
Generating Non-linear Interpolants by Semidefinite
Programming�

Liyun Dai1,3, Bican Xia1, and Naijun Zhan2

1 LMAM & School of Mathematical Sciences, Peking University
2 State Key Laboratory of Computer Science, Institute of Software, CAS

3 Beijing International Center for Mathematical Research, Peking University
dailiyun@pku.edu.cn, xbc@math.pku.edu.cn, znj@ios.ac.cn

Abstract. Interpolation-based techniques have been widely and successfully
applied in the verification of hardware and software, e.g., in bounded-model
checking, CEGAR, SMT, etc., in which the hardest part is how to synthesize
interpolants. Various work for discovering interpolants for propositional logic,
quantifier-free fragments of first-order theories and their combinations have been
proposed. However, little work focuses on discovering polynomial interpolants in
the literature. In this paper, we provide an approach for constructing non-linear
interpolants based on semidefinite programming, and show how to apply such
results to the verification of programs by examples.

Keywords: Craig interpolant, Positivstellensatz Theorem, semidefinite pro-
gramming, program verification.

1 Introduction

It becomes a grand challenge to guarantee the correctness of software, as our modern
life depends more and more on computerized systems. There are lots of verification
techniques based either on model-checking [1], theorem proving [2,3], abstract inter-
pretation [4] or their combination, which have been invented for the verification of
hardware and software, like bounded model-checking [5], CEGAR [6], satisfiability
modulo theories (SMT) [7], etc. Scalability is a bottleneck of these techniques, as many
of real softwares are very complex with different features like complicated data struc-
tures, concurrency, distributed, real-time and hybrid etc. Interpolation-based techniques
provide a powerful mechanism for local and modular reasoning, which indeed improves
the scalability of these techniques, in which the notion of Craig interpolants plays a key
role.

Interpolation-based local and modular reasoning was first applied in theorem prov-
ing by Nelson and Oppen [8], called Nelson-Oppen method. The basic idea of Nelson-
Oppen method is to reduce the satisfiability (validity) of a composite theory into the
ones of its component theories whose satisfiability (validity) have been obtained. The
hardest part of the method, which also determines the efficiency of the method, is to con-
struct a formula using the common part of the component theories for a given formula

� The first two authors are funded by NSFC-11271034, NSFC-11290141 and SYSKF1207, and
the third author is funded by NSFC-91118007, NSFC-60970031 and 2012ZX03039-004.

N. Sharygina and H. Veith (Eds.): CAV 2013, LNCS 8044, pp. 364–380, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Generating Non-linear Interpolants by Semidefinite Programming 365

of the composite theory with Craig’s Interpolation Theorem [9]. In the past decade, the
Nelson-Oppen method was further extended to SMT which is based on DPLL [10] and
Craig’s Interpolation Theorem for combining different decision procedures in order to
verify a property of programs with complicated data structures. For instance, Z3 [11] in-
tegrates more than 10 different decision procedures up to now, including propositional
logic, equality logic with uninterpreted functions, Presburger arithmetic, array logic,
difference arithmetic, bit vector logic etc.

In recent years, it is noted that interpolation based local and modular reasoning is
quite helpful to improve the scalability of model-checking, in particular for bounded
model-checking of systems with finite or infinite states [5,12,13], CEGAR [14,15], etc.
McMillan first considered how to combine Craig interpolants with bounded model-
checking to verify infinite state systems [12]. The basic idea of his approach is to
generate invariants using Craig interpolants, so that it can be claimed that an infinite
state system satisfies a property after k steps in model-checking whenever an invari-
ant, which is strong enough to guarantee the property, is obtained. In [14,15,16], how
to apply the local property of Craig interpolants generated from a counter-example to
refine the abstract model in order to exclude the spurious counter-example in CEGAR
was investigated. Meanwhile, in [17], using interpolation technique to generate a set
of atomic predicates as the base of machine-learning based verification technique was
investigated by Wang et al.

Obviously, synthesizing Craig interpolants is the cornerstone of interpolation based
techniques. In fact, many approaches have been proposed in the literature. In [13],
McMillan presented a method for deriving Craig interpolants from proofs in the
quantifier-free theory of linear inequality and uninterpreted function symbols, and based
on which an interpolating theorem prover was provided. In [15], Henzinger et al. pro-
posed a method to synthesize Craig interpolants for a theory with arithmetic and pointer
expressions, as well as call-by-value functions. In [18], Yorsh and Musuvathi presented
a combination method to generate Craig interpolants for a class of first-order theories.
In [19], Kapur et al presented different efficient procedures to construct interpolants for
the theories of arrays, sets and multisets using the reduction approach. Rybalchenko and
Sofronie-Stokkermans [20] proposed an approach to reducing the synthesis of Craig in-
terpolants of the combined theory of linear arithmetic and uninterpreted function sym-
bols to constraint solving.

However, in the literature, there is little work on how to synthesize non-linear inter-
polants, except that in [21] Kupferschmid and Becker provided a method to construct
non-linear Craig Interpolant using iSAT, which is a variant of SMT solver based on
interval arithmetic.

In this paper we investigate how to construct non-linear interpolants. The idea of our
approach is as follows: Firstly, we reduce the problem of generating interpolants for two
arbitrary polynomial formulas to that of generating interpolants for two semi-algebraic
systems (SASs), which is a conjunction of a set of polynomial equations, inequations
and inequalities (see the definition later). Then, by Positivstellensatz Theorem [22],
there exists a witness to indicate that the considered two SASs do not have common
real solutions if their conjunction is unsatisfiable. Parrilo in [23,24] gave an approach
for constructing the witness by applying semidefinite programming [25]. Our algorithm

366 L. Dai, B. Xia, and N. Zhan

invokes Parrilo’s method as a subroutine. Our purpose is to construct Craig interpolants,
so we need to obtain a special witness. In general, we cannot guarantee the existence
of the special witness, which means that our approach is sound but incomplete. How-
ever, we discuss that if the considered two SASs meet the Archimedean condition, (e.g.
each variable occurring in the SASs is bounded, which is a reasonable assumption in
practice), our approach is not only sound, but also complete. We demonstrate our ap-
proach by some examples, in particular, we show how to apply the results to program
verification by examples.

The complexity of our approach is polynomial in ud
(
n+d/2

n

)(
n+d
n

)
, where u is the

number of polynomial constraints in the considered problem, n is the number of vari-
ables, and d is the highest degree of polynomials and interpolants. So, the complexity
of our approach is polynomial in d for a given problem in which n and u are fixed.

Structure of the Paper: The rest of the paper is organized as follows. By a running
example, we sketch our approach and show how to apply it to program verification in
Section 2. Some necessary preliminaries are introduced in Section 3. A sound but in-
complete algorithm for synthesizing non-linear interpolants in general case is described
in Section 4. Section 5 provides a practical algorithm for systems containing only non-
strict inequalities and satisfying the Archimedean condition. Section 6 focuses on the
correctness and complexity analysis of our approach. Our implementation and exper-
imental results are briefly reported in Section 7. Section 8 summarizes the paper and
discusses future work.

2 An Overview of Our Approach

In this section, we sketch our approach and show how to apply our results to program
verification by an example.

1 IF (x ∗ x+ y ∗ y < 1)
2 { /* initial values */
3 WHILE (x ∗ x+ y ∗ y < 3)
4 { x := x ∗ x+ y − 1;
5 y := y + x ∗ y + 1;
6 IF (x ∗ x− 2 ∗ y ∗ y − 4 > 0)
7 /* unsafe area */
8 error(); } }

g1 = 1− x2 − y2 > 0

g2 = 3− x2 − y2 > 0
f1 = x2 + y − 1− x′ = 0
f2 = y + x′y + 1− y′ = 0
g3 = x′2 − 2y′2 − 4 > 0

Code 1.1

Consider the program in Code 1.1 (left part). This program tests the initial value of x and
y at line 1, afterwards executes the while loop with x2 + y2 < 3 as the loop condition.
The body of the while loop contains two assignments and an if statement in sequence.
The property we wish to check is that error() procedure will never be executed. Suppose
there is an execution 1 → 3 → 4 → 5 → 6 → 8. We can encode such an execution by the
formulas in Code 1.1 (right part). Note that in these formulas we use unprimed and
primed versions of each variable to represent the values of the variable before and after

Generating Non-linear Interpolants by Semidefinite Programming 367

updating respectively. Obviously, the execution is infeasible iff the conjunction of these
formulas is unsatisfiable. Let φ � g1 > 0 ∧ f1 = 0 ∧ f2 = 01 and ψ � g3 > 0. To show
φ ∧ ψ is unsatisfiable, we need to construct an interpolant θ for φ and ψ, i.e., φ⇒ θ and
θ ⇒ ¬ψ. If there exist δ1, δ2, δ3, h1, h2 such that

g1δ1 + f1h1 + f2h2 + g3δ2 + δ3 = −1,

where δ1, δ2, δ3 ∈ R[x, y, x′, y′] are sums of squares and h1, h2 ∈ R[x, y, x′, y′], then
θ � g3δ2 +

1
2
≤ 0 is such an interpolant for φ and ψ. In this example, applying our tool

AiSat, we obtain in 0.025 seconds that

h1 = −290.17 − 56.86y′ + 1109.95x′ + 37.59y − 32.20yy′ + 386.77yx′ + 203.88y2 + 107.91x2,

h2 = −65.71 + 0.39y
′
+ 244.14x

′
+ 274.80y + 69.33yy

′ − 193.42yx
′ − 88.18y

2 − 105.63x
2
,

δ1 = 797.74 − 31.38y′ + 466.12y′2 + 506.26x′ + 79.87x′y′ + 402.44x′2 + 104.43y

+41.09yy
′ − 70.14yx

′
+ 451.64y

2
+ 578.94x

2

δ2 = 436.45,

δ3 = 722.62 − 91.59y′ + 407.17y′2 + 69.39x′ + 107.41x′y′ + 271.06x′2 + 14.23y + 188.65yy′

+69.33yy′2 − 600.47yx′ − 226.01yx′y′ + 142.62yx′2 + 325.78y2 − 156.69y2y′ + 466.12y2y′2

+10.54y2x′y′ + 595.87y2x′2 − 11.26y3 + 41.09y3y′ + 18.04y3x′ + 451.64y4 + 722.52x2

−80.15x2y′ + 466.12x2y′2 − 495.78x2x′ + 79.87x2x′y′ + 402.44x2x′2 + 64.57x2y

+241.99y2x′ + 73.29x2yy′ − 351.27x2yx′ + 826.70x2y2 + 471.03x4.

Note that δ1 can be represented as 923.42(0.90 + 0.7y− 0.1y′ +0.43x′)2 +252.84(0.42−
0.28y+0.21y′−0.84x′)2+461.69(−0.1−0.83y+0.44y′ +0.34x′)2+478(−0.06+0.48y+

0.87y′+0.03x′)2+578.94(x)2. Similarly, δ2 and δ3 can be represented as sums of squares
also.

Moreover, using the approach in [26], we can prove θ is an inductive invariant of the
loop, therefore, error() will never be executed.

3 Theoretical Foundations

In this section, for self-containedness, we briefly introduce some basic notions and
mathematical theories, based on which our approach is developed.

3.1 Problem Description

Definition 1 (Interpolants). A theory T has interpolant if for all formulae φ and ψ in
the signature of T , if |=T (φ ∧ ψ) ⇒ ⊥, then there exists a formula Θ that contains only
symbols that φ and ψ share such that φ |=T Θ and |=T (ψ ∧Θ) ⇒ ⊥.

In what follows, we denote by x a variable vector2(x1, · · · , xn) in R
n, and by R[x] the

polynomial ring with real coefficients in variables x.
A semi-algebraic system (SAS) T (x) is of the form

∧k
j=0 fj(x) �j 0, where fj are

polynomials in R[x] and �j ∈ {=, �=,≥}. Clearly, any polynomial formula φ can be rep-
resented as the disjunction of several SASs. Let φ1 =

∨m
t=1 T1t(x), φ2 =

∨n
l=1 T2l(x) be

1 As g1 > 0 ⇒ g2 > 0, we ignore g2 > 0 in φ.
2 In the following, we also abuse x to denote the set of variables {x1, . . . , xn}.

368 L. Dai, B. Xia, and N. Zhan

two polynomial formulas in R[x], and φ1 ∧ φ2 |= ⊥, i.e., φ1 and φ2 do not share any
real solutions. Then, the problem to be considered in this paper is how to find another
polynomial formula I such that φ1 |= I and I ∧ φ2 |= ⊥.

It is easy to show that if, for each t and l, there is an interpolant Itl for SASs T1t(x)

and T2l(x), then I =
∨m

t=1

∧n
l=1 Itl is an interpolant of φ1 and φ2. Thus, we only need to

consider how to construct interpolants for two SASs in the rest of this paper.

Discussions on Common Variables: In reality, it is more likely that φ1 and φ2 in
the above problem description are over different sets of variables, say over x1 and x2

respectively, and x1 �= x2. So, we need to reduce the interpolant generation of φ1 and
φ2 to that of another two formulas that share the common variables first. A simple way
to achieve this is through introducing ∃x1 − x2 over φ1(x1) and ∃x2 − x1 over φ2(x2),
then apply quantifier elimination to ∃x1 − x2.φ1(x1) and ∃x2 − x1.φ2(x2), and obtain
two formulas on the common variables x1 ∩ x2. Obviously, the interpolant generation
problem of φ1 and φ2 is reduced to that of the two resulted formulas.

But in practice, as the cost of quantifier elimination is very high, we can adopt the
following more efficient way. For each x ∈ x1 − x2, if x is a local variable introduced
in the respective program, we always have an equation x = h corresponding to the as-
signment to x (possibly the composition of a sequence of assignments to x); otherwise,
x is a global variable, but only occurring in φ1. For this case, we introduce an equation
x = x to φ2; Symmetrically, each x ∈ x2 − x1 can be coped with similarly. The detailed
discussion can be found in the full version of this paper [27].

So, in what follows, we assume any two SASs share the common variables if no
otherwise stated.

3.2 Real Algebraic Geometry

In this subsection, we introduce some basic notions and results on real algebraic geom-
etry, that will be used later.

Definition 2 (ideal). Let I be an ideal in R[x], that is, I is an additive subgroup of R[x]
satisfying fg ∈ I whenever f ∈ I and g ∈ R[x]. Given h1, . . . , hm ∈ R[x], 〈h1, . . . , hm〉={∑m

j=1 ujhj | u1, . . . , um ∈ R[x]
}

denotes the ideal generated by h1, . . . , hm.

Definition 3 (multiplicative monoid). Given a polynomial set P , let Mult(P) be the
multiplicative monoid generated by P , i.e., the set of finite products of the elements of
P (including the empty product which is defined to be 1).

Definition 4 (Cone). A cone C of R[x] is a subset of R[x] satisfying the following condi-
tions: (i) p1, p2 ∈ C ⇒ p1 + p2 ∈ C; (ii) p1, p2 ∈ C ⇒ p1p2 ∈ C; (iii) p ∈ R[x] ⇒ p2 ∈ C.

Given a set P ⊆ R[x], let C(P) be the smallest cone of R[x] that contains P . It is easy
to see that C(∅) corresponds to the polynomials that can be represented as a sum of
squares, and is the smallest cone in R[x], i.e.,

{ ∑s
i=1 p

2
i | p1, . . . , ps ∈ R[x]

}
, denoted

by SOS. For a finite set P ⊆ R[x], C(P) can be represented as:

C(P) = {
r∑

i=1

qipi | q1, . . . , qr ∈ C(∅), p1, . . . , pr ∈ Mult(P)}.

Generating Non-linear Interpolants by Semidefinite Programming 369

Positivstellensatz Theorem, due to Stengle [22], is an important theorem in real alge-
braic geometry. It states that, for a given SAS, either the system has real solution(s), or
there exists a polynomial to indicate that the system has no solution.

Theorem 1 (Positivestellensatz Theorem, [22]). Let (fj)sj=1, (gk)
t
k=1, (hl)

u
l=1 be finite

families of polynomials in R[x]. Denote by C the cone generated by (fj)
s
j=1, Mult the

multiplicative monoid generated by (gk)
t
k=1, and I the ideal generated by (hl)

u
l=1. Then

the following two statements are equivalent:

1. the SAS

⎧
⎨

⎩

f1(x) ≥ 0, · · · , fs(x) ≥ 0,
g1(x) �= 0, · · · , gt(x) �= 0,
h1(x) = 0, · · · , hu(x) = 0

has no real solutions;

2. there exist f ∈ C, g ∈ Mult, h ∈ I such that f + g2 + h ≡ 0.

3.3 Semidefinite Programming

In [22], Stengle did not provide a constructive proof for Theorem 1. However, Parrilo in
[23,24] provided a constructive way to obtain the witness, which is based on semidefi-
nite programming. Parrilo’s result will be the starting point of our method, so we briefly
review semidefinite programming below. We use Symn to denote the set of n× n real
symmetric matrices, and deg(f) the highest total degree of f for a given polynomial f
in the sequel.

Definition 5 (Positive semidefinite matrix). A matrix M ∈ Symn is called positive
semidefinite, denoted by M � 0, if xTMx ≥ 0 for all x ∈ R

n.

Definition 6. The inner product of two matrices A = (aij), B = (bij) ∈ R
n×n, denoted

by 〈A,B〉, is defined by Tr(ATB) =
∑n

i,j=1 aijbij .

Definition 7 (Semidefinite programming (SDP)). The standard (primal) and dual
forms of a SDP are respectively given in the following:

p∗ = inf
X∈Symn

〈C,X〉 s.t. X � 0, 〈Aj , X〉 = bj (j = 1, . . . ,m) (1)

d∗ = sup
y∈Rm

bTy s.t.
m∑

j=1

yjAj + S = C, S � 0, (2)

where C,A1, . . . , Am, S ∈ Symn and b ∈ R
m.

There are many efficient algorithms to solve SDP such as interior-point method. We
present a basic path-following algorithm to solve (1) in the following.

Definition 8 (Interior point for SDP).

intFp = {X : 〈Ai, X〉 = bi (i = 1, . . . ,m), X � 0} ,

intFd =

{

(y, S) : S = C −
m∑

i=1

Aiyi � 0

}

,

intF = intFp × intFd.

Obviously, 〈C,X〉 − bTy = 〈X,S〉 > 0 for all (X,y, S) ∈ intF. Especially, we have
d∗ ≤ p∗. So the soul of interior-point method to compute p∗ is to reduce 〈X,S〉
incessantly and meanwhile guarantee (X,y, S) ∈ intF.

370 L. Dai, B. Xia, and N. Zhan

Algorithm 1. Interior Point Method

input : C,Aj , bj (j = 1, . . . , m) as in (1) and a threshold c
output: p∗

1 Given a (X,y, S) ∈ intF and XS = μI ;
/* μ is a positive constant and I is the identity matrix. */

2 while μ > c do
3 μ = γμ;

/* γ is a fixed positive constant less than one */
4 use Newton iteration to solve (X,y, S) ∈ intF with XS = μI ;
5 end

3.4 Constructive Proof of Theorem 1 Using SDP

Given a polynomial f(x) of degree no more than 2d, f can be rewritten as f = ZTQZ

where Z is a vector consists of all monomials of degrees no more than d,

e.g., Z =
[
1, x1, x2, . . . , xn, x1x2, x2x3, . . . , x

d
n

]T , and Q =

⎛

⎜
⎜
⎜
⎜
⎝

a1
ax1
2

· · · axn
2ax1

2
ax2

1
· · · ax1xn

2

...
...

. . .
...

axn
2

ax1xn

2
· · · axd

n

⎞

⎟
⎟
⎟
⎟
⎠

is

a symmetric matrix. Note that here Q is not unique in general. Moreover, f ∈ C(∅) iff
there is a positive semidefinite constant matrix Q such that f(x) = ZTQZ. The fol-
lowing lemma is an obvious fact on how to use the above notations to express the
polynomial multiplication.

Lemma 1. Given polynomials f1, . . . , fn, g1, . . . , gn, assume
∑n

i=1 figi =
∑s

i=1 cimi,
where ci ∈ R andmis are monomials, gi = ZTQ2iZ, andQ2 = diag(Q21, . . . , Q2n). Then
there exist symmetric matrices Q11, . . . , Q1s such that ci = 〈Q1i, Q2〉, i.e.,

∑n
i=1 figi =∑s

i=1 〈Q1i, Q2〉mi, in which Q1i can be constructed from the coefficients of f1, . . . , fn.

Example 1. Let f = a20x
2
1 + a11x1x2 + a02x

2
2 and g = b00 + b10x1 + b01x2. Then, fg =

〈Q11,Q2〉x2
1+〈Q12,Q2〉 x1x2+〈Q13,Q2〉 x2

2+〈Q14,Q2〉 x1x
2
2 〈Q15,Q2〉 x2

1x2+〈Q16,Q2〉x3
2+

〈Q17,Q2〉x3
1 , where

Q2=

⎛

⎝
b00

b10
2

b01
2

b10
2

0 0
b01
2

0 0

⎞

⎠, Q11=

⎛

⎝
a20 0 0
0 0 0
0 0 0

⎞

⎠, Q12=

⎛

⎝
a11 0 0
0 0 0
0 0 0

⎞

⎠, Q13=

⎛

⎝
a02 0 0
0 0 0
0 0 0

⎞

⎠,

Q14=

⎛

⎝
0 a02

2
a11
2

a02
2

0 0
a11
2

0 0

⎞

⎠, Q15=

⎛

⎝
0 a11

2
a20
2

a11
2

0 0
a20
2

0 0

⎞

⎠, Q16=

⎛

⎝
0 0 a02

2

0 0 0
a02
2

0 0

⎞

⎠, Q17=

⎛

⎝
0 a02

2
0

a02
2

0 0
0 0 0

⎞

⎠.

Back to Theorem 1. We show how to find f ∈ C, g ∈ Mult, h ∈ I such that f + g2 + h

≡ 0 via SDP solving. First, since f ∈ C, f can be written as a sum of the products of some
known polynomials and some unknown SOSs. Second, h ∈ I({h1, . . . , hu}) is equiva-
lent to h = h1p1 + · · ·+ hupu, which is further equivalent to h = h1(q11 − q12) + · · ·+
hu(qu1 − qu2), where pi, qij ∈ R[x] and qij ∈ SOS3. Third, fix an integer d > 0, let

3 For example, let qi1 = (1
4
pi + 1)2, qi2 = (1

4
pi − 1)2.

Generating Non-linear Interpolants by Semidefinite Programming 371

Algorithm 2. Certificate Generation

input : {f1, . . . , fn} , g, {h1, . . . , hu} , b
output: either {p0, . . . , pn} and {q1, . . . , qu} such that

1 + p0 + p1f1 + · · ·+ pnfn + g + q1h1 + · · ·+ quhu ≡ 0, or NULL

1 Let q11, q12, q21, q22, . . . , qu1, qu2 ∈ SOS with deg(qi1) ≤ b and deg(qi2) ≤ b be
undetermined SOS polynomials;

2 Let p0, p1, . . . , pn ∈ SOS with deg(pi) ≤ b be undetermined SOS polynomials;
3 Let f = 1 + p0 + p1f1 + · · ·+ pnfn + g + (q11 − q12)h1 + · · ·+ (qu1 − qu2)hu;
4 for every monomial m ∈ f do
5 Let 〈Qm, Q〉 = coeff(f,m);

/* Applying Lemma 1 */
/* coeff(f,m) the coefficient of monomial m in f */
/* Z is a monomial vector that contains all monomials

with coefficient 1 and degree no more than b/2 */

/* p0 = ZTQ0Z, p1 = ZTQ1Z, . . . , pn = ZTQnZ */

/* qi1 = ZTQi1Z, qi2 = ZTQi2Z, i = 1, . . . , u */
/* Q = diag(1,Q0, Q1, . . . , Qn, 1, Q11, Q12, . . . , Qu1, Qu2) */

6 end
7 Applying SDP software CSDP to solve whether there exists a semi-definite symmetric

matrix Q s.t. 〈Qm, Q〉 = 0 for every monomial m ∈ f
8 if the return of CSDP is feasible then

/* qi = qi1 − qi2 */
9 return{p0, . . . , pn} , {q1, . . . , qu}

10 else
11 return NULL
12 end

g = (Πt
i=1gi)

d, and then f + g2 + h can be written as
∑l

i=1 f
′
iδi, where l is a constant

integer, f ′
i ∈ R[x] are known polynomials and δi ∈ SOS are undermined SOS poly-

nomials. Therefore, Theorem 1 is reduced to fixing a sufficiently large integer d and
finding undetermined SOS polynomials δi occurring in f, h with degrees no more than
deg(g2), satisfying f + g2 + h ≡ 0. Based on Lemma 1, this is a SDP problem of form
(1). The constraints of the SDP are of the form 〈Aj , X〉 = 0, whereAj andX correspond
to Q1j and Q2 in Lemma 1, respectively. And Q2 is a block diag matrix whose blocks
correspond to the undetermined SOS polynomials in the above discussion.

Theorem 2 ([23]). Consider a system of polynomial equalities and inequalities of the
form in Theorem 1. Then the search for bounded degree Positivstellensatz refutations
can be done using semidefinite programming. If the degree bound is chosen to be large
enough, then the SDPs will be feasible, and the certificates can be obtained from its
solution.

Algorithm 2 is an implementation of Theorem 2 and we will invoke Algorithm 2 as a
subroutine later. Note that Algorithm 2 is a little different from the original one in [24],
as here we require that f has 1 as a summand for our specific purpose.

372 L. Dai, B. Xia, and N. Zhan

4 Synthesizing Non-linear Interpolants in General Case

As discussed before, we only need to consider how to synthesize interpolants for the
following two specific SASs

T1 =

⎧
⎨

⎩

f1(x) ≥ 0, . . . , fs1(x) ≥ 0,
g1(x) �= 0, . . . , gt1(x) �= 0,
h1(x) = 0, . . . , hu1(x) = 0

T2 =

⎧
⎨

⎩

fs1+1(x) ≥ 0, . . . , fs(x) ≥ 0,
gt1+1(x) �= 0, . . . , gt(x) �= 0,
hu1+l(x) = 0, . . . , hu(x) = 0

(3)

where T1 and T2 do not share any real solutions.
By Theorems 1&2, there exist f ∈ C({f1, . . . , fs}), g ∈ Mult({g1, . . . , gt}) and h ∈

I({h1, . . . , hu}) such that f + g2 + h ≡ 0, where

g = Πt
i=1g

2m
i ,

h = q1h1 + · · ·+ qu1hu1 + · · ·+ quhu,

f = p0 + p1f1 + · · ·+ psfs + p12f1f2 + · · ·+ p1...sf1 . . . fs.

in which qi and pi are in SOS.
If f can be represented by three parts: the first part is an SOS polynomial that

is greater than 0, the second part is from C({f1, . . . , fs1}), and the last part is from
C({fs1+1, . . . , fs}), i.e., f = p0 +

∑
v⊆{1,...,s1} pv(Πi∈vfi) +

∑
v⊆{s1+1,...,s} pv(Πi∈vfi),

where ∀x∈R
n.p0(x) > 0 and pv ∈ SOS. Then let

fT1 =
∑

v⊆1,...,s1

pvΠi∈vfi, hT1 = q1h1 + · · ·+ qu1hu1 ,

fT2 =
∑

v⊆s1+1,...,s

pvΠi∈vfi, hT2 = h− hT1 ,

q = fT1 + g2 + hT1 +
p0
2

= −(fT2 + hT2)−
p0
2
.

Obviously, we have ∀x∈T1.q(x) > 0 and ∀x∈T2.q(x) < 0. Thus, let I = q(x) > 0. We
have T1 |= I and I ∧ T2 |=⊥.

Notice that because the requirement on f cannot be guaranteed in general, the above
approach is not complete generally. We will discuss under which condition the re-
quirement can be guaranteed in the next section. We implement the above method for
synthesizing non-linear interpolants in general case by Algorithm 3.

Example 2. Consider

T1 =

⎧
⎨

⎩

x2
1 + x2

2 + x2
3 − 2 ≥ 0,

x1 + x2 + x3 �= 0,
1.2x2

1 + x2
2 + x1x3 = 0

and T2 =

⎧
⎨

⎩

−3x2
1 − 4x3

2 − 10x2
3 + 20 ≥ 0,

2x1 + 3x2 − 4x3 �= 0,
x2
1 + x2

2 − x3 − 1 = 0

Generating Non-linear Interpolants by Semidefinite Programming 373

Algorithm 3. SN Interpolants

input : T1 and T2 of the form (3), b
output: An interpolant I or NULL

1 g := Πt
k=1g

2
k

2 g := g
� b
deg(g)

�

3 {ft1} := {Πi∈vfi for v ⊆ {1, . . . , s1}} ;
4 {ft2} := {Πi∈vfi for v ⊆ {s1 + 1, . . . , s}};
5 sdp:=Certificate Generation({ft1} ∪ {ft2}, g, {h1, . . . , hu} , b)
6 if sdp ≡ NULL then
7 return NULL
8 else
9 I := 1

2
+

∑
v⊆{1,...,s1} pvΠi∈vfi + q1h1 + · · ·+ qu1hu1 + g > 0;

10 return I ;
11 end

Fig. 1. Examples

Clearly, T1 and T2 do not share any real solutions, see Fig. 1 (the first part) 4. By
setting b = 2, after calling Certificate Generation, we obtain an interpolant I
with 30 monomials −14629.26 + 2983.44x3 + 10972.97x2

3 + 297.62x2 + 297.64x2x3 +

0.02x2x
2
3+9625.61x2

2 − 1161.80x2
2x3+0.01x2

2x
2
3+811.93x3

2 +2745.14x4
2 − 10648.11x1 +

3101.42x1x3+8646.17x1x
2
3+511.84x1x2−1034.31x1x2x3+0.02x1x2x

2
3+9233.66x1x

2
2+

1342.55x1x
2
2x3−138.70x1x

3
2+11476.61x2

1−3737.70x2
1x3+4071.65x2

1x
2
3−2153.00x2

1x2+

373.14x2
1x2x3 + 7616.18x2

1x
2
2 + 8950.77x3

1 + 1937.92x3
1x3 − 64.07x3

1x2 + 4827.25x4
1 > 0,

whose figure is depicted in Fig. 1 (the second part). ��

5 A Complete Algorithm under Archimedean Condition

Our approach to synthesizing non-linear interpolants presented in Section 4 is incom-
plete generally as it requires that the polynomial f in C({f1, . . . , fs}) produced by Al-
gorithm 2 can be represented by the sum of three polynomials, one of which is positive,

4 For simplicity, we do not draw x1 + x2 + x3 �= 0, nor 2x1 + 3x2 − 4x3 �= 0 in the figure.

374 L. Dai, B. Xia, and N. Zhan

the other two polynomials are from C({f1, . . . , fs1}) and C({fs1+1, . . . , fs}) respectively.
In this section, we show, under Archimedean condition, the requirement can be indeed
guaranteed. Thus, our approach will become complete. In particular, we shall argue
Archimedean condition is a necessary and reasonable restriction in practice.

5.1 Archimedean Condition

To the end, we need more knowledge of real algebraic geometry.

Definition 9 (quadratic module). For g1, . . . , gm ∈ R[x], the set M(g1, . . . , gm) = {δ0+∑m
j=1 δjgj | δ0, δj ∈ C(∅)} is called the quadratic module generated by g1, . . . , gm. A

quadratic module M is called proper if −1 /∈ M (i.e. M �= R[x]). A quadratic mod-
ule M is maximal if for any p ∈ R[x] ∩M, M∪ {p} is not a quadratic module.

In the sequel, we use −M to denote {−p | p ∈ M} for a given quadratic module M.
The following results are adapted from [22,28] and will be used later, whose proofs

can be found in [22,28].

Lemma 2 ([22,28]).

1) If M ⊆ R[x] is a quadratic module, then I = M∩−M is an ideal.
2) If M ⊆ R[x] is a maximal proper quadratic module, then M∪−M = R[x].
3) {x ∈ R

n | f(x) ≥ 0} is a compact set5 for some f ∈ M({f1, . . . , fs}) iff

∀p ∈ R[x], ∃n ∈ N.n± p ∈ M(f1, . . . , fs). (4)

Definition 10 (Archimedean). For g1, . . . , gm ∈ R[x], the quadratic module M(g1, . . . ,

gm) is said to be Archimedean if the condition (4) holds.

Let T1 = f1(x) ≥ 0, . . . , fs1(x) ≥ 0 and T2 = fs1+1(x) ≥ 0, . . . , fs(x) ≥ 0 (5)

be two SASs, which contains constraints cl ≤ xi ≤ cr for every xi ∈ x, where cl and
cr are reals, and T1 and T2 do not share real solutions.

Proposition 1. Suppose {f1(x), . . . , fs(x)} is given in (5), which contains constraints
cl ≤ xi ≤ cr for every xi ∈ x. We can alway obtain a system {f1(x), . . . , fs′(x)} such
that M (f1, . . . , fs′) is Archimedean and f1 ≥ 0 ∧ · · · ∧ fs ≥ 0 ⇔ f1 ≥ 0 ∧ · · · ∧ fs′ ≥ 0.

Proof. For {f1, . . . , fs} in (5), as any variable is bounded,N −
∑n

i=1 x
2
i ≥ 0 is valid for

some constant N under (5). We denote N −
∑n

i=1 x
2
i by fs+1. If fs+1 ∈ {f1, . . . , fs},

then {f1, . . . , fs} is Archimedean. Otherwise, M(f1, . . . , fs, fs+1) is Archimedean. ��
Lemma 3. [22,28] Let M ⊆ R[x] be a maximal and proper quadratic module, which is
Archimedean, I = M∩−M, and f ∈ R[x], then there exists a ∈ R such that f − a ∈ I.

Lemma 4. If I is an ideal and there exists a = (a1, . . . , an) ∈ R
n such that xi − ai ∈ I

for i = 1, . . . , n, then for any f ∈ R[x], f − f(a) ∈ I.

5 S is a compact set in R
n iff S is a bounded closed set.

Generating Non-linear Interpolants by Semidefinite Programming 375

Proof. Because xi − ai ∈ I for i = 1, . . . , n, 〈x1 − a1, . . . , xn − an〉 ⊆ I. For any
f ∈ R[x], 〈x1 − a1, . . . , xn − an〉 is a radical ideal6 and (f − f(a))(a) = 0, so
f − f(a) ∈ 〈x1 − a1, . . . , xn − an〉 ⊆ I . ��

Theorem 3. Suppose {f1(x), . . . , fs′(x)} is given in Proposition (1). If
∧s′

i=1(fi ≥ 0) is
unsatisfiable i.e.

∧s
i=1(fi ≥ 0) is unsatisfiable, then −1 ∈ M(f1, . . . , fs′).

Proof. By Proposition 1, we only need to prove that the quadratic moduleM(f1, . . . , fs′)

is not proper.
Assume M(f1, . . . , fs′) is proper. By Zorn’s lemma, we can extend M(f1, . . . , fs′)

to a maximal proper quadratic module M ⊇ M(f1, . . . , fs′). Since M(f1, . . . , fs′) is
Archimedean,M is also Archimedean. By Lemma 3, there exists a = (a1, . . . , an) ∈ R

n

such that xi − ai ∈ I = M∩−M for all i ∈ {1, . . . , n}. From Lemma 4, f − f(a) ∈ I

for any f ∈ R[x]. In particular, for f = fj , we have fj(a) = fj − (fj − fj(a)) ∈ M, as
fj ∈ M(f1, . . . , fs′) ⊆ M and −(fj − fj(a)) ∈ M, for j = 1, . . . , s′. Suppose fj(a) < 0,
then there exists y ∈ R such that y2fja = −1 ∈ M, which contradicts to the assumption,
so fj(a) ≥ 0. This contradicts to the unsatisfiability of

∧s′
i=1(fi ≥ 0). ��

By Theorem 3 we have −1 ∈ M(f1, . . . , fs′). So, there exist σ0, . . . , σs′ ∈ C(∅) such that
−1 = σ0 + σ1f1 + · · ·+ σs1fs1 + σs1+1fs1+1 + · · ·+ fs′σs′ . It follows

− (
1

2
+ σs1+1fs1+1 + · · ·+ σs′fs′) =

1

2
+ σ0 + σ1f1 + · · ·+ σs1fs1 . (6)

Let q(x) = 1
2
+ σ0 + σ1f1 + · · ·+ σs1fs1 , we hence have ∀x ∈ T1.q(x) > 0 and ∀x ∈ T2.

fs′(x) ≥ 0 ∧ q(x) < 0. So, let I = q(x) > 0. According to Definition 1, I is an inter-
polant of T1 and T2. So, under Archimedean condition, we can revise Algorithm 3 as
Algorithm 4.

Algorithm 4. RSN Interpolants
input : T1 and T2 as in (5)
output: I

1 b=2;
2 while true do
3 sdp=Certificate Generation({f1, . . . , fs},0,{},b);
4 if sdp �= NULL then
5 I =

{
1
2
+

∑s1
i=1 pifi > 0

}
;

6 returnI ;
7 else
8 b=b+2;
9 end

10 end

6 Ideal I is a radical ideal if I =
√
I = {f |fk ∈ I for some integer k > 0}.

376 L. Dai, B. Xia, and N. Zhan

Example 3. Let Ψ =
∧3

i=1 xi ≥ −2 ∧ −xi ≥ −2, f1 = −x2
1 − 4x2

2 − x2
3 + 2, f2 = x2

1 − x2
2

−x1x3 − 1, f3 = −x2
1 − 4x2

2 − x2
3 + 3x1x2 + 0.2, f4 = −x2

1 + x2
2 + x1x3 + 1. Consider

T1 = Ψ ∧ f1 ≥ 0 ∧ f2 ≥ 0 and T2 = Ψ ∧ f3 ≥ 0 ∧ f4 ≥ 0. Obviously, T1 ∧ T2 is unsatis-
fiable, see Fig. 1 (the third part).

By applying RSN Interpolants, we can get an interpolant as −33.7255x4
1 +

61.1309x3
1x2 + 4.6818x3

1x3 − 57.927x2
1x

2
2 + 13.4887x2

1x2x3 − 48.9983x2
1x

2
3 − 8.144x2

1 −
48.1049x1x

3
2 − 6.7143x1x

2
2x3 + 29.8951x1x2x

2
3 + 61.5932x1x2 + 0.051659x1x

3
3 −

0.88593x1x3 − 34.7211x4
2 − 7.8128x3

2x3 − 71.9085x2
2x

2
3 − 60.5361x2

2 − 1.6845x2x
3
3 −

0.5856x2x3 − 15.2929x4
3 − 9.7563x2

3 +6.7326 > 0, which is depicted in Fig 1 (the fourth
part). In this example, the final value of b is 2. ��

5.2 Discussions

1. Reasonability of the Archimedean Condition: Only bounded numbers can be rep-
resented in computer, so it is reasonable to constraint each variable with upper and lower
bounds in practice. Not allowing strict inequalities indeed reduces the expressiveness
from a theoretical point of view. However, as only numbers with finite precision can
be represented in computer, we can always relax a strict inequality to an equivalent
non-strict inequality in practice too. In a word, we believe the Archimedean condition
is reasonable in practice.

2. Necessity of the Archimedean Condition: In Theorem 3, the Archimedean con-
dition is necessary. For example, let T1 = {x1 ≥ 0, x2 ≥ 0} and T2 = {−x1x2 − 1 ≥ 0}.
So, T1 ∧ T2 = ∅ is not Archimedean and unsatisfiable, but −1 �∈ M(x1, x2,−x1x2 − 1)

(refer to the full version [27] for the proof).

6 Correctness and Complexity Analysis

The correctness of the algorithm SN Interpolants is obvious according to The-
orem 2 and the discussion of Section 4. Its complexity just corresponds to one it-
eration of the algorithm RSN Interpolants. The correctness of the algorithm
RSN Interpolants is guaranteed by Theorem 2 and Theorem 3. The cost of each
iteration of RSN Interpolants depends on the number of the variables n, the
number of polynomial constraints u, and the current highest degree d. The size of X
in (1) is u

(
n+d/2

n

)
and the m in (1) is

(
n+d
n

)
. So, the complexity of applying interior

point method to solve the SDP is polynomial in u
(
n+d/2

n

)(
n+d
n

)
. Hence, the cost of

each iteration of RSN Interpolants is u
(
n+d/2

n

)(
n+d
n

)
. Therefore, the total cost

of RSN Interpolants is polynomial in du
(
n+d/2

n

)(
n+d
n

)
for a given upper bound

of degree d. For a given problem in which n, u are fixed, the complexity of the algo-
rithm becomes polynomial in d. As indicated in [24], the theoretical bound of d is at
least triply exponential. So our method can not solve every possible instances in poly-
nomial time. The complexity of Algorithm SN Interpolants is the same as above
discussions, except that the number of polynomial constraints is about 2s1 + 2s−s1 .

Generating Non-linear Interpolants by Semidefinite Programming 377

7 Implementation and Experimental Results

We have implemented a prototypical tool of the algorithms described in this paper,
called AiSat, which contains 6000 lines of C++ codes. AiSat calls Singular
[29] to deal with polynomial input and CSDP to solve SDPs. In AiSat, we design
a specific algorithm to transform polynomial constraints to matrix constraints, which
indeed improves the efficiency of our tool very much, indicated by the comparison with
SOSTOOLS [30] (see the table below). As a future work, we plan to implement a new
SDP solver with more stability and convergence efficiency for solving SDPs.

In the following, we report the experimental results by applying AiSat to some
benchmarks.

The first example is from [31], see the source code in Code 1.2. We show its correct-
ness by applying AiSat to the following two possible executions.

– Subproblem 1: Suppose there is an execution starting from a state satisfying the as-
sertion at line 13 (obviously, the initial state satisfies the assertion), after→ 6 → 7 →
8 → 9 → 11 → 12 → 13, ending at a state that does not satisfy the assertion.
Then the interpolant synthesized by our approach is 716.77+1326.74ya+1.33ya2 +

433.90ya3 +668.16xa− 155.86xa·ya+317.29xa·ya2 +222.00xa2 +592.39xa2 ·ya+
271.11xa3 > 0, which guarantees that this execution is infeasible.

– Subproblem 2 : Assume there is an execution starting from a state satisfying the
assertion at line 13, after → 6 → 7 → 8 → 10 → 11 → 12 → 13, ending at a state
that does not satisfy the assertion.
The interpolant generated by our approach is 716.95 + 1330.91ya + 67.78ya2 +

551.51ya3 +660.66xa− 255.52xa·ya+199.84xa·ya2 +155.63xa2 +386.87xa2 ·ya+
212.41xa3 > 0, which guarantees this execution is infeasible either.

1 int main ()
2 { int x, y;
3 int xa := 0;
4 int ya := 0;
5 while (nondet())
6 { x := xa+ 2 ∗ ya;
7 y := −2 ∗ xa+ ya;
8 x++;
9 if (nondet()) y = y + x;
10 else y := y − x;
11 xa := x− 2 ∗ y;
12 ya := 2 ∗ x+ y; }
13 assert (xa+ 2 ∗ ya >= 0);
14 return 0; }

1 vc := 0;
2 /* the initial veclocity */
3 fr := 1000;
4 /* the initial force */
5 ac := 0.0005 ∗ fr;
6 /* the initial acceleration */
7 while (1)
8 { fa := 0.5418 ∗ vc ∗ vc;
9 /* the force control */
10 fr := 1000− fa;
11 ac := 0.0005 ∗ fr;
12 vc := vc+ ac;
13 assert(vc < 49.61);
14 /* the safety velocity */ }

Code 1.2:ex1 Code 1.3: An accelerating car

The second example accelerate (see Code 1.3) is from [21]. Taking the air resis-
tance into account, the relation between the car’s velocity and the physical drag con-
tains quadratic functions. Due to air resistance the velocity of the car cannot surpass

378 L. Dai, B. Xia, and N. Zhan

49.61m/s, which is a safety property. Assume that there is an execution (vc < 49.61) → 8

→ 10 → 11 → 12 → 13(vc ≥ 49.61). By applying AiSat, we can obtain an interpolant
−1.3983vc + 69.358 > 0, which guarantees vc < 49.61. So, accelerate is correct.

The last example logistic is also from [21]. Mathematically, the logistic loop is
written as xn+1 = rxn(1− xn), where 0 ≤ xn ≤ 1. When r = 3.2, the logistic loop os-
cillates between two values. The verification obligation is to guarantee that it is within
the safe region (0.79 ≤ x ≤ 0.81) ∨ (0.49 ≤ x ≤ 0.51). By applying AiSat to the fol-
lowing four possible executions, the correctness is obtained.

– Subproblem 1: {x ≥ 0.79 ∧ x ≤ 0.81} logistic {x > 0.51} is invalidated by the
synthesized interpolant 108.92 − 214.56x > 0.

– Subproblem 2: {x ≥ 0.79 ∧ x ≤ 0.81} logistic {x < 0.49} is outlawed by the
synthesized interpolant −349.86 + 712.97x > 0.

– Subproblem 3: {x ≥ 0.49 ∧ x ≤ 0.51} logistic {x > 0.81} is excluded by the
generated interpolant 177.21 − 219.40x > 0.

– Subproblem 4: {x ≥ 0.49 ∧ x ≤ 0.51} logistic {x < 0.79} is denied by the gen-
erated interpolant −244.85 + 309.31x > 0.

The experimental results of applying AiSat to the above three examples on a desktop
(64-bit Intel(R) Core(TM) i5 CPU 650 @ 3.20GHz, 4GB RAM memory and Ubuntu
12.04 GNU/Linux) are listed in the table below. Meanwhile, as a comparison, we apply
the SOSTOOLS to the three examples with the same computer.

Benchmark #Subporblems AiSat (milliseconds) SOSTOOLS (milliseconds)
ex1 2 60 3229

accelerate 1 940 879
logistic 4 20 761

8 Conclusion

The main contributions of the paper include:

– We give a sound but inomplete algorithm SN Interpolants for the generation
of interpolants for non-linear arithmetic in general.

– If the two systems satisfy Archimedean condition, we provide a more practical
algorithm RSN Interpolants, which is not only sound but also complete, for
generating Craig interpolants.

– We implement the above algorithms as a protypical tool AiSat, and demonstrate
our approach by applying the tool to some benchmarks.

In the future, we will focus how to relax the Archimedean condition and how to com-
bine non-linear arithmetic with other well-established decidable first order theories. In
particular, we believe that we can use the method of [32,21] to extend our algorithm to
uninterpreted functions. To investigate errors caused by numerical computation in SDP
is quite interesting. In addition, it deserves to investigate the possibility to apply our
results to verify hybrid systems.

Generating Non-linear Interpolants by Semidefinite Programming 379

References

1. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching-time temporal logic. In: Logic of Programs, vol. 131. pp. 52–71 (1981)

2. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: a proof assistant for higher-order
logic. Springer, Heidelberg (2002)

3. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.)
CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL 1977, pp. 238–252 (1977)

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999)

6. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction re-
finement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169.
Springer, Heidelberg (2000)

7. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an
abstract DPLL procedure to DPLL(T). J. ACM 53(6), 937–977

8. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans.
Program. Lang. Syst. 1(2), 245–257 (1979)

9. Craig, W.: Linear reasoning: A new form of the Herbrand-Gentzen theorem. J. Symb.
Log. 22(3), 250–268 (1957)

10. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun.
ACM 5(7), 394–397 (1962)

11. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

12. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

13. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1), 101–121
14. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)

CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)
15. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In:

POPL 2004, pp. 232–244 (2004)
16. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV

2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)
17. Jung, Y., Lee, W., Wang, B.-Y., Yi, K.: Predicate generation for learning-based quantifier-

free loop invariant inference. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS,
vol. 6605, pp. 205–219. Springer, Heidelberg (2011)

18. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In: Nieuwen-
huis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 353–368. Springer, Heidelberg
(2005)

19. Kapur, D., Majumdar, R., Zarba, C.: Interpolation for data structures. In: FSE 2006,
pp. 105–116 (2006)

20. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation. J. Symb.
Comput. 45(11), 1212–1233 (2010)

21. Kupferschmid, S., Becker, B.: Craig interpolation in the presence of non-linear constraints.
In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 240–255.
Springer, Heidelberg (2011)

22. Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Springer (1998)

380 L. Dai, B. Xia, and N. Zhan

23. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in ro-
bustness and optimization. PhD thesis, California Inst. of Tech. (2000)

24. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Mathemat-
ical Programming 96, 293–320 (2003)

25. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review 38(1), 49–95 (1996)
26. Chen, Y., Xia, B., Yang, L., Zhan, N.: Generating polynomial invariants with DISCOVERER

and QEPCAD. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal Methods and Hybrid
Real-Time Systems. LNCS, vol. 4700, pp. 67–82. Springer, Heidelberg (2007)

27. Dai, L., Xia, B., Zhan, N.: Generating non-linear interpolants by semidefinite programming.
CoRR abs/1302.4739 (2013)

28. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In:
Emerging Applications of Algebraic Geometry. The IMA Volumes in Mathematics and its
Applications, vol. 149, pp. 157–270 (2009)

29. Greuel, G.M., Pfister, G., Schönemann, H.: Singular: a computer algebra system for polyno-
mial computations. ACM Commun. Comput. Algebra 42(3), 180–181 (2009)

30. Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.A.: SOSTOOLS: Sum of squares op-
timization toolbox for MATLAB (2004)

31. Gulavani, B., Chakraborty, S., Nori, A., Rajamani, S.: Automatically refining abstract in-
terpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 443–458. Springer, Heidelberg (2008)

32. Sofronie-Stokkermans, V.: Interpolation in local theory extensions. In: Furbach, U., Shankar,
N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 235–250. Springer, Heidelberg (2006)

	Generating Non-linear Interpolants by Semidefinite Programming
	1 Introduction
	2 An Overview of Our Approach
	3 Theoretical Foundations
	3.1 Problem Description
	3.2 Real Algebraic Geometry
	3.3 Semidefinite Programming
	3.4 Constructive Proof of Theorem 1 Using

	4 Synthesizing Non-linear Interpolants in General Case
	5 A Complete Algorithm under Archimedean Condition
	5.1 Archimedean Condition
	5.2 Discussions

	6 Correctness and Complexity Analysis
	7 Implementation and Experimental Results
	8 Conclusion
	References

