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Overview

Overview of the idea

Example (running example)

Consider two formulas A and Bwith A ∧ B |= ⊥, where

A := −x12 + 4x1 + x2 − 4 ≥ 0 ∧ −x1 − x2 + 3− y2 > 0,

B := −3x12 − x22 + 1 ≥ 0 ∧ x2 − z2 ≥ 0

We aim to generate an interpolant I for A and B, on the
common variables (x1 and x2), such that A |= I and
I ∧ B |= ⊥.

An intuitive description of a candidate interpolant is as the purple curve in the above
right figure, which separates A and B in the panel of x1 and x2.
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Overview

Overview of the idea

A polynomial time algorithm for generating interpolants from mutually
contradictory conjunctions of concave quadratic polynomial inequalities over
the reals :

If no nonpositive constant combination of nonstrict inequalities is a sum of squares
polynomial, an interpolant a la McMillan can be generated essentially using the
linearization of quadratic polynomials.
Otherwise, linear equalities relating variables are deduced, resulting to interpolation
subproblems with fewer variables on which the algorithm is recursively applied.

An algorithm for generating interpolants for the combination of quantifier-free
theory of concave quadratic polynomial inequalities and equality theory over
uninterpreted function symbols (EUF ).
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Preliminaries

Preliminaries

Theorem (Motzkin's transposition theorem)

Let A and B be matrices and let α⃗ and β⃗ be column vectors. Then there exists a vector x
with Ax − α⃗ ≥ 0 and Bx − β⃗ > 0, iff for all row vectors y, z ≥ 0 :

(i) if yA+ zB = 0 then yα⃗+ zβ⃗ ≤ 0;

(ii) if yA+ zB = 0 and z ̸= 0 then yα⃗+ zβ⃗ < 0.

Corollary

Let A ∈ Rr×n and B ∈ Rs×n be matrices and α⃗ ∈ Rr and β⃗ ∈ Rs be column vectors,
where Ai, i = 1, . . . , r is the ith row of A and Bj, j = 1, . . . , s is the jth row of B. There

does not exist a vector x with Ax − α⃗ ≥ 0 and Bx − β⃗ > 0, iff there exist real numbers
λ1, . . . , λr ≥ 0 and η0, η1, . . . , ηs ≥ 0 such that

r∑
i=1

λi(Aix − αi) +
s∑

j=1

ηj(Bjx − βj) + η0 ≡ 0 with
s∑

j=0

ηj = 1. (1)
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Concave quadratic polynomials

Concave quadratic polynomials

Definition (Concave Quadratic)

A polynomial f ∈ R[x] is called concave quadratic (CQ) if the following two conditions
hold :

f has total degree at most 2, i.e., it has the form f = xTAx + 2α⃗Tx + a, where A is
a real symmetric matrix, α⃗ is a column vector and a ∈ R ;

the matrix A is negative semi-definite, written as A ⪯ 0.

Example

Take f = −3x12 − x22 + 1 in the running example, which is from the ellipsoid domain
and can be expressed as

f =

(
x1
x2

)T(
−3 0

0 −1

)(
x1
x2

)
+ 1.

The corresponding A =

(
−3 0

0 −1

)
⪯ 0. Thus, f is CQ.
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Concave quadratic polynomials

Concave quadratic polynomials

If f ∈ R[x] is linear, then f is CQ because its total degree is 1 and the
corresponding A is 0which is of course negative semi-definite.

A quadratic polynomial f(x) = xTAx + 2α⃗Tx + a can also be represented as an

inner product of matrices, i.e.,

⟨
P,

(
1 xT

x xxT

)⟩
,where P =

(
a αT

α A

)
.
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Linearization of CQ polynomials

Linearization of CQ polynomials

Definition (Linearization)

Given a quadratic polynomial f(x) =
⟨
P,

(
1 xT

x xxT

)⟩
, its linearization is defined as

f(x) =
⟨
P,

(
1 xT

x X⃗

)⟩
, where

(
1 xT

x X⃗

)
⪰ 0.

let

K =̂ {x ∈ Rn | f1(x) ≥ 0, . . . , fr(x) ≥ 0, g1(x) > 0, . . . , gs(x) > 0}, (2)

K1 =̂ {x |
(
1 xT

x X⃗

)
⪰ 0, ∧r

i=1

⟨
Pi,

(
1 xT

x X⃗

)⟩
≥ 0,

∧s
j=1

⟨
Qj,

(
1 xT

x X⃗

)⟩
> 0, for some X⃗}, (3)
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Linearization of CQ polynomials

Linearization of CQ polynomials

Theorem

Let f1, . . . , fr and g1, . . . , gs be CQ polynomials, K and K1 as above, then K = K1.

Therefore, when fis and gjs are CQ, the CQ polynomial inequalities can be
transformed equivalently to a set of linear inequality constraints and a positive
semi-definite constraint.
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Synthesis algorithms

Problem formulation

Problem 1

Given two formulas ϕ and ψ on n variables with ϕ ∧ ψ |= ⊥, where

ϕ = f1 ≥ 0 ∧ . . . ∧ fr1 ≥ 0 ∧ g1 > 0 ∧ . . . ∧ gs1 > 0,

ψ = fr1+1 ≥ 0 ∧ . . . ∧ fr ≥ 0 ∧ gs1+1 > 0 ∧ . . . ∧ gs > 0,

in which f1, . . . , fr, g1, . . . , gs are all CQ, develop an algorithm to generate a (reverse)
Craig interpolant I for ϕ and ψ, on the common variables of ϕ and ψ, such that ϕ |= I
and I ∧ ψ |= ⊥.

x = (x1, . . . , xd), y = (y1, . . . , yu) and z = (z1, . . . , zv), where d+ u+ v = n.
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Synthesis algorithms

NSOSC Condition

Definition (NSOSC)

Formulas ϕ and ψ in Problem 1, satisfy the non-existence of an SOS polynomial
condition (NSOSC) iff there do not exist δ1 ≥ 0, . . . , δr ≥ 0, s.t.−(δ1f1 + . . .+ δrfr)
is a non-zero SOS.

Example

Formulas A and B in the running example do not satisfy NSOSC, since there exist
δ1 = 1, δ2 = 1, δ3 = 1, s.t.

− (δ1(−x12 + 4x1 + x2 − 4) + δ2(−3x12 − x22 + 1) + δ3(x2 − z2))

= (2x1 − 1)2 + (x2 − 1)2 + z2

is a non-zero SOS.
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Synthesis algorithms

Generalization of Motzkin’s theorem

Theorem (Generalization of Motzkin’s theorem)

Let f1, . . . , fr, g1, . . . , gs be CQ polynomials whose conjunction is unsatisfiable. If the
condition NSOSC holds, then there exist λi ≥ 0 (i = 1, · · · , r), ηj ≥ 0 (j = 0, 1, · · · , s)
and a quadratic SOS polynomial h of the form (l1)2 + . . .+ (lk)

2 where li are linear
expressions in x, y, z. , s.t.

r∑
i=1

λifi +
s∑

j=1

ηjgj + η0 + h ≡ 0, (4)

η0 + η1 + . . .+ ηs = 1. (5)

Using this generalization, an interpolant for ϕ and ψ is generated from the SOS
polynomial h by splitting it into two SOS polynomials.
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Synthesis algorithms

When NSOSC is satisfied

Theorem

Let ϕ and ψ as defined in Problem 1 with ϕ ∧ φ |= ⊥, which satisfy NSOSC. Then there
exist λi ≥ 0 (i = 1, · · · , r), ηj ≥ 0 (j = 0, 1, · · · , s) and two quadratic SOS polynomial
h1 ∈ R[x,y] and h2 ∈ R[x, z] s.t.

r∑
i=1

λifi +
s∑

j=1

ηjgj + η0 + h1 + h2 ≡ 0, (6)

η0 + η1 + . . .+ ηs = 1. (7)

Let I =
∑r1

i=1
λifi +

∑s1
j=1

ηjgj + η0 + h1 ∈ R[x]. Then, if
∑s1

j=0
ηj > 0, then I > 0 is an

interpolant ; otherwise I ≥ 0 is an interpolant.
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Synthesis algorithms

Computing interpolant using semi-definite programming

LetW =


1 xT yT zT

x xxT xyT xzT

y yxT yyT yzT

z zxT zyT zzT

 , fi = ⟨Pi,W⟩, gj = ⟨Qj,W⟩,where Pi and Qj are

(n+ 1)× (n+ 1)matrices, h1 = ⟨M,W⟩, h2 = ⟨M̂,W⟩, andM = (Mij)4×4,
M̂ = (M̂ij)4×4 with appropriate dimensions, e.g.,M12 ∈ R1×d and M̂34 ∈ Ru×v.

Then, with NSOSC, computing the interpolant is reduced to the following SDP
feasibility problem :
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Synthesis algorithms

Computing interpolant using semi-definite programming

Find : λ1, . . . , λr, η1, . . . , ηs ∈ R,M, M̂ ∈ R(n+1)×(n+1) subject to

∑r
i=1 λiPi +

∑s
j=1 ηjQj + η0E1,1 +M+ M̂ = 0,

∑s
j=1 ηj = 1,

M41 = (M14)T = 0,M42 = (M24)T = 0,M43 = (M34)T = 0,M44 = 0,

M̂31 = (M̂13)T = 0, M̂32 = (M̂23)T = 0, M̂33 = 0, M̂34 = (M̂43)T = 0,

M ⪰ 0, M̂ ⪰ 0, λi ≥ 0, ηj ≥ 0, for i = 1, . . . , r, j = 1, . . . , s,

where E(1,1) is a (n+ 1)× (n+ 1)matrix, whose all other entries are 0 except for
(1, 1) entry being 1.
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Synthesis algorithms

When NSOSC is not satisfied

If ϕ and ψ do not satisfy NSOSC, i.e., an SOS polynomial h(x,y, z) = −(
∑r

i=1 λifi)
can be computed which can be split into two SOS polynomials h1(x,y) and h2(x, z)
as discussed previously. Then an SOS polynomial f(x) such that ϕ |= f(x) ≥ 0 and
ψ |= −f(x) ≥ 0 can be constructed as

f(x) = (

r1∑
i=1

δifi) + h1 = −(
r∑

i=r1+1

δifi)− h2, δi ≥ 0.

Lemma

If Problem 1 does not satisfy NSOSC, there exists f ∈ R[x], s.t. ϕ⇔ ϕ1 ∨ ϕ2 and
ψ ⇔ ψ1 ∨ ψ2, where,

ϕ1 = (f > 0 ∧ ϕ), ϕ2 = (f = 0 ∧ ϕ),ψ1 = (−f > 0 ∧ ψ), ψ2 = (f = 0 ∧ ψ). (8)
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Synthesis algorithms

When NSOSC is not satisfied

Using the previous lemma, an interpolant I for ϕ and ψ can be constructed from an
interpolant I2,2 for ϕ2 and ψ2.

Theorem

With ϕ, ψ, ϕ1, ϕ2, ψ1, ψ2 as in previous Lemma, from an interpolant I2,2 for ϕ2 and ψ2,
I := (f > 0) ∨ (f ≥ 0 ∧ I2,2) is an interpolant for ϕ and ψ.

If h and hence h1, h2 have a positive constant an+1 > 0, then f cannot be 0, implying
that ϕ2, ψ2 are⊥. We thus have :

Theorem

With ϕ, ψ, ϕ1, ϕ2, ψ1, ψ2 as in previous Lemma and h has an+1 > 0, f > 0 is an
interpolant for ϕ and ψ.

In case h does not have a constant, i.e., an+1 = 0, elimination of variables can be
recursively performed to terminate the algorithm.
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Generating interpolants for CQI

Example

Recall the running example where

h = (2x1 − 1)2 + (x2 − 1)2 + z2

=
1

2
((2x1 − 1)2 + (x2 − 1)2)︸ ︷︷ ︸

h1

+
1

2
((2x1 − 1)2 + (x2 − 1)2) + z2︸ ︷︷ ︸

h2

f = δ1(−x12 + 4x1 + x2 − 4) + h1

= −3 + 2x1 + x12 +
1

2
x22

We construct A′ from A by setting x1 = 1
2
, x2 = 1 derived from h1 = 0 ; similarly B′ is

constructed by setting x1 = 1
2
, x2 = 1, z = 0 in B as derived from h2 = 0. It follows

that, A′ := B′ := ⊥ Thus, I(A′,B′) := (0 > 0) is an interpolant for (A′,B′).

An interpolant for A and B is thus (f(x) > 0) ∨ (f(x) = 0 ∧ I(A′,B′)), i.e.

−3 + 2x1 + x12 +
1

2
x22 > 0.

which corresponds to the purple curve mentioned previously.
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Combination with EUF

Ω = Ω1 ∪ Ω2 ∪ Ω3 : a finite set of uninterpreted function symbols in EUF ;

Ω12 = Ω1 ∪ Ω2, Ω13 = Ω1 ∪ Ω3 ;

R[x,y, z]Ω : the extension of R[x,y, z] in which polynomials can have terms built
using function symbols in Ω and variables in x,y, z.

Problem 2

Suppose two formulas ϕ and ψ with ϕ ∧ ψ |= ⊥, where

ϕ = f1 ≥ 0 ∧ . . . ∧ fr1 ≥ 0 ∧ g1 > 0 ∧ . . . ∧ gs1 > 0,

ψ = fr1+1 ≥ 0 ∧ . . . ∧ fr ≥ 0 ∧ gs1+1 > 0 ∧ . . . ∧ gs > 0,

where f1, . . . , fr, g1, . . . , gs are all CQ polynomials, f1, . . . , fr1 , g1, . . . , gs1 ∈
R[x,y]Ω12 , fr1+1, . . . , fr, gs1+1, . . . , gs ∈ R[x, z]Ω13 , the goal is to generate an
interpolant I for ϕ and ψ, expressed using the common symbols x,Ω1, i.e., I includes
only polynomials in R[x]Ω1 .
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Key ideas

Sketch of the idea (Algorithm IGFQCE)

1 Flatten and purify the formulas ϕ and ψ as ϕ and ψ by introducing fresh variables
for each term with uninterpreted symbols as well as for the terms with
uninterpreted symbols.

2 Generate a set N of Horn clauses as

N = {
∧n

k=1 ck = bk → c = b | ω(c1, . . . , cn) = c ∈ D, ω(b1, . . . , bn) = b ∈ D},
where D consists of unit clauses of the form ω(c1, . . . , cn) = c, with c1, . . . , cn be
variables and ω ∈ Ω.

3 Partition N into Nϕ,Nψ , and Nmix with all symbols in Nϕ,Nψ appearing in ϕ, ψ,
respectively, and Nmix consisting of symbols from both ϕ, ψ.

ϕ ∧ ψ |= ⊥ iff ϕ ∧ ψ ∧ D |= ⊥ iff (ϕ ∧ Nϕ) ∧ (ψ ∧ Nψ) ∧ Nmix |= ⊥. (9)

4 Generate interpolant : Notice that (ϕ ∧ Nϕ) ∧ (ψ ∧ Nψ) ∧ Nmix |= ⊥ has no

uninterpreted function symbols. If Nmix can be replaced by Nϕsep and Nψsep as in
[Rybalchenko & Sofronie-Stokkermans 10] using separating terms, then IGFQC
can be applied. An interpolant generated for this problem can be used to
generate an interpolant for ϕ, ψ after uniformly replacing all new symbols by
their corresponding expressions from D.
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An illustrating example

Example

ϕ :=(f1 = −(y1 − x1 + 1)2 − x1 + x2 ≥ 0) ∧ (y2 = α(y1) + 1)

∧ (g1 = −x21 − x22 − y22 + 1 > 0),

ψ :=(f2 = −(z1 − x2 + 1)2 + x1 − x2 ≥ 0) ∧ (z2 = α(z1)− 1)

∧ (g2 = −x21 − x22 − z22 + 1 > 0).

1 Flattening and purification gives

ϕ := (f1 ≥ 0 ∧ y2 = y+ 1 ∧ g1 > 0), ψ := (f2 ≥ 0 ∧ z2 = z− 1 ∧ g2 > 0).

where D = {y = α(y1), z = α(z1)}, N = (y1 = z1 → y = z).

2 NSOSC is not satisfied, since h = −f1 − f2 = (y1 − x1 + 1)2 + (z1 − x2 + 1)2 is
an SOS. h1 = (y1 − x1 + 1)2 , h2 = (z1 − x2 + 1)2. This gives

f := f1 + h1 = −f2 − h2 = −x1 + x2.
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3 An interpolant for ϕ, ψ is an interpolant of ((ϕ ∧ f > 0) ∨ (ϕ ∧ f = 0)) and
((ψ ∧−f > 0)∨ (ϕ∧ f = 0))which simplifies to : (f > 0)∨ (f ≥ 0∧ I2)where I2 is
an interpolant for ϕ ∧ f = 0 and ψ ∧ f = 0. Substituting ϕ ∧ f = 0 |= y1 = x1 − 1
and ψ ∧ f = 0 |= z1 = x2 − 1 into ϕ and ψ, we get

ϕ′ :=− x1 + x2 ≥ 0 ∧ y2 = y+ 1 ∧ g1 > 0 ∧ y1 = x1 − 1,

ψ′ :=x1 − x2 ≥ 0 ∧ z2 = z− 1 ∧ g2 > 0 ∧ z1 = x2 − 1.

4 Recursively call IGFQCE until NSOSC is satisfied. y1 = z1 is deduced from
linear inequalities in ϕ′ and ψ′, and separating terms for y1, z1 are constructed :

ϕ′ |= x1 − 1 ≤ y1 ≤ x2 − 1, ψ′ |= x2 − 1 ≤ z1 ≤ x1 − 1.

Let t = α(x2 − 1), then separate y1 = z1 → y = z into two parts :

y1 = t+ → y = t, t+ = z1 → t = z.

Add them to ϕ′ and ψ′ respectively, we have

ϕ′1 := −x1 + x2 ≥ 0 ∧ y2 = y+ 1 ∧ g1 > 0 ∧ y1 = x1 − 1 ∧ y1 = x2 − 1 → y = t,

ψ′
1 := x1 − x2 ≥ 0 ∧ z2 = z− 1 ∧ g2 > 0 ∧ z1 = x2 − 1 ∧ x2 − 1 = z1 → t = z.
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4 Then

ϕ′1 :=− x1 + x2 ≥ 0 ∧ y2 = y+ 1 ∧ g1 > 0 ∧ y1 = x1 − 1

∧ (x2 − 1 > y1 ∨ y1 > x2 − 1 ∨ y = t),

ψ′
1 :=x1 − x2 ≥ 0 ∧ z2 = z− 1 ∧ g2 > 0 ∧ z1 = x2 − 1 ∧ t = z.

Thus,

ϕ′1 :=ϕ′2 ∨ ϕ′3 ∨ ϕ′4,where

ϕ′2 :=− x1 + x2 ≥ 0 ∧ y2 = y+ 1 ∧ g1 > 0 ∧ y1 = x1 − 1 ∧ x2 − 1 > y1,

ϕ′3 :=− x1 + x2 ≥ 0 ∧ y2 = y+ 1 ∧ g1 > 0 ∧ y1 = x1 − 1 ∧ y1 > x2 − 1,

ϕ′4 :=− x1 + x2 ≥ 0 ∧ y2 = y+ 1 ∧ g1 > 0 ∧ y1 = x1 − 1 ∧ y = t.

Since ϕ′3 = false, then ϕ′1 = ϕ′2 ∨ ϕ′4. Then find interpolant I(ϕ′2, ψ′
1) and

I(ϕ′4, ψ′
1).

5 Finally we conclude that I(ϕ′2, ψ′
1) ∨ I(ϕ′4, ψ′

1) is an interpolant.
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Implementation

We have implemented the presented algorithms inMathematica to synthesize
interpolation for concave quadratic polynomial inequalities as well as their
combination with EUF. To deal with SOS solving and semi-definite programming, the
Matlab-based optimization tool Yalmip and the SDP solver SDPT3 are invoked for
assistant solving.
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Evaluation results

Evaluation results

Example Type
Time (sec)

CLP-
Prover

Foci CSIsat Our Approach

Exp.1 NLA -- -- -- 0.003

Exp.2 NLA+EUF -- -- -- 0.036

Exp.3 NLA -- -- -- 0.014

Exp.4 NLA -- -- -- 0.003

Exp.5 LA 0.023 × 0.003 0.003

Exp.6 LA+EUF 0.025 0.006 0.007 0.003

Exp.7 Ellipsoid -- -- -- 0.002

Exp.8 Ellipsoid -- -- -- 0.002

Exp.9 Octagon 0.059 × 0.004 0.004

Exp.10 Octagon 0.065 × 0.004 0.004
-- means interpolant generation fails, and× specifies particularly wrong answers (satisfiable).
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Related work

McMillan [McMillan 05] popularized interpolants for automatically generating
invariants of programs in 2005.

Krajíček [Krajíček 97] and Pudlák [Pudlák 97] proposed approaches to deriving
interpolants from resolution proofs prior to McMillan's work, which generate
different interpolants from those done by McMillan's method.

Kapur et al. [Kapur, Majumdar & Zarba 06] established an intimate connection
between interpolants and quantifier elimination, by which Kapur [Kapur 13]
showed that interpolants form a lattice ordered using implication.

Rybalchenko et al. [Rybalchenko & Sofronie-Stokkermans 10] proposed an
algorithm for generating interpolants for the combined theory of linear
arithmetic and uninterpreted function symbols (EUF ) by using a reduction of the
problem to constraint solving in linear arithmetic.

Dai et al. [L. Dai, B. Xia & N. Zhan 13] provided an approach to constructing
non-linear interpolants based on semi-definite programming.
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Contributions

1 A complete, polynomial time algorithm for generating interpolants from mutually
contradictory conjunctions of concave quadratic polynomial inequalities over the
reals :

If NSOSC holds, an interpolant a la McMillan can be generated essentially using the
linearization of quadratic polynomials.
If NSOSC doesn't hold, linear equalities relating variables are deduced, resulting to
interpolation subproblems with fewer variables on which the algorithm is recursively applied.

2 An algorithm, by partitioning Horn clauses, for generating interpolants for the
combination of quantifier-free theory of concave quadratic polynomial inequalities
and equality theory over uninterpreted function symbols (EUF ).

Future work

Extending the proposed framework to which their linearization with some additional
conditions on the coefficients (such as concavity for quadratic polynomials).
Investigating how results reported for nonlinear polynomial inequalities based on
positive nullstellensatz and the Archimedian condition on variables can be exploited in
the proposed framework for dealing with polynomial inequalities.
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