposing a formula of a composite theory into formulas of its component theories;
  - SMT: combining different decision procedures to verify programs with complicated data structures;
  - Bounded model-checking: generating invariants to verify infinite-state systems due to McMillan;
  - ..
- © Well-established methods to synthesize interpolants for various theories, e.g., decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.

## Interpolation-based Verification

- © The bottleneck of existing formal verification techniques lies in scalability.
- © Interpolation helps in scaling these verification techniques due to its inherent capability of local and modular reasoning:
  - Nelson-Oppen method: equivalently decomposing a formula of a composite theory into formulas of its component theories;
  - SMT: combining different decision procedures to verify programs with complicated data structures;
  - Bounded model-checking: generating invariants to verify infinite-state systems due to McMillan;
  - ..
- © Well-established methods to synthesize interpolants for various theories, e.g., decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.
- © Little work on synthesizing nonlinear ones: [Kupferschmid & Becker, FORMATS'11], [Dai et al., CAV'13], [Gan et al., IJCAR'16], [Gao & Zufferey, TACAS'16], [Okudono et al., APLAS'17].

## Binary Classification

#### **Binary Classification**

Given a training dataset  $X = X^+ \uplus X^-$  of positive/negative sample points, find a classifier  $C: X \mapsto \{\top, \bot\}$ , s.t. (1)  $\forall \vec{x} \in X^+$ .  $C(\vec{x}) = \top$ ; and (2)  $\forall \vec{x} \in X^-$ .  $C(\vec{x}) = \bot$ .

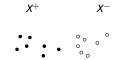
Interpolation vs. Classification

# Binary Classification

#### **Binary Classification**

Given a training dataset  $X = X^+ \uplus X^-$  of positive/negative sample points, find a classifier  $C: X \mapsto \{\top, \bot\}$ , s.t. (1)  $\forall \vec{x} \in X^+$ .  $C(\vec{x}) = \top$ ; and (2)  $\forall \vec{x} \in X^-$ .  $C(\vec{x}) = \bot$ .

 $X^+$ 


**::** : .

Interpolation vs. Classification

# Binary Classification

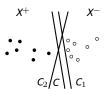
#### **Binary Classification**

Given a training dataset  $X = X^+ \uplus X^-$  of positive/negative sample points, find a classifier  $C: X \mapsto \{\top, \bot\}$ , s.t. (1)  $\forall \vec{x} \in X^+$ .  $C(\vec{x}) = \top$ ; and (2)  $\forall \vec{x} \in X^-$ .  $C(\vec{x}) = \bot$ .



Interpolation vs. Classification

## Binary Classification

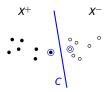

#### **Binary Classification**

Given a training dataset  $X = X^+ \uplus X^-$  of positive/negative sample points, find a classifier  $C: X \mapsto \{\top, \bot\}$ , s.t. (1)  $\forall \vec{x} \in X^+$ .  $C(\vec{x}) = \top$ ; and (2)  $\forall \vec{x} \in X^-$ .  $C(\vec{x}) = \bot$ .

# Binary Classification

#### **Binary Classification**

Given a training dataset  $X = X^+ \uplus X^-$  of positive/negative sample points, find a classifier  $C: X \mapsto \{\top, \bot\}$ , s.t. (1)  $\forall \vec{x} \in X^+$ .  $C(\vec{x}) = \top$ ; and (2)  $\forall \vec{x} \in X^-$ .  $C(\vec{x}) = \bot$ .




There could be (infinitely) many valid classifiers.

## Binary Classification

#### Binary Classification

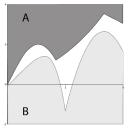
Given a training dataset  $X = X^+ \uplus X^-$  of positive/negative sample points, find a classifier  $C: X \mapsto \{\top, \bot\}$ , s.t. (1)  $\forall \vec{x} \in X^+$ .  $C(\vec{x}) = \top$ ; and (2)  $\forall \vec{x} \in X^-$ .  $C(\vec{x}) = \bot$ .



Support Vector Machine (SVM) finds a separating hyperplane that yields the largest distance (functional margin) to the nearest positive and negative samples (support vectors), which boils down to convex optimizations.

Interpolants as Classifiers

### Interpolation vs. Classification


 $\odot$  Linear interpolants can be viewed as hyperplane classifiers, [Sharma et al., CAV'12]: sampling from  $[\![\phi]\!]$  and  $[\![\psi]\!]$   $\to$  building a hyperplane classifier  $\to$  refining by CEs.

### Interpolation vs. Classification

© Linear interpolants can be viewed as hyperplane classifiers, [Sharma et al., CAV'12]: sampling from  $\llbracket \phi \rrbracket$  and  $\llbracket \psi \rrbracket \to \text{building a hyperplane classifier} \to \text{refining by CEs.}$ 

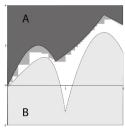
 $\odot$  X<sup>+</sup> and X<sup>-</sup> might not be linearly separable (often the case when sampled from nonlinear  $\phi$  and  $\psi$ , resp.):

$$B := (x < 3 \Rightarrow y \le x \cos(0.1e^{x}) - 0.083)$$
$$\land (x \ge 3 \land x \le 6 \Rightarrow y \le -x^{2} + 10x - 22.35)$$



©Kupferschmid & Becker, FORMATS'11

© Linear interpolants can be viewed as hyperplane classifiers, [Sharma et al., CAV'12]: sampling from  $\llbracket \phi \rrbracket$  and  $\llbracket \psi \rrbracket \to \text{building a hyperplane classifier} \to \text{refining by CEs.}$ 


 $\odot$  X<sup>+</sup> and X<sup>-</sup> might not be linearly separable (often the case when sampled from nonlinear  $\phi$  and  $\psi$ , resp.):

$$A := (x < 2.5 \Rightarrow y \ge 2 \sin(x))$$

$$\land (x \ge 2.5 \land x < 5 \Rightarrow y \ge 0.125x^2 + 0.41)$$

$$\land (x \ge 5 \land x \le 6 \Rightarrow y \ge 6.04 - 0.5x)$$

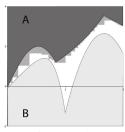
$$\begin{array}{ll} \textit{B} & := & (\textit{x} < 3 \Rightarrow \textit{y} \leq \textit{x} \cos(0.1 \text{e}^{\textit{x}}) - 0.083) \\ \\ & \land (\textit{x} \geq 3 \land \textit{x} \leq 6 \Rightarrow \textit{y} \leq -\textit{x}^2 + 10\textit{x} - 22.35) \end{array}$$



©Kupferschmid & Becker, FORMATS'11

© Encoding interpolants as logical combinations of linear constraints.

© Linear interpolants can be viewed as hyperplane classifiers, [Sharma et al., CAV'12]: sampling from  $\llbracket \phi \rrbracket$  and  $\llbracket \psi \rrbracket \to \text{building a hyperplane classifier} \to \text{refining by CEs.}$ 


 $\bigcirc$   $X^+$  and  $X^-$  might not be linearly separable (often the case when sampled from nonlinear  $\phi$  and  $\psi$ , resp.):

$$A := (x < 2.5 \Rightarrow y \ge 2 \sin(x))$$

$$\land (x \ge 2.5 \land x < 5 \Rightarrow y \ge 0.125x^2 + 0.41)$$

$$\land (x \ge 5 \land x \le 6 \Rightarrow y \ge 6.04 - 0.5x)$$

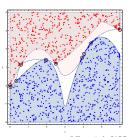
$$B := (x < 3 \Rightarrow y \le x \cos(0.1e^{x}) - 0.083)$$
$$\land (x \ge 3 \land x \le 6 \Rightarrow y \le -x^{2} + 10x - 22.35)$$



©Kupferschmid & Becker, FORMATS'11

- © Encoding interpolants as logical combinations of linear constraints.
- ② Yielding rather complex interpolants (even of an infinite length in the worst case).

© Linear interpolants can be viewed as hyperplane classifiers, [Sharma et al., CAV'12]: sampling from  $\llbracket \phi \rrbracket$  and  $\llbracket \psi \rrbracket \to \text{building a hyperplane classifier} \to \text{refining by CEs.}$ 


 $\odot$  X<sup>+</sup> and X<sup>-</sup> might not be linearly separable (often the case when sampled from nonlinear  $\phi$  and  $\psi$ , resp.):

$$A := (x < 2.5 \Rightarrow y \ge 2 \sin(x))$$

$$\land (x \ge 2.5 \land x < 5 \Rightarrow y \ge 0.125x^2 + 0.41)$$

$$\land (x \ge 5 \land x \le 6 \Rightarrow y \ge 6.04 - 0.5x)$$

B := 
$$(x < 3 \Rightarrow y \le x\cos(0.1e^x) - 0.083)$$
  
  $\land (x \ge 3 \land x \le 6 \Rightarrow y \le -x^2 + 10x - 22.35)$ 



©Chen et al., CADE-27

- © Encoding interpolants as logical combinations of linear constraints.
- Yielding rather complex interpolants (even of an infinite length in the worst case).
- © NIL: learning nonlinear interpolants.

#### Outline

- 1 Interpolation vs. Classification
  - Craig Interpolation
  - Binary Classification
  - Interpolants as Classifiers
- 2 Learning Nonlinear Interpolants
  - SVMs with Nonlinear Space Transformation
  - The NIL Algorithm and its Variants
- 3 Implementation and Evaluation
  - Performance over Benchmarks
  - Perturbations in Parameters
- 4 Concluding Remarks
  - Summary

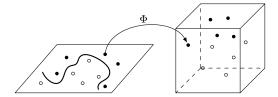

Nonlinear SVMs



Figure - 2-dimensional input space



Figure – 2-dimensional input space



 $\textbf{Figure-2-} dimensional\ input\ space \mapsto 3 - dimensional\ feature\ (monomial)\ space\ with\ linear\ separation.$ 

Nonlinear SVMs

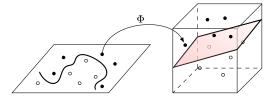
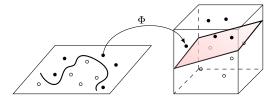
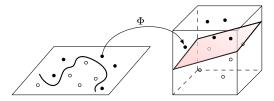
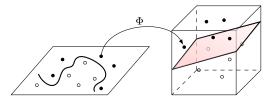



Figure - 2-dimensional input space  $\mapsto$  3-dimensional feature (monomial) space with linear separation.

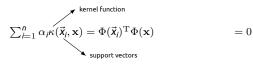
Implementation & Evaluation

### Space Transformation & Kernel Trick



Figure - 2-dimensional input space  $\mapsto$  3-dimensional feature (monomial) space with linear separation.

$$\sum_{i=1}^{n} \alpha_i \kappa(\vec{\mathbf{x}}_i, \mathbf{x}) = 0$$



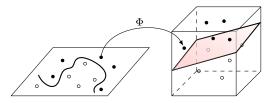
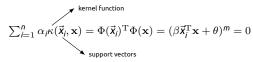
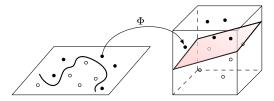

 $\label{eq:Figure-2-dimensional} \textbf{Figure-2-dimensional input space} \mapsto \textbf{3-dimensional feature (monomial) space with linear separation.}$ 

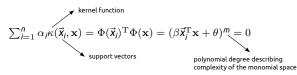




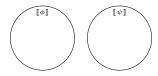
 $\label{eq:Figure-2-dimensional} \textbf{Figure-2-dimensional input space} \mapsto \textbf{3-dimensional feature (monomial) space with linear separation.}$ 



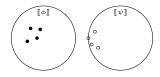






Figure - 2-dimensional input space  $\mapsto$  3-dimensional feature (monomial) space with linear separation.

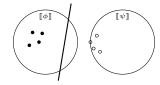



### Space Transformation & Kernel Trick

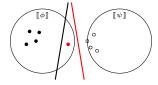



 $\label{eq:Figure-2-dimensional} \textbf{Figure-2-dimensional input space} \mapsto \textbf{3-dimensional feature (monomial) space with linear separation.}$ 



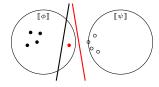

- ${\rm \blacksquare}$  Given mutually contradictory nonlinear  $\phi$  and  $\psi$  over common variables  ${\bf x}.$
- Generate sample points by, e.g., (uniformly) scattering random points
- Find a classifier by SVMs (with kernel-degree m) as a candidate interpolant
- Refine the candidate by CEs till it being verified as a true interpolant




- $\blacksquare$  Given mutually contradictory nonlinear  $\phi$  and  $\psi$  over common variables  $\mathbf{x}.$
- Generate sample points by, e.g., (uniformly) scattering random points.
- Find a classifier by SVMs (with kernel-degree m) as a candidate interpolant
- Refine the candidate by CEs till it being verified as a true interpolant

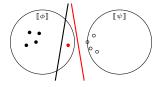


- f I Given mutually contradictory nonlinear  $\phi$  and  $\psi$  over common variables  ${f x}.$
- Generate sample points by, e.g., (uniformly) scattering random points.
- $\blacksquare$  Find a classifier by SVMs (with kernel-degree m) as a candidate interpolant.
- Refine the candidate by CEs till it being verified as a true interpolant




- f 1 Given mutually contradictory nonlinear  $\phi$  and  $\psi$  over common variables  ${f x}.$
- Generate sample points by, e.g., (uniformly) scattering random points.
- $\blacksquare$  Find a classifier by SVMs (with kernel-degree m) as a candidate interpolant.
- Refine the candidate by CEs till it being verified as a true interpolant.



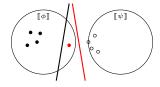

## The NIL Algorithm

- f I Given mutually contradictory nonlinear  $\phi$  and  $\psi$  over common variables  ${f x}.$
- Generate sample points by, e.g., (uniformly) scattering random points.
- $\blacksquare$  Find a classifier by SVMs (with kernel-degree m) as a candidate interpolant.
- Refine the candidate by CEs till it being verified as a true interpolant.



 $\odot$  Sound, and complete when  $\llbracket \phi \rrbracket$  and  $\llbracket \psi \rrbracket$  are bounded sets with positive functional margin.

- f I Given mutually contradictory nonlinear  $\phi$  and  $\psi$  over common variables  ${f x}.$
- Generate sample points by, e.g., (uniformly) scattering random points.
- $\blacksquare$  Find a classifier by SVMs (with kernel-degree m) as a candidate interpolant.
- Refine the candidate by CEs till it being verified as a true interpolant.




- $\odot$  Sound, and complete when  $\llbracket \phi \rrbracket$  and  $\llbracket \psi \rrbracket$  are bounded sets with positive functional margin.
- © Quantifier Elimination (QE) is involved in checking interpolants and generating CEs <sup>1</sup>.

<sup>1.</sup> SMT-solving techniques over nonlinear arithmetic do not suffice.

### The NIL Algorithm

- f I Given mutually contradictory nonlinear  $\phi$  and  $\psi$  over common variables  ${f x}.$
- Generate sample points by, e.g., (uniformly) scattering random points.
- Find a classifier by SVMs (with kernel-degree *m*) as a candidate interpolant.
- Refine the candidate by CEs till it being verified as a true interpolant.

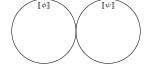


- $\odot$  Sound, and complete when  $\llbracket \phi \rrbracket$  and  $\llbracket \psi \rrbracket$  are bounded sets with positive functional margin.
- © Quantifier Elimination (QE) is involved in checking interpolants and generating CEs 1.
- May not terminate in cases with zero functional margin.
- 1. SMT-solving techniques over nonlinear arithmetic do not suffice.

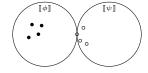
|                  | QE-based method                                                                                                                      | NIL                                    |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Logical strength | strongest: $\exists \mathbf{y}.\ \phi(\mathbf{x},\mathbf{y})$<br>weakest: $\exists \exists \mathbf{z}.\ \psi(\mathbf{x},\mathbf{z})$ | $medium \Rightarrow robust$            |
| Complexity of I  | $directprojection \Rightarrow complicated$                                                                                           | single polynomial $\Rightarrow$ simple |
| Efficiency       | doubly exponential                                                                                                                   | $n \times$ doubly exponential          |

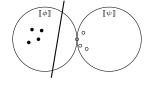
|                  | QE-based method                                                                                                                     | NIL                                   |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Logical strength | strongest : $\exists \mathbf{y}.\ \phi(\mathbf{x},\mathbf{y})$<br>weakest : $\neg \exists \mathbf{z}.\ \psi(\mathbf{x},\mathbf{z})$ | $medium \Rightarrow robust$           |
| Complexity of I  | $directprojection \Rightarrow complicated$                                                                                          | $single\;polynomial\Rightarrowsimple$ |
| Efficiency       | doubly exponential                                                                                                                  | $n \times$ doubly exponential         |

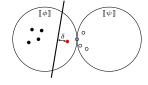
|                  | QE-based method                                                                                                                     | NIL                                     |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Logical strength | strongest : $\exists \mathbf{y}.\ \phi(\mathbf{x},\mathbf{y})$<br>weakest : $\neg \exists \mathbf{z}.\ \psi(\mathbf{x},\mathbf{z})$ | $medium \Rightarrow robust$             |
| Complexity of I  | $directprojection \Rightarrow complicated$                                                                                          | $single\;polynomial \Rightarrow simple$ |
| Efficiency       | doubly exponential                                                                                                                  | $n \times$ doubly exponential           |

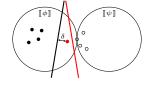

|                        | QE-based method                                                                                                                        | NIL                                   |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Logical strength       | strongest : $\exists \mathbf{y}.\ \phi(\mathbf{x},\mathbf{y})$<br>weakest : $\exists \exists \mathbf{z}.\ \psi(\mathbf{x},\mathbf{z})$ | $medium \Rightarrow robust$           |
| Complexity of <i>I</i> | $directprojection \Rightarrow complicated$                                                                                             | $single\;polynomial\Rightarrowsimple$ |
| Efficiency             | doubly exponential                                                                                                                     | $n \times$ doubly exponential         |

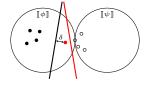
|                  | QE-based method                                                                                                                        | NIL                                     |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Logical strength | strongest : $\exists \mathbf{y}.\ \phi(\mathbf{x},\mathbf{y})$<br>weakest : $\exists \exists \mathbf{z}.\ \psi(\mathbf{x},\mathbf{z})$ | $medium \Rightarrow robust$             |
| Complexity of I  | $direct\ projection \Rightarrow complicated$                                                                                           | $single\;polynomial \Rightarrow simple$ |
| Efficiency       | doubly exponential                                                                                                                     | $n \times$ doubly exponential           |


QE + template?

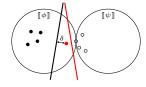

|                  | QE-based method                                                                                                                        | NIL                                     |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Logical strength | strongest : $\exists \mathbf{y}.\ \phi(\mathbf{x},\mathbf{y})$<br>weakest : $\exists \exists \mathbf{z}.\ \psi(\mathbf{x},\mathbf{z})$ | $medium \Rightarrow robust$             |
| Complexity of I  | $direct\ projection \Rightarrow complicated$                                                                                           | $single\;polynomial \Rightarrow simple$ |
| Efficiency       | doubly exponential                                                                                                                     | $n \times$ doubly exponential           |


QE + template? ⇒ Too many unknown parameters.





### $\mathsf{NIL}_\delta$ : For Cases with Zero Functional Margin





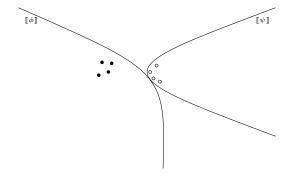




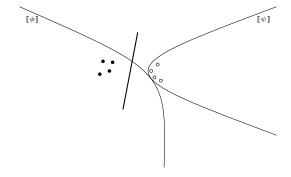




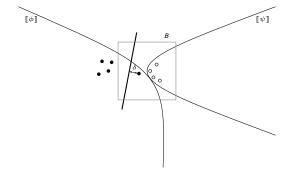
 $\delta$ -sound, and  $\delta$ -complete if  $[\![\phi]\!]$  and  $[\![\psi]\!]$  are bounded sets even with zero functional margin.



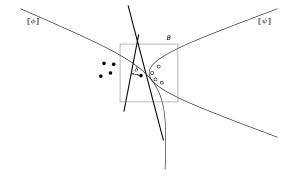

- $\delta$ -sound, and  $\delta$ -complete if  $\llbracket \phi \rrbracket$  and  $\llbracket \psi \rrbracket$  are bounded sets even with zero functional margin.
- May not converge to an actual interpolant when  $\llbracket \phi \rrbracket$  or  $\llbracket \psi \rrbracket$  is unbounded.


## $\overline{NIL_{\delta,B}^*}$ : For Unbounded Cases with Varying Tolerance

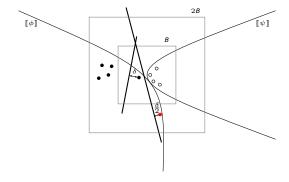



## $NIL_{\delta,B}^*$ : For Unbounded Cases with Varying Tolerance

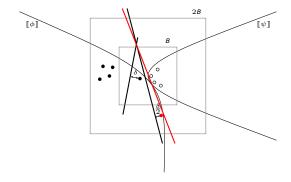



# $NIL_{\delta,B}^*$ : For Unbounded Cases with Varying Tolerance

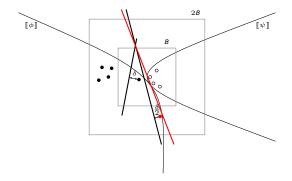



## $\overline{NIL_{\delta,B}^*}$ : For Unbounded Cases with Varying Tolerance




# $NIL_{\delta,B}^*$ : For Unbounded Cases with Varying Tolerance




# $NIL_{\delta,B}^*$ : For Unbounded Cases with Varying Tolerance



# $\overline{\mathsf{NIL}^*_{\delta,B}}$ : For Unbounded Cases with Varying Tolerance



## $NIL_{\delta,B}^*$ : For Unbounded Cases with Varying Tolerance



© The sequence of candidate interpolants converges to an actual interpolant.

### Outline

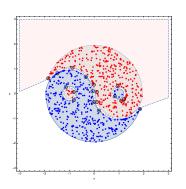
- 1 Interpolation vs. Classification
  - Craig Interpolation
  - Binary Classification
  - Interpolants as Classifiers
- 2 Learning Nonlinear Interpolant
  - SVMs with Nonlinear Space Transformation
  - The NIL Algorithm and its Variants
- 3 Implementation and Evaluation
  - Performance over Benchmarks
  - Perturbations in Parameters
- 4 Concluding Remarks
  - Summary

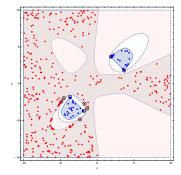
### Implementation Issues

NIL: an open-source tool in Wolfram Mathematica.

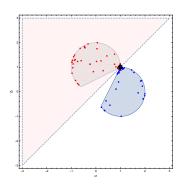
- LIBSVM: SVM classifications:
- Reduce <sup>2</sup>: verification of candidate interpolants;
- FindInstance: generation of counterexamples;
- Rational recovery: rounding off floating-point computations [Lang, Springer NY '12].

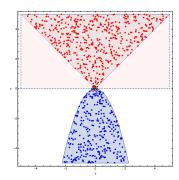



91VIL, 2019

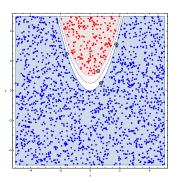

<sup>2.</sup> CAD implementation for quantifier-free fragment of a first-order theory of polynomials over the reals and its appropriate extension to transcendental functions [Strzeboński, J. Symb. Comput. '11].

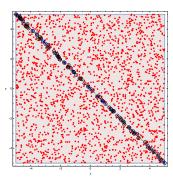
## Benchmark Examples


| Category              | ID | Name                                    | •                                                                                 | *                                                                        | I and the second | Time/s       |
|-----------------------|----|-----------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                       | ,  | Dummy                                   | x < -1<br>$y - x^2 - 1 = 0$                                                       | $x \ge \frac{1}{n}$                                                      | x < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.11         |
|                       | 2  | Necklace                                | $y - x^{n} - 1 = 0$                                                               | $y + x^2 + 1 = 0$                                                        | $-\frac{y}{4} < 0$ $\frac{x^4}{223} - \frac{x^3y}{356} + x^2(\frac{y^2}{45} - \frac{y}{170} - \frac{2}{9}) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.21         |
|                       |    |                                         |                                                                                   | $x^2 + y^2 - 64 \le 0$                                                   | $\frac{\lambda}{200} - \frac{\lambda}{200} + x^2(\frac{y}{40} - \frac{y}{120} - \frac{\lambda}{0}) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|                       |    |                                         | $(x+4)^2 + y^2 - 1 \le 0 \lor$                                                    |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                       | 3  | Face                                    | $(x-4)^2 + y^2 - 1 \le 0$                                                         | $(x+4)^2 + y^2 - 9 \ge 0 \land$                                          | $s(\frac{y^3}{89} + \frac{y^2}{68} - \frac{y}{74} - \frac{1}{55}) + \frac{y^4}{146} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.33         |
|                       |    |                                         | (x-4) +y -x ≤ 0                                                                   | $(x-4)^2 + y^2 - 9 \ge 0$                                                | y <sup>3</sup> y <sup>2</sup> y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                       |    |                                         |                                                                                   |                                                                          | $\frac{y^3}{95} + \frac{y^2}{37} + \frac{y}{366} + 1 < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|                       |    |                                         | $x^2 - 2xy^2 + 3xz - y^2$                                                         |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                       |    |                                         | $-yx+x^2-1 \ge 0 \land$                                                           |                                                                          | $-\frac{x^4}{160} + x^3 \left(\frac{y}{170} - \frac{1}{113}\right) + x^2 \left(-\frac{y^2}{225} + \frac{y}{76} + \frac{2}{27}\right) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
|                       |    |                                         | $\frac{1}{120}(-x^6-y^6)+x^2x^2-$                                                 | $w^2 + 4(x - y)^4 + (x + y)^2 - 80 \le 0 \land$                          | - 160 + x (170 - 113) + x (-225 + 76 + 27) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|                       | 4  | Twisted                                 |                                                                                   | $-w^2(x-y)^4 + 100(x+y)^2 - 3000 > 0$                                    | ( v <sup>3</sup> v <sup>2</sup> 5y 1 \ v <sup>4</sup> v <sup>3</sup> v <sup>2</sup> y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140.62       |
|                       |    |                                         | $x^2 + \frac{1}{\sigma}(x^4 + 2x^2y^2 + y^4) +$                                   |                                                                          | $x\left(\frac{y^3}{259} + \frac{y^2}{63} + \frac{5y}{51} - \frac{1}{316}\right) - \frac{y^4}{183} - \frac{y^3}{94} + \frac{y^2}{14} + \frac{y}{255} - 1 < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|                       |    |                                         | $y^2z^2-y^2-4 < 0$                                                                |                                                                          | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                       |    |                                         | $y^{a}z^{a} - y^{a} - 4 \le 0$                                                    |                                                                          | 27 . v 1 . 22 v 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                       |    |                                         |                                                                                   |                                                                          | $\frac{x^7}{27} + x^6(-\frac{y}{5} - \frac{1}{96}) + x^6(\frac{2y^2}{9} - \frac{y}{32} - \frac{1}{2}) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
|                       |    |                                         | $(x^2 + y^2 - 3.8025 \le 0 \land y \ge 0 \lor)$                                   | $(-3.8025 + x^2 + y^2 \le 0 \land -y \ge 0 \lor$                         | . 2x <sup>3</sup> y 1 - x <sup>4</sup> y <sup>3</sup> 10y <sup>2</sup> y 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| with/without          |    |                                         | $(x-1)^2 + y^2 - 0.9025 \le 0) \land$                                             | $-0.9025 + (-1 - x)^2 + y^2 \le 0) \land$                                | $x^4(-\frac{2y^3}{9} + \frac{y}{3} + \frac{1}{3}) + x^3(\frac{y^4}{11} + \frac{y^3}{10} - \frac{10y^2}{13} + \frac{y}{16} + \frac{15}{16}) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| rounding              |    |                                         | $(x-1)^2 + y^2 - 0.09 > 0.0$                                                      | $-0.09 + (-1 - x)^2 + y^2 > 0$                                           | 1 <sup>2</sup> ر اثر اور کر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
|                       | 5  | Ultimate                                | $(x-1)$ + $y$ - 0.09 > 0 $\wedge$<br>$(x+1)^2 + y^2 - 1.1025 > 0\vee$             | $-0.09 + (-1 - x) + y > 0 \land$<br>$-1.1025 + (1 - x)^2 + y^2 > 0 \lor$ | $s^{2}\left(-\frac{y^{5}}{25} - \frac{y^{4}}{18} - \frac{y^{3}}{3} + \frac{y^{2}}{10} - \frac{1}{32}\right) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48.82        |
|                       |    |                                         |                                                                                   |                                                                          | (y <sup>6</sup> 2y <sup>4</sup> y <sup>3</sup> 2 y 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|                       |    |                                         | $(x+1)^2 + y^2 - \frac{1}{x^2} \le 0$                                             | $-\frac{1}{x} + (1-x)^2 + y^2 \le 0$                                     | $x\left(\frac{g^{6}}{71} + \frac{2g^{4}}{11} - \frac{g^{3}}{25} - g^{2} - \frac{g}{45} - \frac{3}{8}\right) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
|                       |    |                                         | 25                                                                                | 25                                                                       | ر کے دنی کی کی کی                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|                       |    |                                         |                                                                                   |                                                                          | $\frac{y^6}{48} - \frac{y^5}{7} + \frac{y^4}{6} - \frac{y^3}{2} - \frac{y^2}{6} - \frac{y}{59} + \frac{1}{85} < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
|                       |    | UCAR16-1                                | $-x_1^2 + 4x_1 + x_2 - 4 \ge 0 \land$                                             | $-3x_1^2 - x_2^2 + 1 \ge 0 \land x_2 - x^2 \ge 0$                        | $1 - \frac{3x_1}{2} - \frac{x_2}{2} < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.16         |
|                       |    | DCAK10-1                                | $-x_1 - x_2 + 3 - y^2 > 0$<br>$1 - a^2 - b^2 > 0 \land a^2 + b - 1 - x = 0 \land$ | -34 <sub>1</sub> -4 <sub>2</sub> +1 ≥ 0 × 4 <sub>2</sub> -1 ≥ 0          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.10         |
|                       | 7  | CAV13-1                                 |                                                                                   | $x^2 - 2y^2 - 4 > 0$                                                     | $-1 + \frac{x^2}{4} - \frac{y}{4} + \frac{xy}{4} - \frac{y^2}{4} < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.25         |
|                       |    |                                         | b + bx + 1 - y = 0                                                                |                                                                          | $2$ 3 4 $105x^4 + x^2(140y^2 + 24y(5x + 7) + 35x(3x + 8)) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|                       |    |                                         |                                                                                   |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                       |    | CAV13-2                                 | $x^2 + y^2 + x^2 - 2 \ge 0 \land$                                                 | $20 - 3x^2 - 4y^3 - 10x^2 \ge 0 \land$                                   | $2(70y^3z + 5y^2(12x^2 + 21z + 28) - 14y(6x^3 + 5x^2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3857.89      |
|                       |    |                                         | $1.2x^2 + y^2 + xz = 0$                                                           | $x^2 + y^2 - x - 1 = 0$                                                  | $10) - 35(3z^4 + 8z^2 + 4z - 9)) < 14z(20z^2(z + 1) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
|                       |    |                                         |                                                                                   |                                                                          | $10y^2(x+2) - 3y(4x^2 - 5x + 4) - 20x(x^2 + 2))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|                       |    |                                         | $vc < 49.61 \land f\sigma = 0.5418vc^2 \land$                                     |                                                                          | $-1 + \frac{2\pi c_1}{2} < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
|                       | 9  | CAV13-3                                 | $fr \equiv 1000 - fe \land ac \equiv 0.0005 fr \land$                             | $w_1 \ge 49.61$                                                          | $-1 + \frac{201}{99} < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40.63        |
|                       |    |                                         | $w_1 = w + ac$                                                                    |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                       | 10 | Parallel parabola<br>Parallel halfplane | $y - x^2 - 1 \ge 0$<br>$y - x - 1 \ge 0$                                          | y - x <sup>2</sup> < 0                                                   | $\frac{1}{x} + x^2 < y$<br>x < y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.50<br>2.46 |
|                       | 12 | Sharper-1                               | y+1<0                                                                             | y - x + 1 < 0<br>$x^2 + y^2 - 1 \le 0$<br>$y + x^2 < 0$                  | $2 + y < y^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.19         |
|                       | 13 | Sharper-2                               | $y - x > 0 \land x + y > 0$                                                       | $y + x^2 <= 0$                                                           | v > 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.38         |
|                       | 14 | Coincident<br>Adjacent                  | $x + y > 0 \lor x + y < 0$<br>$y - x^2 > 0$                                       | x + y = 0<br>$y - x^2 <= 0$                                              | $(x+y)^2 > 0$<br>$x^2 < y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.18         |
| with<br>rounding      |    |                                         | $-y_1+x_1-2\geq 0 \wedge 2x_2-x_1-1>0 \wedge$                                     | $-z_1 + 2s_2 + 1 \ge 0 \wedge 2z_1 - s_2 - 1 > 0 \wedge$                 | - **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|                       | 16 | LICAR16-2                               | $-y_1^2 - x_1^2 + 2x_1y_1 - 2y_1 + 2x_1 \ge 0 \land$                              | $-x_1^2 - 4x_2^2 + 4x_2x_1 + 3x_1 - 6x_2 - 2 \ge 0 \land$                | $x_1 < x_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.33        |
|                       |    |                                         | $-y_2^2 - y_1^2 - x_2^2 - 4y_1 + 2x_2 - 4 \ge 0$                                  | $-x_1^2 - x_1^2 - x_2^2 + 2x_1 + x_1 - 2x_2 - 1 \ge 0$                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                       |    |                                         | $xa_1 + 2ya_1 \ge 0 \land xa_1 + 2ya_1 - x_1 = 0 \land$                           |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                       | 17 | CAV13-4                                 | $-\ 2so_1\ + yo_1\ -\ y_1\ =\ 0 \ \land \ x - x_1\ -\ 1\ =\ 0 \ \land$            | xe + 2ye < 0                                                             | 2xa + 4ya > 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.10         |
|                       |    |                                         | $y=y_1+x\wedge xa=x-2y\wedge ya=2x+y$                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| beyond<br>polynomials | 18 | TACAS16<br>Transcendental               | $y - x^2 \ge 0$<br>$\sin x > 0.6$                                                 | $y + \cos x - 0.8 \le 0$<br>$\sin x \le 0.4$                             | 15x <sup>2</sup> < 4 + 20y<br>SVM failed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.71        |
| unbalanced            | 20 | Unbalanced                              | x>0.vx<0                                                                          | x = 0                                                                    | x <sup>2</sup> > 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.11         |
| unparanced            | 20 | unparanced                              | x > 0 \ x < 0                                                                     | x = 0                                                                    | x > 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.11         |

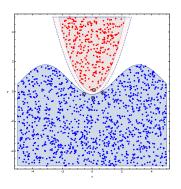

### Beyond the scope of concave quadratic formulas as required in [Gan et al., IJCAR'16]:





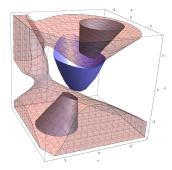


#### Adjacent and sharper cases as in [Okudono et al., APLAS'17]:






### Formulas sharing parallel or coincident boundaries:






Transcendental cases from [Gao & Zufferey, TACAS'16] and [Kupferschmid & Becker, FORMATS'11], yet with simpler interpolants:





Three-dimensional case from [Dai et al., CAV '13], yet with simpler interpolants:



### Interpolants of Simpler Forms

| Name      | Interpolants by NIL                                                   | Interpolants from the sources                                                            |
|-----------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| IJCAR16-1 | $1 - \frac{3x_1}{4} - \frac{x_2}{2} < 0$                              | $-3 + 2x_1 + x_1^2 + \tfrac{1}{2}x_2^2 > 0$                                              |
| CAV13-1   | $-1 + \frac{x^2}{2} - \frac{y}{3} + \frac{xy}{3} - \frac{y^2}{4} < 0$ | $436.45(x^2 - 2y^2 - 4) + \frac{1}{2} \le 0$                                             |
|           |                                                                       | $-14629.26 + 2983.44x_3 + 10972.97x_3^2 +$                                               |
|           |                                                                       | $297.62 x_2 + 297.64 x_2 x_3 + 0.02 x_2 x_3^2 + 9625.61 x_2^2 -$                         |
|           |                                                                       | $1161.80x_2^2x_3 + 0.01x_2^2x_3^2 + 811.93x_2^3 +$                                       |
|           | $105x^4 + x^2(140y^2 + 24y(5z + 7) + 35z(3z + 8)) +$                  | $2745.14x_2^4 - 10648.11x_1 + 3101.42x_1x_3 +$                                           |
| CAV13-2   | $2 (70 y^3 z + 5 y^2 (12 z^2 + 21 z + 28) - 14 y (6 z^3 + 5 z^2 +$    | $8646.17x_1x_3^2 + 511.84x_1x_2 - 1034x_1x_2x_3 +$                                       |
| CAV 13-2  | $10) - 35(3z^4 + 8z^2 + 4z - 9)) < 14x(20x^2(z+1) +$                  | $0.02 x_1 x_2 x_3^2 + 9233.66 x_1 x_2^2 + 1342.55 x_1 x_2^2 x_3 -\\$                     |
|           | $10y^{2}(z+2) - 3y(4z^{2} - 5z + 4) - 20z(z^{2} + 2))$                | $138.70x_1x_2^3 + 11476.61x_1^2 - 3737.70x_1^2x_3 +$                                     |
|           |                                                                       | $4071.65x_1^2x_3^2 - 2153.00x1_2x_2 + 373.14x_1^2x_2x_3 +$                               |
|           |                                                                       | $7616.18x_1^2x_2^2 + 8950.77x_1^3 + 1937.92x_1^3x_3 -$                                   |
|           |                                                                       | $64.07x_1^3x_2 + 4827.25x_1^4 > 0$                                                       |
| CAV13-3   | $-1 + \frac{2\nu c_1}{99} < 0$                                        | -1.3983vc <sub>1</sub> + 69.358 > 0                                                      |
| Sharper-1 | $2 + y < y^2$                                                         | $34y^2 - 68y - 102 \ge 0$                                                                |
| Sharper-2 | y > 0                                                                 | $8y + 4x^2 > 0$                                                                          |
| IJCAR16-2 | $x_1 < x_2$                                                           | $-x_1 + x_2 > 0$                                                                         |
|           |                                                                       | $716.77 + 1326.74 (\it{ya}) + 1.33 (\it{ya})^2 + 433.90 (\it{ya})^3 +$                   |
| CAV13-4   | 2xa + 4ya > 5                                                         | $668.16(xa) - 155.86(xa)(ya) + 317.29(xa)(ya)^2 +$                                       |
|           |                                                                       | $222.00(\mathit{xa})^2 + 592.39(\mathit{xa})^2(\mathit{ya}) + 271.11(\mathit{xa})^3 > 0$ |
|           |                                                                       | $y > 1.8 \lor (0.59 \le y \le 1.8 \land -1.35 \le x \le 1.35) \lor$                      |
| TACAS16   | $15x^2 < 4 + 20y$                                                     | $(0.09 \le y < 0.59 \land -0.77 \le x \le 0.77) \lor$                                    |
|           |                                                                       | $(y \ge 0 \land -0.3 \le x \le 0.3)$                                                     |

## Interpolants of Simpler Forms

| Name      | Interpolants by NIL                                                                                                                                                                                       | Interpolants from the sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IJCAR16-1 | $1 - \frac{3x_1}{4} - \frac{x_2}{2} < 0$                                                                                                                                                                  | $-3 + 2x_1 + x_1^2 + \frac{1}{2}x_2^2 > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CAV13-1   | $-1 + \frac{x^2}{2} - \frac{y}{3} + \frac{xy}{3} - \frac{y^2}{4} < 0$                                                                                                                                     | $436.45(x^2 - 2y^2 - 4) + \frac{1}{2} \le 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CAV13-2   | $\begin{aligned} &105x^4+x^2(140y^2+24y(5z+7)+35z(3z+8))+\\ &2(70y^3z+5y^2(12z^2+21z+28)-14y(6z^3+5z^2+\\ &10)-35(3z^4+8z^2+4z-9))<14x(20x^2(z+1)+\\ &10y^2(z+2)-3y(4z^2-5z+4)-20z(z^2+2)) \end{aligned}$ | $\begin{aligned} &-14629.26 + 2983.44x_3 + 10972.97x_3^2 + \\ &297.62x_2 + 297.64x_2x_3 + 0.02x_2x_3^2 + 9625.61x_2^2 - \\ &1161.80x_2^2x_3 + 0.01x_2^2x_3^2 + 811.93x_2^3 + \\ &2745.14x_2^2 - 10648.11x_1 + 3101.42x_1x_3 + \\ &8646.17x_1x_3^2 + 511.84x_1x_2 - 1034x_1x_2x_3 + \\ &0.02x_1x_2x_3^2 + 9233.66x_1x_2^2 + 1342.55x_1x_2^2x_3 - \\ &138.70x_1x_2^3 + 11476.61x_1^2 - 3737.70x_1^2x_3 + \\ &4071.65x_1^2x_3^2 - 2153.00x_1x_2 + 373.14x_1^2x_2x_3 + \\ &7616.18x_1^2x_2^2 + 8950.77x_1^3 + 1937.92x_1^3x_3 - \\ &64.07x_1^3x_2 + 4827.25x_1^4 > 0 \end{aligned}$ |
| CAV13-3   | $-1 + \frac{2\nu c_1}{99} < 0$                                                                                                                                                                            | -1.3983w <sub>1</sub> + 69.358 > 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sharper-1 | $2 + y < y^2$                                                                                                                                                                                             | $34y^2 - 68y - 102 \ge 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sharper-2 | y > 0                                                                                                                                                                                                     | $8y + 4x^2 > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| IJCAR16-2 | $x_1 < x_2$                                                                                                                                                                                               | $-x_1 + x_2 > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CAV13-4   | 2xa + 4ya > 5                                                                                                                                                                                             | $716.77 + 1326.74(yo) + 1.33(ya)^{2} + 433.90(ya)^{3} +$ $668.16(xa) - 155.86(xa)(ya) + 317.29(xa)(ya)^{2} +$ $222.00(xa)^{2} + 592.39(xa)^{2}(ya) + 271.11(xa)^{3} > 0$                                                                                                                                                                                                                                                                                                                                                                                                        |
| TACAS16   | $15x^2 < 4 + 20y$                                                                                                                                                                                         | $y > 1.8 \lor (0.59 \le y \le 1.8 \land -1.35 \le x \le 1.35) \lor$<br>$(0.09 \le y < 0.59 \land -0.77 \le x \le 0.77) \lor$<br>$(y \ge 0 \land -0.3 \le x \le 0.3)$                                                                                                                                                                                                                                                                                                                                                                                                            |

### Perturbation-Resilient Interpolants

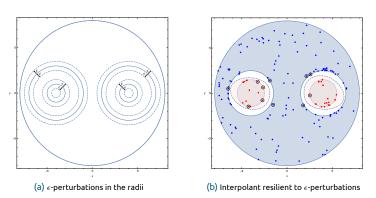



Figure – Introducing  $\epsilon$ -perturbations (say with  $\epsilon$  up to 0.5) in  $\phi$  and  $\psi$ . The synthesized interpolant is hence resilient to any  $\epsilon$ -perturbation in the radii satisfying  $-0.5 < \epsilon < 0.5$ .

### Outline

- 1 Interpolation vs. Classification
  - Craig Interpolation
  - Binary Classification
  - Interpolants as Classifiers
- 2 Learning Nonlinear Interpolant
  - SVMs with Nonlinear Space Transformation
  - The NIL Algorithm and its Variants
- 3 Implementation and Evaluation
  - Performance over Benchmarks
  - Perturbations in Parameters
- 4 Concluding Remarks
  - Summary

## Concluding Remarks

#### Problem: We face that

 polynomial constraints have been shown useful to express invariant properties for programs and hybrid systems,

Implementation & Evaluation

■ little work on synthesizing nonlinear interpolants, which either restricts the input formulae or yields complex results.





### Concluding Remarks

#### Problem: We face that

- polynomial constraints have been shown useful to express invariant properties for programs and hybrid systems,
- little work on synthesizing nonlinear interpolants, which either restricts the input formulae or yields complex results.

#### Status: We present

- a unified, counterexample-guided method for generating polynomial interpolants over the general quantifier-free theory of nonlinear arithmetic.
- soundness of NIL, and sufficient conditions for its completeness and convergence,
- Experimental results indicating that our method suffices to address more interpolation tasks, including those with perturbations in parameters, and in many cases synthesizes simpler interpolants.





### Concluding Remarks

Summary

#### Problem: We face that

- polynomial constraints have been shown useful to express invariant properties for programs and hybrid systems,
- little work on synthesizing nonlinear interpolants, which either restricts the input formulae or yields complex results.

#### Status: We present

- a unified, counterexample-guided method for generating polynomial interpolants over the general quantifier-free theory of nonlinear arithmetic.
- soundness of NIL, and sufficient conditions for its completeness and convergence,
- Experimental results indicating that our method suffices to address more interpolation tasks, including those with perturbations in parameters, and in many cases synthesizes simpler interpolants.

#### Future Work: We plan to

- improve the efficiency of NIL by substituting the general purpose OE procedure with alternative methods,
- combine nonlinear arithmetic with EUFs, by resorting to, e.g., predicate-abstraction techniques,
- investigate the performance of NIL over different classification techniques, e.g., the widespread regression-based methods.
- Efficient and complete methods for general non-linear formulas (on-going, substantial progress)





### Errata

### Theorem (Soundness of NIL)

 $NIL(\phi,\psi,m)$  terminates and returns I if and only if I is an m-polynomial interpolant of  $\phi$  and  $\psi$ .



