
A Systematic Framework for Grammar Testing ∗

Lixiao Zheng1,2, Haiming Chen1

1State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences
2Graduate University, Chinese Academy of Sciences

{zhenglx,chm}@ios.ac.cn

Abstract

Grammars, especially context-free grammars, are widely
used within and even outside the field of computer science.
In this paper, we present a systematic framework for gram-
mar testing, in which some commonly used techniques for
testing programs such as module testing and integration
testing are adapted and applied to the testing of gram-
mars. We propose a nonterminal-based approach for gram-
mar modularization, combined with an iterative process for
grammar testing in which a grammar is tested with respect
to both a generator and a recognizer. Experiments on gram-
mars for some non-trivial programming languages such as
C and Java demonstrate the feasibility and efficiency of the
testing framework and the proposed approaches.

1. Introduction

Grammars, especially context-free grammars, are useful
in computer science and software development. The impor-
tance of grammars in language design and implementation
is well known. Besides the above, grammars can be found
in many other applications. For example, [7, 10] presented
a recent account of many applications of grammars. Such
systems are called grammar-based systems [7] or grammar-
ware [10]. Despite the pervasive role of grammars in soft-
ware systems, Klint, Lämmel and Verhoef [10] noted that
“In reality, grammarware is treated, to a large extent, in
an ad-hoc manner with regard to design, implementation,
transformation, recovery, testing, etc.” They called this phe-
nomenon as grammarware hacking. Therefore sound and
systematic methods and techniques are needed for gram-
marware to move from hacking to engineering.

This paper tackles the issue of grammar testing from an
engineering perspective. We present a systematic testing
framework which adapts techniques for testing programs in

∗This work is supported by the National Natural Science Foundation of
China (NSFC) under grant numbers 60573013, 60721061.

traditional software engineering to the testing of grammars.
In particular, we adapt concepts such as static/dynamic test-
ing and module/integration testing, which are commonly
used in software testing, and apply them to grammars. We
propose an approach to partitioning a grammar into sub-
grammars, called modules, based on which module testing
and integration testing are performed. We propose a novel
method to test grammars in which grammars are checked,
and if not correct, iteratively revised to approach correct
ones, by sentence generation, sentence recognition and cov-
erage analysis techniques. This method tests a grammar
from both aspects of its functionalities, i.e., a generator and
a recognizer, offering more adequacy and efficiency. We
implemented the framework and evaluated it by the appli-
cation to grammars for two mainstream programming lan-
guages, C and Java. The experimental results are promising.

The rest of the paper is organized as follows. Section 2
provides some background propaedeutics. Section 3 gives
an overview of the testing framework. In Section 4 and Sec-
tion 5 we detail the approaches to grammar modularization
and grammar testing respectively. Experimental results are
then illustrated in Section 6. Section 7 reviews the related
work and Section 8 concludes the paper.

2. Background

In this section we describe some terminologies associ-
ated with context-free grammars and then give a brief ex-
planation of grammar testing.

2.1. Terminology

We choose context-free grammar as the grammar for-
malism in this paper. Formally, a context-free grammar
(CFG) is a 4-tuple G = (N, T, P, S) with N and T fi-
nite disjoint sets of nonterminals and terminals respectively,
P a finite set of productions of the form A → α where
A ∈ N, α ∈ (N ∪ T)∗, and S ∈ N the start symbol. For a
production A → α, we occasionally say A is defined by α.
A derivation step is an element of the form γAβ ⇒ γαβ

1

with γ, β ∈ (N ∪ T)∗ and A → α ∈ P . A derivation,
denoted as ∗⇒, is a sequence of derivation steps. The lan-
guage defined by G, denoted as L(G), is the set of strings
L(G) = {w ∈ T ∗|S ∗⇒ w}. A string w is called a sentence
of G, if w ∈ L(G). A nonterminal A is reachable if there
exist γ, β ∈ (N ∪T)∗ such that S

∗⇒ γAβ. A is productive
if there exists w ∈ T ∗ such that A

∗⇒ w. A grammar is
reduced if it has neither unreachable nor unproductive non-
terminals. A parse tree is an ordered tree whose root is the
start symbol, leaf nodes are terminals and interior nodes are
nonterminals. The children of any non-leaf node A corre-
spond precisely to those symbols on the right-hand side of
a production for A. A grammar is ambiguous if there exist
more than one parse tree for one sentence.

Without loss of generality, we assume in the rest of the
paper that the start symbol S does not appear in the right-
hand side of any production.

2.2. Grammar Testing
A grammar defines a language and provides a device for

generating sentences. Ensuring that a grammar specifies an
intended language is indeed a validation problem. In this
case, the object under test is a grammar G and the require-
ment or specification that G is tested against is an intended
language L. Consequently, the purpose of grammar testing
is to validate whether the defined language meets the user’s
requirement and to find potential errors which cause it to
specify some language other than the one intended.

In general, there are two classes of faults with a grammar
G with respect to an intended language L [5].
• incorrect. A grammar G is said to be incorrect with

respect to an (intended) language L if L(G) * L.
• incomplete. A grammar G is said to be incomplete

with respect to an (intended) language L if L * L(G).
It should be noted that incorrectness and incomplete-

ness are usually interwinded [5]. An incorrect phase of-
ten causes some incompleteness and correcting the phase
also contributes to the completion of the grammar. The pro-
cess of grammar testing is to repeatedly find incorrectness
and incompleteness errors and eliminate them until the final
grammar resembles the structure of the intended language.

3. The Testing Framework

There are two classes of approaches to software testing
[8]. Reviews, walkthroughs or inspections are considered
as static testing, whereas actually executing programmed
codes with test cases is referred to as dynamic testing. A
common practice of dynamic testing is usually performed
on different levels: module testing, a process of testing in-
dividual subprograms; integration testing, exposing defects
in the interfaces and interactions between integrated com-
ponents (modules); and other higher-level testing. We adapt

some of these techniques to grammars. We interpret static
testing as static checks on grammar definitions. As for dy-
namic testing, we consider a grammar as consisting of a set
of sub-grammars, just like a program as consisting of sub-
programs, and introduce the concept of module/integration
testing into grammar testing. Figure 1 gives an overview of
the testing framework.

1

n

1

n

Figure 1. The testing framework.

The testing begins with static inspections on the gram-
mar, including reduction check and ambiguity detection.
The former targets at checking whether there exist unreach-
able or unproductive nonterminals. This helps to find some
definition errors that may be caused by the definer’s incau-
tion. For example, if a nonterminal is defined but not used,
the fact is most likely that this nonterminal is indispensable
but is forgotten to be used in some productions. Ambigu-
ity is not necessarily an error but it might be in some cases
expected to be avoided. Thus ambiguity detection is also
useful and should be included in this phase.

In phase II the grammar is first modularized, then mod-
ule testing and integration testing are performed. The ben-
efits of modularization for testing, especially for testing
large-scale grammars, are significant. It makes testing more
simple, precise and efficient. Note that here the step of mod-
ularization is necessary because unlike programs whose
modules are already explicit before testing, a grammar is
usually defined in a big-bang style without a clear notation
of modularity. Indeed, there exist some grammar notations
supporting modular syntax definition, such as SDF [3]. Un-
fortunately, it is not the case for most commonly used ones,
like BNF and EBNF.

Computing the set of unreachable and unproductive non-
terminals is not difficult [4]. But the ambiguity problem of
general context-free grammars is known undecidable. For-
tunately, there have been some conservative algorithms [13]
which can tackle this problem approximatively and can be
adopted in our framework. The remaining problems are
modularization and testing method which we will discuss
in detail in the next two sections.

4. Modularization

From the software engineering perspective, a module
should be high cohesion and loose coupling. For a grammar
G, a module is in fact a sub-grammar of G. Therefore gram-
mar modularizing is essentially a process of partitioning a
grammar into sub-grammars, with each sub-grammar hav-
ing frequent interactions internally but fewer interactions
with each others. The partition may be either production-
based or nonterminal-based, and the interactions may be
represented by well-defined relations between productions
or nonterminals, accordingly. The former divides the pro-
duction set of a grammar into disjoint subsets. In this ap-
proach, two productions with the same left-hand side may
fall into different blocks. Since we want to make sure that
when a nonterminal is tested, the information attached to it
is as complete as possible, we hence prefer the nonterminal-
based partition, which is defined as follows.
Definition 1 Let G = (N, T, P, S) be a CFG. {Gi =
(Ni, Ti, Pi, ∗)}n

i=0 is called a partition of G, where
∪n

i=0Ni=N , Ni ∩Nj = ∅, i 6= j; Pi = {p|p ∈ P, lhs(p) ∈
Ni}; Ti = {t|t ∈ T , t has occurrence in Pi}.

To construct sub-grammars from the partition, we intro-
duce a notion virtual terminal which maps each nonterminal
to a terminal prefixed with vt. A virtual terminal is essen-
tially a nonterminal but acts as if it were a terminal [15].
Definition 2 Let G = (N, T, P, S) be a CFG. {G′i =
(N ′

i , T
′
i , P

′
i , S

′
i)}n

i=0 is called the sub-grammars of G with
respect to partition {Gi = (Ni, Ti, Pi, ∗)}n

i=0, where N ′
i =

Ni; T ′i = Ti ∪ {vtA|A 6∈ Ni, A has occurrence in Pi};
P ′i = {p′|p ∈ Pi, p

′ is obtained from p by replacing each
occurrence of A by vtA for all A 6∈ Ni}; S′i ∈ Ni. In
particular, it is required that there exists a G′i with S′i = S.

As can be seen from the above definitions, the crucial
steps of grammar modularization are first the partition of
nonterminals, then the selection of start symbol for each
sub-grammar. And last, to serve for the subsequent inte-
gration testing, a derivation of relationship between sub-
grammars is also needed. Partition of nonterminals is the
key point in the whole process. We accomplish the three
steps by utilizing the following dependency relation B de-
fined on nonterminals.
Definition 3 Let G = (N, T, P, S) be a CFG. For any
A,B ∈ N , A depends on B, denoted as A B B, iff there
exists p ∈ P such that A = lhs(p) and B has occurrence
in rhs(p).

Step 1: Partition of Nonterminals
From the dependency relation, we can construct a di-

graph whose nodes are nonterminals and where there is an
edge from A to B precisely when A B B. A first idea that
comes to mind is hence to partition the dependency graph
into strongly connected components (SCCs). Since each

SCC internally forms a complete graph, we may assume a
high degree of interdependence between the nonterminals in
a given SCC and consider this as an indicator of “high cohe-
sion”. In fact, this digraph and its SCCs have been used in
[11] to measure the structure complexity of grammars. Un-
fortunately, as revealed by the results in [11], many of the
SCCs derived from the digraphs are in fact of size 1. Ap-
parently, a large number of singleton SCCs might result in
a high degree of dependence between each others, which is
opposite to our “loose coupling” target. To solve this prob-
lem, we take a further step to group singleton SCCs.

Our partition algorithm utilizes an important property of
DAGs. A DAG is a Directed Acyclic Graph, namely, a di-
rected graph without directed cycles.
Proposition 1 In a DAG, there always exists a node that
has no incoming edges, i.e., with in-degree 0.

The proof of this proposition is very simple and will not
be presented here due to space limitation.

Algorithm 1: Partition of Nonterminals
input : a grammar G = (N, T, P, S)
output: a partition of nonterminals of grammar G
begin1

PN ←− ∅2
build the dependency graph G from G3
compute the SCCs of G4
for each non-singleton scc ∈ SCCs do5

PN ←− PN ∪ {scc}6
remove scc and its associated edges from G7

repeat8
find a node v with indegree(v) = 09
V ←− {v} ∪ {u|u is reachable from v}10
PN ←− PN ∪ {V }11
remove V and its associated edges from G12

until G is empty13

end14

Algorithm 1 describes the basic structure of the parti-
tion procedure. Line 5 through 7 pick out the non-singleton
SCCs, mark them as parts of the partition, then remove
them, along with all the associated edges, from the depen-
dency graph. The removal of non-singleton SCCs leaves
the graph an acyclic one1, where, by proposition 1, we can
find at least one node, namely the source node, that has no
incoming edges. Collect all the nodes that can be reached
from the source node, mark this collection as a part of the
partition, then similarly, remove it from the dependency
graph. This process, line 9 through 12, is repeated until
the dependency graph is empty.

The subsets of nonterminals in the final partition fall into
two categories: SCCs, in which any two nonterminals have
a direct or indirect dependency relation, and non-SCCs, in

1Note that here we ignore all the self-loop edges, i.e., edges that con-
nect a node with itself. This does not impact the final partition result.

S->A B

A->c C

B->d D

C->e E | f F

D->c C | b B | g G

E->a A

F->g G

G->g

S

A B

E C D

F

G

S

A B

E C D

F

G

G1: S->vtA vtB

G2: A->c C

C->e E | f vtF

E->a A

G3: B->d D

D->c vtC | b B | g vtG

G4: F->g G

 G->g

(a) The grammar

G1

G2 G3

G4

(b) Dependency graph (c) Partition (d) Selection (e) Modules (f) Call graph

S

A B

E C D

F

G

Figure 2. An example of grammar modularization.

which any nonterminal is depended, directly or indirectly,
by the source nonterminal. The partition condition is weak-
ened from the former to the latter for purpose of a good
degree of modularity.

Step 2: Selection of Start Symbols
As we have mentioned, there are two categories in the

final partition result, SCCs and non-SCCs. For each non-
SCC, it is reasonable to select the source node as its start
symbol. However, things become complex when it comes to
SCCs since all the nodes in a given SCC are reachable from
each other and more opportunities exist for the selection of
start symbol. In our approach, we restrict the candidates
into an interesting set of entry points.

Definition 4 Let G1 = (N1, T1, P1, ∗) be a part of par-
tition of grammar G, the entry points of G1 is the set of
nonterminals {A|A ∈ N1,∃B 6∈ N1 such that B B A}.

We then choose the start symbol for each SCC sub-
grammar from its entry points. Again, the choice makes
use of the dependency graph, as described in Algorithm 2
from line 5 to line 11. First we build the dependency graph
on the entry points, then collect the nodes that have no in-
coming edges and pick the one that is defined first in the
grammar as the start symbol (line 9). If no such nodes are
found, which means there exist direct cycles in the graph,
then pick one from the entry points, using the same pick
strategy (line 11). The strategy that pick the one defined
first comes from the consideration that a grammar is usually
defined from large concepts to small concepts and a large
concept is more appropriate to be the sub-grammar’s start
symbol. For example, when defining a programming lan-
guage, we usually first define the concept “program”, then
define its components such as “declarations”, “statements”
and then go on with even smaller concepts.

By assumption, the start symbol S does not appear in
the right-hand side of any production, indicating that S has
no incoming edges in the dependency graph. Thus S will
be chosen as a source node for a sub-grammar in the par-
tition step and will then be selected as the start symbol for
that sub-grammar. This exactly satisfies the requirement in
Definition 2 that there should exist a G′i with S′i = S.

Step 3: Derivation of Relation between Modules

Algorithm 2: Selection of Start Symbols
input : a partition of nonterminals {Ni}n

i=0 of G
output: a selection of start symbols {Si}n

i=0

for i ← 0 to n do1
if Ni comes from non-SCCs then2

Si ←− source node of Ni3
else4

compute the entry points EPi from Ni5
build the dependency graph GEPi of EPi6
Vi ←− {v|indegree(v) = 0}7
if Vi 6= ∅ then8

Si ←− v, v ∈ Vi, v is defined first in G9
else10

Si ←− v, v ∈ EPi, v is defined first in G11

In our testing framework, we parallel a grammar to a pro-
gram and the partitioned sub-grammars to the procedures
or subprograms that construct the program. In particular,
since a sub-grammar defines a language whose sentences
are strings derived from the sub-grammar’s start symbol
and consisting of the sub-grammars’s terminals and virtual
terminals, we may regard the sub-grammar as a procedure
whose input are the virtual terminals, output is its start sym-
bol and functionality is to specify the derivation of valid
strings. Based on this consideration, we define the follow-
ing relation to represent interactions between sub-grammars
(modules).

Definition 5 Let G′1 = (N ′
1, T

′
1, P

′
1, S

′
1), G

′
2 = (N ′

2, T
′
2,-

P ′2, S
′
2) be two sub-grammars of grammar G, G′1 calls G′2,

denoted as G′1 m G′2, iff vtS′2 ∈ T ′1, or in other words, iff
there exists A ∈ N ′

1 such that A B S′2.

Now we can construct the call graph directly from them
relation to represent the control hierarchy between modules
(sub-grammars) of a grammar. Clearly, the module contain-
ing the start symbol S is called by no modules and thus will
appear at the highest level of the control hierarchy.

Let us take a sample grammar (Figure 2(a)) to illustrate
the whole modularizing process. Figure 2(b) shows the de-
pendency graph of nonterminals and Figure 2(c), 2(d) show
the partition of nonterminals and the selection of start sym-
bols respectively. The final results are given in Figure 2(e)
and the call graph of modules is presented in Figure 2(f).

5. Testing

5.1. Module Testing
We now give the testing method which can be used for

both module testing and the subsequent integration testing.
In this section, we use the term grammar referring to both a
complete grammar and its modules (sub-grammars).

Our testing method is derived from the two usages of
grammars. Generally speaking, a grammar can be used in
two ways: a generator which derives sentences and a rec-
ognizer which accepts valid sentences. To make the test-
ing more adequate and precise, both aspects of a grammar
should be considered. From this point of view, we propose
two activities to accomplish the testing. One is to test the
grammar with respect to a generator and the other test with
respect to a recognizer.

• Test wrt a generator. Given a grammar that is being
tested, generate a finite set of sentences which are then
validated by the user, and, if not all sentences are ac-
cepted, modify the grammar and test again (Figure 3).

Not accept

Grammar
sentence

generation
Sentences

user

validation

modification

Accept
Ok

Figure 3. Test with respect to a generator.

• Test wrt a recognizer. The user is asked to give a
few valid sentences of the intended language which is
meant to be defined by the grammar under test, then
sentence recognition is performed. If the recognition
fails, which means that the grammar can not correctly
recognize valid sentences, modifications are needed.
If the sentences are accepted, then coverage analysis
is done on the sentences by user-designated coverage
criterion. If the coverage is satisfied, then the grammar
being tested will pass the testing, otherwise some new
sentences will be asked for and added to the initial set
of sentences, then a new iteration starts (Figure 4).

Grammar

Not accept Cover
Ok

User given

test set

Not coverAccept

Extended test set

sentence

recognition

coverage

analysis

test set

extension

modification

Figure 4. Test with respect to a recognizer.

The above two activities fit well with the two classes of
faults with grammars (see Section 2.2). The first activity is
expected to detect incorrectness of a grammar G by validat-
ing whether the generated sentence set (a subset of L(G))

is a subset of the intended language L. The validation is
totally done by user himself. On the other hand, in the sec-
ond activity, the grammar G is used as a recognizer to de-
cide whether the sentences given by the user (a subset of
the intended language L) belong to L(G), which will detect
incompleteness errors. Due to the interwinded character of
incorrectness and incompleteness, the two activities should
be performed interlacedly with each other.

By now, we have only considered using positive test
cases (sentences) in the testing. Dually, we could also use
negative test cases (non-sentences), say, generating non-
sentences which should be refused by the user and asking
user to provide invalid strings which should be rejected by
sentence recognition. Non-sentences can be generated by
applying mutation operators to the grammar [9].

Sentence generation, sentence recognition and coverage
analysis are three main techniques involved in the testing
process. Recognition can be conducted through sentence
parsing. This is an old research topic and there are several
approaches available such as Earley’s algorithm [1]. Cov-
erage criteria for grammars has been studied in [6] where a
family of test criteria for CFGs is described and analyzed.
There are also algorithms for automatic sentence generation
such as Purdom’s algorithm [12] and its extension [14]. We
do not discuss deeply about the details of these techniques.

5.2. Integration Testing
In software testing, integration of modules can be ac-

complished either non-incrementally, testing each module
in isolation and then combining them to form the program,
or incrementally, combining the next module to be tested
with the set of previously tested modules before it is tested
[8]. For incremental integration, there are two strategies,
top-down and bottom-up. The former starts with the top,
or initial, module and then goes downwards to handle sub-
ordinate (called) modules, whereas the latter does exactly
the opposite. These approaches can be directly applied to
the integration testing of grammars. Particularly, one may
prefer incremental integration as it is proved superior to
non-incremental integration in software testing [8]. As for
whether to follow top-down or bottom-up strategy, the de-
cision may depend on the particular grammar under test.

An important aspect in each integration step is the trans-
form from virtual terminal vtA to nonterminal A once A is
combined in. Referring to the example grammar in Figure
2 again, if we take the bottom-up integration, we first test
modules G3, G4, then combine G4 with G2 where we need
to change vtF in G2 to F , resulting in a new sub-grammar
G′2 with start symbol A. After testing G′2, we combine it,
plus G3, with G1, where all the existing virtual terminals are
replaced by their corresponding nonterminals. This combi-
nation result is exactly the grammar in Figure 2(a) and then
completes the whole integration testing.

6. Experimental Evaluation

We have implemented the framework and conducted ex-
periments on two real-world grammars. In the implementa-
tion, we adopted Earley’s algorithm [1] for sentence recog-
nition, Purdom’s algorithm [12] for sentence generation and
Lämmel’s context-dependent rule coverage [5] for cover-
age analysis. We have not implemented any algorithm for
ambiguity detection but simply resorted to Bison by check-
ing the shift/reduce and reduce/reduce conflicts reported
by it. The C grammar and Java grammar used in our ex-
periments are retrieved from the comp.compilers FTP at
ftp://ftp.iecc.com/pub/file/.

The results of testing are summarized as follows. Both
grammars are reduced but, as reported by Bison, are am-
biguous. One ambiguity is known caused by the “if-then-
else” clause. In dynamic testing phase, we found that the
grammars are incorrect, in that they “over-specify” the lan-
guages, i.e., they admit constructs that are syntactically in-
valid. Incompleteness errors have not been detected yet.
Below we first give the modularizing results, then describe
some incorrectness errors found in the two grammars.

Table 1. Results of modularization.
Grammar Modules

No. of No. of modules Avg No. of
Name nonterms prds total scc nonscc nonterms prds

C 64 213 10 3 7 6.4 21.3
Java 110 282 15 4 11 7.3 18.8

Table 1 presents the results of modularization. The th-
ree SCC modules for the C grammar correspond to the lan-
guage components including expressions mixed with decla-
rations, statements and initializer, while the non-SCCs cor-
respond to file containing external-definition and function-
definition, unary-operator, assignment-operator, etc. The
call graph presented in Figure 5 reveals quite well the re-
lations between these modules. The call graph for the Java
grammar is omitted due to space limitation. In addition,
as shown by Table 1, the number of SCCs (actually non-
singleton SCCs of the dependency graph) is rather small,
therefore our consideration of grouping singleton ones is
quite necessary and turns out effective. Take the Java gram-
mar for example, there are originally 67 SCCs with only 4
non-singleton and the remaining 63 singletons are then fur-
ther grouped into 11 modules.

Figure 5. Call graph for the C grammar.
In the experiments, we simply followed non-incremental

integration, testing each module independently then com-

bining them to test the complete grammar. Two incorrect-
ness errors found during this process are as follows.

The C Grammar. The error lies in that the grammar uses
the same declarator to specify function declaration and
variable declaration (see Figure 6). Actually, the declarators
for functions and variables should be distinguished. This er-
ror was detected by the sentence “indentifer{}” gen-
erated at the last step of integration testing. This sentence
is intended to define an empty C function but has syntax
errors: the function name “indentifer” should be fol-
lowed by “()” or “(parameters)”. Since declarator and
function-definition were partitioned into different modules,
i.e., the former is in dec&exp module while the latter in file
module (Figure 5), this error was not found until the mod-
ules were integrated.

Figure 6. Segment containing incorrect produc-
tions of the C grammar.

The Java Grammar. The error is similar to that in the C
grammar. The Java grammar does not distinguish the mod-
ifers “public, protected, private” from others like “static,
final” (see Figure 7). This results in the following sentence
containing an invalid class member declaration generated.

public class identifer{
protected private byte identifer;

}
This error was detected during the testing of a module
which describes the syntax for Java type declarations. It
happens that the generation of the above sentence does not
use any virtual terminals in that module.

Figure 7. Segment containing incorrect produc-
tions of the Java grammar.

Apparently, the “over-specify” can often make a gram-
mar smaller and simpler, and thus easier to understand. The
two grammars used in our experiments are likely written to
be more readable than implementable. This probably ex-
plains why there are still errors detected by our framework.

In the process of testing, we found that it is a good idea
to test a grammar from both aspects of its functionalities.
On one hand, we noted that the user is more likely to pro-
vide sentences that are familiar or meaningful to him, which

actually exploit only parts of the structure of the grammar.
Sentences automatically generated however are quite differ-
ent. They usually seem strange or unexpected to the user but
are helpful for detecting errors. For example, the incorrect-
ness errors mentioned above were detected exactly by gen-
erated sentences. This kind of error is not easily detected
solely by user-provided sentences. On the other hand, we
noted that since the generated sentences are relatively few
(e.g., for the whole C grammar, only 11 sentences were gen-
erated) and, as mentioned above, are mostly strange, they
alone could not test the grammar adequately. Therefore it
would be better to combine with user-provided sentences.

7. Related Work

The notion of grammar testing was first formally dis-
cussed in [5] where the author developed concepts such
as coverage analysis and test set generation for grammars,
and discussed their application to grammar recovery. Harm
and Lämmel [2] addressed the problem of testing attribute
grammars, again focusing on coverage analysis and test
generation. Li et al. [6] studied the formalization of test ad-
equacy criterion for context-free grammars. They proposed
a family of grammar test criteria and analyzed the subsume
relations. Our work in this paper, different from the above,
aims at devising sound and systematic testing methods for
grammars from an engineering point of view.

Grammar modularization or grammar partition is largely
discussed in the area of natural language processing. Wint-
ner [16] defined formal semantics of context-free grammars
and used it to derive a definition of modules and module
composition in context-free grammars. Zajac and Amtrup
[17] adopted the notion of modularity and composition and
applied them to parser construction for unification-based
grammars. Rather than partitioning automatically, they of-
fered a pipeline-like composition operator that enables the
grammar designer to break a grammar into sub-grammars.
Weng et al. [15] also took the idea of partitioning a gram-
mar into sub-grammars, each having its own parser, then
combined to produce an overall one for parsing natural lan-
guage queries. They gave some guidelines for partitioning a
grammar based on its productions by utilizing the informa-
tion provided by training data. Our partition method how-
ever is based on the nonterminals and partitions by utilizing
the dependency relation between the nonterminals.

8. Conclusion

We have presented a systematic framework for grammar
testing. We have proposed an approach to grammar mod-
ularization and a method for grammar module/integration
testing. In the experiments on grammars for two program-
ming languages, errors were found. We hope that the work
outlined in this paper will make a contribution to the engi-

neering discipline for grammars and also a complement to
the traditional theory of software testing.

Our ongoing work includes experiments on more gram-
mars and improvements on the current modularization
method. Sentence generation for testing grammars is a par-
ticularly important and challenging problem on which we
plan to take a deeper study in the future.

References

[1] J. Earley. An efficient context-free parsing algorithm. Com-
munications of the ACM, 13(2):94–102, 1970.

[2] J. Harm and R. Lämmel. Testing attribute grammars. In
Proceedings of the third workshop on attribute grammars
and their applications (WAGA’00), pages 79–98, 2000.

[3] J. Heering, P. Hendriks, P. Klint, and J. Rekers. The syntax
definition formalism SDF - reference manual. ACM SIG-
PLAN Notices, 24(11):43–75, November 1989.

[4] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction
to Automata Theory, Languages, and Computation (Second
Edition). Addison-Wesley, Boston, MA, 2001.

[5] R. Lämmel. Grammar testing. In Proceedings of Fun-
damental Approaches to Software Engineering (FASE’01)
Vol.2029, pages 201–216, 2001.

[6] H. Li, M. Jin, C. Liu, and Z. Gao. Test criteria for context-
free grammars. In Proceedings of the 28th Annual Inter-
national Computer Software and Applications Conference
(COMPSAC’04), pages 300–305, 2004.

[7] M. Mernik, M. Crepinsek, and T. Kosar. Grammar-based
systems: definition and examples. Informatica, 28(3):245–
254, 2004.

[8] G. J. Myers. The Art of Software Testing (Second Edition).
John Wiley & Sons, Inc., Hoboken, New Jersey, 2004.

[9] J. Offutt, P. Ammann, and L. Liu. Mutation testing imple-
ments grammar-based testing. In Proceedings of the Second
Workshop on Mutation Analysis (Mutation’06), 2006.

[10] P.Klint, R.Lämmel, and C.Verhoef. Towards an engineering
discipline for grammarware. ACM Transaction on Software
Engineering and Methodology, 14(3):331–380, 2005.

[11] J. F. Power and B. A. Malloy. A metrics suite for grammar-
based software. Journal of Software Maintenance and Evo-
lution, 16(6):405–426, November 2004.

[12] P. Purdom. A sentence generator for testing parsers. BIT,
12(3):366–375, 1972.

[13] S. Schmitz. Conservative ambiguity detection in context-
free grammars. In Proceedings of the 34th International
Colloquium on Automata, Languages and Programming
(ICALP’07), pages 692–703. Springer, 2007.

[14] Y. Shen and H. Chen. Sentence generation based on context-
dependent rule coverag (in Chinese). Computer Engineering
and Applications, 41(17):96–100, 2005.

[15] F. Weng, H. Meng, and P. C. Luk. Parsing a lattice with
multiple grammars. In Proceedings of the 6th International
Workshop on Parsing Technologies (IWPT’00), 2000.

[16] S. Wintner. Modular context-free grammars. Grammars,
5(1):41–63, 2002.

[17] R. Zajac and J. W. Amtrup. Modular unification-based
parsers. In Proceedings of the 6th International Workshop
on Parsing Technologies (IWPT’00), 2000.

