Interpolant Synthesis for Quadratic Polynomial Inequalities and Combination with *EUF*

Combination with EUF
OOOOO

Evaluation results
OO

 $\frac{1}{00}$ Concluding remarks

Deepak Kapur

Department of Computer Science, University of New Mexico

Joint work with Ting Gan, Liyun Dai, Bican Xia, Naijun Zhan, and Mingshuai Chen

Dagstuhl, September 2015

 $\circ \circ$ Key ideas Generating interpolants for CQI
00000000000000

1 Key ideas

Generalization of Motzkin's transposition theorem

1 Key ideas

Generalization of Motzkin's transposition theorem Concave quadratic polynomials

- Generalization of Motzkin's transposition theorem Concave quadratic polynomials Positive constant replaced by sum of squares
-
-

- Generalization of Motzkin's transposition theorem Concave quadratic polynomials Positive constant replaced by sum of squares
-
-
- **2** Generating interpolants for Concave Quadratic Polynomial inequalities

- Generalization of Motzkin's transposition theorem Concave quadratic polynomials Positive constant replaced by sum of squares
-
-
- **2** Generating interpolants for Concave Quadratic Polynomial inequalities
	- **NSOSC** condition : generalized Motzkin's theorem applies

1 Key ideas

- Generalization of Motzkin's transposition theorem Concave quadratic polynomials Positive constant replaced by sum of squares
-
-

2 Generating interpolants for Concave Quadratic Polynomial inequalities

-
- **NSOSC** condition : generalized Motzkin's theorem applies **SOS** (**NSOSC** not satisifed) : equalities from expressions in a sum of squares being equal to 0.

- Generalization of Motzkin's transposition theorem
- Concave quadratic polynomials
- **Positive constant replaced by sum of squares**
- **2** Generating interpolants for Concave Quadratic Polynomial inequalities
	-
	- **NSOSC** condition : generalized Motzkin's theorem applies **SOS** (**NSOSC** not satisifed) : equalities from expressions in a sum of squares being equal to 0.
- ³ Combination with uninterpreted function symbols (*EUF*)

- Generalization of Motzkin's transposition theorem
- Concave quadratic polynomials
- **Positive constant replaced by sum of squares**
- **2** Generating interpolants for Concave Quadratic Polynomial inequalities
	-
	- **NSOSC** condition : generalized Motzkin's theorem applies **SOS** (**NSOSC** not satisifed) : equalities from expressions in a sum of squares being equal to 0.
- ³ Combination with uninterpreted function symbols (*EUF*)
	- similar to the linear case

- Generalization of Motzkin's transposition theorem
- Concave quadratic polynomials
- **Positive constant replaced by sum of squares**
- **2** Generating interpolants for Concave Quadratic Polynomial inequalities
	-
	- **NSOSC** condition : generalized Motzkin's theorem applies **SOS** (**NSOSC** not satisifed) : equalities from expressions in a sum of squares being equal to 0.
- ³ Combination with uninterpreted function symbols (*EUF*)
	- similar to the linear case
- ⁴ Concluding remarks

Key ideas
●○○ Generating interpolants for CQI
00000000000000 Combination with EUF
OOOOO Evaluation results
OO \circ Concluding remarks Overview Overview of the idea

Example (running example) Consider two formulas *A* and *B* with *A ∧ B |*= *⊥*, where $A := -x_1^2 + 4x_1 + x_2 - 4 \ge 0 \wedge -x_1 - x_2 + 3 - y^2 > 0,$ *B* := $-3x_1^2 - x_2^2 + 1 \ge 0 \wedge x_2 - z^2 \ge 0$

We aim to generate an interpolant *I* for *A* and *B*, on the common variables (x_1 and x_2), such that $A \models I$ and *I ∧ B |*= *⊥*.

An intuitive description of a candidate interpolant is as the purple curve in the above right figure, which separates *A* and *B* in the panel of x_1 and x_2 .

A polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals :

Key ideas
⊙●☉ Generating interpolants for CQI
00000000000000 Combination with EUF
OOOOO Evaluation results
OO $\overline{00}$ Concluding remarks Overview of the idea

- A polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals :
	- If no nonpositive constant combination of nonstrict inequalities is a sum of squares
polynomial, an interpolant a la McMillan can be generated essentially using the
<mark>linearization</mark> of quadratic polynomials.

- A polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals :
	- If no nonpositive constant combination of nonstrict inequalities is a sum of squares polynomial, an interpolant a la McMillan can be generated essentially using the linearization of quadratic polynomials.
	- Otherwise, linear equalities relating variables are d<mark>educed,</mark> resulting to interpolation
subproblems with fewer variables on which the algorithm is recursively applied.

Key ideas
⊙●☉ Generating interpolants for CQI
00000000000000 Combination with EUF
OOOOO $\overline{00}$ Evaluation results \circ Concluding remarks Overview Overview of the idea

- A polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals :
	- \blacksquare If no nonpositive constant combination of nonstrict inequalities is a sum of squares polynomial, an interpolant a la McMillan can be generated essentially using the linearization of quadratic polynomials.
	- Otherwise, linear equalities relating variables are d<mark>educed,</mark> resulting to interpolation
subproblems with fewer variables on which the algorithm is recursively applied.
- An algorithm for generating interpolants for the combination of quantifier-free theory of concave quadratic polynomial inequalities and equality theory over uninterpreted function symbols (*EUF*).

Preliminaries

Theorem (Motzkin's transposition theorem)

Let A and B be matrices and let ⃗α and β⃗ be column vectors. Then there exists a vector **x** *with A***x** $-\vec{\alpha} \geq 0$ and B**x** $-\vec{\beta} > 0$, iff for all row vectors $\mathbf{y}, \mathbf{z} \geq 0$:

> (*i*) if $yA + zB = 0$ then $y\vec{\alpha} + z\vec{\beta} \leq 0$; (*ii*) if $yA + zB = 0$ and $z \neq 0$ then $y\vec{\alpha} + z\vec{\beta} < 0$.

Preliminaries Preliminaries

Key ideas
○○●

Theorem (Motzkin's transposition theorem)

 0.0000000000000000 Generating interpolants for CQI

Let A and B be matrices and let ⃗α and β⃗ be column vectors. Then there exists a vector **x** *with A***x** $-\vec{\alpha} \geq 0$ and B**x** $-\vec{\beta} > 0$, iff for all row vectors **y**, **z** ≥ 0 *:*

Combination with EUF
OOOOO

 $\overline{00}$ Evaluation results

(*i*) if $yA + zB = 0$ then $y\vec{\alpha} + z\vec{\beta} \leq 0$; (*ii*) if $yA + zB = 0$ and $z \neq 0$ then $y\vec{\alpha} + z\vec{\beta} < 0$.

Corollary

 L et $A \in \mathbb{R}^{r \times n}$ and $B \in \mathbb{R}^{s \times n}$ be matrices and $\vec{\alpha} \in \mathbb{R}^r$ and $\vec{\beta} \in \mathbb{R}^s$ be column vectors, where A_i , $i = 1, \ldots, r$ is the ith row of A and B_j , $j = 1, \ldots, s$ is the jth row of B. There *does not exist a vector* $\bf x$ *with* $A\bf x-\vec\alpha\geq0$ and $B\bf x-\vec\beta>0$, iff there exist real numbers $\lambda_1, \ldots, \lambda_r \geq 0$ *and* $\eta_0, \eta_1, \ldots, \eta_s \geq 0$ *such that*

$$
\sum_{i=1}^{r} \lambda_i (A_i x - \alpha_i) + \sum_{j=1}^{s} \eta_j (B_j x - \beta_j) + \eta_0 \equiv 0 \text{ with } \sum_{j=0}^{s} \eta_j = 1.
$$
 (1)

 \circ Concluding remarks

Key ideas
OOO \bullet 00000000000000 rating interpolants for CQI Combination with EUF
OOOOO $\overline{00}$ Evaluation results $\overline{00}$ Concluding remarks Concave quadratic polynomials

Concave quadratic polynomials

Definition (Concave Quadratic)

A polynomial *f ∈* R[**x**] is called *concave quadratic (CQ)* if the following two conditions hold :

- f has total degree at most 2, i.e., it has the form f $=$ $\mathbf{x}^{\mathsf{T}}\mathcal{A}\mathbf{x} + 2\vec{\alpha}^{\mathsf{T}}\mathbf{x} + a$, where *A* is a real symmetric matrix, $\vec{\alpha}$ is a column vector and $a \in \mathbb{R}$;
- \blacksquare the matrix \pmb{A} is negative semi-definite, written as $\pmb{A}\preceq 0.$

Example

Take f $=$ $-3{x_1}^2 - {x_2}^2 + 1$ in the running example, which is from the ellipsoid domain and can be expressed as

$$
f = \binom{x_1}{x_2}^T \binom{-3}{0} \binom{x_1}{x_2} + 1.
$$

corresponding $A = \binom{-3}{0}^T \ge 0$. Thus, *f* is CQ.

The corresponding $A=\left(\begin{array}{c} 1 \end{array}\right)$ 0 *−*1

Key ideas
OOO Generating interpolants fo
00000000000000 ng interpolants for CQ Combination with EUF
OOOOO Evaluation results
OO Concluding remarks
OO Concave quadratic polynomials Concave quadratic polynomials

If *f ∈* R[**x**] is linear, then *f* is CQ because its total degree is 1 and the corresponding *A* is 0 which is of course negative semi-definite.

$\rm{e}^{\rm{o}}$ Key ideas Generating interpolants for CQI
○●○○○○○○○○○○○○ Combination with EUF
OOOOO $\overline{00}$ Evaluation results \overline{O} Concluding remarks Concave quadratic polynomials Concave quadratic polynomials

- If *f ∈* R[**x**] is linear, then *f* is CQ because its total degree is 1 and the corresponding *A* is 0 which is of course negative semi-definite.
- A quadratic polynomial $f(\mathbf{x}) = \mathbf{x}^T\!A\mathbf{x} + 2\vec{\alpha}^T\mathbf{x} + a$ can also be represented as an inner product of matrices, i.e., $\Big\langle P, \begin{pmatrix} 1 & \mathbf{x}^T \end{pmatrix} \Big\rangle$ $\begin{pmatrix} 1 & x^T \ x & xx^T \end{pmatrix}$, where $P = \begin{pmatrix} a & \alpha^T \ \alpha & A \end{pmatrix}$ *α A*) *.*

. . . Key ideas Generating interpolants for CQI Combination with EUF
OOOOO Evaluation results
OO Concluding remarks
OO Linearization of CQ polynomials Linearization of CQ polynomials

Definition (Linearization)
\nGiven a quadratic polynomial
$$
f(\mathbf{x}) = \left\langle P, \begin{pmatrix} 1 & \mathbf{x}^T \\ \mathbf{x} & \mathbf{x} \mathbf{x}^T \end{pmatrix} \right\rangle
$$
, its *linearization* is defined as
\n $f(\mathbf{x}) = \left\langle P, \begin{pmatrix} 1 & \mathbf{x}^T \\ \mathbf{x} & \mathbf{x} \end{pmatrix} \right\rangle$, where $\begin{pmatrix} 1 & \mathbf{x}^T \\ \mathbf{x} & \mathbf{x} \end{pmatrix} \succeq 0$.

. . . Key ideas Generating interpolants for CQI Combination with EUF
OOOOO Evaluation results
OO Concluding remarks
OO Linearization of CQ polynomials Linearization of CQ polynomials

Definition (Linearization)

Given a quadratic polynomial
$$
f(x) = \left\langle P, \begin{pmatrix} 1 & x^T \\ x & xx^T \end{pmatrix} \right\rangle
$$
, its *linearization* is defined as
\n
$$
f(x) = \left\langle P, \begin{pmatrix} 1 & x^T \\ x & \overline{X} \end{pmatrix} \right\rangle, \text{where } \begin{pmatrix} 1 & x^T \\ x & \overline{X} \end{pmatrix} \succeq 0.
$$

let

$$
K \quad \hat{=} \quad \{ \mathbf{x} \in \mathbb{R}^n \mid f_1(\mathbf{x}) \ge 0, \dots, f_r(\mathbf{x}) \ge 0, g_1(\mathbf{x}) > 0, \dots, g_s(\mathbf{x}) > 0 \}, \qquad \text{(2)}
$$
\n
$$
K_1 \quad \hat{=} \quad \{ \mathbf{x} \mid \begin{pmatrix} 1 & \mathbf{x}^T \\ \mathbf{x} & \vec{\chi} \end{pmatrix} \ge 0, \ \wedge_{i=1}^r \begin{pmatrix} p_i, \begin{pmatrix} 1 & \mathbf{x}^T \\ \mathbf{x} & \vec{\chi} \end{pmatrix} \end{pmatrix} \ge 0, \}
$$
\n
$$
\wedge_{j=1}^s \begin{pmatrix} q_j, \begin{pmatrix} 1 & \mathbf{x}^T \\ \mathbf{x} & \vec{\chi} \end{pmatrix} \end{pmatrix} > 0, \text{ for some } \vec{\chi} \}, \tag{3}
$$

Deepak Kapur University of New Mexico Interpolant synthesis for CQI+EUF Dagstuhl, September 2015 8/29

Key ideas
OOO .
000000000 ng interpolants for CQI Combination with EUF
OOOOO Evaluation results
OO $00₀$ Concluding remarks Linearization of CQ polynomials Linearization of CQ polynomials

Theorem

Let f_1, \ldots, f_r and g_1, \ldots, g_s *be CQ polynomials, K and K*₁ *as above, then K* = *K*₁.

Therefore, when *fi*s and *gj*s are CQ, the CQ polynomial inequalities can be transformed equivalently to a set of linear inequality constraints and a positive semi-definite constraint.

$\overline{\circ} \circ$ Key ideas Generating interpolants for CQI
○○○○●○○○○○○○○○○ Combination with EUF
OOOOO $\overline{00}$ Evaluation results \overline{O} Concluding remarks Synthesis algorithms Problem formulation

Problem 1

Given two formulas ϕ and ψ on *n* variables with $\phi \land \psi \models \bot$, where

$$
\begin{array}{rcl}\n\phi & = & f_1 \geq 0 \wedge \ldots \wedge f_{r_1} \geq 0 \wedge g_1 > 0 \wedge \ldots \wedge g_{s_1} > 0, \\
\psi & = & f_{r_1+1} \geq 0 \wedge \ldots \wedge f_r \geq 0 \wedge g_{s_1+1} > 0 \wedge \ldots \wedge g_s > 0,\n\end{array}
$$

in which *f*1*, . . . ,fr, g*1*, . . . , g^s* are all CQ, develop an algorithm to generate a (reverse) Craig interpolant *I* for *ϕ* and *ψ*, on the common variables of *ϕ* and *ψ*, such that *ϕ |*= *I* and $I \wedge \psi \models \bot$.

 $\mathbf{x} = (x_1, \ldots, x_d)$, $\mathbf{y} = (y_1, \ldots, y_u)$ and $\mathbf{z} = (z_1, \ldots, z_v)$, where $d + u + v = n$.

University of New Mexico Interpolant synthesis for CQI+EUF Dagstuhl, September 2015 10/29

Key ideas
OOO Generating interpolants for CQI
○○○○○●○○○○○○○○○ Combination with EUF
OOOOO Evaluation results
OO $\overline{00}$ Concluding remarks Synthesis algorithms

NSOSC Condition

Definition (**NSOSC**)

Formulas *ϕ* and *ψ* in Problem 1, satisfy the non-existence of an SOS polynomial condition (**NSOSC**) iff there do not exist $\delta_1 \geq 0, \ldots, \delta_r \geq 0$, s.t. $-(\delta_1 f_1 + \ldots + \delta_r f_r)$ is a non-zero SOS.

Example

Formulas *A* and *B* in the running example do not satisfy **NSOSC**, since there exist $\delta_1 = 1, \delta_2 = 1, \delta_3 = 1$, s.t.

$$
-(\delta_1(-x_1^2+4x_1+x_2-4)+\delta_2(-3x_1^2-x_2^2+1)+\delta_3(x_2-z^2))
$$

= $(2x_1-1)^2+(x_2-1)^2+z^2$

Deepak Kapur University of New Mexico Interpolant synthesis for CQI+EUF Dagstuhl, September 2015 11/29

is a non-zero SOS.

$\overline{\circ} \circ$ Generating interpolants for CQI
○○○○○○●○○○○○○○ Combination with EUF
OOOOO Evaluation results
OO \circ Synthesis algorithms Generalization of Motzkin's theorem

Theorem (Generalization of Motzkin's theorem)

Key ideas

*Let f*1*, . . . ,fr, g*1*, . . . , g^s be CQ polynomials whose conjunction is unsatisfiable. If the* condition \mathbf{NSOSC} holds, then there exist $\lambda_i\geq 0$ (i $=1,\cdots,$ r), $\eta_j\geq 0$ (j $=0,1,\cdots,$ s) and a quadratic SOS polynomial h of the form $(l_1)^2 + \ldots + (l_k)^2$ where l_i are linear *expressions in x, y, z. , s.t.*

$$
\sum_{\substack{i=1 \ n_0 + \eta_1 + \dots + \eta_5 = 1}}^{r} \eta_j g_j + \eta_0 + h \equiv 0,
$$
\n(4)

Concluding remarks

Using this generalization, an interpolant for *ϕ* and *ψ* is generated from the SOS polynomial *h* by splitting it into two SOS polynomials.

Key ideas
OOO Generating interpolants for CQI
○○○○○○○●○○○○○○ Combination with EUF
OOOOO Evaluation results
OO $\overline{00}$ Concluding remarks Synthesis algorithms When **NSOSC** is satisfied

Theorem

Let ϕ and ψ as defined in Problem 1 with ϕ ∧ φ |= *⊥, which satisfy* **NSOSC***. Then there exist* $\lambda_i \geq 0$ *(i* = 1, \cdots *, r),* $\eta_j \geq 0$ *(j* = $0, 1, \cdots$ *, s) and two quadratic SOS polynomial* $h_1 \in \mathbb{R}[\mathbf{x},\mathbf{y}]$ and $h_2 \in \mathbb{R}[\mathbf{x},\mathbf{z}]$ s.t.

$$
\sum_{\substack{i=1\\ \eta_0+\eta_1+\cdots+\eta_s=1}}^r \eta_j g_j + \eta_0 + h_1 + h_2 \equiv 0,
$$
\n(6)

Let $l=\sum_{i=1}^{f_1}\lambda_if_i+\sum_{j=1}^{s_1}\eta_jg_j+\eta_0+h_1\in\mathbb{R}[\mathbf{x}].$ Then, if $\sum_{j=0}^{s_1}\eta_j>0$, then $l>0$ is an *interpolant ; otherwise I ≥* 0 *is an interpolant.*

ak Kapur University of New Mexico Interpolant synthesis for CQI+EUF Dagstuhl, September 2015 13 / 29

Synthesis algorithms Computing interpolant using semi-definite programming

Combination with EUF
OOOOO

Evaluation results
OO

 $00₀$ Concluding remarks

Generating interpolants for CQI
○○○○○○○○●○○○○○

Key ideas
OOO

Let
$$
W = \begin{pmatrix} 1 & x^T & y^T & z^T \\ x & x x^T & xy^T & x z^T \\ y & y x^T & y y^T & y z^T \\ z & zx^T & z y^T & z z^T \end{pmatrix}
$$
, $f_i = \langle P_i, W \rangle$, $g_j = \langle Q_j, W \rangle$, where P_i and Q_j are

 $(n+1) \times (n+1)$ matrices, $h_1 = \langle M, W \rangle$, $h_2 = \langle \hat{M}, W \rangle$, and $M = (M_{ij})_{4 \times 4}$, $\hat{\textbf{M}} = (\hat{\textbf{M}}_{ij})_{4\times4}$ with appropriate dimensions, e.g., $\textbf{M}_{12}\in\mathbb{R}^{1\times d}$ and $\hat{\textbf{M}}_{34}\in\mathbb{R}^{u\times v}$.

Then, with **NSOSC**, computing the interpolant is reduced to the following **SDP** feasibility problem :

ak Kapur University of New Mexico Interpolant synthesis for CQI+EUF Dagstuhl, September 2015 14/29

Synthesis algorithms Computing interpolant using semi-definite programming

Combination with EUF
OOOOO

Evaluation results
OO

 $\overline{00}$ Concluding remarks

Find : $\lambda_1, \ldots, \lambda_r, \eta_1, \ldots, \eta_s \in \mathbb{R}$, $M, \hat{M} \in \mathbb{R}^{(n+1)\times(n+1)}$ subject to

Generating interpolants for CQI
○○○○○○○○○○○○○○○

Key ideas
OOO

$$
\begin{cases}\n\sum_{i=1}^{r} \lambda_{i} P_{i} + \sum_{j=1}^{s} \eta_{j} Q_{j} + \eta_{0} E_{1,1} + M + \hat{M} = 0, \sum_{j=1}^{s} \eta_{j} = 1, \\
M_{41} = (M_{14})^{T} = 0, M_{42} = (M_{24})^{T} = 0, M_{43} = (M_{34})^{T} = 0, M_{44} = 0, \\
\hat{M}_{31} = (\hat{M}_{13})^{T} = 0, \hat{M}_{32} = (\hat{M}_{23})^{T} = 0, \hat{M}_{33} = 0, \hat{M}_{34} = (\hat{M}_{43})^{T} = 0, \\
M \ge 0, \hat{M} \ge 0, \lambda_{j} \ge 0, \eta_{j} \ge 0, \text{ for } i = 1, ..., r, j = 1, ..., s,\n\end{cases}
$$

where $E_{(\,1\,,\,1\,)}$ is a $(n+1)\times(n+1)$ matrix, whose all other entries are 0 except for (1*,* 1) entry being 1.

Generating interpolants when **NSOSC** holds

Algorithm 1: IGFCH

Generating interpolants for CQI
○○○○○○○○○○○○○○○

 $\overline{\circ} \circ$ Key ideas

Synthesis algorithms

input: Two formulas ϕ , ψ with **NSOSC** and $\phi \land \psi \models \bot$, where $\phi = f_1 \geq 0 \wedge \ldots \wedge f_{r_1} \geq 0 \wedge g_1 > 0 \wedge \ldots \wedge g_{s_1} > 0,$ $\psi = f_{r_1+1} \geq 0 \wedge \ldots \wedge f_r \geq 0 \wedge g_{s_1+1} > 0 \wedge \ldots \wedge g_s > 0,$ $f_1, \ldots, f_r, g_1, \ldots, g_s$ are all concave quadratic polynomials, $f_1,\ldots,f_{r_1},g_1,\ldots,g_{s_1}\in\mathbb{R}[\mathbf{x},\mathbf{y}],$ $f_{r_1+1},\ldots,f_r,g_{s_1+1},\ldots,g_s\in\mathbb{R}[\mathbf{x},\mathbf{z}]$ output: A formula *I* to be an interpolant for ϕ and ψ

Combination with EUF
OOOOO

Evaluation results
OO

 \circ Concluding remarks

1 Find $\lambda_1, \ldots, \lambda_r \geq 0, \eta_0, \eta_1, \ldots, \eta_s \geq 0, h_1 \in \mathbb{R}[\mathbf{x}, \mathbf{y}], h_2 \in \mathbb{R}[\mathbf{x}, \mathbf{z}]$ by SDP s.t.

$$
\sum_{i=1}^{r} \lambda_i f_i + \sum_{j=1}^{s} \eta_j g_j + \eta_0 + h_1 + h_2 \equiv 0,
$$

\n
$$
\eta_0 + \eta_1 + \dots + \eta_s = 1,
$$

\n
$$
h_1, h_2 \text{ are SOS polynomials;}
$$

/* This is essentially a **SDP** problem, see Section 4.2

2 $f := \sum_{i=1}^{r_1} \lambda_i f_i + \sum_{j=1}^{s_1} \eta_j g_j + \eta_0 + h_1;$

3 **if** $\sum_{j=0}^{s_1} \eta_j > 0$ **then** $I := (f > 0)$; **else** $I := (f \ge 0)$; \star /

 4 return I

Key ideas
OOO Generating interpolants for CQI
○○○○○○○○○○○○○○ Combination with EUF
OOOOO Evaluation results
OO $\overline{00}$ Concluding remarks Synthesis algorithms When **NSOSC** is not satisfied

If ϕ and ψ do not satisfy $\bf NSOSC$, i.e., an SOS polynomial $h(\mathbf{x},\mathbf{y},\mathbf{z}) = -(\sum_{i=1}^{\ell}{\lambda_i f_i})$ can be computed which can be split into two SOS polynomials $h_1(\mathbf{x},\mathbf{y})$ and $h_2(\mathbf{x},\mathbf{z})$ as discussed previously. Then an SOS polynomial *f*(**x**) such that *ϕ |*= *f*(**x**) *≥* 0 and $\psi \models -f(\mathbf{x}) \geq 0$ can be constructed as

$$
f(\mathbf{x}) = (\sum_{i=1}^{r_1} \delta_i f_i) + h_1 = -(\sum_{i=r_1+1}^{r} \delta_i f_i) - h_2, \delta_i \ge 0.
$$

Lemma

If Problem 1 does not satisfy \mathbf{NSOSC} *, there exists f* ∈ $\mathbb{R}[\mathbf{x}]$ *, s.t.* $\phi \Leftrightarrow \phi_1 \lor \phi_2$ and *ψ ⇔ ψ*¹ *∨ ψ*2*, where,*

$$
\phi_1 = (f > 0 \land \phi), \phi_2 = (f = 0 \land \phi), \psi_1 = (-f > 0 \land \psi), \psi_2 = (f = 0 \land \psi).
$$
 (8)

Key ideas
OOO Generating interpolants for CQI
○○○○○○○○○○○○○ Combination with EUF
OOOOO Evaluation results
OO Concluding remarks
OO Synthesis algorithms When **NSOSC** is not satisfied

Using the previous lemma, an interpolant *I* for *ϕ* and *ψ* can be constructed from an interpolant $I_{2,2}$ for ϕ_2 and ψ_2 .

Theorem

With ϕ *,* ψ *,* ϕ_1 *,* ϕ_2 *,* ψ_1 *,* ψ_2 *as in previous Lemma, from an interpolant* $I_{2,2}$ *for* ϕ_2 *and* ψ_2 *<i>, I* := (*f >* 0) *∨* (*f ≥* 0 *∧ I*2*,*2) *is an interpolant for ϕ and ψ.*

$\overline{\circ} \overline{\circ} \circ$ Key ideas Generating interpolants for CQI
○○○○○○○○○○○○○ Combination with EUF
OOOOO $\overline{00}$ Evaluation results \overline{O} Concluding remarks Synthesis algorithms

When **NSOSC** is not satisfied

Using the previous lemma, an interpolant *I* for *ϕ* and *ψ* can be constructed from an interpolant $I_{2,2}$ for ϕ_2 and ψ_2 .

Theorem

With ϕ *,* ψ *,* ϕ_1 *,* ϕ_2 *,* ψ_1 *,* ψ_2 *as in previous Lemma, from an interpolant* $I_{2,2}$ *for* ϕ_2 *and* ψ_2 *<i>,* $I := (f > 0) \vee (f \ge 0 \wedge I_{2,2})$ *is an interpolant for* ϕ *and* ψ *.*

If *h* and hence *h*1*, h*² have a positive constant *an*+1 *>* 0, then *f* cannot be 0, implying that *ϕ*2*, ψ*² are *⊥*. We thus have :

Theorem

With ϕ *,* ψ *,* ϕ_1 *,* ϕ_2 *,* ψ_1 *,* ψ_2 *as in previous Lemma and h has* $a_{n+1} > 0$ *,* $f > 0$ *is an interpolant for ϕ and ψ.*

In case *h* does not have a constant, i.e., *an*+1 = 0, elimination of variables can be recursively performed to terminate the algorithm.

$\overline{\circ} \circ$ Generating interpolants for CQI
○○○○○○○○○○○○○ Combination with EUF
OOOOO $\overline{00}$ \circ Synthesis algorithms Generating interpolants for CQI

Evaluation results

Concluding remarks

Algorithm 2: IGFQC

Key ideas

input: Two formulas ϕ , ψ with $\phi \land \psi \models \bot$, where $\phi = f_1 \geq 0 \wedge \ldots \wedge f_{r_1} \geq 0 \wedge g_1 > 0 \wedge \ldots \wedge g_{s_1} > 0,$ $\psi = f_{r_1+1} \geq 0 \wedge \ldots \wedge f_r \geq 0 \wedge g_{s_1+1} > 0 \wedge \ldots \wedge g_s > 0,$ $f_1, \ldots, f_r, g_1, \ldots, g_s$ are all CQ polynomials, $f_1,\ldots,f_{r_1},g_1,\ldots,g_{s_1}\in\mathbb{R}[\mathbf{x},\mathbf{y}],$ and $f_{r_1+1},\ldots,f_r,g_{s_1+1},\ldots,g_s\in\mathbb{R}[\mathbf{x},\mathbf{z}]$ output: A formula I to be an interpolant for ϕ and ψ 1 if $Var(\phi) \subseteq Var(\psi)$ then $I := \phi$; return I ; **2** Find $\delta_1, \ldots, \delta_r \geq 0, h \in \mathbb{R}[\mathbf{x}, \mathbf{y}, \mathbf{z}]$ by SDP s.t. $\sum_{i=1}^r \delta_i f_i + h \equiv 0$ and h is SOS; /* Check the condition NSOSC \star / 3 if no solution then $I := \text{IGFCH}(\phi, \psi)$; return I ; $/*$ NSOSC holds \star / 4 Construct $h_1 \in \mathbb{R}[\mathbf{x}, \mathbf{y}]$ and $h_2 \in \mathbb{R}[\mathbf{x}, \mathbf{z}]$ with the forms (H1) and (H2);

5 $f := \sum_{i=1}^{r_1} \delta_i f_i + h_1 = -\sum_{i=r_1+1}^{r} \delta_i f_i - h_2;$ 6 Construct ϕ' and ψ' using Theorem 6 and Theorem 7 by eliminating variables due to $h_1 = h_2 = 0;$ $\label{eq:7} \textit{7}\;\;I'=\mathbf{IGFQC}(\phi',\psi');$ 8 $I := (f > 0) \vee (f \ge 0 \wedge I')$; 9 return I

Deepak Kapur University of New Mexico Interpolant synthesis for CQI+EUF Dagstuhl, September 2015 19 / 29

Key ideas
OOO Generating interpolants for CQI
○○○○○○○○○○○○○ Combination with EUF
OOOOO Evaluation results
OO $\overline{0}$. Concluding remarks Synthesis algorithms

Generating interpolants for CQI

Example

Recall the running example where

$$
h = (2x1 - 1)2 + (x2 - 1)2 + z2
$$

= $\frac{1}{2}((2x1 - 1)2 + (x2 - 1)2) + \frac{1}{2}((2x1 - 1)2 + (x2 - 1)2) + z2$

$$
f = \delta1(-x12 + 4x1 + x2 - 4) + h1
$$

= -3 + 2x₁ + x₁² + $\frac{1}{2}$ x₂²

We construct A' from A by setting $x_1 = \frac{1}{2}, x_2 = 1$ derived from $h_1 = 0$; similarly B' is constructed by setting $x_1 = \frac{1}{2}, x_2 = 1, z = 0$ in *B* as derived from $h_2 = 0$. It follows $\mathsf{that},\mathsf{A}':=\mathsf{B}':=\bot\mathsf{Thus},\mathsf{I}(\mathsf{A}',\mathsf{B}'):=(0>0) \text{ is an interpolant for } (\mathsf{A}',\mathsf{B}').$

An interpolant for *A* and *B* is thus $(f(x) > 0) \vee (f(x) = 0 \wedge I(A', B'))$, i.e.

$$
-3 + 2x_1 + x_1^2 + \frac{1}{2}x_2^2 > 0.
$$

which corresponds to the purple curve mentioned previously.

■ $Ω = Ω₁ ∪ Ω₂ ∪ Ω₃$: a finite set of uninterpreted function symbols in *EUF* ;

Key ideas
OOO Generating interpolants for CQI
00000000000000 \bullet 0000 with FUI Evaluation results
OO Concluding remarks
OO Key ideas Combination with EUF

- $Ω = Ω₁ ∪ Ω₂ ∪ Ω₃$: a finite set of uninterpreted function symbols in *EUF* ;
- $\Box \Omega_{12} = \Omega_1 \cup \Omega_2$, $\Omega_{13} = \Omega_1 \cup \Omega_3$;

Key ideas
OOO Generating interpolants for CQI
00000000000000 00000 ith FU Evaluation results
OO $\frac{1}{00}$ Concluding remarks Key ideas Combination with EUF

- **■** $\Omega = \Omega_1 \cup \Omega_2 \cup \Omega_3$: a finite set of uninterpreted function symbols in *EUF* ;
- \Box $\Omega_{12} = \Omega_1 \cup \Omega_2$, $\Omega_{13} = \Omega_1 \cup \Omega_3$;
- $\mathbb{R}[\mathbf{x},\mathbf{y},\mathbf{z}]^\Omega$: the extension of $\mathbb{R}[\mathbf{x},\mathbf{y},\mathbf{z}]$ in which polynomials can have terms built using function symbols in Ω and variables in $\mathbf{x}, \mathbf{y}, \mathbf{z}$.

Key ideas
OOO Generating interpolants for CQI
00000000000000 00000 ith FU Evaluation results
OO $\frac{1}{00}$ Concluding remarks Key ideas Combination with EUF

- **■** $\Omega = \Omega_1 \cup \Omega_2 \cup \Omega_3$: a finite set of uninterpreted function symbols in *EUF* ;
- \Box $\Omega_{12} = \Omega_1 \cup \Omega_2$, $\Omega_{13} = \Omega_1 \cup \Omega_3$;
- $\mathbb{R}[\mathbf{x},\mathbf{y},\mathbf{z}]^\Omega$: the extension of $\mathbb{R}[\mathbf{x},\mathbf{y},\mathbf{z}]$ in which polynomials can have terms built using function symbols in Ω and variables in $\mathbf{x}, \mathbf{y}, \mathbf{z}$.

$\overline{\circ} \circ$ Key ideas Generating interpolants for CQI
00000000000000 \bullet 0000 Combination with EUF \overline{O} Evaluation results \circ Concluding remarks Key ideas Combination with EUF

- **■** $\Omega = \Omega_1 \cup \Omega_2 \cup \Omega_3$: a finite set of uninterpreted function symbols in *EUF*;
- $\Omega_{12} = \Omega_1 \cup \Omega_2$, $\Omega_{13} = \Omega_1 \cup \Omega_3$;
- $\mathbb{R}[\mathbf{x},\mathbf{y},\mathbf{z}]^\Omega$: the extension of $\mathbb{R}[\mathbf{x},\mathbf{y},\mathbf{z}]$ in which polynomials can have terms built using function symbols in Ω and variables in **x***,* **y***,* **z**.

Problem 2

Suppose two formulas ϕ and ψ with $\phi \land \psi \models \bot$, where

 ϕ = *f*₁ ≥ 0 ∧ *. . .* \wedge *f*_{*f*₁} ≥ 0 ∧ *0*₁ > 0 ∧ *. . .* \wedge *g*_{*s*₁} > 0*,* $\psi = f_{r_1+1} \geq 0 \wedge \ldots \wedge f_r \geq 0 \wedge g_{s_1+1} > 0 \wedge \ldots \wedge g_s > 0,$

where $f_1,\ldots,f_r,g_1,\ldots,g_s$ are all CQ polynomials, $f_1,\ldots,f_{r_1},g_1,\ldots,g_{s_1}\in$ $\mathbb{R}[\mathbf{x},\mathbf{y}]^{\Omega_{12}}$, $f_{r_1+1},\ldots,f_r,g_{s_1+1},\ldots,g_s\in\mathbb{R}[\mathbf{x},\mathbf{z}]^{\Omega_{13}}$, the goal is to generate an interpolant *I* for *ϕ* and *ψ*, expressed using the common symbols **x***,* Ω1, i.e., *I* includes only polynomials in $\mathbb{R}[\mathbf{x}]^{\Omega_1}.$

¹ Flatten and purify the formulas *ϕ* and *ψ* as *ϕ* and *ψ* by introducing fresh variables for each term with uninterpreted symbols as well as for the terms with uninterpreted symbols.

Key ideas
OOO Generating interpolants for CQI
00000000000000 Combination with EUF
○●○○○ Evaluation results
OO \circ Concluding remarks Key ideas

Sketch of the idea (Algorithm **IGFQCE**)

- ¹ Flatten and purify the formulas *ϕ* and *ψ* as *ϕ* and *ψ* by introducing fresh variables for each term with uninterpreted symbols as well as for the terms with uninterpreted symbols.
- ² Generate a set *N* of Horn clauses as

 $N = \{ \bigwedge_{k=1}^{n} c_k = b_k \to c = b \mid \omega(c_1, \ldots, c_n) = c \in D, \omega(b_1, \ldots, b_n) = b \in D \},\$ where *D* consists of unit clauses of the form *ω*(*c*1*, . . . , cn*) = *c*, with *c*1*, . . . , cⁿ* be variables and *ω ∈* Ω.

Key ideas
OOO 0.0000000000000000 Generating interpolants for CQI Combination with EUF
○●○○○ \overline{O} Evaluation results \circ Concluding remarks Key ideas

Sketch of the idea (Algorithm **IGFQCE**)

- ¹ Flatten and purify the formulas *ϕ* and *ψ* as *ϕ* and *ψ* by introducing fresh variables for each term with uninterpreted symbols as well as for the terms with uninterpreted symbols.
- ² Generate a set *N* of Horn clauses as

 $N = \{ \bigwedge_{k=1}^{n} c_k = b_k \to c = b \mid \omega(c_1, \ldots, c_n) = c \in D, \omega(b_1, \ldots, b_n) = b \in D \},\$ where *D* consists of unit clauses of the form *ω*(*c*1*, . . . , cn*) = *c*, with *c*1*, . . . , cⁿ* be variables and *ω ∈* Ω.

³ Partition *N* into *Nϕ, Nψ,* and *N*mix with all symbols in *Nϕ, N^ψ* appearing in *ϕ*, *ψ*, respectively, and *N*mix consisting of symbols from both *ϕ, ψ*.

 $\phi \wedge \psi \models \bot$ iff $\overline{\phi} \wedge \overline{\psi} \wedge D \models \bot$ iff $(\overline{\phi} \wedge N_{\phi}) \wedge (\overline{\psi} \wedge N_{\psi}) \wedge N_{\text{mix}} \models \bot.$ (9)

$\overline{\circ} \circ$ Key ideas 0.0000000000000000 Generating interpolants for CQI Combination with EUF
○●○○○ \overline{O} Evaluation results $^{\circ}$ Concluding remarks Key ideas

Sketch of the idea (Algorithm **IGFQCE**)

- \blacksquare Flatten and purify the formulas ϕ and ψ as $\overline{\phi}$ and $\overline{\psi}$ by introducing fresh variables for each term with uninterpreted symbols as well as for the terms with uninterpreted symbols.
- ² Generate a set *N* of Horn clauses as

 $N = \{ \bigwedge_{k=1}^{n} c_k = b_k \to c = b \mid \omega(c_1, \ldots, c_n) = c \in D, \omega(b_1, \ldots, b_n) = b \in D \},\$ where *D* consists of unit clauses of the form *ω*(*c*1*, . . . , cn*) = *c*, with *c*1*, . . . , cⁿ* be variables and *ω ∈* Ω.

 $\overline{\bullet}$ Partition N into $N_\phi, N_\psi,$ and N_mix with all symbols in N_ϕ, N_ψ appearing in $\overline{\phi}, \overline{\psi},$ respectively, and *N*mix consisting of symbols from both *ϕ, ψ*.

$$
\phi \wedge \psi \models \bot \ \mathsf{iff} \ \overline{\phi} \wedge \overline{\psi} \wedge \mathsf{D} \models \bot \ \mathsf{iff} \ (\overline{\phi} \wedge \mathsf{N}_{\phi}) \wedge (\overline{\psi} \wedge \mathsf{N}_{\psi}) \wedge \mathsf{N}_{\mathsf{mix}} \models \bot. \tag{\mathsf{9}}
$$

 $\frac{1}{4}$ Generate interpolant : Notice that $(\overline{\phi} \wedge \mathsf{N}_{\phi}) \wedge (\overline{\psi} \wedge \mathsf{N}_{\psi}) \wedge \mathsf{N}_{\mathsf{mix}} \models \bot$ has no uninterpreted function symbols. If \mathcal{N}_{mix} can be replaced by $\mathcal{N}_{\text{sep}}^{\phi}$ and $\mathcal{N}_{\text{sep}}^{\psi}$ as in [Rybalchenko & Sofronie-Stokkermans 10] using separating terms, then **IGFQC** can be applied. An interpolant generated for this problem can be used to generate an interpolant for $\phi, \bar{\psi}$ after uniformly replacing all new symbols by their corresponding expressions from *D*.

An illustrating example

Example

$$
\phi := (f_1 = -(y_1 - x_1 + 1)^2 - x_1 + x_2 \ge 0) \land (y_2 = \alpha(y_1) + 1)
$$

$$
\land (g_1 = -x_1^2 - x_2^2 - y_2^2 + 1 > 0),
$$

\n
$$
\psi := (f_2 = -(z_1 - x_2 + 1)^2 + x_1 - x_2 \ge 0) \land (z_2 = \alpha(z_1) - 1)
$$

\n
$$
\land (g_2 = -x_1^2 - x_2^2 - z_2^2 + 1 > 0).
$$

Deepak Kapur University of New Mexico Interpolant synthesis for CQI+EUF Dagstuhl, September 2015 23 / 29

Illustrating example An illustrating example

Generating interpolants for CQI
00000000000000

Example

Key ideas
OOO

$$
\phi := (f_1 = -(y_1 - x_1 + 1)^2 - x_1 + x_2 \ge 0) \land (y_2 = \alpha(y_1) + 1)
$$

$$
\land (g_1 = -x_1^2 - x_2^2 - y_2^2 + 1 > 0),
$$

\n
$$
\psi := (f_2 = -(z_1 - x_2 + 1)^2 + x_1 - x_2 \ge 0) \land (z_2 = \alpha(z_1) - 1)
$$

\n
$$
\land (g_2 = -x_1^2 - x_2^2 - z_2^2 + 1 > 0).
$$

Combination with EUF
○○●○○

Evaluation results
OO

 $00₀$ Concluding remarks

1 Flattening and purification gives

 $\overline{\phi}$:= (*f*₁ ≥ 0 ∧ *y*₂ = *y* + 1 ∧ *g*₁ > 0), $\overline{\psi}$:= (*f*₂ ≥ 0 ∧ *z*₂ = *z* − 1 ∧ *g*₂ > 0). where $D = \{y = \alpha(y_1), z = \alpha(z_1)\},\ \ N = (y_1 = z_1 \to y = z).$

An illustrating example

Generating interpolants for CQI
00000000000000

Example

Key ideas
OOO

Illustrating example

$$
\phi := (f_1 = -(y_1 - x_1 + 1)^2 - x_1 + x_2 \ge 0) \land (y_2 = \alpha(y_1) + 1)
$$

$$
\land (g_1 = -x_1^2 - x_2^2 - y_2^2 + 1 > 0),
$$

\n
$$
\psi := (f_2 = -(z_1 - x_2 + 1)^2 + x_1 - x_2 \ge 0) \land (z_2 = \alpha(z_1) - 1)
$$

\n
$$
\land (g_2 = -x_1^2 - x_2^2 - z_2^2 + 1 > 0).
$$

Combination with EUF
○○●○○

Evaluation results
OO

 $\overline{00}$ Concluding remarks

1 Flattening and purification gives

 $\overline{\phi}$:= (f_1 ≥ 0 ∧ y_2 = y + 1 ∧ g_1 > 0), $\overline{\psi}$:= (f_2 ≥ 0 ∧ z_2 = z − 1 ∧ g_2 > 0). w $D = \{y = \alpha(y_1), z = \alpha(z_1)\},\; N = (y_1 = z_1 \rightarrow y = z).$

 $\overline{\textbf{z}}$ NSOSC is not satisfied, since $h = −f_1 − f_2 = (y_1 − x_1 + 1)^2 + (z_1 − x_2 + 1)^2$ is an SOS. $h_1 = (y_1 - x_1 + 1)^2 \ , \ \ h_2 = (z_1 - x_2 + 1)^2 \ .$ This gives

$$
f:=f_1+h_1=-f_2-h_2=-x_1+x_2.
$$

Deepak Kapur University of New Mexico Interpolant synthesis for CQI+EUF Dagstuhl, September 2015 23 / 29

Key ideas
OOO Generating interpolants for CQI
00000000000000 Combination with EUF
○○○●○ Evaluation results
OO $\overline{00}$ Concluding remarks Illustrating example

An illustrating example

 $\bf{3}$ An interpolant for ϕ, ψ is an interpolant of $((\phi \land f > 0) \lor (\phi \land f = 0))$ and ((*ψ ∧ −f >* 0) *∨* (*ϕ ∧ f* = 0)) which simplifies to : (*f >* 0) *∨* (*f ≥* 0 *∧ I*2) where *I*² is an interpolant for $\phi \wedge f = 0$ and $\psi \wedge f = 0.$ Substituting $\phi \wedge f = 0 \models \mathsf{y}_1 = \mathsf{x}_1 - 1$ and $\psi \wedge \mathit{f} = 0 \models \mathit{z}_1 = \mathit{x}_2 - 1$ into $\overline{\phi}$ and $\overline{\psi}$, we get

$$
\overline{\phi'} := -x_1 + x_2 \ge 0 \land y_2 = y + 1 \land g_1 > 0 \land y_1 = x_1 - 1,
$$

$$
\overline{\psi'} := x_1 - x_2 \ge 0 \land z_2 = z - 1 \land g_2 > 0 \land z_1 = x_2 - 1.
$$

$\overline{\circ} \circ$ Key ideas Generating interpolants for CQI
00000000000000 Combination with EUF
○○○●○ $\overline{00}$ Evaluation results \circ Concluding remarks Illustrating example

An illustrating example

 $\bf{3}$ An interpolant for ϕ, ψ is an interpolant of $((\phi \land f > 0) \lor (\phi \land f = 0))$ and ((*ψ ∧ −f >* 0) *∨* (*ϕ ∧ f* = 0)) which simplifies to : (*f >* 0) *∨* (*f ≥* 0 *∧ I*2) where *I*² is an interpolant for $\phi \wedge f = 0$ and $\psi \wedge f = 0.$ Substituting $\phi \wedge f = 0 \models \mathsf{y}_1 = \mathsf{x}_1 - 1$ and $\psi \wedge \mathit{f} = 0 \models \mathit{z}_1 = \mathit{x}_2 - 1$ into $\overline{\phi}$ and $\overline{\psi}$, we get

$$
\overline{\phi'} := -x_1 + x_2 \geq 0 \wedge y_2 = y + 1 \wedge g_1 > 0 \wedge y_1 = x_1 - 1,
$$

$$
\overline{\psi'} := x_1 - x_2 \geq 0 \wedge z_2 = z - 1 \wedge g_2 > 0 \wedge z_1 = x_2 - 1.
$$

4 Recursively call IGFQCE until NSOSC is satisfied. $y_1 = z_1$ is deduced from linear inequalities in $\overline{\phi'}$ and $\overline{\psi'}$, and separating terms for y_1,z_1 are constructed :

$$
\overline{\phi'}\models \mathbf{x}_1-1\leq \mathbf{y}_1\leq \mathbf{x}_2-1, \quad \overline{\psi'}\models \mathbf{x}_2-1\leq \mathbf{z}_1\leq \mathbf{x}_1-1.
$$

Let $t = \alpha(x_2 - 1)$, then separate $y_1 = z_1 \rightarrow y = z$ into two parts :

$$
y_1 = t^+ \rightarrow y = t, \quad t^+ = z_1 \rightarrow t = z.
$$

Add them to $\overline{\phi'}$ and $\overline{\psi'}$ respectively, we have

$$
\overline{\phi'}_1 := -x_1 + x_2 \ge 0 \land y_2 = y + 1 \land g_1 > 0 \land y_1 = x_1 - 1 \land y_1 = x_2 - 1 \to y = t, \n\overline{\psi'}_1 := x_1 - x_2 \ge 0 \land z_2 = z - 1 \land g_2 > 0 \land z_1 = x_2 - 1 \land x_2 - 1 = z_1 \to t = z.
$$

Key ideas
OOO Generating interpolants for CQI
00000000000000 0000 ith FU Evaluation results
OO Concluding remarks
OO Illustrating example An illustrating example

⁴ Then

$$
\overline{\phi'}_1 := -x_1 + x_2 \ge 0 \land y_2 = y + 1 \land g_1 > 0 \land y_1 = x_1 - 1
$$

$$
\land (x_2 - 1 > y_1 \lor y_1 > x_2 - 1 \lor y = t),
$$

\n
$$
\overline{\psi'}_1 := x_1 - x_2 \ge 0 \land z_2 = z - 1 \land g_2 > 0 \land z_1 = x_2 - 1 \land t = z.
$$

Thus,

$$
\overline{\phi'}_1 := \overline{\phi'}_2 \vee \overline{\phi'}_3 \vee \overline{\phi'}_4, \text{ where}
$$

\n
$$
\overline{\phi'}_2 := -x_1 + x_2 \ge 0 \wedge y_2 = y + 1 \wedge g_1 > 0 \wedge y_1 = x_1 - 1 \wedge x_2 - 1 > y_1,
$$

\n
$$
\overline{\phi'}_3 := -x_1 + x_2 \ge 0 \wedge y_2 = y + 1 \wedge g_1 > 0 \wedge y_1 = x_1 - 1 \wedge y_1 > x_2 - 1,
$$

\n
$$
\overline{\phi'}_4 := -x_1 + x_2 \ge 0 \wedge y_2 = y + 1 \wedge g_1 > 0 \wedge y_1 = x_1 - 1 \wedge y = t.
$$

Si<u>nce ϕ'_β = false,</u> then $\phi'_\mathbb{1} = \phi'_\mathbb{2} \vee \phi'_\mathbb{4}.$ Then find interpolant $\mathsf{I}(\phi'_{\mathbb{2}}, \psi'_{\mathbb{1}})$ and $I(\phi'_{4}, \psi'_{1}).$

000 Key ideas Generating interpolants for CQI $\circ \circ \circ \bullet$ Combination with EUF \overline{O} Evaluation results \circ Concluding remarks Illustrating example An illustrating example

⁴ Then

$$
\overline{\phi}_1 := -x_1 + x_2 \ge 0 \land y_2 = y + 1 \land g_1 > 0 \land y_1 = x_1 - 1
$$

$$
\land (x_2 - 1 > y_1 \lor y_1 > x_2 - 1 \lor y = t),
$$

$$
\overline{\psi'}_1 := x_1 - x_2 \ge 0 \land z_2 = z - 1 \land g_2 > 0 \land z_1 = x_2 - 1 \land t = z.
$$

Thus,

 $\phi'{}_1 := \!\! \phi'{}_2 \vee \phi'{}_3 \vee \phi'{}_4,$ where $\phi'_{2} := -x_{1} + x_{2} \geq 0 \wedge y_{2} = y + 1 \wedge g_{1} > 0 \wedge y_{1} = x_{1} - 1 \wedge x_{2} - 1 > y_{1},$ $\phi'_{3} := -x_{1} + x_{2} \geq 0 \wedge y_{2} = y + 1 \wedge g_{1} > 0 \wedge y_{1} = x_{1} - 1 \wedge y_{1} > x_{2} - 1,$ $\overline{\phi'}_4 := -x_1 + x_2 \ge 0 \land y_2 = y + 1 \land g_1 > 0 \land y_1 = x_1 - 1 \land y = t.$

Si<u>nce ϕ'_β = false,</u> then $\phi'_\mathbb{1} = \phi'_\mathbb{2} \vee \phi'_\mathbb{4}.$ Then find interpolant $\mathsf{I}(\phi'_{\mathbb{2}}, \psi'_{\mathbb{1}})$ and $I(\phi'_{4}, \psi'_{1}).$

 \mathbf{J} Finally we conclude that $\mathit{I}(\phi'_{\,2},\psi'_{\,1}) \vee \mathit{I}(\phi'_{\,4},\psi'_{\,1})$ is an interpolant.

We have implemented the presented algorithms in *Mathematica* to synthesize interpolation for concave quadratic polynomial inequalities as well as their combination with *EUF*. To deal with SOS solving and semi-definite programming, the Matlab-based optimization tool *Yalmip* and the SDP solver *SDPT3* are invoked for assistant solving.

Key ideas
OOO Generating interpolants for CQI
00000000000000 Combination with EUF
OOOOO Evaluation results
○● Concluding remarks
OO Evaluation results Evaluation results

-- means interpolant generation fails, and *[×]* specifies particularly wrong answers (satisfiable).

McMillan [McMillan 05] popularized *interpolants* for automatically generating invariants of programs in 2005.

$\overline{\circ} \circ$ Key ideas Generating interpolants for CQI
00000000000000 Combination with EUF
OOOOO Evaluation results
OO \bullet Concluding re Related work Related work

- McMillan [McMillan 05] popularized *interpolants* for automatically generating invariants of programs in 2005.
- Krajíček [Krajíček 97] and Pudlák [Pudlák 97] proposed approaches to deriving interpolants from *resolution proofs* prior to McMillan's work, which generate different interpolants from those done by McMillan's method.

$\overline{\circ} \overline{\circ}$ Key ideas Generating interpolants for CQI
00000000000000 Combination with EUF
OOOOO $\overline{00}$ Evaluation results \bullet Concluding remarks Related work Related work

- McMillan [McMillan 05] popularized *interpolants* for automatically generating invariants of programs in 2005.
- Krajíček [Krajíček 97] and Pudlák [Pudlák 97] proposed approaches to deriving interpolants from *resolution proofs* prior to McMillan's work, which generate different interpolants from those done by McMillan's method.
- Kapur et al. [Kapur, Majumdar & Zarba 06] established an *intimate connection* between interpolants and quantifier elimination, by which Kapur [Kapur 13] showed that interpolants form a lattice ordered using implication.

$\circ \circ$ Key ideas 0.0000000000000000 Generating interpolants for CQI 00000 Combination with EUF $\overline{00}$ Evaluation results \bullet Concluding remarks Related work Related work

- McMillan [McMillan 05] popularized *interpolants* for automatically generating invariants of programs in 2005.
- Krajíček [Krajíček 97] and Pudlák [Pudlák 97] proposed approaches to deriving interpolants from *resolution proofs* prior to McMillan's work, which generate different interpolants from those done by McMillan's method.
- Kapur et al. [Kapur, Majumdar & Zarba 06] established an *intimate connection* between interpolants and quantifier elimination, by which Kapur [Kapur 13] showed that interpolants form a lattice ordered using implication.
- Rybalchenko et al. [Rybalchenko & Sofronie-Stokkermans 10] proposed an algorithm for generating interpolants for the combined theory of linear arithmetic and uninterpreted function symbols (*EUF*) by using a reduction of the problem to *constraint solving* in linear arithmetic.

$\circ \circ$ Key ideas 0.0000000000000000 Generating interpolants for CQI 00000 Combination with EUF \overline{O} Evaluation results \bullet Concluding remarks Related work Related work

- McMillan [McMillan 05] popularized *interpolants* for automatically generating invariants of programs in 2005.
- Krajíček [Krajíček 97] and Pudlák [Pudlák 97] proposed approaches to deriving interpolants from *resolution proofs* prior to McMillan's work, which generate different interpolants from those done by McMillan's method.
- Kapur et al. [Kapur, Majumdar & Zarba 06] established an *intimate connection* between interpolants and quantifier elimination, by which Kapur [Kapur 13] showed that interpolants form a lattice ordered using implication.
- Rybalchenko et al. [Rybalchenko & Sofronie-Stokkermans 10] proposed an algorithm for generating interpolants for the combined theory of linear arithmetic and uninterpreted function symbols (*EUF*) by using a reduction of the problem to *constraint solving* in linear arithmetic.
- Dai et al. [L. Dai, B. Xia & N. Zhan 13] provided an approach to constructing non-linear interpolants based on *semi-definite programming*.

Key ideas
OOO Generating interpolants for CQI
00000000000000 Combination with EUF
OOOOO Evaluation results
OO Concluding remarks
○● Concluding remarks Concluding remarks

Contributions

Contributions

1 A complete, polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals :

Key ideas
OOO Generating interpolants for CQI
00000000000000 Combination with EUF
OOOOO Evaluation results
OO Concluding remarks
○● Concluding remarks Concluding remarks

Contributions

1 A complete, polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals :

If **NSOSC** holds, an interpolant a la McMillan can be generated essentially using the linearization of quadratic polynomials.

Key ideas
OOO Generating interpolants for CQI
00000000000000 Combination with EUF
OOOOO Evaluation results
OO Concluding remarks
○● Concluding remarks Concluding remarks

Contributions

- 1 A complete, polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals :
	-
	- If NSOSC holds, an interpolant a la McMillan can be generated essentially using the
linearization of quadratic polynomials.
If NSOSC doesn't hold, linear equalities relating variables are deduced, resulting to
interpolatio

Contributions

- 1 A complete, polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals :
	- If **NSOSC** holds, an interpolant a la McMillan can be generated essentially using the
	- linearization of quadratic polynomials.
If NSOSC doesn't hold, linear equalities relating variables are deduced, resulting to
interpolation subproblems with fewer variables on which the algorithm is recursively applied.
- 2 An algorithm, by partitioning Horn clauses, for generating interpolants for the combination of quantifier-free theory of concave quadratic polynomial inequalities and equality theory over uninterpreted function symbols (*EUF*).

Key ideas
OOO Generating interpolants for CQI
00000000000000 Combination with EUF
OOOOO $\overline{00}$ Evaluation results $\circ \bullet$ Cor Concluding remarks Concluding remarks

Contributions

- 1 A complete, polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals :
	- If **NSOSC** holds, an interpolant a la McMillan can be generated essentially using the
	- linearization of quadratic polynomials.
If NSOSC doesn't hold, linear equalities relating variables are deduced, resulting to
interpolation subproblems with fewer variables on which the algorithm is recursively applied.
- 2 An algorithm, by partitioning Horn clauses, for generating interpolants for the combination of quantifier-free theory of concave quadratic polynomial inequalities and equality theory over uninterpreted function symbols (*EUF*).

Future work

Key ideas
OOO Generating interpolants for CQI
00000000000000 Combination with EUF
OOOOO \overline{O} Evaluation results $\circ \bullet$ Concluding remarks Concluding remarks Concluding remarks

- **Contributions**
	- 1 A complete, polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals :
		- If **NSOSC** holds, an interpolant a la McMillan can be generated essentially using the
		- linearization of quadratic polynomials.
If NSOSC doesn't hold, linear equalities relating variables are deduced, resulting to
interpolation subproblems with fewer variables on which the algorithm is recursively applied.
	- 2 An algorithm, by partitioning Horn clauses, for generating interpolants for the combination of quantifier-free theory of concave quadratic polynomial inequalities and equality theory over uninterpreted function symbols (*EUF*).
- **Future work**
	- \blacksquare Extending the proposed framework to which their linearization with some additional conditions on the coefficients (such as concavity for quadratic polynomials).

$\overline{\circ}$ Key ideas Generating interpolants for CQI
00000000000000 Combination with EUF
OOOOO \overline{O} Evaluation results $\circ \bullet$ Concluding remarks Concluding remarks Concluding remarks

Contributions

- 1 A complete, polynomial time algorithm for generating interpolants from mutually contradictory conjunctions of concave quadratic polynomial inequalities over the reals :
	- If **NSOSC** holds, an interpolant a la McMillan can be generated essentially using the
	- linearization of quadratic polynomials.
If NSOSC doesn't hold, linear equalities relating variables are deduced, resulting to
interpolation subproblems with fewer variables on which the algorithm is recursively applied.
- 2 An algorithm, by partitioning Horn clauses, for generating interpolants for the combination of quantifier-free theory of concave quadratic polynomial inequalities and equality theory over uninterpreted function symbols (*EUF*).

Future work

- \blacksquare Extending the proposed framework to which their linearization with some additional conditions on the coefficients (such as concavity for quadratic polynomials).
- \blacksquare Investigating how results reported for nonlinear polynomial inequalities based on positive nullstellensatz and the Archimedian condition on variables can be exploited in the proposed framework for dealing with polynomial inequalities.