Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks

Interpolant Synthesis for Quadratic Polynomial Inequalities and Combination with *EUF*

Deepak Kapur

Department of Computer Science, University of New Mexico

Joint work with Ting Gan, Liyun Dai, Bican Xia, Naijun Zhan, and Mingshuai Chen

Dagstuhl, September 2015

Key ideas 000	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
Outline				

Key ideas 000	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
Outline				

Key ideas

Generalization of Motzkin's transposition theorem

Key ideas 000	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
Outline				

- Generalization of Motzkin's transposition theorem
- Concave quadratic polynomials

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
000	00000000000000000	00000	00	00

- Generalization of Motzkin's transposition theorem
- Concave quadratic polynomials
- Positive constant replaced by sum of squares

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks

1 Key ideas

- Generalization of Motzkin's transposition theorem
- Concave quadratic polynomials
- Positive constant replaced by sum of squares

2 Generating interpolants for Concave Quadratic Polynomial inequalities

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks

- Generalization of Motzkin's transposition theorem
- Concave quadratic polynomials
- Positive constant replaced by sum of squares
- 2 Generating interpolants for Concave Quadratic Polynomial inequalities
 - **NSOSC** condition : generalized Motzkin's theorem applies

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks

- Generalization of Motzkin's transposition theorem
- Concave quadratic polynomials
- Positive constant replaced by sum of squares
- 2 Generating interpolants for Concave Quadratic Polynomial inequalities
 - **NSOSC** condition : generalized Motzkin's theorem applies
 - SOS (NSOSC not satisifed): equalities from expressions in a sum of squares being equal to 0.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks

- Generalization of Motzkin's transposition theorem
- Concave quadratic polynomials
- Positive constant replaced by sum of squares
- 2 Generating interpolants for Concave Quadratic Polynomial inequalities
 - **NSOSC** condition : generalized Motzkin's theorem applies
 - SOS (NSOSC not satisifed): equalities from expressions in a sum of squares being equal to 0.
- **3** Combination with uninterpreted function symbols (*EUF*)

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks

- Generalization of Motzkin's transposition theorem
- Concave quadratic polynomials
- Positive constant replaced by sum of squares
- 2 Generating interpolants for Concave Quadratic Polynomial inequalities
 - **NSOSC** condition : generalized Motzkin's theorem applies
 - SOS (NSOSC not satisifed): equalities from expressions in a sum of squares being equal to 0.
- 3 Combination with uninterpreted function symbols (EUF)
 - similar to the linear case

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks

- Generalization of Motzkin's transposition theorem
- Concave quadratic polynomials
- Positive constant replaced by sum of squares
- 2 Generating interpolants for Concave Quadratic Polynomial inequalities
 - NSOSC condition : generalized Motzkin's theorem applies
 - SOS (NSOSC not satisifed): equalities from expressions in a sum of squares being equal to 0.
- 3 Combination with uninterpreted function symbols (EUF)
 - similar to the linear case
- 4 Concluding remarks

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
000				
Overview				

Overview of the idea

Example (running example)

Consider two formulas *A* and *B* with $A \land B \models \bot$, where

$$A := -\mathbf{x}_1^2 + 4\mathbf{x}_1 + \mathbf{x}_2 - 4 \ge 0 \land -\mathbf{x}_1 - \mathbf{x}_2 + 3 - \mathbf{y}^2 > 0,$$

$$B := -3\mathbf{x}_1^2 - \mathbf{x}_2^2 + 1 \ge 0 \land \mathbf{x}_2 - \mathbf{z}^2 \ge 0$$

We aim to generate an interpolant *I* for *A* and *B*, on the common variables (x_1 and x_2), such that $A \models I$ and $I \land B \models \bot$.

An intuitive description of a candidate interpolant is as the purple curve in the above right figure, which separates A and B in the panel of x_1 and x_2 .

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
Overview				
Overvie	w of the idea			

 A polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals :

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
000				
Overview				
Overvie	w of the idea			

- A polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals :
 - If no nonpositive constant combination of nonstrict inequalities is a sum of squares polynomial, an interpolant a la McMillan can be generated essentially using the linearization of quadratic polynomials.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks	
000					
Overview					
Overview of the idea					

- A polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals :
 - If no nonpositive constant combination of nonstrict inequalities is a sum of squares polynomial, an interpolant a la McMillan can be generated essentially using the linearization of quadratic polynomials.
 - Otherwise, linear equalities relating variables are deduced, resulting to interpolation subproblems with fewer variables on which the algorithm is recursively applied.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
000				
Overview				
Ovorvic	w of the idea			

- A polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of conceve guadratic polynomial inequalities
 - A polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals :
 - If no nonpositive constant combination of nonstrict inequalities is a sum of squares polynomial, an interpolant a la McMillan can be generated essentially using the linearization of quadratic polynomials.
 - Otherwise, linear equalities relating variables are deduced, resulting to interpolation subproblems with fewer variables on which the algorithm is recursively applied.
 - An algorithm for generating interpolants for the combination of quantifier-free theory of concave quadratic polynomial inequalities and equality theory over uninterpreted function symbols (*EUF*).

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks	
000					
Preliminaries					

Preliminaries

Theorem (Motzkin's transposition theorem)

Let A and B be matrices and let $\vec{\alpha}$ and $\vec{\beta}$ be column vectors. Then there exists a vector \mathbf{x} with $\mathbf{A}\mathbf{x} - \vec{\alpha} \geq 0$ and $\mathbf{B}\mathbf{x} - \vec{\beta} > 0$, iff for all row vectors $\mathbf{y}, \mathbf{z} \geq 0$:

(*i*) if $\mathbf{y}\mathbf{A} + \mathbf{z}\mathbf{B} = 0$ then $\mathbf{y}\vec{\alpha} + \mathbf{z}\vec{\beta} \le 0$; (*ii*) if $\mathbf{y}\mathbf{A} + \mathbf{z}\mathbf{B} = 0$ and $\mathbf{z} \ne 0$ then $\mathbf{y}\vec{\alpha} + \mathbf{z}\vec{\beta} < 0$.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
000				
Preliminaries				
- I· ·				

Preliminaries

Theorem (Motzkin's transposition theorem)

Let A and B be matrices and let $\vec{\alpha}$ and $\vec{\beta}$ be column vectors. Then there exists a vector \mathbf{x} with $\mathbf{A}\mathbf{x} - \vec{\alpha} \geq 0$ and $\mathbf{B}\mathbf{x} - \vec{\beta} > 0$, iff for all row vectors $\mathbf{y}, \mathbf{z} \geq 0$:

(*i*) if $\mathbf{y}\mathbf{A} + \mathbf{z}\mathbf{B} = 0$ then $\mathbf{y}\vec{\alpha} + \mathbf{z}\vec{\beta} \le 0$; (*ii*) if $\mathbf{y}\mathbf{A} + \mathbf{z}\mathbf{B} = 0$ and $\mathbf{z} \ne 0$ then $\mathbf{y}\vec{\alpha} + \mathbf{z}\vec{\beta} < 0$.

Corollary

Let $A \in \mathbb{R}^{r \times n}$ and $B \in \mathbb{R}^{s \times n}$ be matrices and $\vec{\alpha} \in \mathbb{R}^r$ and $\vec{\beta} \in \mathbb{R}^s$ be column vectors, where $A_i, i = 1, ..., r$ is the ith row of A and $B_j, j = 1, ..., s$ is the jth row of B. There does not exist a vector \mathbf{x} with $A\mathbf{x} - \vec{\alpha} \ge 0$ and $B\mathbf{x} - \vec{\beta} > 0$, iff there exist real numbers $\lambda_1, ..., \lambda_r \ge 0$ and $\eta_0, \eta_1, ..., \eta_s \ge 0$ such that

$$\sum_{i=1}^{r} \lambda_i (\mathbf{A}_i \mathbf{x} - \alpha_i) + \sum_{j=1}^{s} \eta_j (\mathbf{B}_j \mathbf{x} - \beta_j) + \eta_0 \equiv 0 \quad \text{with } \sum_{j=0}^{s} \eta_j = 1.$$
(1)

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks		
	• 0 000000000000					
Concave quadratic polynomials						
Concave quadratic polynomials						

Definition (Concave Quadratic)

A polynomial $f \in \mathbb{R}[\mathbf{x}]$ is called *concave quadratic (CQ)* if the following two conditions hold :

- *f* has total degree at most 2, i.e., it has the form $f = \mathbf{x}^T A \mathbf{x} + 2\vec{\alpha}^T \mathbf{x} + a$, where *A* is a real symmetric matrix, $\vec{\alpha}$ is a column vector and $a \in \mathbb{R}$;
- the matrix A is negative semi-definite, written as $A \leq 0$.

Example

Take $f = -3x_1^2 - x_2^2 + 1$ in the running example, which is from the ellipsoid domain and can be expressed as

$$f = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}^T \begin{pmatrix} -3 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} + 1.$$

The corresponding
$$A = \begin{pmatrix} -3 & 0 \\ 0 & -1 \end{pmatrix} \preceq 0$$
. Thus, *f* is CQ.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks		
	000000000000000000000000000000000000000					
Concave quadratic po	olynomials					
Concave o	Concave quadratic polynomials					

■ If *f* ∈ ℝ[**x**] is linear, then *f* is CQ because its total degree is 1 and the corresponding *A* is 0 which is of course negative semi-definite.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks	
	000000000000000000000000000000000000000				
Concave quadratic po	olynomials				
Concave quadratic polynomials					

- If *f* ∈ ℝ[**x**] is linear, then *f* is CQ because its total degree is 1 and the corresponding *A* is 0 which is of course negative semi-definite.
- A quadratic polynomial $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + 2\vec{\alpha}^T \mathbf{x} + a$ can also be represented as an inner product of matrices, i.e., $\left\langle P, \begin{pmatrix} 1 & \mathbf{x}^T \\ \mathbf{x} & \mathbf{x}\mathbf{x}^T \end{pmatrix} \right\rangle$, where $P = \begin{pmatrix} a & \alpha^T \\ \alpha & A \end{pmatrix}$.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks	
	000000000000000000000000000000000000000				
Linearization of CQ polynomials					

Linearization of CQ polynomials

Definition (Linearization)

Given a quadratic polynomial
$$f(\mathbf{x}) = \left\langle P, \begin{pmatrix} 1 & \mathbf{x}^T \\ \mathbf{x} & \mathbf{x}\mathbf{x}^T \end{pmatrix} \right\rangle$$
, its *linearization* is defined as
$$f(\mathbf{x}) = \left\langle P, \begin{pmatrix} 1 & \mathbf{x}^T \\ \mathbf{x} & \vec{X} \end{pmatrix} \right\rangle$$
, where $\begin{pmatrix} 1 & \mathbf{x}^T \\ \mathbf{x} & \vec{X} \end{pmatrix} \succeq 0$.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks	
	000000000000000000000000000000000000000				
Linearization of CQ polynomials					

Linearization of CQ polynomials

Definition (Linearization)

Given a quadratic polynomial
$$f(\mathbf{x}) = \left\langle P, \begin{pmatrix} 1 & \mathbf{x}^T \\ \mathbf{x} & \mathbf{x}\mathbf{x}^T \end{pmatrix} \right\rangle$$
, its *linearization* is defined as
$$f(\mathbf{x}) = \left\langle P, \begin{pmatrix} 1 & \mathbf{x}^T \\ \mathbf{x} & \vec{X} \end{pmatrix} \right\rangle$$
, where $\begin{pmatrix} 1 & \mathbf{x}^T \\ \mathbf{x} & \vec{X} \end{pmatrix} \succeq 0$.

let

$$\begin{aligned}
\mathbf{K} &\doteq \{\mathbf{x} \in \mathbb{R}^{n} \mid f_{1}(\mathbf{x}) \geq 0, \dots, f_{r}(\mathbf{x}) \geq 0, g_{1}(\mathbf{x}) > 0, \dots, g_{s}(\mathbf{x}) > 0\}, \quad (2) \\
\mathbf{K}_{1} &\doteq \{\mathbf{x} \mid \begin{pmatrix} 1 & \mathbf{x}^{T} \\ \mathbf{x} & \vec{X} \end{pmatrix} \succeq 0, \land_{i=1}^{r} \left\langle \mathsf{P}_{i}, \begin{pmatrix} 1 & \mathbf{x}^{T} \\ \mathbf{x} & \vec{X} \end{pmatrix} \right\rangle \geq 0, \\
& \wedge_{j=1}^{s} \left\langle \mathsf{Q}_{j}, \begin{pmatrix} 1 & \mathbf{x}^{T} \\ \mathbf{x} & \vec{X} \end{pmatrix} \right\rangle > 0, \text{ for some } \vec{X}\}, \quad (3)
\end{aligned}$$

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
	000000000000000000000000000000000000000			
Linearization of	CQ polynomials			
Lineariz	ation of CQ polynon	nials		

Theorem

Let f_1, \ldots, f_r and g_1, \ldots, g_s be CQ polynomials, K and K₁ as above, then $K = K_1$.

Therefore, when f_i s and g_j s are CQ, the CQ polynomial inequalities can be transformed equivalently to a set of linear inequality constraints and a positive semi-definite constraint.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
	000000000000000000000000000000000000000			
Synthesis algorithm	ns			
	e			
Problem	formulation			

Problem 1

Given two formulas ϕ and ψ on *n* variables with $\phi \land \psi \models \bot$, where

$$\phi = f_1 \ge 0 \land \dots \land f_{r_1} \ge 0 \land g_1 > 0 \land \dots \land g_{s_1} > 0,$$

$$\psi = f_{r_1+1} \ge 0 \land \dots \land f_r \ge 0 \land g_{s_1+1} > 0 \land \dots \land g_s > 0$$

in which $f_1, \ldots, f_r, g_1, \ldots, g_s$ are all CQ, develop an algorithm to generate a (reverse) Craig interpolant *I* for ϕ and ψ , on the common variables of ϕ and ψ , such that $\phi \models I$ and $I \land \psi \models \bot$.

$${f x} = (x_1, \dots, x_d)$$
, ${f y} = (y_1, \dots, y_u)$ and ${f z} = (z_1, \dots, z_v)$, where $d + u + v = n$.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
	000000000000000000000000000000000000000			
Synthesis algorithm	าร			
NSOSC	Condition			

Definition (NSOSC)

Formulas ϕ and ψ in Problem 1, satisfy the non-existence of an SOS polynomial condition (NSOSC) iff there do not exist $\delta_1 \ge 0, \ldots, \delta_r \ge 0$, s.t. $-(\delta_1 f_1 + \ldots + \delta_r f_r)$ is a non-zero SOS.

Example

Formulas A and B in the running example do not satisfy NSOSC, since there exist $\delta_1 = 1, \delta_2 = 1, \delta_3 = 1$, s.t.

$$\begin{aligned} &-(\delta_1(-\mathbf{x}_1^2+4\mathbf{x}_1+\mathbf{x}_2-4)+\delta_2(-3\mathbf{x}_1^2-\mathbf{x}_2^2+1)+\delta_3(\mathbf{x}_2-\mathbf{z}^2))\\ &=(2\mathbf{x}_1-1)^2+(\mathbf{x}_2-1)^2+\mathbf{z}^2\end{aligned}$$

is a non-zero SOS.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
	00000000000000			
Synthesis algorithms				

Generalization of Motzkin's theorem

Theorem (Generalization of Motzkin's theorem)

Let $f_1, \ldots, f_r, g_1, \ldots, g_s$ be CQ polynomials whose conjunction is unsatisfiable. If the condition **NSOSC** holds, then there exist $\lambda_i \ge 0$ ($i = 1, \cdots, r$), $\eta_j \ge 0$ ($j = 0, 1, \cdots, s$) and a quadratic SOS polynomial h of the form $(l_1)^2 + \ldots + (l_k)^2$ where l_i are linear expressions in x, y, z., s.t.

$$\sum_{i=1}^{r} \lambda_i f_i + \sum_{i=1}^{s} \eta_j g_j + \eta_0 + h \equiv 0, \qquad (4)$$

$$\eta_0^{j=1} + \eta_1 + \frac{j=1}{\dots} + \eta_s = 1.$$
(5)

Using this generalization, an interpolant for ϕ and ψ is generated from the SOS polynomial *h* by splitting it into two SOS polynomials.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
	00000000000000			
Synthesis algorithms				

When NSOSC is satisfied

Theorem

Let ϕ and ψ as defined in Problem 1 with $\phi \land \varphi \models \bot$, which satisfy **NSOSC**. Then there exist $\lambda_i \ge 0$ ($i = 1, \dots, r$), $\eta_j \ge 0$ ($j = 0, 1, \dots, s$) and two quadratic SOS polynomial $h_1 \in \mathbb{R}[\mathbf{x}, \mathbf{y}]$ and $h_2 \in \mathbb{R}[\mathbf{x}, \mathbf{z}]$ s.t.

$$\sum_{i=1}^{r} \lambda_{i} f_{i} + \sum_{i=1}^{s} \eta_{j} g_{j} + \eta_{0} + h_{1} + h_{2} \equiv 0,$$
(6)

$$\eta_0^{J=1} + \eta_1 + \dots^{J=1} + \eta_s = 1.$$
(7)

Let $I = \sum_{i=1}^{r_1} \lambda_i f_i + \sum_{j=1}^{s_1} \eta_j g_j + \eta_0 + h_1 \in \mathbb{R}[\mathbf{x}]$. Then, if $\sum_{j=0}^{s_1} \eta_j > 0$, then I > 0 is an interpolant; otherwise $I \ge 0$ is an interpolant.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
	00000000000000			
Synthesis algorithms				

Computing interpolant using semi-definite programming

Let
$$W = \begin{pmatrix} 1 & \mathbf{x}^T & \mathbf{y}^T & \mathbf{z}^T \\ \mathbf{x} & \mathbf{x}\mathbf{x}^T & \mathbf{x}\mathbf{y}^T & \mathbf{x}\mathbf{z}^T \\ \mathbf{y} & \mathbf{y}\mathbf{x}^T & \mathbf{y}\mathbf{y}^T & \mathbf{y}\mathbf{z}^T \\ \mathbf{z} & \mathbf{z}\mathbf{x}^T & \mathbf{z}\mathbf{y}^T & \mathbf{z}\mathbf{z}^T \end{pmatrix}$$
, $f_i = \langle P_i, W \rangle$, $g_j = \langle Q_j, W \rangle$, where P_i and Q_j are $(n+1) \times (n+1)$ matrices, $h_1 = \langle M, W \rangle$, $h_2 = \langle \hat{M}, W \rangle$, and $M = (M_{ij})_{4 \times 4}$, $\hat{M} = (\hat{M}_{ij})_{4 \times 4}$ with appropriate dimensions, e.g., $M_{12} \in \mathbb{R}^{1 \times d}$ and $\hat{M}_{34} \in \mathbb{R}^{u \times v}$.

Then, with NSOSC, computing the interpolant is reduced to the following SDP feasibility problem :

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
	00000000000000			
Synthesis algorithms				

Computing interpolant using semi-definite programming

Find:
$$\lambda_1, \dots, \lambda_r, \eta_1, \dots, \eta_s \in \mathbb{R}$$
, $M, \hat{M} \in \mathbb{R}^{(n+1) \times (n+1)}$ subject to

$$\begin{cases} \sum_{i=1}^r \lambda_i P_i + \sum_{j=1}^s \eta_j Q_j + \eta_0 E_{1,1} + M + \hat{M} = 0, \sum_{j=1}^s \eta_j = 1, \\ M_{41} = (M_{14})^T = 0, M_{42} = (M_{24})^T = 0, M_{43} = (M_{34})^T = 0, M_{44} = 0, \\ \hat{M}_{31} = (\hat{M}_{13})^T = 0, \hat{M}_{32} = (\hat{M}_{23})^T = 0, \hat{M}_{33} = 0, \hat{M}_{34} = (\hat{M}_{43})^T = 0, \\ M \succeq 0, \hat{M} \succeq 0, \lambda_i \ge 0, \eta_j \ge 0, \text{ for } i = 1, \dots, r, j = 1, \dots, s, \end{cases}$$

where $E_{(1,1)}$ is a $(n + 1) \times (n + 1)$ matrix, whose all other entries are 0 except for (1,1) entry being 1.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
	00000000000000			
Synthesis algorithms				

Generating interpolants when NSOSC holds

Algorithm 1: IGFCH

input : Two formulas ϕ , ψ with NSOSC and $\phi \land \psi \models \bot$, where $\phi = f_1 \ge 0 \land \ldots \land f_{r_1} \ge 0 \land g_1 > 0 \land \ldots \land g_{s_1} > 0$, $\psi = f_{r_1+1} \ge 0 \land \ldots \land f_r \ge 0 \land g_{s_1+1} > 0 \land \ldots \land g_s > 0$, $f_1, \ldots, f_r, g_1, \ldots, g_s$ are all concave quadratic polynomials, $f_1, \ldots, f_{r_1}, g_1, \ldots, g_{s_1} \in \mathbb{R}[\mathbf{x}, \mathbf{y}], f_{r_1+1}, \ldots, f_r, g_{s_1+1}, \ldots, g_s \in \mathbb{R}[\mathbf{x}, \mathbf{z}]$ output: A formula *I* to be an interpolant for ϕ and ψ

1 Find $\lambda_1, \ldots, \lambda_r \geq 0, \eta_0, \eta_1, \ldots, \eta_s \geq 0, h_1 \in \mathbb{R}[\mathbf{x}, \mathbf{y}], h_2 \in \mathbb{R}[\mathbf{x}, \mathbf{z}]$ by SDP s.t.

$$\sum_{i=1}^r \lambda_i f_i + \sum_{j=1}^s \eta_j g_j + \eta_0 + h_1 + h_2 \equiv 0,
onumber \ \eta_0 + \eta_1 + \ldots + \eta_s = 1,
onumber \ h_1, h_2 ext{ are SOS polynomials;}$$

/* This is essentially a **SDP** problem, see Section 4.2 */
2
$$f := \sum_{i=1}^{r_1} \lambda_i f_i + \sum_{j=1}^{s_1} \eta_j g_j + \eta_0 + h_1;$$

3 if $\sum_{j=0}^{s_1} \eta_j > 0$ then $I := (f > 0)$; else $I := (f \ge 0)$;
4 return I

Key ideas 000	Generating interpolants for CQI ○○○○○○○○○○○○○○○○	Combination with EUF	Evaluation results	Concluding remarks
Synthesis algorithm				
When NS	SOSC is not satisfie	ed		

If ϕ and ψ do not satisfy NSOSC, i.e., an SOS polynomial $h(\mathbf{x}, \mathbf{y}, \mathbf{z}) = -(\sum_{i=1}^{r} \lambda_i f_i)$ can be computed which can be split into two SOS polynomials $h_1(\mathbf{x}, \mathbf{y})$ and $h_2(\mathbf{x}, \mathbf{z})$ as discussed previously. Then an SOS polynomial $f(\mathbf{x})$ such that $\phi \models f(\mathbf{x}) \ge 0$ and $\psi \models -f(\mathbf{x}) \ge 0$ can be constructed as

$$f(\mathbf{x}) = (\sum_{i=1}^{r_1} \delta_i f_i) + h_1 = -(\sum_{i=r_1+1}^r \delta_i f_i) - h_2, \delta_i \ge 0.$$

Lemma

If Problem 1 does not satisfy **NSOSC**, *there exists* $f \in \mathbb{R}[\mathbf{x}]$, *s.t.* $\phi \Leftrightarrow \phi_1 \lor \phi_2$ *and* $\psi \Leftrightarrow \psi_1 \lor \psi_2$, *where*,

$$\phi_1 = (f > 0 \land \phi), \phi_2 = (f = 0 \land \phi), \psi_1 = (-f > 0 \land \psi), \psi_2 = (f = 0 \land \psi).$$
(8)

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks	
	000000000000000000000000000000000000000				
Synthesis algorithms					
When NSOSC is not satisfied					

Using the previous lemma, an interpolant / for ϕ and ψ can be constructed from an interpolant $I_{2,2}$ for ϕ_2 and ψ_2 .

Theorem

With ϕ , ψ , ϕ_1 , ϕ_2 , ψ_1 , ψ_2 as in previous Lemma, from an interpolant $I_{2,2}$ for ϕ_2 and ψ_2 , $I := (f > 0) \lor (f \ge 0 \land I_{2,2})$ is an interpolant for ϕ and ψ .

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks	
	000000000000000000000000000000000000000				
Synthesis algorithms					
When \mathbf{NS}	When NSOSC is not satisfied				

Using the previous lemma, an interpolant / for ϕ and ψ can be constructed from an interpolant $I_{2,2}$ for ϕ_2 and ψ_2 .

Theorem

With ϕ , ψ , ϕ_1 , ϕ_2 , ψ_1 , ψ_2 as in previous Lemma, from an interpolant $I_{2,2}$ for ϕ_2 and ψ_2 , $I := (f > 0) \lor (f \ge 0 \land I_{2,2})$ is an interpolant for ϕ and ψ .

If *h* and hence h_1, h_2 have a positive constant $a_{n+1} > 0$, then *f* cannot be 0, implying that ϕ_2, ψ_2 are \bot . We thus have :

Theorem

With ϕ , ψ , ϕ_1 , ϕ_2 , ψ_1 , ψ_2 as in previous Lemma and h has $a_{n+1} > 0$, f > 0 is an interpolant for ϕ and ψ .

In case h does not have a constant, i.e., $a_{n+1} = 0$, elimination of variables can be recursively performed to terminate the algorithm.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
	000000000000000000000000000000000000000			
Synthesis algorithms				

Generating interpolants for CQI

Algorithm 2: IGFQC

input : Two formulas ϕ, ψ with $\phi \wedge \psi \models \bot$, where $\phi = f_1 > 0 \land \ldots \land f_{r_1} > 0 \land q_1 > 0 \land \ldots \land q_{s_1} > 0,$ $\psi = f_{r_1+1} > 0 \land \ldots \land f_r > 0 \land q_{s_1+1} > 0 \land \ldots \land q_s > 0,$ $f_1, \ldots, f_r, q_1, \ldots, q_s$ are all CO polynomials. $f_1, \ldots, f_{r_1}, g_1, \ldots, g_{s_1} \in \mathbb{R}[\mathbf{x}, \mathbf{y}], \text{ and } f_{r_1+1}, \ldots, f_r, g_{s_1+1}, \ldots, g_s \in \mathbb{R}[\mathbf{x}, \mathbf{z}]$ **output**: A formula I to be an interpolant for ϕ and ψ 1 if $Var(\phi) \subset Var(\psi)$ then $I := \phi$; return I; **2** Find $\delta_1, \ldots, \delta_r \ge 0, h \in \mathbb{R}[\mathbf{x}, \mathbf{y}, \mathbf{z}]$ by SDP s.t. $\sum_{i=1}^r \delta_i f_i + h \equiv 0$ and h is SOS; /* Check the condition NSOSC */ 3 if no solution then $I := IGFCH(\phi, \psi)$; return I; /* NSOSC holds */ 4 Construct $h_1 \in \mathbb{R}[\mathbf{x}, \mathbf{y}]$ and $h_2 \in \mathbb{R}[\mathbf{x}, \mathbf{z}]$ with the forms (H1) and (H2); 5 $f := \sum_{i=1}^{r_1} \delta_i f_i + h_1 = -\sum_{i=r_1+1}^r \delta_i f_i - h_2;$ 6 Construct ϕ' and ψ' using Theorem 6 and Theorem 7 by eliminating variables due to $h_1 = h_2 = 0;$ 7 $I' = IGFQC(\phi', \psi');$ **s** $I := (f > 0) \lor (f > 0 \land I');$ 9 return I

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
	0000000000000			
Synthesis algorithms				

Generating interpolants for CQI

Example

Recall the running example where

$$h = (2x_1 - 1)^2 + (x_2 - 1)^2 + z^2$$

= $\underbrace{\frac{1}{2}((2x_1 - 1)^2 + (x_2 - 1)^2)}_{h_1} + \underbrace{\frac{1}{2}((2x_1 - 1)^2 + (x_2 - 1)^2) + z^2}_{h_2}$
$$f = \delta_1(-x_1^2 + 4x_1 + x_2 - 4) + h_1$$

= $-3 + 2x_1 + x_1^2 + \frac{1}{2}x_2^2$

We construct A' from A by setting $x_1 = \frac{1}{2}$, $x_2 = 1$ derived from $h_1 = 0$; similarly B' is constructed by setting $x_1 = \frac{1}{2}$, $x_2 = 1$, z = 0 in B as derived from $h_2 = 0$. It follows that, $A' := B' := \bot$ Thus, I(A', B') := (0 > 0) is an interpolant for (A', B').

An interpolant for A and B is thus $(f(x) > 0) \lor (f(x) = 0 \land I(A', B'))$, i.e.

$$-3 + 2\mathbf{x}_1 + \mathbf{x}_1^2 + \frac{1}{2}\mathbf{x}_2^2 > 0.$$

which corresponds to the purple curve mentioned previously.

Key ideas 000	Generating interpolants for CQI	Combination with EUF	Evaluation results OO	Concluding remarks
Key ideas				
Combina	tion with EUF			

• $\Omega = \Omega_1 \cup \Omega_2 \cup \Omega_3$: a finite set of uninterpreted function symbols in *EUF*;

Key ideas 000	Generating interpolants for CQI	Combination with EUF ●○○○○	Evaluation results OO	Concluding remarks
Key ideas				
Combinat	ion with EUF			

- $\Omega = \Omega_1 \cup \Omega_2 \cup \Omega_3$: a finite set of uninterpreted function symbols in *EUF*;
- $\Omega_{12} = \Omega_1 \cup \Omega_2$, $\Omega_{13} = \Omega_1 \cup \Omega_3$;

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
Key ideas				
Combina	ation with EUF			

- $\Omega = \Omega_1 \cup \Omega_2 \cup \Omega_3$: a finite set of uninterpreted function symbols in *EUF*;
- $\Omega_{12}=\Omega_1\cup\Omega_2$, $\Omega_{13}=\Omega_1\cup\Omega_3$;
- R[x, y, z]^Ω: the extension of R[x, y, z] in which polynomials can have terms built using function symbols in Ω and variables in x, y, z.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
Key ideas				
Combina	ation with EUF			

- $\Omega = \Omega_1 \cup \Omega_2 \cup \Omega_3$: a finite set of uninterpreted function symbols in *EUF*;
- $\Omega_{12}=\Omega_1\cup\Omega_2$, $\Omega_{13}=\Omega_1\cup\Omega_3$;
- R[x, y, z]^Ω: the extension of R[x, y, z] in which polynomials can have terms built using function symbols in Ω and variables in x, y, z.

Key ideas 000	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
Key ideas				
Combin	ation with EUF			

- $\Omega = \Omega_1 \cup \Omega_2 \cup \Omega_3$: a finite set of uninterpreted function symbols in *EUF*;
- $\Omega_{12}=\Omega_1\cup\Omega_2$, $\Omega_{13}=\Omega_1\cup\Omega_3$;
- R[x, y, z]^Ω: the extension of R[x, y, z] in which polynomials can have terms built using function symbols in Ω and variables in x, y, z.

Problem 2

Suppose two formulas ϕ and ψ with $\phi \land \psi \models \bot$, where

$$\begin{aligned} \phi &= f_1 \ge 0 \land \ldots \land f_{r_1} \ge 0 \land g_1 > 0 \land \ldots \land g_{s_1} > 0, \\ \psi &= f_{r_1+1} \ge 0 \land \ldots \land f_r \ge 0 \land g_{s_1+1} > 0 \land \ldots \land g_s > 0 \end{aligned}$$

where $f_1, \ldots, f_r, g_1, \ldots, g_s$ are all CQ polynomials, $f_1, \ldots, f_{r_1}, g_1, \ldots, g_{s_1} \in \mathbb{R}[\mathbf{x}, \mathbf{y}]^{\Omega_{12}}, f_{r_1+1}, \ldots, f_r, g_{s_1+1}, \ldots, g_s \in \mathbb{R}[\mathbf{x}, \mathbf{z}]^{\Omega_{13}}$, the goal is to generate an interpolant / for ϕ and ψ , expressed using the common symbols \mathbf{x}, Ω_1 , i.e., / includes only polynomials in $\mathbb{R}[\mathbf{x}]^{\Omega_1}$.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
000	00000000000000	00000	00	00
Key ideas				
Sketch of the idea (Algorithm \mathbf{IGFQCE})				

Flatten and purify the formulas φ and ψ as φ and ψ by introducing fresh variables for each term with uninterpreted symbols as well as for the terms with uninterpreted symbols.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
		00000		
Key ideas				

Sketch of the idea (Algorithm IGFQCE)

- Flatten and purify the formulas φ and ψ as φ and ψ by introducing fresh variables for each term with uninterpreted symbols as well as for the terms with uninterpreted symbols.
- 2 Generate a set *N* of Horn clauses as

$$N = \{ \bigwedge_{k=1}^{n} c_k = b_k \rightarrow c = b \mid \omega(c_1, \ldots, c_n) = c \in D, \omega(b_1, \ldots, b_n) = b \in D \},\$$

where *D* consists of unit clauses of the form $\omega(c_1, \ldots, c_n) = c$, with c_1, \ldots, c_n be variables and $\omega \in \Omega$.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
		0000		
Key ideas				

Sketch of the idea (Algorithm IGFQCE)

- Flatten and purify the formulas φ and ψ as φ and ψ by introducing fresh variables for each term with uninterpreted symbols as well as for the terms with uninterpreted symbols.
- 2 Generate a set *N* of Horn clauses as

 $N = \{ \bigwedge_{k=1}^{n} c_{k} = b_{k} \rightarrow c = b \mid \omega(c_{1}, \dots, c_{n}) = c \in D, \omega(b_{1}, \dots, b_{n}) = b \in D \},$ where *D* consists of unit clauses of the form $\omega(c_{1}, \dots, c_{n}) = c$, with c_{1}, \dots, c_{n} be variables and $\omega \in \Omega$.

B Partition *N* into N_{ϕ} , N_{ψ} , and N_{mix} with all symbols in N_{ϕ} , N_{ψ} appearing in $\overline{\phi}$, $\overline{\psi}$, respectively, and N_{mix} consisting of symbols from both $\overline{\phi}$, $\overline{\psi}$.

$$\phi \wedge \psi \models \bot \operatorname{iff} \overline{\phi} \wedge \overline{\psi} \wedge \mathcal{D} \models \bot \operatorname{iff} (\overline{\phi} \wedge \mathcal{N}_{\phi}) \wedge (\overline{\psi} \wedge \mathcal{N}_{\psi}) \wedge \mathcal{N}_{\mathsf{mix}} \models \bot.$$
(9)

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
		00000		
Key ideas				

Sketch of the idea (Algorithm IGFQCE)

- Flatten and purify the formulas φ and ψ as φ and ψ by introducing fresh variables for each term with uninterpreted symbols as well as for the terms with uninterpreted symbols.
- 2 Generate a set *N* of Horn clauses as

 $N = \{ \bigwedge_{k=1}^{n} c_{k} = b_{k} \rightarrow c = b \mid \omega(c_{1}, \dots, c_{n}) = c \in D, \omega(b_{1}, \dots, b_{n}) = b \in D \},$ where *D* consists of unit clauses of the form $\omega(c_{1}, \dots, c_{n}) = c$, with c_{1}, \dots, c_{n} be variables and $\omega \in \Omega$.

Partition N into N_{\phi}, N_{\phi}, and N_{mix} with all symbols in N_{\phi}, N_{\phi} appearing in \(\overline{\phi}\), \(\overline{\phi}\), and N_{mix} consisting of symbols from both \(\overline{\phi}\), \(\overline{\phi}\).

 $\phi \wedge \psi \models \bot \operatorname{iff} \overline{\phi} \wedge \overline{\psi} \wedge D \models \bot \operatorname{iff} (\overline{\phi} \wedge N_{\phi}) \wedge (\overline{\psi} \wedge N_{\psi}) \wedge N_{\mathsf{mix}} \models \bot.$ (9)

Z Generate interpolant : Notice that $(\overline{\phi} \land N_{\phi}) \land (\overline{\psi} \land N_{\psi}) \land N_{mix} \models \bot$ has no uninterpreted function symbols. If N_{mix} can be replaced by N_{sep}^{ϕ} and N_{sep}^{ψ} as in [Rybalchenko & Sofronie-Stokkermans 10] using separating terms, then IGFQC can be applied. An interpolant generated for this problem can be used to generate an interpolant for ϕ , ψ after uniformly replacing all new symbols by their corresponding expressions from *D*.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks	
		00000			
Illustrating example					

An illustrating example

Example

$$\begin{split} \phi :=& (f_1 = -(y_1 - x_1 + 1)^2 - x_1 + x_2 \ge 0) \land (y_2 = \alpha(y_1) + 1) \\ \land (g_1 = -x_1^2 - x_2^2 - y_2^2 + 1 > 0), \\ \psi :=& (f_2 = -(z_1 - x_2 + 1)^2 + x_1 - x_2 \ge 0) \land (z_2 = \alpha(z_1) - 1) \\ \land (g_2 = -x_1^2 - x_2^2 - z_2^2 + 1 > 0). \end{split}$$

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
		00000		
Illustrating example				

An illustrating example

Example

$$\begin{split} \phi :=& (f_1 = -(y_1 - x_1 + 1)^2 - x_1 + x_2 \ge 0) \land (y_2 = \alpha(y_1) + 1) \\ \land (g_1 = -x_1^2 - x_2^2 - y_2^2 + 1 > 0), \\ \psi :=& (f_2 = -(z_1 - x_2 + 1)^2 + x_1 - x_2 \ge 0) \land (z_2 = \alpha(z_1) - 1) \\ \land (g_2 = -x_1^2 - x_2^2 - z_2^2 + 1 > 0). \end{split}$$

Flattening and purification gives

$$\overline{\phi} := (f_1 \ge 0 \land y_2 = y + 1 \land g_1 > 0), \quad \overline{\psi} := (f_2 \ge 0 \land z_2 = z - 1 \land g_2 > 0).$$

where $D = \{y = \alpha(y_1), z = \alpha(z_1)\}, N = (y_1 = z_1 \rightarrow y = z).$

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
		00000		
Illustrating example				

An illustrating example

Example

$$\begin{split} \phi :=& (f_1 = -(y_1 - x_1 + 1)^2 - x_1 + x_2 \ge 0) \land (y_2 = \alpha(y_1) + 1) \\ \land (g_1 = -x_1^2 - x_2^2 - y_2^2 + 1 > 0), \\ \psi :=& (f_2 = -(z_1 - x_2 + 1)^2 + x_1 - x_2 \ge 0) \land (z_2 = \alpha(z_1) - 1) \\ \land (g_2 = -x_1^2 - x_2^2 - z_2^2 + 1 > 0). \end{split}$$

Flattening and purification gives

$$\overline{\phi} := (f_1 \ge 0 \land y_2 = y + 1 \land g_1 > 0), \quad \overline{\psi} := (f_2 \ge 0 \land z_2 = z - 1 \land g_2 > 0)$$

where $D = \{y = \alpha(y_1), z = \alpha(z_1)\}, N = (y_1 = z_1 \rightarrow y = z).$

2 NSOSC is not satisfied, since $h = -f_1 - f_2 = (y_1 - x_1 + 1)^2 + (z_1 - x_2 + 1)^2$ is an SOS. $h_1 = (y_1 - x_1 + 1)^2$, $h_2 = (z_1 - x_2 + 1)^2$. This gives

$$f := f_1 + h_1 = -f_2 - h_2 = -x_1 + x_2.$$

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks	
		00000			
Illustrating example					
An illustrating example					

B An interpolant for ϕ , ψ is an interpolant of $((\phi \land f > 0) \lor (\phi \land f = 0))$ and $((\psi \land -f > 0) \lor (\phi \land f = 0))$ which simplifies to : $(f > 0) \lor (f \ge 0 \land I_2)$ where I_2 is an interpolant for $\phi \land f = 0$ and $\psi \land f = 0$. Substituting $\phi \land f = 0 \models y_1 = x_1 - 1$ and $\psi \land f = 0 \models z_1 = x_2 - 1$ into $\overline{\phi}$ and $\overline{\psi}$, we get

$$\overline{\phi'} := -\mathbf{x}_1 + \mathbf{x}_2 \ge 0 \land \mathbf{y}_2 = \mathbf{y} + 1 \land \mathbf{g}_1 > 0 \land \mathbf{y}_1 = \mathbf{x}_1 - 1, \overline{\psi'} := \mathbf{x}_1 - \mathbf{x}_2 \ge 0 \land \mathbf{z}_2 = \mathbf{z} - 1 \land \mathbf{g}_2 > 0 \land \mathbf{z}_1 = \mathbf{x}_2 - 1.$$

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks	
		00000			
Illustrating example					
An illustrating example					

B An interpolant for ϕ , ψ is an interpolant of $((\phi \land f > 0) \lor (\phi \land f = 0))$ and $((\psi \land -f > 0) \lor (\phi \land f = 0))$ which simplifies to : $(f > 0) \lor (f \ge 0 \land I_2)$ where I_2 is an interpolant for $\phi \land f = 0$ and $\psi \land f = 0$. Substituting $\phi \land f = 0 \models y_1 = x_1 - 1$ and $\psi \land f = 0 \models z_1 = x_2 - 1$ into $\overline{\phi}$ and $\overline{\psi}$, we get

$$\overline{\phi'} := -\mathbf{x}_1 + \mathbf{x}_2 \ge 0 \land \mathbf{y}_2 = \mathbf{y} + 1 \land \mathbf{g}_1 > 0 \land \mathbf{y}_1 = \mathbf{x}_1 - 1,$$

$$\overline{\psi'} := \mathbf{x}_1 - \mathbf{x}_2 \ge 0 \land \mathbf{z}_2 = \mathbf{z} - 1 \land \mathbf{g}_2 > 0 \land \mathbf{z}_1 = \mathbf{x}_2 - 1.$$

4 Recursively call **IGFQCE** until **NSOSC** is satisfied. $y_1 = z_1$ is deduced from linear inequalities in $\overline{\phi'}$ and $\overline{\psi'}$, and separating terms for y_1, z_1 are constructed :

$$\overline{\phi'} \models \mathbf{x}_1 - 1 \le \mathbf{y}_1 \le \mathbf{x}_2 - 1, \quad \overline{\psi'} \models \mathbf{x}_2 - 1 \le \mathbf{z}_1 \le \mathbf{x}_1 - 1.$$

Let $t = \alpha(x_2 - 1)$, then separate $y_1 = z_1 \rightarrow y = z$ into two parts :

$$y_1 = t^+ \rightarrow y = t$$
, $t^+ = z_1 \rightarrow t = z$.

Add them to $\overline{\phi'}$ and $\overline{\psi'}$ respectively, we have

$$\overline{\phi'}_1 := -x_1 + x_2 \ge 0 \land y_2 = y + 1 \land g_1 > 0 \land y_1 = x_1 - 1 \land y_1 = x_2 - 1 \to y = t,$$

$$\overline{\psi'}_1 := x_1 - x_2 \ge 0 \land z_2 = z - 1 \land g_2 > 0 \land z_1 = x_2 - 1 \land x_2 - 1 = z_1 \to t = z.$$

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks	
		00000			
Illustrating example					
An illustrating example					

4 Then

$$\overline{\phi'}_1 := -\mathbf{x}_1 + \mathbf{x}_2 \ge 0 \land \mathbf{y}_2 = \mathbf{y} + 1 \land \mathbf{g}_1 > 0 \land \mathbf{y}_1 = \mathbf{x}_1 - 1 \land (\mathbf{x}_2 - 1 > \mathbf{y}_1 \lor \mathbf{y}_1 > \mathbf{x}_2 - 1 \lor \mathbf{y} = \mathbf{t}), \overline{\psi'}_1 := \mathbf{x}_1 - \mathbf{x}_2 \ge 0 \land \mathbf{z}_2 = \mathbf{z} - 1 \land \mathbf{g}_2 > 0 \land \mathbf{z}_1 = \mathbf{x}_2 - 1 \land \mathbf{t} = \mathbf{z}.$$

Thus,

$$\overline{\phi'}_1 := \overline{\phi'}_2 \lor \overline{\phi'}_3 \lor \overline{\phi'}_4, \text{ where} \overline{\phi'}_2 := -x_1 + x_2 \ge 0 \land y_2 = y + 1 \land g_1 > 0 \land y_1 = x_1 - 1 \land x_2 - 1 > y_1, \overline{\phi'}_3 := -x_1 + x_2 \ge 0 \land y_2 = y + 1 \land g_1 > 0 \land y_1 = x_1 - 1 \land y_1 > x_2 - 1, \overline{\phi'}_4 := -x_1 + x_2 \ge 0 \land y_2 = y + 1 \land g_1 > 0 \land y_1 = x_1 - 1 \land y = t.$$

Since $\overline{\phi'}_3 = \textit{false}$, then $\overline{\phi'}_1 = \overline{\phi'}_2 \vee \overline{\phi'}_4$. Then find interpolant $I(\overline{\phi'}_2, \overline{\psi'}_1)$ and $I(\overline{\phi'}_4, \overline{\psi'}_1)$.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks	
		00000			
Illustrating example					
An illustrating example					

4 Then

$$\overline{\phi'}_1 := -\mathbf{x}_1 + \mathbf{x}_2 \ge 0 \land \mathbf{y}_2 = \mathbf{y} + 1 \land \mathbf{g}_1 > 0 \land \mathbf{y}_1 = \mathbf{x}_1 - 1 \land (\mathbf{x}_2 - 1 > \mathbf{y}_1 \lor \mathbf{y}_1 > \mathbf{x}_2 - 1 \lor \mathbf{y} = \mathbf{t}), \overline{\psi'}_1 := \mathbf{x}_1 - \mathbf{x}_2 \ge 0 \land \mathbf{z}_2 = \mathbf{z} - 1 \land \mathbf{g}_2 > 0 \land \mathbf{z}_1 = \mathbf{x}_2 - 1 \land \mathbf{t} = \mathbf{z}.$$

Thus,

$$\overline{\phi'}_1 := \overline{\phi'}_2 \lor \overline{\phi'}_3 \lor \overline{\phi'}_4, \text{ where} \overline{\phi'}_2 := -\mathbf{x}_1 + \mathbf{x}_2 \ge 0 \land \mathbf{y}_2 = \mathbf{y} + 1 \land \mathbf{g}_1 > 0 \land \mathbf{y}_1 = \mathbf{x}_1 - 1 \land \mathbf{x}_2 - 1 > \mathbf{y}_1, \overline{\phi'}_3 := -\mathbf{x}_1 + \mathbf{x}_2 \ge 0 \land \mathbf{y}_2 = \mathbf{y} + 1 \land \mathbf{g}_1 > 0 \land \mathbf{y}_1 = \mathbf{x}_1 - 1 \land \mathbf{y}_1 > \mathbf{x}_2 - 1, \overline{\phi'}_4 := -\mathbf{x}_1 + \mathbf{x}_2 \ge 0 \land \mathbf{y}_2 = \mathbf{y} + 1 \land \mathbf{g}_1 > 0 \land \mathbf{y}_1 = \mathbf{x}_1 - 1 \land \mathbf{y} = \mathbf{t}.$$

Since $\overline{\phi'}_3 = \textit{false}$, then $\overline{\phi'}_1 = \overline{\phi'}_2 \vee \overline{\phi'}_4$. Then find interpolant $I(\overline{\phi'}_2, \overline{\psi'}_1)$ and $I(\overline{\phi'}_4, \overline{\psi'}_1)$.

5 Finally we conclude that $I(\overline{\phi'}_2, \overline{\psi'}_1) \vee I(\overline{\phi'}_4, \overline{\psi'}_1)$ is an interpolant.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
			0	
Implementation				
Implan	antation			
Innpeni	entation			

We have implemented the presented algorithms in *Mathematica* to synthesize interpolation for concave quadratic polynomial inequalities as well as their combination with *EUF*. To deal with SOS solving and semi-definite programming, the Matlab-based optimization tool *Yalmip* and the SDP solver *SDPT3* are invoked for assistant solving.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks	
			00		
Evaluation results					
Evaluation results					

Fxample	Туре	Time (sec)			
Example		CLP- Prover	Foci	CSIsat	Our Approach
Exp.1	NLA				0.003
Exp.2	NLA+ <i>EUF</i>				0.036
Exp.3	NLA				0.014
Exp.4	NLA				0.003
Exp.5	LA	0.023	×	0.003	0.003
Exp.6	LA+ <i>EUF</i>	0.025	0.006	0.007	0.003
Exp.7	Ellipsoid				0.002
Exp.8	Ellipsoid				0.002
Exp.9	Octagon	0.059	×	0.004	0.004
Exp.10	Octagon	0.065	×	0.004	0.004

-- means interpolant generation fails, and imes specifies particularly wrong answers (satisfiable).

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
				0
Related work				
Related v	vork			

 McMillan [McMillan 05] popularized interpolants for automatically generating invariants of programs in 2005.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
				\odot
Related work				
Related v	work			

- McMillan [McMillan 05] popularized *interpolants* for automatically generating invariants of programs in 2005.
- Krajíček [Krajíček 97] and Pudlák [Pudlák 97] proposed approaches to deriving interpolants from resolution proofs prior to McMillan's work, which generate different interpolants from those done by McMillan's method.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
				\odot
Related work				
Related v	vork			

- McMillan [McMillan 05] popularized *interpolants* for automatically generating invariants of programs in 2005.
- Krajíček [Krajíček 97] and Pudlák [Pudlák 97] proposed approaches to deriving interpolants from resolution proofs prior to McMillan's work, which generate different interpolants from those done by McMillan's method.
- Kapur et al. [Kapur, Majumdar & Zarba 06] established an *intimate connection* between interpolants and quantifier elimination, by which Kapur [Kapur 13] showed that interpolants form a lattice ordered using implication.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
000	00000000000000	00000	00	\odot
Related work				
Related	work			

- McMillan [McMillan 05] popularized *interpolants* for automatically generating invariants of programs in 2005.
- Krajíček [Krajíček 97] and Pudlák [Pudlák 97] proposed approaches to deriving interpolants from resolution proofs prior to McMillan's work, which generate different interpolants from those done by McMillan's method.
- Kapur et al. [Kapur, Majumdar & Zarba 06] established an *intimate connection* between interpolants and quantifier elimination, by which Kapur [Kapur 13] showed that interpolants form a lattice ordered using implication.
- Rybalchenko et al. [Rybalchenko & Sofronie-Stokkermans 10] proposed an algorithm for generating interpolants for the combined theory of linear arithmetic and uninterpreted function symbols (*EUF*) by using a reduction of the problem to *constraint solving* in linear arithmetic.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks
				\odot
Related work				
Related	work			

- McMillan [McMillan 05] popularized *interpolants* for automatically generating invariants of programs in 2005.
- Krajíček [Krajíček 97] and Pudlák [Pudlák 97] proposed approaches to deriving interpolants from resolution proofs prior to McMillan's work, which generate different interpolants from those done by McMillan's method.
- Kapur et al. [Kapur, Majumdar & Zarba 06] established an *intimate connection* between interpolants and quantifier elimination, by which Kapur [Kapur 13] showed that interpolants form a lattice ordered using implication.
- Rybalchenko et al. [Rybalchenko & Sofronie-Stokkermans 10] proposed an algorithm for generating interpolants for the combined theory of linear arithmetic and uninterpreted function symbols (*EUF*) by using a reduction of the problem to *constraint solving* in linear arithmetic.
- Dai et al. [L. Dai, B. Xia & N. Zhan 13] provided an approach to constructing non-linear interpolants based on *semi-definite programming*.

Key ideas 000	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks ○●
Concluding remarks				
Concludin	g remarks			

Key ideas 000	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks ○●
Concluding remarks				
Concludir	ig remarks			

A complete, polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals:

Key ideas 000	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks ○●
Concluding remark				
Concludi	ng remarks			

A complete, polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals:

 If NSOSC holds, an interpolant a la McMillan can be generated essentially using the linearization of quadratic polynomials.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks	
				00	
Concluding remark					
Concluding remarks					

- A complete, polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals:
 - If NSOSC holds, an interpolant a la McMillan can be generated essentially using the linearization of quadratic polynomials.
 - If NSOSC doesn't hold, linear equalities relating variables are deduced, resulting to interpolation subproblems with fewer variables on which the algorithm is recursively applied.

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks	
				00	
Concluding remar	ks				
Concluding remarks					

- A complete, polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals:
 - If NSOSC holds, an interpolant a la McMillan can be generated essentially using the linearization of quadratic polynomials.
 - If NSOSC doesn't hold, linear equalities relating variables are deduced, resulting to interpolation subproblems with fewer variables on which the algorithm is recursively applied.
- 2 An algorithm, by partitioning Horn clauses, for generating interpolants for the combination of quantifier-free theory of concave quadratic polynomial inequalities and equality theory over uninterpreted function symbols (*EUF*).

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks	
				00	
Concluding remar	ks				
Concluding remarks					

- A complete, polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals:
 - If NSOSC holds, an interpolant a la McMillan can be generated essentially using the linearization of quadratic polynomials.
 - If NSOSC doesn't hold, linear equalities relating variables are deduced, resulting to interpolation subproblems with fewer variables on which the algorithm is recursively applied.
- 2 An algorithm, by partitioning Horn clauses, for generating interpolants for the combination of quantifier-free theory of concave quadratic polynomial inequalities and equality theory over uninterpreted function symbols (*EUF*).

Future work

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks	
000	000000000000000	00000	00	00	
Concluding remar	ks				
C	:				

- A complete, polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals:
 - If NSOSC holds, an interpolant a la McMillan can be generated essentially using the linearization of quadratic polynomials.
 - If NSOSC doesn't hold, linear equalities relating variables are deduced, resulting to interpolation subproblems with fewer variables on which the algorithm is recursively applied.
- 2 An algorithm, by partitioning Horn clauses, for generating interpolants for the combination of quantifier-free theory of concave quadratic polynomial inequalities and equality theory over uninterpreted function symbols (*EUF*).

Future work

 Extending the proposed framework to which their linearization with some additional conditions on the coefficients (such as concavity for quadratic polynomials).

Key ideas	Generating interpolants for CQI	Combination with EUF	Evaluation results	Concluding remarks	
000	000000000000000	00000	00	00	
Concluding remar	ks				
	:				

- A complete, polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals:
 - If NSOSC holds, an interpolant a la McMillan can be generated essentially using the linearization of quadratic polynomials.
 - If NSOSC doesn't hold, linear equalities relating variables are deduced, resulting to interpolation subproblems with fewer variables on which the algorithm is recursively applied.
- 2 An algorithm, by partitioning Horn clauses, for generating interpolants for the combination of quantifier-free theory of concave quadratic polynomial inequalities and equality theory over uninterpreted function symbols (*EUF*).

Future work

- Extending the proposed framework to which their linearization with some additional conditions on the coefficients (such as concavity for quadratic polynomials).
- Investigating how results reported for nonlinear polynomial inequalities based on positive nullstellensatz and the Archimedian condition on variables can be exploited in the proposed framework for dealing with polynomial inequalities.