

PRACTICAL TYPE CHECKING OF FUNCTIONS DEFINED ON
CONTEXT-FREE LANGUAGES*

Chen Haiming and Dong Yunmei

Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
Beijing 100080, P R China
{chm,dym}@ios.ac.cn

* This research was supported by the National Natural Science Foundation of China.

ABSTRACT

LFC is a functional language based on recursive
functions defined on context-free languages. In LFC
context-free language (CFL) is used as data type to
represent compound data structures. This makes LFC
a dynamically typed language. To improve efficiency,
we present a practical type checking method, which
consists of both static and dynamic type checking.
Although the inclusion relation of CFLs is not
decidable, a special subset of the relation is decidable,
i.e. the sentential pattern relation, which can be
statically checked. Moreover, most of the expressions
in actual LFC programs appear to satisfy this relation
according to the statistic data of our experiments. So,
despite the static type checking is not complete, it
undertakes most of the type checking task.
Consequently the run time efficiency is greatly
improved.

Keywords: type checking, context-free language,
algorithm.

1 INTRODUCTION

LFC is a functional language which is based on
the theory of recursive functions defined on
context-free languages[1]. The language has been
employed as a specification language to support
specification acquisition. It uses context-free language
(CFL for short) as data type to represent compound
data structures.

Type checking is an important issue of
programming language research, which can improve
the productivity and quality of the programming task.

Utilizing the new kind of recursive functions,
LFC in nature is a dynamically typed language. It is
natural to perform type checking dynamically in the
implementation of LFC[2]. For CFL types this is

accomplished by parsing values of expressions, which
is expensive in time. The time cost of running LFC
programs will become rather high if there are
considerable amount of dynamic parsing. In order to
improve the time efficiency of LFC we incorporated
static type checking into LFC in the desire to
maximally reduce the need for dynamic type checking.

Expressions of CFL types have implicit structures,
which are disadvantageous for efficient
implementation. So the type checking of LFC will
convert expressions into explicitly structured
representation.

The authors have not seen any other research on
type checking with CFL types, we hope the paper will
be of help to this issue.

This paper briefly describes the approach. A more
detailed description can be found in [3]. Some
knowledge about context-free language is assumed.

2 TYPES AND EXPRESSIONS

A context-free grammar G uniquely defines a
CFL type L(G). For simplicity, we consider the name
of a CFL type the same as the start symbol of the
grammar defining the CFL.

In LFC, CFL types represent structured data
types, just like the compound data types in other
languages. But the construction of CFL types is quite
different from those of other compound data types.
The basic operations for constructing a CFL type are
union (∪) and concatenation (., usually omitted).

Concatenation: A production of a context-free
grammar has the form X →α1 …αn, where αi∈ V*

T or
αi∈ VN. (VT and VN denote respectively the disjoint
sets of terminal and nonterminal symbols.)

Union: For a group of productions X →α1 | … |
αn, where αi∈ (VN∪VT)*, i=1,…,n, we have L(X) =
L(α1) ∪ … ∪ L(αn). L(X) is the union of L(αi).

For a n-ary function f with type L1 × ⋅⋅⋅ × Ln → L,

where the Li and L are CFLs, the definition of f has the
following form

m
n
mm

n

eppf

eppf

=

=

),,(

),,(

1

11
1
1

L
L

L

where each j
ip is a pattern of Lj, which is either a

variable of Lj, or derived from a term α of Lj by
replacing every nonterminal symbol R in α with a
distinct variable of L(GR) (note that in this case a
pattern may also be a single variable, we should
distinguish it from the former case in implementation);
ei are expressions. A term of L(G) is the right-hand
side of a production of which the left nonterminal
symbol is the start symbol of G.

Basic expressions of CFL types have the
following syntax.

c Constant
v Variable
f Function name
e ::= c | v | e1⋅ e2 | f(e1, …, e1) Expression

3 PRACTICAL TYPE CHECKING

There could be equality, inclusion, or intersection
relations between two CFLs, so a type system
containing CFL types excludes the popular
Hindley-Milner system which is based around type
equality constraints[4], and is close to a subtype
system[5].

However, these relations of two CFLs are not
decidable. This forms the foundation of characteristics
of subtype systems for CFL types.

The main characteristics are that we cannot
perform type inference, and the type systems are
dynamic.

Since type inference cannot be performed, type
checking of LFC is, given all typing information, to
check if an expression is compatible with the declared
type. However, because the inclusion relation of two
CFLs is not decidable, the type system of LFC must
be a dynamic system.

There would be two ways to solve the type
problem of CFL types. One way is to impose
constraints on expressions or on grammars so that we
can statically check the compatibility of an expression
with the declared type. One possible constraint is to
restrict expressions to sentential patterns. The cost is
to lose flexibility of the language.

Another way is to use dynamic type system, but
perform static type checking when possible. This
would decrease run time efficiency if compared with
the previous way, but would be more efficient than
totally dynamic type checking. We chose this way to
design the type system. Although the inclusion relation

of CFLs is generally not decidable, a special subset of
the relation is decidable, i.e. the sentential pattern
relation, which can be statically checked. We begin
with the following facts.

Definition 1. We call a string of nonterminal
symbols and terminal symbols a grammatical string.

It is easy to know that a grammatical string
defines a context-free language.

Definition 2. From an expression e of a CFL type
we can derive a grammatical string by substituting the
type of each variable in e for that variable. We call the
language defined by this grammatical string the least
type of expression e, denoted by L(e).

Obviously for any CFL type l, e has type l if and
only if L(e) ⊆ l.

Definition 3. Context-free language l is called a
checkable type of expression e if the grammatical
string derived from e is a sentential pattern of l.

Definition 4. l1 is called a subtype of l2 if l1 ⊆ l2.
Definition 5. We say that type of e can be coerced

to l if the least type of e is a subtype of l.
It is easy to derive the following properties from

the above definitions.
Property 1. Checkable type is not unique.
Property 2. It can be statically determined

whether an expression e has a checkable type l.
Property 3. There exists l, such that l is not a

checkable type of e, but the type of e can be coerced to
l.

Property 4. If l is a checkable type of expression
e, then L(e) is a subtype of l.

Property 5. Whether the type of an expression can
be coerced to an arbitrary CFL type is not decidable.

From the above discussion we can obtain the type
checking method. The idea is described as follows.

First we statically check if the declared type l is a
checkable type of expression e at compilation time,
using sentential pattern parsing technique. If not, we
then check if e can be dynamically coerced to l, i.e.
determine if the value of e is a sentence of l at run
time.

It can be seen that, if L(e) is a subtype of l, then
the type of e can be dynamically converted to l; if L(e)
dose not intersect with l, then the type of e cannot be
dynamically converted to l. But dynamic conversion
permit the case of L(e)⊄ l ∧ L(e)∩l≠φ. Consequently
if an expression need dynamic type checking, the
correctness of the type of this expression may depend
on run time environment, so type correctness cannot
be guaranteed. To remedy this defect, a type-warning
message will be given when an expression cannot be
statically type checked, so that the user can decide if
the type is correct.

In order to be more efficient, before checking if e
has checkable type l by using sentential pattern parser
we can first check if an expression e corresponds to a

term of l, if not then call the parser. According to our
statistic data of a large amount of instances, over 80%
of the expressions that are sentential patterns
correspond to terms. Since term checking is more
efficient than sentential pattern parsing, the efficiency
of type checking can be considerably improved.

Recall the definition of expressions in section 2,
we can see that a CFL expression is basically formed
by concatenation. This form cannot reflect the CFL
type of an expression, therefore is a representation of
implicit structure.

In order to achieve efficient implementation of
LFC, an intermediate representation is necessary that
can reflect the phrase structures of expressions. We
have designed such an intermediate representation,
and implemented structure reconstruction in type
checking.

According to the above idea, a type checking
algorithm is developed. For the limited size of paper,
the algorithm will not be introduced here. The formal
presentation of the algorithm as well as other details
are in [3].

4 IMPLEMENTATION

We have realized the type checking algorithm as
part of the implementation of language LFC.

The CFL types used in LFC do not have any
constraints, so a general CFL parser is required. The
sentence parser is based on Earley's algorithm[6]
which generates the right(left) parse of a sentence. For
a sentence of length n, the worst parse time is O(n3).
The sentential pattern parser is a variant of sentence
parser and is derived from Earley's algorithm. An
algorithm to construct the intermediate representation
from right parse produced by sentential parser is
devised.

Experiments have been made on many trivial and
nontrivial examples, such as string sorting and formal
differentiation of elementary functions. Table 1 gives
the statistic data. In the table, “SP” denotes
expressions satisfying the sentential pattern relation,
i.e. their least types are sentential patterns of the
declared types. These expressions are further separated
into two parts, denoted by “term” and “not term”
respectively, one for expressions whose least types are
terms of the declared types, another for other
expressions. It shows that most of the expressions
satisfy the sentential pattern relation. Most of the type

checking work is then done statically, therefore,
despite the static type checking is not complete, the
run time efficiency is greatly improved. From our
experiments the execution times are reduced by about
two to twenty times, if compared with the previous
implementation. How much the efficiency is gained
mainly depends on how many expressions are
sentential patterns of the declared types.

5 CONCLUSION

We present a practical type checking method for
LFC. In this method both static and dynamic type
checking are involved. Structures of expressions are
also reconstructed to represent phrase structures.
Experiments show that the run time efficiency can be
greatly improved.

REFERENCES

[1]. Dong Yunmei. Recursive functions defined on
context-free languages (I). Technical Report
ISCAS-LCS-2k-03, Computer Science Laboratory,
Institute of Software, Chinese Academy of Sciences,
August 2000.
[2]. Chen Haiming. Function definition language FDL
and its implementation. Journal of Comput. Sci. &
Technol., Vol.14, No.4, 1999, pp.414-421.
[3]. Chen Haiming, Dong Yunmei. Practical type
checking of functions defined on context-free
languages. Technical Report ISCAS-LCS-2k-08,
Computer Science Laboratory, Institute of Software,
Chinese Academy of Sciences, Dec. 2000.
[4]. R. Milner, M. Tofte and R. Harper, The definition
of Standard ML. The MIT Press, 1990.
[5]. J. C. Mitchell. Type inference with simple subtype.
Journal of Functional Programming, 1(3):245-285,
July 1991.
[6]. A. V. Aho, J. D. Ullman. The theory of parsing,
translation, and compiling. Volume 1: parsing.
Prentice-Hall, Inc., 1972.

Table 1 Statistic data of sentential patterns in expressions

 Functions Expressions SP (term) SP (not term) Others
Number 135 2720 2207 399 114

Ratio 0.81 0.15 0.04

