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Abstract. Although formal specification techniques are very useful in
software development, the acquisition of formal specification is a diffi-
cult task. This paper presents the formal software specification language
LFC, which is designed to facilitate the acquisition and validation of for-
mal specifications. LFC relies on a new kind of recursive functions, i. e.
recursive functions on context-free languages, for semantic aspect and
uses context-free languages for syntactic aspect of specifications. Spec-
ification in LFC and the validation are entirely machine-aided. Specifi-
cation is mainly facilitated through grammatical learning technique and
machine-aided function construction. Validation is facilitated by sample
recognition and generation techniques and rapid prototyping technique.
A formal specification acquisition system SAQ has been implemented,
several non-trivial examples have been developed using SAQ.

1 Introduction

The employment of formal specification techniques in software development is very
useful for improving quality and productivity of software. It is particularly important
for high confidence software systems. Formal specifications are precise representations
of software systems using mathematical notions [20]. Potential benefits of using formal
specifications include higher product quality, earlier defect removal, automatic code
generation, etc.

While researches have been making progress in software synthesis, verification, test-
ing, and so on, research in the acquisition of formal specifications has not been keeping
pace. Formal specification of software remains an intricate, manually intensive activity
[6]. This difficulty has become an obstacle to the use of formal specifications by a broad
range of users. In the literature there have been quite a few different approaches pro-
posed to this issue (e. g. [16, 14, 15, 19, 6]). For example, in some work, methods are
explored for inferring domain-specific formal specifications, depending on AI-based tech-
niques and domain knowledge databases. But these are restricted to specific application
domains, for example telecommunication. Some other researches provide CASE tools
to derive formal specifications by utilizing semiformal representations such as graphical
diagrams. However, transformations from informal models into formal specifications,
using techniques such as stepwise refinement, are also difficult tasks.
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Besides the many reasons having been mentioned for specification difficulties (see
e. g. [14]), we think that lacking enough consideration early in the design of formal spec-
ification languages on supporting specification acquisition is also an important reason
which has not attracted much attention of researchers. Obviously specification diffi-
culty is closely related to the formal specification language itself. Equally important
is the validation of acquired specifications, which confirms that the specifications meet
the requirements.

The MLIRF method [7] was proposed to address the above issues. The central idea
is to allow the utilization of machine-aided techniques and the reuse of known speci-
fication knowledge in the specification process to decrease difficulties. Two powerful
formalisms, i. e. context-free (CF) languages and recursive functions, are employed in
the method, which enable the use of machine learning and other machine-aided tech-
niques in specification process, while possessing strong expressiveness for representing
specifications.1 For this particular purpose the theory of recursive functions on CF
languages (CFRF) was proposed [10, 11].

The paper presents a formal software specification language LFC based on MLIRF
method. The language is domain independent, however, we think, and just as shown
from our experiments, it is most suited for specifying nonnumeric algorithms on com-
plex data objects, especially for algorithms on phrase structures, e. g. graph algorithms,
tree algorithms, programming language processing, and so on. Specification in LFC and
the validation are entirely machine-aided. Specification is mainly facilitated through
grammatical learning technique and machine-aided function construction. For example,
grammar of complex data object can be acquired from user-given samples of the object
by machine-learning method, and validated by generating new samples and/or parsing
other user-given samples. Validation is also performed by testing through rapid proto-
typing technique. The dynamic behavior of the specifications can be demonstrated by
rapid prototyping, hence users can decide if the specifications meet the requirements
and detect potential defects in the specifications earlier.

We have developed system SAQ, the Specification AcQuisition interactive envi-
ronment, to assist users to acquire and validate LFC specifications with support of
specification bases. SAQ realizes supporting techniques for LFC, such as specification
management, acquisition and validation of specifications, which we briefly overview in
this paper and is described in more detail in [9].

The theoretical basis of LFC is the theory of CFRF. The name “LFC” stands for
“Language For CFRF”. CFRF has the same expressiveness as recursive functions on
natural numbers. CF grammars are adopted in LFC as the construct to define data
structures. They have been well studied and widely used as a powerful tool in many
areas of software.

Section 2 introduces preliminaries needed for the paper, where we briefly review
MLIRF method, and describes basic definition forms of CFRF. The main aspects of
LFC are described in Section 3. Section 4 outlines the tool SAQ and how to acquire
specifications. The process is illustrated by examples in Section 5. Discussion is given
in Section 6. A number of non-trivial examples involving several different domains have
been developed. These are sketched in Section 7, where we also discuss some problems
and suggest directions for future work. Some knowledge about CF language is assumed,
for which the reader is referred to [18].

1These also make specifications having a functional style and executable. Although there was a
debate on whether formal specifications should be executable in the research community some years
ago, both kind of specifications are used today.
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2 Preliminaries

2.1 An Overview of MLIRF method

The MLIRF method [7] is one for representation, acquisition, and reusing of formal
specifications. A main goal of the method is to develop a representation of formal spec-
ifications both with high expressiveness and feasible for the acquisition and validation
of the specifications.

To express various kinds of data objects used on computers, CF grammars are
adopted in the method to describe structures of data objects, i. e. each kind of data
objects, called a concept, is represented as a CF language. Initially being used to define
syntax of programming languages since 1960’s, CF grammars have been widely accepted
as a powerful and well-studied tool to specify structures of various problems in many
areas of software. More recently, CF grammars are used in XML as semi-structured
data exchange format.

To express operations or semantics of specifications, recursive functions on CF lan-
guages (CFRF) are chosen in the method. It is well known that recursive functions (on
natural numbers) have the same expressiveness as Turing machines. It is also proved
that CFRF has the same expressiveness as recursive functions on natural numbers
[10, 11]. CFRF can be regarded as a natural extension of recursive functions on words
(which was first introduced to computer science by J. McCarthy in Lisp [21] and as
models of programs [22]) — its domain and range are CF languages, or sets of words
with phrase structures.

It is possible to obtain CF grammars by machine learning techniques, which is
called grammatical identification in the literature. Many learning algorithms for CF
grammars exist, however, they either arbitrarily produce a grammar, without mean-
ingful structure, defining the language, or are special for particular subclasses of CF
grammars, such as precedence grammar or regular set. On the other hand, we require
the grammars to reflect naturally the structures of the data, and the acquisition to work
efficiently. For this purpose a reuse-based novel algorithm for CF grammar acquisition
was devised [8]. In the algorithm, acquisition of grammars is an interactive process
between user and machine, where the user offers samples(sentences) of the grammars
and decides whether to accept or reject guesses on request, and the machine infers
grammars by inductive learning method and by reuse of specification knowledge (which
denotes known grammars here). Details about it can be found in [9]. This not only
reduces the difficulty of writing grammars by novices, but also is helpful for defining
grammars of data objects whose structures are complex or even unclear at first.

The construction of recursive functions can also be assisted by machine. As we
know, there have been studies on how to obtain definitions of recursive functions by
machine learning techniques. However, because of the inherent difficulties in the in-
ference of functions, we do not intend to follow this approach. Instead, we take a
more practical way, in which machine assists users to inductively construct definitions
of functions according to grammars of the concepts. The benefit is, completeness of
function definitions is assured, as well as many kind of errors can be detected in the
construction by syntactic and context-sensitive analyses.

Validity of CF grammars can be checked by sample recognition and generation
techniques, i. e. users may offer new samples conforming to their intention and check
by a general CF grammar parser if the samples are valid sentences of the obtained
grammar, and, on the other hand, new samples of a grammar can be generated from
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the grammar as well for users to check if they are desired.
CFRF can be validated by prototyping techniques. Since CFRF is executable, we

already get a prototype after we complete a specification. Through an evaluator of
CFRF, we may validate CFRF by testing.

2.2 Basic definition forms of Recursive Functions on CF Languages (CFRF)

2.2.1 Notations and Conventions

Let VN denote the set of nonterminal symbols, VT the set of terminal symbols (VN∩VT =
∅). P denote the set of productions P = {X → α | X ∈ VN , α ∈ (VN ∪ VT )∗}.

For any production Y → α, α is called a term of Y . A term without any nonterminal
symbol is call a base term, otherwise it is called a compound term.

We can define a CF grammar GX = (VN , VT , X, P ) for each nonterminal symbol X ∈
VN , where X is called the start symbol. GX produces a CF language written L(GX).
Terms of X are also called terms of L(GX). Denote Term(L(GX)) = Term(X) = {α |
X → α ∈ P}.

2.2.2 Basic definition forms of CFRF

CFRF is recursive function on CF languages, i. e. the domain and range of the function
are CF languages. It is impossible to give a formal presentation of the theory here.
Instead we briefly introduce the main results in informal manner, with emphasis on the
meanings of various definitions. A formal treatment is in [10, 11] and [2].

CFRF consists of two classes of recursive functions: primitive recursive functions
CFPRF, and recursive functions CFRF. Functions in CFPRF can be obtained from
three initial functions2, and by a limited times of applications of composition and/or
mutual recursion. Mutual recursion has the following form:

Let fi : L1×· · ·×Ln −→ L, i = 1, . . . , m, be m functions to be defined, where Lj, L
are CF languages. For each α ∈ Term(L1), fi has one equation of the following form:

fi(α, y2, . . . , yn) =df hαi(y2, . . . , yn), if α is a base term; or
fi(α, y2, . . . , yn) =df hαi(Z1, . . . , Zr, y2, . . . , yn, . . . ,

fk(Zj, y2, . . . , yn), . . .), if α is a compound term.

where hαi are known functions in CFPRF, Z1, . . . , Zr are the nonterminal symbols
occurring in α. fk (1 ≤ k ≤ m, 1 ≤ j ≤ r) may occur in hαi only if L(GZj

) = L1.
The above functions are defined by structural induction on CF language L1. L1

is called the inductive language of the functions. Because there is only one inductive
language in mutual recursion, it is also called a single induction form.

Functions in CFRF are obtained if the minimization operator is also permitted in
the construction of functions. Because this operator is not used in LFC, we do not
introduce it in this paper.

The entire theory of CFRF is built upon the above basic operators. It has been
proved that CF(P)RF is equivalent to the class of (primitive) recursive functions on
numbers [11].

2They are the constant, projection and concatenation functions.
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3 Main Aspects of the Language LFC

In LFC, structures of concepts are defined by CF grammars, which are represented by
a BNF like notation, where each nonterminal symbol denotes the name of a concept.
Operation upon concepts is represented by CFRF. A specification is composed of a set
of concepts and functions.

3.1 Concept Definition and Sample Representation

Concepts in LFC can be divided into decomposable concept (i. e. non-atomic languages,
simply called concept) and indecomposable concept (i. e. atomic languages). Samples
of indecomposable concepts are always used as whole, i. e. no structural induction is
conducted on these samples when defining functions, and no structural decomposition
is conducted when evaluating functions. Predefined indecomposable concepts in LFC
are called basic concepts.

We require a CF grammar to naturally reflect the inner structure of a data object.
Therefore general CF grammars, which have no restriction on grammars, are supported
in LFC. On the other hand, in other applications of CF grammars, usually a subclass
is used, such as LALR grammar or precedence grammar. Without restrictions, the CF
grammars in LFC have not only powerful expressiveness, but also more freedom in the
forms of grammars, therefore are able to naturally represent the inner structures of
data objects. In implementation a general CF grammar parsing algorithm, such as the
Earley’s algorithm [13], is required.

In the following example, the concept of binary numbers is defined by the grammar:

<Bin>->0|1|<Bin>0|<Bin>1

This grammar defines a concept Bin, with four productions, saying that a binary
number would be either zero, or one, or a binary number with a zero appended, or a
binary number with a one appended. Another grammar for binary numbers is

<Bin>-><Bit>|<Bin><Bit>

<Bit>->0|1

which actually defines two concepts, Bin and Bit, each has two productions, and Bin

depends on Bit.
Samples or data constants of concepts are represented as character strings quoted

by double quotes in function definitions. For example “10” and “100” are valid binary
numbers. In evaluation, structure recognition and decomposition of samples of concepts
are automatically done by the language’s processor3. A parser for general CF grammars
[13] should be embedded in any implementation of the language.

As mentioned before, the most notable advantage of using CF grammars to represent
concepts is that the grammars can be acquired in SAQ from a few samples of concepts.
For example, the first of the above grammars for binary numbers can be learned from
samples “0”, “1”, “10”, “11”. SAQ also provides many other facilities for dealing with
CF grammars. By this way, complex concepts can be defined more easily. Of course,
user can define simple grammars directly.

3In implementation, most of the work can be done at compilation, not evaluation time, to improve
efficiency. See Section 3.4
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3.2 Function Definition and Evaluation

Although mutual recursion is theoretically sufficient as function definition means, it
may sometimes result in tedious and inefficient definitions of functions. So in practice
efficient definition means are necessary. In addition, presently there has been no efficient
implementation technique for the minimization operator, the need for practical way to
define functions in CFRF is also urgent. To address these problems, we proposed
several efficient operators. Together with mutual recursion, they can generate quite a
lot of function forms. Furthermore, they form a new class of functions which includes
CFPRF as its proper subclass. We have proved that this class is equivalent to CFRF
[2]. Therefore functions in CFRF can be defined without using minimization operator.

Based on the operators of CFRF having been described, LFC provides complete
construction form, direct definition form and partial construction form for function
definition. A function has a declaration part (which begins with dec and var) and a
definition part (which begins with def). In general, for a n-ary function f with type
L1 × . . .× Ln −→ L, where the Li and L are CF languages, equations in the definition
part of f has the following form

f(p1
1, . . . , pn

1 ) = e1

· · ·
f(p1

m, . . . , pn
m) = em

where each pj
i is a pattern of Lj, which is either a variable of Lj, or corresponds to a

term of Lj (which means pj
i will be a term of Lj after each variable in pj

i is replaced by
its corresponding nonterminal); ei are expressions.

Functions can also be viewed as being defined by pattern-matching, where pat-
terns correspond to structures of CF languages. According to the definition above, the
patterns in functions concerns only the root structures of the parse trees of parame-
ter values, without dealing with nested structures of more than one level. Therefore
they are a kind of simple patterns. This kind of patterns is suitable for machine-aided
construction of functions.

The evaluation rule of the functions is as follows.
When evaluating a function application f(v1, . . . , vn), where vi are values of Li,

equations of f are examined in a top-down ordering, and the first equation (say, equation
i) satisfying the following conditions is selected:

pj
i either is a variable of Lj, or corresponds to the right-hand side of the first pro-

duction in the derivation of vj.
The above rule is just the structural pattern-matching rule of functions. LFC adopts

eager or strict evaluation semantics, i. e. the call-by-value manner of function evaluation
in which functions are evaluated after all arguments are evaluated.

Note that the order of equations of f is significant only when f is defined in partial
construction form, which can be automatically detected. In fact the partial construction
form, used for optimal evaluation purpose, is just an abbreviation of non-partial con-
struction form, and can be converted to non-partial construction form when necessary.
Thus the existence of partial construction form does not affect any formal treatment to
functions.

Completeness of functions can be assured by the machine-aided construction, and
can be detected automatically.

LFC supports simultaneous definition of mutually recursive functions. These mu-
tually defined functions always occur as a whole when being defined or used, and are
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called a definition group, which is also the basic unit of function access.
As a simple example of function, the following code defines a function that increases

a binary number by one, using the first grammar for binary numbers in Section 3.1.

dec inc: Bin -> Bin;

var b : Bin;

def inc("0") = "1";

inc("1") = "10";

inc(b[]"0") = b[]"1";

inc(b[]"1") = inc(b)[]"0";

This function is defined in complete construction form (here is mutual recursion), where
[] is the infix operator for string concatenation.

To define a function, the cases of each equation can be generated automatically;
users only need to offer the definition of each expression. In the above example, the
four cases for the inductive language Bin are easy to generate from productions. After
definition of a function is completed, refinement can be done to merge several equations
into one and/or reduce variable numbers if the definition has redundancy. This cases-
driven forms the basis of machine-aide construction of functions.

Besides the inductive way, some functions can be defined without induction, for
example the above function has an equal version in direct definition form.

dec inc: Bin -> Bin;

var b : Bin;

def inc(b) = if eq(b,"0") then "1" else

if eq(b,"1") then "10" else

if term(b,"Bin",2) then b[]"1"

else inc(b)[]"0";

In the above definition two built-in functions are used. eq determines if two strings
are identical. term determines if b is the third term (terms of a nonterminal symbol
are indexed from 0) of Bin.

3.3 Other Features

LFC is executable, so it supports rapid prototyping as a way to validate specifications.
In function construction, each function group can be tested independently after it is
defined. Specifications are developed interactively and incrementally.

Although LFC is based on a new kind of recursive functions, the theory of the
recursive functions itself is no prerequisite to users. Like recursive functions on numbers,
the theoretical development of CFRF is not easy, but the use of CFRF is not difficult
for ordinary users. Users only need to learn basic knowledge of CF languages (which
most users are probably already familiar with) and basic skills in using LFC (which is
no more than writing mathematical functions), and can be assisted by machine tool,
i. e. SAQ, to complete tasks.
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3.4 About Implementation

Any implementation of the evaluation of CFRF should combine evaluation and parsing
techniques. As mentioned above, since LFC supports general CF grammars, parsing
technique for general grammars, such as the Earley’s algorithm, is needed.

In principle the evaluation of functions can be straightforwardly implemented by
incorporating a general CF grammar parser and performing structure recognition while
evaluation, which is not efficient. Several algorithms have been proposed.

[10, 11] proposed a bottom-up, branch-pruning algorithm for CFPRF, which eval-
uates a group of mutually recursive functions by repeatedly evaluating the values of
functions at the nodes of a parse tree in a bottom-up order and deleting evaluated
branches, until root is reached. However, this algorithm cannot be extended to CFRF.
[1] presented a simple algorithm for evaluation of CFRF with only one inductive lan-
guage, which has been used in an earlier implementation of LFC. Recently, we have
developed a structural evaluation method for CFRF, which makes use of the structural
information existed in the definitions of functions, and includes an efficient representa-
tion of parse trees [3], type checking and reconstruction of expressions into an interme-
diate representation reflecting phrase structures [4], pattern-matching compilation [5],
and so on. Experiments show that this method can effectively increase efficiency.

Both an interpreter and a compiler of LFC have been implemented. For the limited
size of the paper, the implementation of LFC will not be further introduced. An earlier
implementation can be found in [9], which includes the implementation of a subset of
the LFC described in this paper.

4 How to Work Out LFC Specifications

Specification in LFC is supported by using system SAQ. We have developed both a
Solaris version and a Microsoft Windows version of SAQ. An introduction to SAQ can
be found in [9]. Here we give a brief view of the system.

SAQ mainly has the following functionalities: specification base management, con-
cept learning and validation, and function construction and validation, together with
GUI and online hypertext help.

Grammars of concepts are obtained by using the Concept Learning and Checking
subsystem of SAQ. The core of this subsystem is a reuse-based CF grammar acquisition
algorithm mentioned in Section 2.1. Samples of the concepts are offered by the user
in a form-filling manner, grammars can be learned from the samples automatically
or interactively. The acquired grammars then are validated by sample recognition and
generation facilities provided by this subsystem. Of course the user can write grammars
directly. They also can offer sentential patterns and some other constraints to accelerate
the acquisition.

Functions defined on known concepts are constructed by using the Function Con-
struction and Checking subsystem of SAQ. To define a function inductively, the user
can select one or more inductive languages in the domain of the function. The sub-
system automatically generates left-hand side of each equation of a function according
to inductive languages, and interactively request the user to reply the right-hand side
in a dialogue manner. The whole definition of a function will be formed after the con-
struction for it is finished. Inter-related recursive functions are supported to be defined
simultaneously. Completeness of function definitions can be assured with machine-aided
construction. Facilities are provided to do syntactical and many context-sensitive anal-
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Table 1: Samples of concepts

Concept Name Samples
elemFunc 1 1+1

term 1 1*1
factor 1 1ˆ1 -1

primExpr 1 x (1+1) exp(1+1) ln(1+1) sin(1+1) aSin(1+1)
Var x

yses of functions at the same time in the construction process. Facility is also provided
for the user to write or update definitions of functions directly. When a group of mu-
tually recursive functions are constructed, they can be tested by using the interpreter
of LFC embedded in the subsystem. The user may then continue to construct and test
new functions until all are defined.

Definitions of concepts and functions can be stored in specification bases. They can
be reused in subsequent specification processes.

5 Examples

As illustration, this section introduces two examples. Nontrivial examples having been
developed with LFC are sketched in Section 7.

Example 1. The formal differentiation of elementary functions. This example
also appears in [9]. Elementary functions are commonly used mathematic functions,
such as polynomial functions, trigonometric functions, anti-trigonometric functions,
exponential functions, logarithmic functions, and so on. We will give a specification
of this kind of functions and the formal differentiation operation on the functions. We
have developed several versions of specifications for this problem, here we give a revised
one which is the most simple and concise among them. A more complex one would do
some simplification on expressions, resulting simpler expression form as the result of
differentiation.

By giving samples listed in Table 1, which are separated by blank space, with one
simple concept: FuncName given directly as shown below:

<FuncName>->exp|ln|sin|cos|tg|ctg|sec

|csc|aSin|aCos|aTg|aCtg|aSec|aCsc

and two known concepts in specification base: addOp, mulOp, whose definitions are:

<addOp>->+|-

<mulOp>->*|/

the learned grammars are defined as follows.

<elemFunc>-><term>

<elemFunc>-><elemFunc><addOp><term>

<term>-><factor>

<term>-><term><mulOp><factor>

<factor>-><primExpr>
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<factor>->-<primExpr>

<factor>-><factor>^<primExpr>

<primExpr>-><Num>

<primExpr>-><Var>

<primExpr>->(<elemFunc>)

<primExpr>-><FuncName>(<elemFunc>)

<Var>-><id>

To define formal differentiation on elementary functions, we first give the signature
of the function : Diff : elemFunc → elemFunc. Then the interactive construction
process of the function begins. Because the concept elemFunc has two terms, two cases
are generated in the process. After passing several syntactic and semantic checking, the
definition is finally as follows.

dec Diff: elemFunc -> elemFunc;

var x0,x3 :term;

x1 :elemFunc;

x2 :addOp;

def Diff(x0)=tmDiff(x0);

Diff(x1[]x2[]x3)=scat(Diff(x1),x2,tmDiff(x3));

In the definition, scat is the built-in function of concatenation.
Since unknown function tmDiff is introduced in the above, the process continues,

until no unknown function exists. The complete functions are listed in Appendix B.

Example 2. Check if a sentence belongs to a CF language.
This requires to define a parser for the CF language. We can make use of the

characteristic of LFC to get a simple solution. For a CF language A, we define a function
belongA, which will check if a given string is a sentence of A. First we construct the
following grammar

<GenTyp> -> <A> | <String>

... (productions for A is omitted)

where String is a basic concept representing strings. Then we define the following
function

dec belongA : GenTyp -> Bool;

var x : A;

y : GenTyp;

def belongA(x)="True";

belongA(y)="False";

The above definition makes use of the automatic structure recognition function of
LFC. If the argument of belongA belongs to A, "True" is returned. Otherwise, because
any string is an element of String, "False" will be returned .
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6 Related Work

LFC specifications use a restricted form of equations, i. e. recursive functions. They
have similarity with algebraic specifications, which use equation system as the semantics
of the specifications. In particular, LFC has some similar aspects with the ASF+SDF
formalism [12]. For example, they all use CF grammar as part of the formalism, and
are especially suitable for specifying programming language processing. However, from
the point of view of specification construction and validation, recursive functions can
be constructed more easily in the assistance of machine. On the other hand, equation
system may be more appropriate for specifying properties of data types.

There have been other work related to formal specification acquisition, as mentioned
in Section 1. Compared with these work, we focus on the acquisition phase, and ad-
dress the problem of developing a formal specification language to support specification
acquisition.

From the point of view of language design, recursive functions are used as computa-
tion model in functional languages such as Lisp, ML, and Haskell. Yet there are some
major differences between LFC and these languages. They have different design pur-
poses. LFC supports CFRF and CF languages which make machine support for specifi-
cation possible. LFC is a specification language, and what we are most concerned with
in LFC includes the easiness of specification, the expressiveness, completeness of speci-
fications, and the consistency between specifications and requirements. For example, to
raise expressiveness, we may introduce expressive operators of CFRF (including quan-
tifiers and bounded minimization currently not in LFC) and other possible formalisms
into LFC4. On the other hand, in functional languages efficiency and other conveniences
for programming are mostly concerned, thus, for example we may introduce imperative
components into the languages.

Most functional languages support compound data types in which constructors are
utilized to represent data in tree structures. Grammar productions and compound data
type definitions have similarities; indeed we have proved they have the same expressive
power. However, the former are suitable for external representation of data and the
other internal representation of data. For example “abc” is more suitable as external
representation than “cons(a cons(b cons (c nil)))”, this is especially the case for language
processing. In the implementation of LFC, the representation of parse trees of grammars
has the same form as the constructor representation of compound data types. Then
the implementation techniques for compound data types can be applied to LFC. To
support CF languages, a parser is embedded in LFC’s processor. This also makes LFC
extremely powerful for dealing with syntax-related problems. For example, if we are
to write a program in other languages for the example 2 in Section 5, we should either
resort to a YACC-like parser generator or write a parser manually.

LFC is directly based on the model of CFRF, which brings some advantages for it.
For example, primitive recursive functions are surely terminated in evaluation, and more
efficient implementation techniques exist for this class of functions. On the other hand,
although functional languages are said to base on and can be translated to λ−calculus,
they lack higher level models suited directly for the languages which reflect specific
nontrivial features of the languages, e. g. compound data type, pattern matching.

Another formalism based on CF languages is attribute grammars. In an attribute
grammar, the grammar serves as the main body, with each production of the grammar
attached with a semantic rule. The calculation is carried out by “syntax directed”

4This does not necessarily mean LFC is inefficient for implementation.
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attribute evaluation. In LFC, grammars specify the types of the objects processed by
functions. Therefore LFC and attribute grammars are two different kinds of applications
of CF languages, each having its own suitable applications.

7 Concluding Remarks

In this paper, a formal specification language LFC is presented. It is based on recursive
functions on CF languages, and uses CF grammars to specify data objects. As far as we
know, CF grammars were ever adopted to specify data in only one existing programming
language, namely the SNOBOL, known for its power of string manipulation.

We have implemented a supporting tool for LFC, i. e. the formal specification ac-
quisition system SAQ. Several nontrivial examples have been developed using SAQ,
including formal specifications for a Java to C++ convertor, a Basic to C convertor,
a Lisp interpreter, a music notation system, and formal differentiation of elementary
functions. In all of the examples, the specifications were defined in short time. For
example, the music notation system, which is composed of 21 concepts and 51 func-
tions, was finished by one student in two weeks. Several pieces of music have also
been composed by that system. The results suggest that LFC together with SAQ ease
specification acquisition.

Because LFC directly supports operations on CF languages, which means the re-
lated operations such as lexical analysis, syntactic analysis and conversion of internal
representations of parse tree all are done automatically, LFC is especially competent to
problems involving phrase structure processing, such as programming language process-
ing. This is testified by the fact that three of the above nontrivial examples are about
programming languages. Furthermore, we expect LFC to apply to more areas. For
example, structures of molecules may be represented by CF languages, then chemical
reactions may be specified by CFRF. Similarly, LFC may also be applied to molecular
biology. LFC may be suited for problems with extremely complex data structures.

One problem with using CF grammars is the ambiguity. If the grammar of a CF
language is ambiguous, a sentence of the language may have more than one parse
tree, and a function may have different values on the same input. One way to solve
this problem is to replace CF languages by regular languages. But this will lose some
expressive power. Note some programming languages like C have ambiguous grammars,
yet they are widely used in practice. In SAQ, grammars are required to naturally reflect
structures of data objects. This is achieved by using the grammar acquisition algorithm
of SAQ and by interaction with users. The acquired grammars with natural structures
are usually better than arbitrarily selected grammars. Besides this, SAQ utilizes a
fixed parsing algorithm, so each sentence will have a unique parse tree, although it is
implementation-dependent. Another way is to use generalized LR-parsing technique
[17], which covers the full class of CF grammars, and use priority and associativity
declarations in grammars.

Currently the patterns of functions in LFC correspond to terms of CF languages
to facilitate machine-aided construction of function definitions (see Section 3.2). To
further improve efficiency of function definition, extension can be made to patterns so
that patterns may correspond to sentential forms of CF languages.

Besides above, future directions of LFC also include: (1) In theoretical aspect,
continuing developing efficient operators for CFRF; and (2) adding more built-in types,
and type polymorphism. Although LFC presently dose not support polymorphism, it
is not difficult to achieve polymorphism in LFC by using parameterized CF grammars.
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A Syntax of the Language LFC

The abstract syntax for a kernel of LFC is as follows.

c Constant
x Variable
f Function

name
e ::= c | x | e1 · e2 | f(e1, . . . , en) Expression

| IF e1 e2 e3

| e where x1 = e1 . . . xn = en

p ::= c | x | p1 · p2 Pattern
prog ::= f1(p1,1) = e1,1 Program

· · ·
f1(p1,m1

) = e1,m1

· · ·
fn(pn,1) = en,1

· · ·
fn(pn,mn

) = en,mn

where ‘·’ is the concatenation operator, p denotes a sequence of patterns p1, . . . , pn. A
pattern corresponds to a term of a CF language (see page 5, Section 3.2).

B Complete functions of formal differentiation of elementary functions
(results of machine-aided function construction)

dec Diff: elemFunc -> elemFunc;
var x0,x3 :term;

x1 :elemFunc;
x2 :addOp;

def Diff(x0)=tmDiff(x0);
Diff(x1[]x2[]x3)=scat(Diff(x1),x2,tmDiff(x3));

dec efNeg : elemFunc -> elemFunc;
var t : term; e : elemFunc; a : addOp;
def efNeg(t) = tmNeg(t);

efNeg(e[]a[]t) =
if eq(a,"+") then scat(efNeg(e),"-",t)
else scat(efNeg(e),"+",t);

dec ftDiff: factor -> elemFunc;
var x0,x1,x3 :primExpr;

x2 :factor;
def ftDiff(x0)=peDiff(x0);

ftDiff("-"[]x1)=efNeg(peDiff(x1));
ftDiff(x2[]"^"[]x3)=scat(x2,"^",x3,"*(",

tmDiff(scat(x3,"*","ln(",x2,")")),")");

dec peDiff: primExpr -> elemFunc;
var x0 :Num; x1 :Var;

x2,x4 :elemFunc;
x3 :FuncName;

def peDiff(x0)="0";
peDiff(x1)=if eq(x1,"x") then "1" else "0";
peDiff("("[]x2[]")")=Diff(x2);
peDiff(x3[]"("[]x4[]")")=
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if eq(x3,"exp") then
scat(x3[]x4,"*",Diff(x4)) else

if eq(x3,"ln") then
scat("(",Diff(x4),")","/","(",x4,")") else

if eq(x3,"sin") then
scat("cos(",x4,")*",Diff(x4)) else

if eq(x3,"cos") then
scat("-(","sin(",x4,")*",Diff(x4),")") else

if eq(x3,"tg") then
scat("sec(",x4,")^2*",Diff(x4)) else

if eq(x3,"ctg") then
scat("-(","csc(",x4,")^2*",Diff(x4),")")

else if eq(x3,"sec") then
scat("tg(",x4,")*sec(",x4,")*",Diff(x4))

else if eq(x3,"csc") then
scat("-(","ctg(",x4,")*csc(",x4,")*",

Diff(x4),")")
else if eq(x3,"aSin") then
scat("(",Diff(x4),")/","(1-",x4,"^2)^(1/2)")

else if eq(x3,"aCos") then
scat("-((",Diff(x4),")/",

"(1-",x4,"^2)^(1/2))")
else if eq(x3,"aTg") then
scat("(",Diff(x4),")/(1+",x4,"^2)")

else if eq(x3,"aCtg") then
scat("-((",x4,"^2*",Diff(x4),

")/(1+",x4,"^2))")
else if eq(x3,"aSec") then
scat("(",Diff(x4),")/(",

x4,"^2*((1-","1/",x4,"^2)^(1/2)))")
else scat("-",peDiff(scat("aSec(",x4,")")));

dec tmDiff: term -> elemFunc;
var x0,x3 :factor;

x1 :term;
x2 :mulOp;

def tmDiff(x0)=ftDiff(x0);
tmDiff(x1[]x2[]x3)=if seq(x2,"*") then

scat(tmDiff(x1),"*",x3,"+",x1,"*",ftDiff(x3))
else

scat("((",tmDiff(x1),")*",x3,"-",
x1,"*",ftDiff(x3),")/(",x3,"^2)");

dec tmNeg : term -> elemFunc;
var t : term;

def tmNeg( t ) = "-"[]t;


