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Abstract. One difficulty in the design of XML Schema is the restriction
that the content models should be deterministic, i. e., the Unique Particle
Attribution (UPA) constraint, which means that the content models are
deterministic regular expressions. This determinism is defined semanti-
cally without known syntactic definition for it, thus making it difficult for
users to design. Presently however, no work can provide diagnostic infor-
mation if content models are nondeterministic, although this will be of
great help for designers to understand and modify nondeterministic ones.
In the paper we investigate algorithms that check if a regular expression
is deterministic and provide diagnostic information if the expression is
not deterministic. With the information provided by the algorithms, de-
signers will be clearer about why an expression is not deterministic. Thus
it contributes to reduce the difficulty of designing XML Schema.
keywords: XML Schema, deterministic content models, diagnostic in-
formation

1 Introduction

Extensible Markup Language (XML) has become popular for the Web and other
applications. Usually in applications XML data are provided with schemas that
the XML data must conform to. These schemas are important for solving prob-
lems and improving efficiency in many tasks of XML processing, for example, in
query processing, data integration, typechecking, and so on. Among the many
schema languages for XML, XML Schema which is recommended by W3C has
been the most commonly used one. It is not easy, however, to design a correct
XML Schema: investigation reveals that many XML Schema Definitions in prac-
tice have errors [3, 7]. One difficulty in designing XML Schema is the restriction
that the content models should be deterministic, i. e., the Unique Particle Attri-
bution (UPA) constraint, which means that the content models are deterministic
regular expressions. In another XML schema language recommended by W3C,
Document Type Definition (DTD), deterministic content models are also used.

A regular expression is deterministic (or one-unambiguous) if, informally, a
symbol in the input word should be matched uniquely to a position in the regular
expression without looking ahead in the word. This determinism, however, is



defined semantically without known syntactic definition for it, thus making it
difficult for users to design.

Brüggemann-Klein [4] showed that deterministic regular expressions are char-
acterized by deterministic Glushkov automata, and whether an expression is de-
terministic can be decided. In [5] an algorithm is provided to decide whether
a regular language, given by an arbitrary regular expression, is deterministic,
i. e., can be represented by a deterministic regular expression. An algorithm is
further given there to construct equivalent deterministic regular expressions for
nondeterministic expressions when they define deterministic languages. The size
of the constructed deterministic regular expressions, however, can be exponen-
tially larger than the original regular expressions. In [1] an algorithm is proposed
to construct approximate deterministic regular expressions for regular languages
that are not deterministic. Bex et al. [2] further provided improved algorithms for
constructing deterministic regular expressions or constructing approximations.

All existing work, however, cannot provide diagnostic information of nonde-
terministic expressions. Consider if a design tool can locate the error positions
and tell the type of error making the expression nondeterministic, just like what
compilers or other program analysis tools do for programs, then it will be greatly
helpful for designers to understand and modify nondeterministic expressions.
Note here error is used to denote what make an expression nondeterministic.

In this paper we tackle the above issue. Our aim is to provide as much diag-
nostic information for errors as possible when expressions are nondeterministic.
The idea is, if we can check expressions at the syntactic level, then it is easier
to locate errors. Following [5], we designed a conservative algorithm, which will
accept deterministic expressions, but may also reject some deterministic expres-
sions. We improved the conservative algorithm by borrowing semantic processing
and obtained an exact checking algorithm, which will accept all deterministic ex-
pressions, and reject only nondeterministic expressions. But it will not provide
as precise diagnostic information for some nondeterministic expressions as for
the other nondeterministic expressions. We further presented a sufficient and
necessary condition for deterministic expressions, which leads to another exact
checking algorithm for deterministic expressions. With the information provided
by the algorithms, designers will be clearer about why an expression is not de-
terministic. Thus the difficulty of designing deterministic expressions, and, of
designing XML Schema at large, is lowered.

We also implemented the algorithm in [5] which constructs an equivalent
deterministic expression if an expression is not deterministic but defines a de-
terministic language, as an alternative way to obtain deterministic expressions.

We conducted several preliminary experiments, and the experimental results
are presented. The main contributions of the paper are as follows.

(1) We propose the notion of diagnosing deterministic regular expressions.
While similar notion has been familiar in other areas of software, this notion is
missing for deterministic regular expressions due to the semantic nature.

(2) We prove several properties of deterministic regular expressions, which
are the base of the algorithms.
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(3) We present several algorithms for checking deterministic regular expres-
sions and providing diagnostic information. The algorithms presented in the
paper check if regular expressions are deterministic at the syntactic level of the
expressions. The first algorithm uses stronger but syntactical conditions and
is conservative. The second algorithm is exact, but may not obtain as precise
diagnostic information for some regular expressions as for the other regular ex-
pressions. The third algorithm is also exact, and may obtain diagnostic informa-
tion for all nondeterministic regular expressions. The work of the paper can be
considered as a first step towards syntactic solutions of detecting deterministic
regular expressions.

The above algorithms can be used in schema design tools in which designers
are able to find and fix bugs iteratively.

There is another issue that is connected with the present issue. That is, since
deterministic regular expressions denote a proper subclass of regular languages,
if a nondeterministic expression does not define a deterministic language, then
the expression cannot have any equivalent deterministic expression. So when an
expression is nondeterministic it is useful to tell the designer in the mean time
whether the expression denotes a deterministic language.

Section 2 introduces preliminary definitions. The algorithms are presented in
Section 3, with a discussion of diagnostic information and examples. Experiments
are presented in Section 4. Section 5 contains a conclusion.

2 Preliminaries

Let Σ be an alphabet of symbols. The set of all finite words over Σ is denoted
by Σ∗. The empty word is denoted by ε. A regular expression over Σ is ∅, ε or
a ∈ Σ, or is the union E1+E2, the concatenation E1E2, or the star E

∗
1 for regular

expressions E1 and E2. For a regular expression E, the language specified by E
is denoted by L(E). Define EPT (E) = true if ε ∈ L(E) and false otherwise.
The symbols that occur in E, which is the smallest alphabet of E, is denoted by
ΣE .

For a regular expression we can mark symbols with subscripts so that in the
marked expression each marked symbol occurs only once. For example (a1 +
b2)

∗a3b4(a5 + b6) is a marking of the expression (a+ b)∗ab(a+ b). The marking
of an expression E is denoted by E. The same notation will also be used for

dropping of subscripts from the marked symbols:E = E. The subscribed symbols
are called positions of the expression. We extend the notation for words and
automata in the obvious way. It will be clear from the context whether · adds
or drops subscripts.

Definition 1. An expression E is deterministic if and only if, for all words
uxv, uyw ∈ L(E) where |x| = |y| = 1, if x ̸= y then x ̸= y. A regular language
is deterministic if it is denoted by some deterministic expression.
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For an expression E over Σ, we define the following functions:

first(E) = {a | aw ∈ L(E), a ∈ Σ,w ∈ Σ∗}
last(E) = {a | wa ∈ L(E), w ∈ Σ∗, a ∈ Σ}
follow(E, a) = {b | uabv ∈ L(E), u, v ∈ Σ∗, b ∈ Σ}, for a ∈ Σ

One can easily write equivalent inductive definitions of the above functions
on E, which is omitted here.

Define followlast(E) = {b | vbw ∈ L(E), v ∈ L(E), v ̸= ε, b ∈ Σ,w ∈
Σ∗}. An expression E is in star normal form (SNF) [4] if, for each starred
subexpression H∗ of E, followlast(H) ∩ first(H) = ∅ and ε /∈ L(H).

A finite automaton is a quintuple M = (Q,Σ, δ, q0, F ), where Q is a finite
set of states, Σ is the alphabet, δ ⊆ Q×Σ ×Q is the transition mapping, q0 is
the start state, and F ⊆ Q is the set of accepting states. Denote the language
accepted by the automaton M by L(M).

3 Determining and diagnosing nondeterministic
expressions

3.1 Algorithms

The Glushkov automaton was introduced independently by Glushkov [6] and
McNaughton and Yamada [8]. It is known that deterministic regular expressions
can be characterized by Glushkov automata.

Lemma 1. ([5]) A regular expression is deterministic if and only if its Glushkov
automaton is deterministic.

Lemma 1 has led to an algorithm to check if an expression is deterministic [4].
We call this algorithm the semantic checking algorithm in the paper.

If diagnostic information about why a regular expression is not determinis-
tic is required, we need a syntactic characterization, or at least some syntactic
properties, of deterministic expressions. Such a characterization, however, is not
known presently. We started from a property of deterministic expressions in
star normal form in [5] by modifying it to more general expressions. To do this,
Lemma 2 is required.

Lemma 2. For a regular expression E, if followlast(E) ∩ first(E) = ∅ then
followlast(E) ∩ first(E) = ∅.

Proof. Suppose x ∈ followlast(E)∩first(E), then x ∈ followlast(E) = followlast(E)

and x ∈ first(E) = first(E), which is a contradiction. ⊓⊔

The following is a modified version of the afore mentioned property proved
in [5]1.

1 The original property in [5] requires the expression to be in star normal form. It was
mentioned in the proof that this condition can be removed with slight change of the
property.
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Lemma 3. Let E be a regular expression.
E = ∅, E = ε, or E = a ∈ Σ: E is deterministic.
E = E1+E2: E is deterministic iff E1 and E2 are deterministic and first(E1)∩
first(E2) = ∅.
E = E1E2: If L(E) = ∅, then E is deterministic. If L(E) ̸= ∅ and ε ∈ L(E1),
then E is deterministic iff E1 and E2 are deterministic, first(E1)∩first(E2) =
∅, and followlast(E1)∩first(E2) = ∅. If L(E) ̸= ∅ and ε /∈ L(E1), then E is de-
terministic iff E1 and E2 are deterministic and followlast(E1)∩ first(E2) = ∅.
E = E∗

1 : E is deterministic and followlast(E1) ∩ first(E1) = ∅ iff E1 is deter-
ministic and followlast(E1) ∩ first(E1) = ∅.

The last case of Lemma 3 can be proved from a modification of the proof in
[5] in addition with Lemma 2. The proof of the other cases is the same as the
proof in [5].

This property, however, is not a sufficient and necessary condition of deter-
ministic expressions, since in the last case the expression E is accompanied with
an additional condition. Actually, there are examples in which either E is de-
terministic and followlast(E1) ∩ first(E1) ̸= ∅, or E1 is deterministic but E
is not deterministic. In other words, the condition that E1 is deterministic and
followlast(E1) ∩ first(E1) = ∅ is too strong to ensure E∗

1 to be deterministic.

Proposition 1. For a regular expression E = E∗
1 ,

(1) E can be deterministic when followlast(E1) ∩ first(E1) ̸= ∅.
(2) If E is deterministic then E1 is deterministic, but not vice versa.

Proof. (1) This can be shown by an example: E = (a∗)∗, where E is deterministic
because it contains only one symbol, but followlast(a∗) ∩ first(a∗) = {a}.

(2) (⇒): This is obvious. If E1 is not deterministic, then E cannot be de-
terministic, since any word of E1 is also a word of E, which in turn assures the
following: a pair of words violating the deterministic condition of E1 will also
violate the deterministic condition of E.

The reverse can be shown by an example: (a(a + ε))∗. One can verify that
a(a+ ε) is deterministic, but (a(a+ ε))∗ is not. ⊓⊔

On the other hand, up to date there is no known simpler condition for the
last case of Lemma 3.

In order to check if an expression is deterministic and locate error position
when the expression is not deterministic, one way is to directly use the property
of Lemma 3, thus resulting in a conservative algorithm, i. e., if it accepts an
expression, then the expression must be deterministic, but it may also reject
some deterministic expressions.

To obtain an exact checking algorithm we make some compromise and use
the following strategies, based on the above properties. When e = e∗1 we first
check if e1 is deterministic using Lemma 3. If e1 is not deterministic, then e is
not either by Proposition 1. Furthermore, if the erroneous part in e1 is not a
starred subexpression, then precise diagnostic information can be obtained. If e1
is deterministic, and followlast(e1) ∩ first(e1) = ∅, then e is deterministic by
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Lemma 3. Otherwise, we encounter the only uncertain case: e1 is deterministic
and followlast(e1)∩first(e1) ̸= ∅, and shift to semantic level and use the seman-
tic checking algorithm [4] to check if e is deterministic. If e is deterministic, then
the algorithm proceeds smoothly without any impact of the semantic checking.
If e is not deterministic, then we can only say that e is nondeterministic to the
users, without any further diagnostic information. The resulting algorithm is ex-
act: it will accept all deterministic expressions, and reject only nondeterministic
expressions. Notice that the semantic checking algorithm runs in linear time [4],
so will not much lower down the efficiency of the whole algorithm. The cost is,
it will not provide as precise diagnostic information for some nondeterministic
expressions as for the other nondeterministic expressions.

Further, for any expression E = E∗
1 , we give a sufficient and necessary con-

dition of E being deterministic as follows.

Proposition 2. For E = E∗
1 , E is deterministic iff E1 is deterministic and

∀y1 ∈ followlast(E1),∀y2 ∈ first(E1), if y1 = y2 then y1 = y2.

By Proposition 2 and using Lemma 3 we get a sufficient and necessary con-
dition for deterministic expressions. This gives another algorithm which provide
diagnostic information for all nondeterministic expressions.

The above proposition actually requires that if followlast(E1) and first(E1)
have common elements, the intersection can only be in the same positions of E1.
To ease the computation and obtain more diagnostic information, we present
the following inductive computation of the condition.

Definition 2. The function P(E) which returns true or false is defined as

P(ε) = P(∅) = P(a) = true a ∈ Σ
P(E1 + E2) = P(E1) ∧ P(E2) ∧ (followlast(E2) ∩ fitst(E1) = ∅)
∧ (followlast(E1) ∩ fitst(E2) = ∅)

P(E1E2) = (¬(EPT (E1)) ∧ ¬(EPT (E2)) ∧ (followlast(E2) ∩ fitst(E1) = ∅)) ∨
(EPT (E1) ∧ ¬(EPT (E2)) ∧ P(E2) ∧ (followlast(E2) ∩ fitst(E1) = ∅)) ∨
(¬(EPT (E1)) ∧ EPT (E2) ∧ P(E1) ∧ (followlast(E2) ∩ fitst(E1) = ∅)) ∨
(EPT (E1) ∧ EPT (E2) ∧ P(E1) ∧ P(E2) ∧ (followlast(E2) ∩ fitst(E1) = ∅))

P(E∗
1 ) = P(E1)

Proposition 3. Let an expression E be deterministic. The following two state-
ments are equivalent.
(1) ∀y1 ∈ followlast(E),∀y2 ∈ first(E), if y1 = y2 then y1 = y2.
(2) P(E) = true.

In the following we give the three algorithms. The conservative one is deter-
ministic c, the second one is deterministic, and the third one is deterministicpl.

Algorithm 1 deterministic c(e): Boolean
Input: a regular expression e
Output: true if e is deterministic or false and diagnostic information otherwise

1. if e = ∅, ε, or a for a ∈ Σ then return true
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2. if e = e1 + e2 then
3. if deterministic c(e1) and deterministic c(e2) then
4. if first(e1) ∩ first(e2) = ∅ then return true else
5. {print err; return false}
6. else return false
7. if e = e1e2 then
8. if deterministic c(e1) and deterministic c(e2) then
9. if followlast(e1) ∩ first(e2) ̸= ∅ then {print err; return false} else
10. if lambda(e1) then
11. if first(e1) ∩ first(e2) ̸= ∅ then {print err; return false} else
12. return true
13. else return true
14. else return false
15. if e = e∗1 then
16. if deterministic c(e1) then
17. if followlast(e1) ∩ first(e1) = ∅ then return true else
18. {print err; return false}
19. else return false

Algorithm 2 deterministic(e): Boolean
Input: a regular expression e
Output: true if e is deterministic or false and diagnostic information otherwise
(1 – 14 are the same as deterministic c)

15. if e = e∗1 then
16. if not deterministic(e1) then return false
17. if followlast(e1) ∩ first(e1) = ∅ then return true else
18. if isdtre(e) then return true else
19. {print err; return false}

Algorithm 3 deterministicpl(e): Boolean
Input: a regular expression e
Output: true if e is deterministic or false and diagnostic information otherwise
(1 – 14 are the same as deterministic c)

15. if e = e∗1 then
16. if not deterministicpl(e1) then return false
17. if P (e1) then return true else
18. return false

All of the algorithms take as input a regular expression, and output a Boolean
value indicating if the expression is deterministic as well as diagnostic infor-
mation if the expression is not deterministic. In the algorithm deterministc c,
lambda(e) is just the function EPT (e) which returns true if ε ∈ L(e) and false
otherwise. print err is not a real function here, it just indicates some statements
in the implementation that print current error information. For example, in line
5 print err should print that first(e1) ∩ first(e2) is not empty, and in line 9
print err should print that followlast(e1) ∩ first(e2) is not empty. It is not
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difficult to indicate the positions of e1 and e2 by the parse tree of the whole ex-
pression. The difference between deterministic c and the other algorithms only
starts from line 16. In deterministic, isdtre is the semantic checking algorithm [4]
to check if a regular expression is deterministic. It is used in the case of e = e∗1.
In deterministicpl, P (e) calculates P(e) and print diagnostic information if e is
nondeterministic.

Theorem 1. If deterministic c(e) returns true, then e is deterministic.

Proof. It follows directly from Lemma 3. ⊓⊔

Theorem 2. deterministic(e) returns true if and only if e is deterministic.

Proof. It follows from Lemma 3, Lemma 1, and Proposition 1. ⊓⊔

Theorem 3. deterministicpl(e) returns true if and only if e is deterministic.

Proof. It follows from Lemma 3, Proposition 2, and Proposition 3. ⊓⊔

3.2 Reporting errors

Three kinds of error information can be reported by the above algorithms:
- Error location. Using the parse tree of an expression, the subexpressions

that cause an error can be located precisely.
- Types of errors. There are roughly the following types of errors:
(1) first-first error, indicating first(e1) ∩ first(e2) ̸= ∅. It can further be

classified into first-first-+ and first-first-., corresponding to a (sub)expression
e = e1 + e2 and e = e1 + e2 respectively.

(2) followlast-first error, indicating followlast(e1) ∩ first(e2) ̸= ∅. Simi-
larly it is also classified into followlast-first-+, followlast-first-., and followlast-
first-*.

(3) A starred (sub)expression is not deterministic, indicating the semantic
checking error in deterministic.

(4) followlast-first-nd error, indicating an error of followlast(e1)∩first(e2)
̸= ∅ in P(e), corresponding to a violation of the condition is Proposition 2.

- Other diagnostic information. For example, for a type (1) error, the two
first sets can be provided. For a type (2) error, besides the followlast and
first sets, the symbols in the last set that cause the overlap of the followlast
and first sets, and symbols in the follow set of the previous symbols, can be
provided.

In addition to the above information, other information like parse trees of ex-
pressions, the Glushkov automata, and the matching positions of a word against
an expression can also be displayed, thus providing debugging facilities of ex-
pressions.

Of course, in an implementation of a tool, the above information can be
implemented such that the users can select which information to display.
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3.3 Examples

Example 1. Suppose one want to write a schema for papers with no more than
two authors. The content model of the papers can be defined as

Title, Author?, Author, Date, Abstract, Text, References 2

which equals to the following regular expression
Title, (Author+empty), Author, Date, Abstract, Text, References

By using the above algorithms, the following information is displayed3:

error: the expression is not deterministic.

error found in: "Title, (Author+empty), Author"

hints: the sets of followlast((Title, (Author+empty))) and

first(Author) have common elem

followlast((Title, (Author+empty)))={Author(2)}

trace: Title in last((Title, (Author+empty)))

follow((Title, (Author+empty)), Title)={Author}

first(Author)={Author(3)}

Then the content model can be rewritten into the following:
Title, Author, Author?, Date, Abstract, Text, References

which is deterministic.

Of course for some nondeterministic content models their equivalent deter-
ministic ones are very difficult to find, as in the following example.

Example 2. (a + b)∗a defines any string of a or b, including the empty word,
followed by one a. The above algorithms will show that this expression is not
deterministic, and this is because EPT ((a + b)∗) and followlast((a + b)∗) ∩
first(a) ̸= ∅ and first((a+ b)∗)∩ first(a) ̸= ∅. For the expression it is difficult
to write an equivalent deterministic regular expression.

However, using the diagnostic information, the designer can change the design
to circumvent the error: (a+ b)∗c, and c is defined as a in another rule.

So the diagnostic information can
- help the designer to locate errors and rewrite nondeterministic expressions into
correct ones, and
- help the designer to understand the reasons of errors, or change design to
circumvent the errors.

4 Experiments

We have implemented the algorithms and performed some experiments. The al-
gorithms were tested with generated regular expressions in different sizes. We
use the number of symbol occurrences in the expression, or the alphabetic width

2 The comma (,) denotes concatenation
3 Concatenation and union are assumed to be left associative as usual in expressions
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Fig. 1. Numbers of deterministic regular expressions

of the expression to denote the size of a regular expression. The sizes of regular
expressions ranges from 10 to 160 in the experiments, with 500 expressions in
each size. The size of the alphabet was set to 40. The algorithms were imple-
mented in C++. The experiments were run on Intel core 2 Duo 2.8GHz, 4GB
RAM.

Figure 1 shows the numbers of deterministic regular expressions determined
by each algorithm, in which ‘semantic’ denotes the semantic checking algorithm,
others are clear from their name. We can observe the number of deterministic
expressions decreases when the size of regular expressions grows. Intuitively, this
is because the possibility of the occurrences of the same symbol increase when
the size of expressions increases, which increases the possibility of nondetermin-
ism. Actually, when size is greater than 50, all expressions are nondeterministic.
The numbers of deterministic regular expressions identified by the algorithm de-
terministic c are less than the numbers identified by the other algorithms, which
coincides with that deterministic c is conservative. The numbers of determinis-
tic expressions determined by the algorithms deterministic and deterministicpl
are identical with the numbers determined by the semantic checking algorithm,
reflecting that deterministic and deterministicpl exactly detect all deterministic
expressions.

The errors in the tested regular expressions found by the algorithms are
shown in Table 1. The first column in the table shows the size of regular expres-
sions. The other columns include the numbers of different types of errors caught
by deterministic c, deterministic and deterministicpl in the experiment, in which
first-first, fola-first, star-exp, and ff-nd correspond to the types (1),
(2), (3), and (4) of errors presented in Section 3.2, respectively. It shows that
the most common type of errors in the experiment is the first-first errors.
Also the numbers of errors for each of first-first and fola-first of deter-
ministicpl and deterministic are identical, and the numbers of errors for ff-nd
and star-exp are identical too. This is because the two algorithms both exactly
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Table 1. Errors found by the algorithms

size deterministic c deterministicpl deterministic

first-first fola-first first-first fola-first ff-nd first-first fola-first star-exp

10 107 37 135 5 4 135 5 4

20 184 153 305 12 20 305 12 20

30 244 213 422 9 26 422 9 26

40 263 225 448 16 24 448 16 24

50 266 231 450 23 24 450 23 24

60 274 226 454 23 23 454 23 23

70 271 229 451 18 31 451 18 31

80 267 233 463 15 22 463 15 22

90 259 241 460 20 20 460 20 20

100 300 200 465 21 14 465 21 14

110 285 215 472 15 13 472 15 13

120 280 220 466 20 14 466 20 14

130 282 218 469 12 19 469 12 19

140 290 210 469 10 21 469 10 21

150 299 201 461 22 17 461 22 17

160 296 204 465 17 18 465 17 18

check whether an expression is deterministic, and differ only in the processing of
stared subexpressions. When a starred subexpression has an error, each of the
algorithms will detect one error.

Figure 2 shows the average time for detecting one nondeterministic regular
expressions by the algorithms. Each value is obtained by the time to check the
total amount of nondeterministic regular expressions in each size divided by the
number of nondeterministic regular expressions in that size. The time used to
print diagnostic information in the programs is not included. The algorithms
spend averagely less than 6 milliseconds for a regular expression of size 160, thus
are efficient in practice. It is not strange that the semantic checking algorithm
runs faster, since the algorithms presented in this paper will do more than the
semantic algorithm. On the other hand, the implementation of the algorithms
presented in the paper still have much room for improvement. In the testing
deterministicpl runs almost as faster as deterministic c and deterministic. Thus
we can use deterministicpl for diagnostic tasks.

5 Conclusion

Due to its semantic definition, a deterministic regular expression is hard to de-
sign and understand, and semantic checking techniques can only answer yes or
no. The paper presented several algorithms as an attempt to diagnose nonde-
terministic regular expressions, making it possible to analyze and give hints to
errors thus reducing the difficulty of designing deterministic content models.
This would be convenient for designers to utilize their knowledge and intuition.
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In the future, it would be useful to find more syntactic conditions for deter-
ministic regular expressions, in the hope of more detailed revealing of errors.
A presently unclear question is, can we use other more intuitive conditions to
replace the emptiness condition of followlast-first or first-first intersection?
The approaches to display diagnostic information effectively also constitute a
significant aspect. The diagnostic information offered by the algorithms may
also be used to generate counter examples of nondeterministic content models,
which is also helpful for designers, but is not discussed in the paper. It is possible
to integrate the above techniques in tools to provide analyzing and debugging
facilities for content models.
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5. A. Brüggemann-Klein and D. Wood, One-unambiguous regular languages, Infor-
mation and Computation, 142(2):182 – 206, 1998.

6. V. M. Glushkov, The abstract theory of automata, Russian Math. Surveys 16
(1961) 1 – 53.

7. W. Martens, F. Neven, T. Schwentick, and G.J. Bex, Expressiveness and complex-
ity of XML Schema, ACM Transactions on Database Systems, 31(3):770 – 813,
2006.

8. R. McNaughton, H. Yamada, Regular expressions and state graphs for automata,
IRE Trans. on Electronic Computers 9 (1) (1960) 39 – 47.

12



Proof of Proposition 2

The following lemma follows from the proof of Lemma 3.2 in [5].

Lemma 4. Let E = E∗
1 , E1 be deterministic. Let uxv, uyw ∈ L(E), x, y ∈

Σ, u, v, w ∈ Σ∗, such that x = y. If whenever u = u0z, z ∈ last(E1) and x(y) ∈
first(E1) we have y(x) ∈ first(E1), then E is deterministic.

Then we prove Proposition 2 as follows.

Proof. (⇐): Let uxv, uyw ∈ L(E), x, y ∈ ΣE , u, v, w ∈ Σ∗
E
, x = y. If u = u0z, z ∈

last(E1) and x ∈ first(E1), then if y ∈ followlast(E1), then x = y, therefore
E is deterministic. Otherwise, y ∈ first(E1). Similarly, If u = u0z, z ∈ last(E1)
and y ∈ first(E1), then if x ∈ followlast(E1), then E is deterministic. Other-
wise, y ∈ first(E1). Then, except the above two cases in which E is determin-
istic, for other cases by Lemma 4 E is deterministic.

(⇒): Suppose E1 is nondeterministic, then from Proposition 1 E is nonde-
terministic. Suppose ∃y1 ∈ followlast(E1),∃y2 ∈ first(E1), y1 = y2, y1 ̸= y2.
We show that E is nondeterministic. There are y2u, vx, vxy1w ∈ L(E1), x ∈
ΣE1

, u, v, w ∈ Σ∗
E1

. Therefore, vxy2u, vxy1w ∈ L(E), so E is nondeterministic.
⊓⊔

Proof of Proposition 3

Proof. (1) ⇒ (2): We prove it by induction on the structure of E. The cases for
E = ε, ∅ or a, a ∈ Σ are obvious.

If E = E1 +E2, then followlast(E) = followlast(E1)∪ followlast(E2) and
first(E) = first(E1) ∪ first(E2). Let y1 ∈ followlast(E), y2 ∈ first(E). If
y1 ∈ followlast(E1), y2 ∈ first(E1), then by induction P(E1) = true. Sim-
ilarly, if y1 ∈ followlast(E2), y2 ∈ first(E2), then P(E2) = true. If y1 ∈
followlast(E1), y2 ∈ first(E2), then y1 ̸= y2, thus by condition (1) y1 ̸= y2,
i.e., followlast(E1) ∩ first(E2) = ∅. Similarly, if y1 ∈ followlast(E2), y2 ∈
first(E1), we have followlast(E2) ∩ first(E2) = ∅.

If E = E1E2, then followlast(E) = followlast(E2) if ¬(EPT (E2)) and
followlast(E1)∪followlast(E2) otherwise, first(E) = first(E1) if ¬(EPT (E1))
and first(E1) ∪ first(E2) otherwise. Let y1 ∈ followlast(E), y2 ∈ first(E). If
¬(EPT (E1))∧¬(EPT (E2)), then y1 ∈ followlast(E2), y2 ∈ first(E1), similarly
as the above we have followlast(E2)∩first(E1) = ∅. If EPT (E1)∧¬(EPT (E2)),
then y1 ∈ followlast(E2), y2 ∈ first(E1) ∪ first(E2). If y2 ∈ first(E1), then
similarly followlast(E2) ∩ first(E1) = ∅. If y2 ∈ first(E2), then by induction
P(E2) = true. Similarly we can prove the remaining cases.

If E = E∗
1 , then first(E) = first(E1), followlast(E) = followlast(E1) ∪

first(E1). ∀y1 ∈ followlast(E1),∀y2 ∈ first(E1), y1 ∈ followlast(E), y2 ∈
first(E), so by condition (1) if y1 = y2 then y1 = y2. Then P(E1) = true.

(2) ⇒ (1): We prove it by induction on the structure of E. The cases for
E = ε, ∅ or a, a ∈ Σ are obvious.
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If E = E1+E2, let y1 ∈ followlast(E), y2 ∈ first(E). If y1 ∈ followlast(E1),
y2 ∈ first(E1), then since P(E1) = true, by induction if y1 = y2 then y1 = y2.
Similarly, if y1 ∈ followlast(E2), y2 ∈ first(E2), then if y1 = y2 then y1 = y2.
If y1 ∈ followlast(E1), y2 ∈ first(E2), then y1 ̸= y2. On the other hand, since
followlast(E1) ∩ first(E2) = ∅, y1 ̸= y2, so condition (1) holds. Similarly we
can prove the case when y1 ∈ followlast(E2), y2 ∈ first(E1).

If E = E1E2, let y1 ∈ followlast(E), y2 ∈ first(E). If ¬(EPT (E1)) ∧
¬(EPT (E2)), then y1 ∈ followlast(E2), y2 ∈ first(E1), then y1 ̸= y2. Since
followlast(E1)∩ first(E2) = ∅, y1 ̸= y2, so condition (1) holds. The other cases
can be proved similarly.

IfE = E∗
1 , let y1 ∈ followlast(E), y2 ∈ first(E). If y1 ∈ followlast(E1), y2 ∈

first(E1), since P(E1) = true, by induction if y1 = y2 then y1 = y2. If
y1 ∈ first(E1), y2 ∈ first(E1), since E1 is deterministic, if y1 = y2 then y1 = y2.

⊓⊔
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