
Checking Determinism of Regular Expressions
with Counting ⋆

Haiming Chen and Ping Lu

State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

Beijing 100190, China
{chm,luping}@ios.ac.cn

Abstract. We give characterizations of strong determinism for regular
expressions with counting, based on which we present an O(|ΣE ||E|) time
algorithm to check whether an expression E with counting is strongly
deterministic where ΣE is the set of distinct symbols in E. It improves
the previous upper bound of O(|E|3) time on the same decision prob-
lems for both standard regular expressions and regular expressions with
counting. As a natural result of our work we derive a characterization
of weak determinism for regular expressions with counting, which leads
to a new O(|ΣE ||E|) time algorithm for deciding weak determinism of
regular expressions with counting.

1 Introduction

Regular expressions have been widely used in many applications. Different appli-
cations may require regular expressions with various extensions or restrictions,
among them are deterministic regular expressions. For example, Document Type
Definition (DTD) and XML Schema, which are the XML schema languages rec-
ommended by W3C, require that the content models should be weakly deter-
ministic regular expressions. As another example, strongly deterministic regular
expressions are used in query languages for XML streams [11]. Informally, weak
determinism means that, when matching a word against an expression, a symbol
can be matched to only one position in the expression without looking ahead.
Meanwhile, strong determinism makes additional restriction that the use of oper-
ators should also be unique in the matching with the word. Weakly deterministic
regular expressions have been studied in the literature, also under the name of
one-unambiguous regular expressions [1, 3, 2, 5, 14, 13, 6, 12]. On the other hand,
strong determinism (or strong one-unambiguity) of regular expressions has also
attracted attentions recently [5, 14, 11, 7].

One basic problem is deciding weak or strong determinism of regular ex-
pressions. While deciding weak determinism of a standard regular expression E
can be solved in O(|ΣE ||E|) time [1] where ΣE is the set of distinct symbols in

⋆ Work supported by the National Natural Science Foundation of China under Grant
No. 61070038.

E, deciding strong determinism of standard regular expressions is more involved
and the up to date algorithm runs in O(|E|3) time [11]. Furthermore, it is known
that deciding weak or strong determinism is nontrivial for regular expressions
with counting (RE(#)) [5]1. The latter is extended from standard regular expres-
sions with iterative expressions (i. e., expressions of the form E[m,n]), and is used
for instance in XML Schema. For deciding weak determinism of regular expres-
sions in RE(#) an O(|ΣE ||E|) time method was given [8]. For deciding strong
determinism of regular expressions in RE(#) an O(|E|3) time algorithm was
presented [5]. In this paper we study properties of RE(#) and present character-
izations of strong determinism for RE(#), based on which we give an O(|ΣE ||E|)
time algorithm to check whether an expression in RE(#) is strongly determin-
istic. Moreover our result can easily adapt to deciding weak determinism for
RE(#) and trivially apply to deciding strong determinism for standard regular
expressions, thus both gives a new O(|ΣE ||E|) time algorithm for the former
and improves the complexity bound from O(|E|3) time into O(|ΣE ||E|) time for
the latter.

Contributions. We give a structural characterization of strong determinism
for RE(#). This characterization can lead to an O(|ΣE ||E|) time algorithm. We
give a further characterization of strong determinism for iterative expressions
to achieve additional benefits. The new characterization elaborately distributes
specific conditions for strong determinism of an iterative expression to some
particular subexpressions of the expression. The benefits of the new character-
ization are that, it not only allows checking strong determinism in O(|ΣE ||E|)
time, but also enables deciding strong determinism of an iterative expression by
particular subexpressions of the expression. Thus it is possible for instance that
nondeterminism of the expression can be located locally and more precisely in a
lower level subexpression.

Then we present an algorithm to check strong determinism for regular expres-
sions in RE(#). The algorithm tests strong determinism directly on the original
regular expressions and runs in time O(|ΣE ||E|). As a natural result of our work
we derive a characterization of weak determinism for RE(#), which gives rise to
a new O(|ΣE ||E|) time algorithm possessing similar features as above.

Related work. A majority of work considered determinism of standard
regular expressions. Brüggemann-Klein [1] presented an algorithm for standard
regular expressions to check if an expression is weakly deterministic based on
Glushkov automata. By converting expressions into star normal form, the algo-
rithm can check determinism in O(|ΣE ||E|) time. In [4] a preliminary diagnosing
algorithm was proposed for weak determinism of standard regular expressions
which is based on testing expressions and runs in O(|E|2) time. The present
work is inspired by that work, but here we deal with the different and more
challenging problem of checking strong determinism for RE(#) and our algo-
rithm takes O(|ΣE ||E|) time. On the other hand, by applying techniques in this
paper it is easy to improve the complexity of the algorithm in [4] into O(|ΣE ||E|)

1 The nontrivialness is illustrated by an example in [5]: (b?a[2,3])[2,2]b is weakly deter-
ministic, but (b?a[2,3])[3,3]b is not.

2

time. In [11] an O(|E|3) time algorithm was given to check strong determinism
of standard regular expressions.

For expressions in RE(#), extensions of the Glushkov construction have been
studied [5, 14, 9]. Relation between strong deterministic expressions and the cor-
responding Glushkov automata was set up [5], and a strong determinism checking
algorithm was given, which runs in O(|E|3) time. Kilpeläinen [8] presented an
O(|ΣE ||E|) time algorithm to check weak determinism for RE(#).

The rest of the paper is organized as follows. Section 2 introduces definitions.
In Section 3 the computation of some sets is discussed, which is prerequisite for
the following algorithms. In Section 4 properties of regular expressions in RE(#)
are studied. In Section 5 the characterizations of strong determinism for regular
expressions in RE(#) are given, and an algorithm to check strong determinism
of regular expressions in RE(#) is presented. In Section 6 the characterization
of weak determinism for regular expressions in RE(#) derived from our work
is presented. In Section 7 we show the local nondeterminism-locating feature of
our characterizations by an example.

2 Preliminaries

Let Σ be an alphabet of symbols. The set of all finite words over Σ is denoted by
Σ∗. The empty word is denoted by ε. The class of (standard) regular expressions
over Σ, denoted by RE, is defined in the standard way: ∅, ε or a ∈ Σ is a regular
expression, the union E1+E2, the concatenation E1E2, or the star E

∗
1 is a regular

expression for regular expressions E1 and E2. Let N denote the set {0, 1, 2, . . .}.
The class of regular expressions with counting, denoted by RE(#), is extended
from RE by further using the numerical iteration operator : E[m,n] is a regular
expression for a regular expression E. The bounds m and n satisfy the following
conditions: m ∈ N, n ∈ N\{0} ∪ {∞}, and m ≤ n. Notice E∗ = E[0,∞]. Thus we
do not need to separately consider the star operator in RE(#). Notice E? is also
used in content models, which is just an abbreviation of E + ε, and is therefore
not separately considered in the paper.

For a regular expression E, the language specified by E is denoted by L(E).
The language of E[m,n] is defined as L(E[m,n]) =

∪n
i=m L(E)i. Define λ(E) =

true if ε ∈ L(E) and false otherwise. An expression E is nullable if λ(E) = true.
The size of a regular expression E in RE(#), denoted by |E|, is the number of
symbols and operators occurring in E plus the sizes of the binary representa-
tions of the integers [5]. The symbols that occur in E, which form the smallest
alphabet of E, will be denoted by ΣE . An expression is in normal form if for

its every nullable subexpressions E
[m,n]
1 we have m = 0 [5]. Expressions can

be transformed into normal form in linear time [5]. Therefore, following [5], we
assume expressions are in normal form in this paper.

For a regular expression we can mark symbols with subscripts so that in the
marked expression each marked symbol occurs only once. For example (a1 +
b2)

[6,7]a3b4(a5 + b6) is a marking of the expression (a + b)[6,7]ab(a + b). The
marking of E is denoted by E. The same notation will also be used for dropping

3

subscripts from the marked symbols: E = E. We extend the notation for words
and sets of symbols in the obvious way. It will be clear from the context whether
· adds or drops subscripts.

Definition 1 ([3]). An expression E is weakly deterministic if and only if, for
all words uxv, uyw ∈ L(E) where |x| = |y| = 1, if x ̸= y then x ̸= y.

The expression a[0,2]a is not weakly deterministic, since a2, a1a2 ∈ L(a
[0,2]
1 a2).

It is known that weakly deterministic regular expressions denote a proper
subclass of regular languages [3].

A bracketing of a regular expression E is a labeling of the iteration nodes
of the syntax tree by distinct indices [5]. The bracketing Ẽ of E is obtained by

replacing each subexpression E
[m,n]
1 of E with a unique index i with ([iE1]i)

[m,n].
Therefore, a bracketed regular expression is a regular expression over alphabet
Σ ∪ ΓE , where ΓE = {[i,]i | 1 ≤ i ≤ |E|Σ}, |E|Σ is the number of symbol
occurrences in E. A string w in Σ ∪ ΓE is correctly bracketed if w has no
substring of the form [i]i.

Definition 2 ([5]). A regular expression E is strongly deterministic if E is
weakly deterministic and there do not exist strings u, v, w over Σ ∪ ΓE, strings
α ̸= β over ΓE, and a symbol a ∈ Σ such that uαav and uβaw are both correctly
bracketed and in L(Ẽ).

The expression (a[1,2])[1,2] is weakly deterministic but not strongly determin-
istic. Both [2[1a]1]2[2[1a]1]2 and [2[1a]1[1a]1]2 are in L(([2([1a]1)

[1,2]]2)
[1,2]).

For an expression E over Σ, we define the following sets:
first(E) = {a | aw ∈ L(E), a ∈ Σ,w ∈ Σ∗},
followlast(E) = {b | vbw, v ∈ L(E), v ̸= ε, b ∈ Σ,w ∈ Σ∗}.
We assume expressions are reduced by the following rules: E + ∅ = ∅+ E =

E,E∅ = ∅E = ∅, and Eε = εE = E. For a reduced expression, it either does not
contain ∅ or is ∅. Since we are not interested in the trivial case of an expression
of ∅, in the following we assume an expression is not ∅.

3 Computing followlast sets

To determine the conditions given in the next sections, we will need to calculate
the first and followlast sets and the λ function. The inductive definition of the
λ function on expressions in RE is standard and can be found in, e. g., [1], which
can be trivially extended to expressions in RE(#).

For any regular expression E, it is easy to see that first can be computed
as follows.

first(ε) = ∅, first(a) = {a}, a ∈ ΣE ;
first(G+H) = first(G) ∪ first(H);

first(GH) =

{
first(G) ∪ first(H) if ε ∈ L(G),
first(G) otherwise;

first(G[m,n]) = first(G).

(1)

4

The calculation of followlast is however more involved. The following notion
has been given in [10].

Definition 3 ([10]). An iterative subexpression F = G
[m,n]

of E is flexible
in E, denoted flexible(G[m,n]), if there is some word uws ∈ L(E) with w ∈
L(F)l ∩ L(G)k for some l ∈ N and k < l × n. We call such a word w a witness
to the flexibility of F in E.

The flexibility of an iterative expression can be computed in linear time [8].

For a marked expression E, it is known that the following holds [8].

followlast(ε) = followlast(a) = ∅, a ∈ ΣE ;
followlast(G+H) = followlast(G) ∪ followlast(H);

followlast(GH) =

{
followlast(G) ∪ first(H) ∪ followlast(H) if ε ∈ L(H),
followlast(H) otherwise;

followlast(G
[m,n]

) =

{
followlast(G) ∪ first(G) if flexible(G[m,n]) = true,
followlast(G) otherwise.

However, the above formula is incorrect for general expressions. For example,
let E = a+ ab. By definition, we have followlast(E) = {b}, since a, ab ∈ L(E).
But followlast(a) = ∅ and followlast(ab) = ∅, which means followlast(E) ̸=
followlast(a) ∪ followlast(ab). The remaining of this section deals with this
issue.

The following lemma shows the relation between the considered sets on gen-
eral and marked expressions.

Lemma 1. Let E be a regular expression.

(1) followlast(E) ⊆ followlast(E).

(2) first(E) = first(E).

(3) E is weakly deterministic ⇒ followlast(E) = followlast(E).

Then from Lemma 1 we have

Corollary 1. For a weakly deterministic expression E, followlast can be com-
puted as follows.

followlast(ε) = followlast(a) = ∅, a ∈ ΣE ;
followlast(G+H) = followlast(G) ∪ followlast(H);

followlast(GH) =

{
followlast(G) ∪ first(H) ∪ followlast(H) if ε ∈ L(H),
followlast(H) otherwise;

followlast(G[m,n]) =

{
followlast(G) ∪ first(G) if flexible(G[m,n]) = true,
followlast(G) otherwise.

(2)

This gives computation of followlast for weakly deterministic expressions.

Fortunately we will see later that in the algorithms only when E is weakly
or strongly deterministic is followlast(E) needed. Thus Equation (2) works for
our purpose.

5

4 Properties of expressions in RE(#)

In this section we will develop further necessary properties. Fix an arbitrary
coding on the syntax tree of an expression E in some ordering, such that each
node in the syntax tree has a unique index. The subexpression corresponding
to a node with index n is denoted by E|n. Inside the syntax tree of E, the
replacement of the subtree of a subexpression E|n with the syntax tree of an
expression G is denoted by E[E|n ← G], which yields a new expression. For a
subexpression E|n of E, let E♭

E|n = E[E|n ← ♭E|n♭], where ♭ /∈ ΣE .

Definition 4. Let ♭ /∈ ΣE. For a subexpression E|n of E, we say E|n is contin-
uing, if for any words w1, w2 ∈ L(E|n), there are u, v ∈ (ΣE ∪ {♭})∗, such that
u♭w1♭♭w2♭v ∈ L(E♭

E|n).

If a subexpression E|n is continuing, we denote ct(E|n, E) = true, otherwise
ct(E|n, E) = false. When there is no confusion, ct(E|n, E) is also written as
ct(E|n). For the expression E = (t(x + ε))[0,∞]l, ct(t) = true, since ♭t♭♭t♭l ∈
L(E♭

t). Similarly, we can get ct(x) = false, ct(x+ε) = false, ct(t(x+ε)) = true,
ct((t(x+ ε))[0,∞]) = false, ct(l) = false and ct((t(x+ ε))[0,∞]l) = false.

Intuitively if a subexpression F of E is continuing then F is inside an iterative
subexpression of E. We use ♭ in the definition to exclude the cases like E = a[m,∞]

where ct(E) = false but ∀x, y ∈ L(E), xy ∈ L(E), and E = (a + b)(b + a)
where ct(b + a) = false but ∀x, y ∈ L(b + a), xy ∈ L(E). Formally we offer a
characterization of continuing in Proposition 1.

Let E1 ≼ E denote that E1 is a subexpression of E. By E1 ≺ E we denote
E1 ≼ E and E1 ̸= E.

If F ≼ G for some G[m,n] ≼ E (n > 1), and there is no G
[m1,n1]
1 ≼ E (n1 > 1)

such that F ≼ G1 ≺ G, we call G[m,n] the lowest upper nontrivial iterative
expression (LUN) of F . Let E = a[0,1]b[1,2], then E does not have a LUN, a does
not have a LUN, and b has a LUN, that is b[1,2]. It is easy to see if a subexpression
is inside any iterative expression G[m,n] (n > 1), then it has a LUN. Obviously
a subexpression may not have a LUN, and if it has, its LUN is unique.

Proposition 1. A subexpression F of E is continuing iff there exists the LUN
G[m,n] ≼ E (n > 1) of F , such that L(♭F ♭) ⊆ L(G♭

F).

It is obvious that the continuing property of F is locally decided in the LUN of
F . If F does not have the LUN, then F cannot be continuing. A related concept
is the factor of an expression [10]. A continuing subexpression is a proper factor
of its LUN.

Indeed if F is continuing, then F can affect the determinism of its LUN, which
will be clear later. That is the reason why we study the continuing property. Be-
low we first consider the calculation of the continuing property for subexpressions
of an expression.

Clearly an expression E itself is not continuing, since there is not a LUN of
E. That is,

Proposition 2. ct(E) = false for any expression E.

6

+

[2,3]

.

.

.

. c

ba

t +

t

ct=0

ct=1

ct=1

ct=1 ct=0

ct=0 ct=0

ct=0 ct=0

ct=0ct=0

ct=0ct=0

ct=0

Fig. 1. The continuing property values
in ((t(t+ε))(ε+(abc)))[2,3] (0 for false
and 1 for true)

+

[2,3]

.

.

.

. c

ba

t +

t

14

13

5

1 4

2 3

7 8

9 10

116

12

Fig. 2. Node processing sequences in
((t(t+ ε))(ε+ (abc)))[2,3]

We also have the following properties.

Proposition 3. For a subexpression F = H + I of E, ct(H) = ct(I) = ct(F).

Proposition 4. For a subexpression F = HI of E, ct(H) = true (resp. ct(I) =
true) iff ct(F) = true and λ(I) = true (resp. λ(H) = true).

Proposition 5. For a subexpression F = G[m,n] of E, if n = 1, then ct(G) =
ct(F), if n > 1, then ct(G) = true.

Propositions 2–5 have given an algorithm to compute continuing. The con-
tinuing property of subexpressions of E is actually an attribute that is inherited
from upper level subexpressions to lower level subexpressions. This means the
continuing property can be computed in a top-down order on the structure of
E.

From the above we can also have the following fact.

Fact. In the downward propagation of the continuing property on the nodes
of the syntax tree of a regular expression E, only two kinds of nodes may change
the value of continuing property, i. e., the node corresponding to a concatenation,
called concat node, and the node corresponding to a iteration, called iteration
node. Moreover, the concat nodes may change the continuing value from true to
false, while the iteration nodes may change the continuing value from false to
true.

The computation of the continuing value is showed by an example E =
((t(t+ ε))(ε+ (abc)))[2,3] from Figure 1.

5 Strong Determinism

A characterization of strong determinism is presented in the following.

Lemma 2. Let E be a regular expression.
(1) E = ε, or a ∈ Σ: E is strongly deterministic.

7

(2) E = E1 + E2: E is strongly deterministic iff E1 and E2 are strongly deter-
ministic and first(E1) ∩ first(E2) = ∅.
(3) E = E1E2: If ε ∈ L(E1), then E is strongly deterministic iff E1 and E2

are strongly deterministic, first(E1) ∩ first(E2) = ∅, and followlast(E1) ∩
first(E2) = ∅.
If ε /∈ L(E1), then E is strongly deterministic iff E1 and E2 are strongly deter-
ministic, and followlast(E1) ∩ first(E2) = ∅.
(4) E = E

[m,n]
1 : (a) If n = 1, E is strongly deterministic iff E1 is strongly de-

terministic.
(b) If n > 1, E is strongly deterministic iff E1 is strongly deterministic and
followlast(E1) ∩ first(E1) = ∅.

Lemma 2 can lead to an O(|ΣE ||E|) time algorithm to check strong deter-
minism by using similar techniques as introduced later. Furthermore, based on
the continuing property, we give a new characterization of strong determinism
of iterative expressions in the following, which not only allows checking strong
determinism in O(|ΣE ||E|) time, but also has additional benefits that will be
presented in Section 7.

The boolean-valued function S on RE(#), introduced in the following, will
be used to check strong determinism of expressions by using the continuing
property.

Definition 5. The boolean-valued function S(E) is defined as

S(ε) = S(a) = true a ∈ Σ
S(E1 + E2) = S(E1) ∧ S(E2) ∧ (ct(E1 + E2) = false

∨ (followlast(E1 + E2) ∩ first(E1 + E2) = ∅))
S(E1E2) = S(E1) ∧ S(E2) ∧ (ct(E1E2) = false

∨ (first(E1E2) ∩ followlast(E1E2) = ∅))
S(E[m,n]

1) = S(E1) ∧ (ct(E
[m,n]
1) = false

∨ (first(E
[m,n]
1) ∩ followlast(E

[m,n]
1) = ∅))

In fact, and somewhat surprisingly, the function S gives exactly the specific
conditions that E1 should satisfy besides the condition of E1 being strongly de-

terministic, to ensure an iterative expression E
[m,n]
1 to be strongly deterministic.

This is shown in Propositions 6 and 7.

Proposition 6. Let a subexpression E of an expression be strongly determinis-
tic. We have (first(E) ∩ followlast(E) = ∅ ∨ ct(E) = false) ⇔ S(E) = true.

Proposition 7. For E = E
[m,n]
1 (n > 1), E is strongly deterministic iff E1 is

strongly deterministic and S(E1) = true.

The function S allows for one-pass computation on the syntax tree of the
expression. This is a good property from at least the algorithmic point of view.

We can then derive an algorithm from the characterization given in Propo-
sition 7 and Lemma 2, as follows.

8

Algorithm 1 Is Strong Det

Input: a regular expression in RE(#), E
Output: true if E is strongly deterministic or false otherwise
1. return Strong DET(E, false)

Procedure 1 Strong DET(E, continuing)

Input: a regular expression in RE(#), E, and a Boolean value continuing = ct(E)
Output: true if E is strongly deterministic or false otherwise
1. if E = ε then
2. first(E)← ∅; followlast(E)← ∅; return true
3. if E = a for a ∈ Σ then
4. first(E)← {a}; followlast(E)← ∅; return true
5. if E = E1 + E2 then
6. d1 ← continuing; d2 ← continuing
7. if Strong DET(E1,d1) ∧ Strong DET(E2,d2) then
8. if first(E1) ∩ first(E2) ̸= ∅ then
9. return false
10. Calculate first(E), followlast(E) (Equations (1), (2))
11. if continuing ∧ (first(E) ∩ followlast(E) ̸= ∅) then
12. return false
13. return true
14. else return false
15. if E = E1E2 then
16. Calculate d1, d2 by Proposition 4
17. if Strong DET(E1,d1) ∧ Strong DET(E2,d2) then
18. if followlast(E1) ∩ first(E2) ̸= ∅ then
19. return false
20. if λ(E1) ∧ first(E1) ∩ first(E2) ̸= ∅ then
21. return false
22. Calculate first(E), followlast(E) (Equations (1), (2))
23. if continuing ∧ (first(E) ∩ followlast(E) ̸= ∅) then
24. return false
25. return true
26. else return false
27. if E = E

[m,n]
1 then

28. if n = 1 then d1 ← continuing else d1 ← true
29. if Strong DET(E1,d1) then
30. Calculate first(E), followlast(E) (Equations (1), (2))
31. if continuing ∧ (first(E) ∩ followlast(E) ̸= ∅) then
32. return false
33. return true
34. else return false

9

First the syntax tree of a regular expression can be constructed and the λ
function can be evaluated during the construction in linear time [1]. Then by
carefully arranging the computation, all of the other computation can be done
in one run on the syntax tree.

There are mainly the following kinds of work that should be completed by
the algorithm: (1). Compute the continuing property. (2). Examine mixed test
conditions. As mentioned before S represents specific conditions for subexpres-
sions of iterative subexpressions. The algorithm should combine S with other
conditions in Lemma 2. (3). Compute first, followlast sets.

Work (1) can be done in a top-down manner on the syntax tree of the ex-
pression. Work (2) and (3) can be done at the same time in a bottom-up and
incremental manner on the syntax tree. In this way, according to the conditions
in Lemma 2, when current subexpression E1 is tested to be nondeterministic then
the expression is nondeterministic and the computation of first and followlast
sets for E1 is not necessary. Putting the above together, all the computation can
be completed in one pass on the syntax tree, by a top-down then bottom-up
traversal.

Actually, from the point of view of attribute grammars, the continuing prop-
erty is precisely an inherited attribute, while the first, followlast sets, and the
determinism of subexpressions are all synthesized attributes. All the computa-
tion can be completed by attribute evaluation in one pass.

The algorithm Is Strong Det(E) takes as input a regular expression, and
outputs a Boolean value indicating if the expression is strongly deterministic.

Theorem 1. Is Strong Det(E) returns true iff E is strongly deterministic.

There are at most O(|E|) nodes in the syntax tree of E. In the algorithm, the
calculation of first and followlast sets is done at the same time with determin-
ism test in a bottom-up and incremental manner, and can be computed on the
syntax tree of E in O(2|ΣE ||E|) time. Emptiness test of first(E1) ∩ first(E2)
or followlast(E1) ∩ first(E2) for subexpressions E1, E2 can be completed in
O(2|ΣE |) time with an auxiliary array indexed by every symbols in the alphabet
of E. The algorithm may conduct the test at every inner node on a bottom-
up traversal of the syntax tree of E, which totally takes O(2|ΣE ||E|) time. So
the time complexity of the algorithm is O(|ΣE ||E|). For a fixed alphabet, the
algorithm has linear running time. Hence

Theorem 2. Is Strong Det(E) runs in time O(|ΣE ||E|).

6 Adaption to weak determinism

First consider the following relatively easy fact which still relies on marked ex-
pressions.

Lemma 3 ([3, 8]). Let E be a regular expression.
(a) E = ε or a ∈ Σ: then E is weakly deterministic.

10

(b) E = E1+E2: E is weakly deterministic iff E1 and E2 are weakly deterministic
and first(E1) ∩ first(E2) = ∅.
(c) E = E1E2: (1) If ε ∈ L(E1), then E is weakly deterministic iff E1 and
E2 are weakly deterministic, first(E1) ∩ first(E2) = ∅, and followlast(E1) ∩
first(E2) = ∅.
(2) If ε /∈ L(E1), then E is weakly deterministic iff E1 and E2 are weakly
deterministic and followlast(E1) ∩ first(E2) = ∅.
(d) E = E

[m,n]
1 : (1) If n = 1, then E is weakly deterministic iff E1 is weakly

deterministic; (2) If n > 1, then E is weakly deterministic iff E1 is weakly
deterministic and ∀x ∈ followlast(E1), ∀y ∈ first(E1), if x = y then x = y.

We can use the continuing property to improve the characterization of weak
determinism of iterative expressions as before. Let φ(E) = ∀x∀y(x ∈ followlast(E)
∧ y ∈ first(E) ∧ x = y → x = y).

Definition 6. The boolean-valued function W(E) is defined as

W(ε) =W(a) = true a ∈ Σ
W(E1 + E2) =W(E1) ∧W(E2) ∧ (ct(E1 + E2) = false∨

(followlast(E1) ∩ first(E2) = ∅∧
followlast(E2) ∩ first(E1) = ∅))

W(E1E2) =W(E1) ∧W(E2) ∧ (ct(E1E2) = false ∨
(first(E1) ∩ followlast(E2) = ∅ ∧

(λ(E1) ∨ ¬λ(E2) ∨ first(E1) ∩ first(E2) = ∅)))
W(E

[m,n]
1) =W(E1)

Proposition 8. Let a subexpression E of an expression be weakly deterministic.
We have (φ(E) = true ∨ ct(E) = false)⇔W(E) = true.

Proposition 9. For E = E
[m,n]
1 (n > 1), E is weakly deterministic iff E1 is

weakly deterministic and W(E1) = true.

From the above analysis and using similar techniques for Is Strong Det(E),
we get an algorithm DCITER to check weak determinism of regular expressions,
which runs in time O(|ΣE ||E|). For the limited space the concrete algorithm is
not presented in the paper.

7 The local nondeterminism-locating feature and
discussion

Below we show the local nondeterminism-locating feature of our methods by an
example. We use the method DCITER here to compare with the existing algo-
rithm linear UPA [8] for deciding weak determinism. We use the same expression
E = ((t(t+ ε))(ε+ (abc)))[2,3] as in the previous example. The syntax tree of E
is showed in Figure 2.

11

In linear UPA, the sequence of the processed nodes is 1→ 2→ . . .→ 14. At
node 14, the algorithm will find that E is not deterministic, and then terminate.

In DCITER, the sequence of the processed nodes is 1→ 2→ 3→ 4→ 5. At
node 5, because the continuing value at the node is true and t ∈ first(t) and
t ∈ first(t+ ε), the algorithm will report an error immediately and terminate.

The example clearly shows that an iterative expression E can be nondeter-
ministic while all its subexpressions are deterministic, and, moreover, in this
situation DCITER may find the nondeterminism locally by checking subexpres-
sions of E, in this case t(t + ε). On the contrary linear UPA can only find this
nondeterminism after examining the whole expression. So we can see that our
methods can locate errors more precisely. This suggests our methods are also
more advantageous for diagnosing purpose.

Acknowledgments The authors thank the anonymous reviewers for their valu-
able comments that helped us to improve the presentation of the paper.

References

1. A. Brüggemann-Klein. Regular expressions into finite automata. Theoretical Com-
puter Science, 120(2):197–213, 1993.

2. A. Brüggemann-Klein and D. Wood. Deterministic regular languages. In STACS
92, pages 173–184. Springer-Verlag, 1992.

3. A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Infor-
mation and Computation, 142(2):182–206, 1998.

4. H. Chen and P. Lu. Assisting the design of XML Schema: diagnosing nondetermin-
istic content models. In APWeb 2011, volume 6612 of Lecture Notes in Computer
Science, pages 301–312. Springer Berlin/Heidelberg, 2011.

5. W. Gelade, M. Gyssens, and W. Martens. Regular expressions with counting: weak
versus strong determinism. SIAM J. Comput., 41(1):160–190, 2012.

6. W. Gelade and F. Neven. Succinctness of the complement and intersection of
regular expressions. STACS 2008, pages 325–336, 2008.

7. D. Hovland. The membership problem for regular expressions with unordered
concatenation and numerical constraints. In LATA 2012, volume 7183 of Lecture
Notes in Computer Science, pages 313–324. Springer Berlin/Heidelberg, 2012.

8. P. Kilpeläinen. Checking determinism of XML Schema content models in optimal
time. Informat. Systems, 36(3):596–617, 2011.

9. P. Kilpeläinen and R. Tuhkanen. Towards efficient implementation of XML Schema
content models. In DocEng’04, pages 239–241, New York, NY, USA, 2004. ACM.

10. P. Kilpeläinen and R. Tuhkanen. One-unambiguity of regular expressions with nu-
meric occurrence indicators. Information and Computation, 205(6):890–916, 2007.

11. C. Koch and S. Scherzinger. Attribute grammars for scalable query processing on
XML streams. The VLDB Journal, 16(3):317–342, 2007.

12. W. Martens, F. Neven, and T. Schwentick. Complexity of decision problems for
simple regular expressions. In MFCS 2004, pages 889–900. Springer, 2004.

13. W. Martens, F. Neven, T. Schwentick, and G. J. Bex. Expressiveness and com-
plexity of XML Schema. ACM Transactions on Database Systems, 31(3):770–813,
2006.

14. C. M. Sperberg-McQueen. Notes on finite state automata with counters.
http://www.w3.org/XML/2004/05/msm-cfa.html, 2004.

12

