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ABSTRACT 
 

LFC is a functional language based on recursive 
functions defined on context-free languages. In LFC 
context-free language (CFL) is used as data type to 
represent compound data structures. This makes LFC 
a dynamically typed language. To improve efficiency, 
we present a practical type checking method, which 
consists of both static and dynamic type checking. 
Although the inclusion relation of CFLs is not 
decidable, a special subset of the relation is decidable, 
i.e. the sentential pattern relation, which can be 
statically checked. Moreover, most of the expressions 
in actual LFC programs appear to satisfy this relation 
according to the statistic data of our experiments. So, 
despite the static type checking is not complete, it 
undertakes most of the type checking task. 
Consequently the run time efficiency is greatly 
improved. 

 
Keywords: type checking, context-free language, 
algorithm. 
 
1  INTRODUCTION 
 

LFC is a functional language which is based on 
the theory of recursive functions defined on 
context-free languages[1]. The language has been 
employed as a specification language to support 
specification acquisition. It uses context-free language 
(CFL for short) as data type to represent compound 
data structures.  

Type checking is an important issue of 
programming language research, which can improve 
the productivity and quality of the programming task. 

Utilizing the new kind of recursive functions, 
LFC in nature is a dynamically typed language. It is 
natural to perform type checking dynamically in the 
implementation of LFC[2]. For CFL types this is 

accomplished by parsing values of expressions, which 
is expensive in time. The time cost of running LFC 
programs will become rather high if there are 
considerable amount of dynamic parsing. In order to 
improve the time efficiency of LFC we incorporated 
static type checking into LFC in the desire to 
maximally reduce the need for dynamic type checking. 

Expressions of CFL types have implicit structures, 
which are disadvantageous for efficient 
implementation. So the type checking of LFC will 
convert expressions into explicitly structured 
representation. 

The authors have not seen any other research on 
type checking with CFL types, we hope the paper will 
be of help to this issue. 

This paper briefly describes the approach. A more 
detailed description can be found in [3]. Some 
knowledge about context-free language is assumed. 
 
2  TYPES AND EXPRESSIONS 
 

A context-free grammar G uniquely defines a 
CFL type L(G). For simplicity, we consider the name 
of a CFL type the same as the start symbol of the 
grammar defining the CFL.  

In LFC, CFL types represent structured data 
types, just like the compound data types in other 
languages. But the construction of CFL types is quite 
different from those of other compound data types. 
The basic operations for constructing a CFL type are 
union (∪) and concatenation (., usually omitted). 

Concatenation: A production of a context-free 
grammar has the form X →α1 …αn, where αi∈  V*

T  or 
αi∈ VN. (VT and VN denote respectively the disjoint 
sets of terminal and nonterminal symbols.) 

Union: For a group of productions X →α1 | … | 
αn, where αi∈ (VN∪VT )*, i=1,…,n, we have L(X) = 
L(α1) ∪ … ∪ L(αn). L(X) is the union of L(αi). 

For a n-ary function f with type L1 × ⋅⋅⋅ × Ln → L, 



where the Li and L are CFLs, the definition of f has the 
following form 
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where each j
ip  is a pattern of Lj, which is either a 

variable of Lj, or derived from a term α of Lj by 
replacing every nonterminal symbol R in α with a 
distinct variable of L(GR) (note that in this case a 
pattern may also be a single variable, we should 
distinguish it from the former case in implementation); 
ei are expressions. A term of L(G) is the right-hand 
side of a production of which the left nonterminal 
symbol is the start symbol of G. 

Basic expressions of CFL types have the 
following syntax. 

 
c      Constant 
v      Variable 
f      Function name 
e ::= c | v | e1⋅ e2 | f(e1, …, e1) Expression 

 
3  PRACTICAL TYPE CHECKING 
 

There could be equality, inclusion, or intersection 
relations between two CFLs, so a type system 
containing CFL types excludes the popular 
Hindley-Milner system which is based around type 
equality constraints[4], and  is close to a subtype 
system[5]. 

However, these relations of two CFLs are not 
decidable. This forms the foundation of characteristics 
of subtype systems for CFL types. 

The main characteristics are that we cannot 
perform type inference, and the type systems are 
dynamic.  

Since type inference cannot be performed, type 
checking of LFC is, given all typing information, to 
check if an expression is compatible with the declared 
type. However, because the inclusion relation of two 
CFLs is not decidable, the type system of LFC must 
be a dynamic system. 

There would be two ways to solve the type 
problem of CFL types. One way is to impose 
constraints on expressions or on grammars so that we 
can statically check the compatibility of an expression 
with the declared type. One possible constraint is to 
restrict expressions to sentential patterns. The cost is 
to lose flexibility of the language. 

Another way is to use dynamic type system, but 
perform static type checking when possible. This 
would decrease run time efficiency if compared with 
the previous way, but would be more efficient than 
totally dynamic type checking. We chose this way to 
design the type system. Although the inclusion relation 

of CFLs is generally not decidable, a special subset of 
the relation is decidable, i.e. the sentential pattern 
relation, which can be statically checked. We begin 
with the following facts. 

Definition 1. We call a string of nonterminal 
symbols and terminal symbols a grammatical string. 

It is easy to know that a grammatical string 
defines a context-free language. 

Definition 2. From an expression e of a CFL type 
we can derive a grammatical string by substituting the 
type of each variable in e for that variable. We call the 
language defined by this grammatical string the least 
type of expression e, denoted by L(e). 

Obviously for any CFL type l, e has type l if and 
only if L(e) ⊆  l. 

Definition 3. Context-free language l is called a 
checkable type of expression e if the grammatical 
string derived from e is a sentential pattern of l. 

Definition 4. l1 is called a subtype of l2 if l1 ⊆  l2. 
Definition 5. We say that type of e can be coerced 

to l if the least type of e is a subtype of l. 
It is easy to derive the following properties from 

the above definitions. 
Property 1. Checkable type is not unique. 
Property 2. It can be statically determined 

whether an expression e has a checkable type l. 
Property 3. There exists l, such that l is not a 

checkable type of e, but the type of e can be coerced to 
l. 

Property 4. If l is a checkable type of expression 
e, then L(e) is a subtype of l. 

Property 5. Whether the type of an expression can 
be coerced to an arbitrary CFL type is not decidable. 

From the above discussion we can obtain the type 
checking method. The idea is described as follows. 

First we statically check if the declared type l is a 
checkable type of expression e at compilation time, 
using sentential pattern parsing technique. If not, we 
then check if e can be dynamically coerced to l, i.e. 
determine if the value of e is a sentence of l at run 
time. 

It can be seen that, if L(e) is a subtype of l, then 
the type of e can be dynamically converted to l; if L(e) 
dose not intersect with l, then the type of e cannot be 
dynamically converted to l. But dynamic conversion 
permit the case of L(e)⊄  l ∧  L(e)∩l≠φ. Consequently 
if an expression need dynamic type checking, the 
correctness of the type of this expression may depend 
on run time environment, so type correctness cannot 
be guaranteed. To remedy this defect, a type-warning 
message will be given when an expression cannot be 
statically type checked, so that the user can decide if 
the type is correct. 

In order to be more efficient, before checking if e 
has checkable type l by using sentential pattern parser 
we can first check if an expression e corresponds to a 



term of l, if not then call the parser. According to our 
statistic data of a large amount of instances, over 80% 
of the expressions that are sentential patterns 
correspond to terms. Since term checking is more 
efficient than sentential pattern parsing, the efficiency 
of type checking can be considerably improved. 

Recall the definition of expressions in section 2, 
we can see that a CFL expression is basically formed 
by concatenation. This form cannot reflect the CFL 
type of an expression, therefore is a representation of 
implicit structure. 

In order to achieve efficient implementation of 
LFC, an intermediate representation is necessary that 
can reflect the phrase structures of expressions. We 
have designed such an intermediate representation, 
and implemented structure reconstruction in type 
checking. 

According to the above idea, a type checking 
algorithm is developed. For the limited size of paper, 
the algorithm will not be introduced here. The formal 
presentation of the algorithm as well as other details 
are in [3]. 
 
4  IMPLEMENTATION 
 

We have realized the type checking algorithm as 
part of the implementation of language LFC.  

The CFL types used in LFC do not have any 
constraints, so a general CFL parser is required. The 
sentence parser is based on Earley's algorithm[6] 
which generates the right(left) parse of a sentence. For 
a sentence of length n, the worst parse time is O(n3). 
The sentential pattern parser is a variant of sentence 
parser and is derived from Earley's algorithm. An 
algorithm to construct the intermediate representation 
from right parse produced by sentential parser is 
devised. 

Experiments have been made on many trivial and 
nontrivial examples, such as string sorting and formal 
differentiation of elementary functions. Table 1 gives 
the statistic data. In the table, “SP” denotes 
expressions satisfying the sentential pattern relation, 
i.e. their least types are sentential patterns of the 
declared types. These expressions are further separated 
into two parts, denoted by “term” and “not term” 
respectively, one for expressions whose least types are 
terms of the declared types, another for other 
expressions. It shows that most of the expressions 
satisfy the sentential pattern relation. Most of the type 

checking work is then done statically, therefore, 
despite the static type checking is not complete, the 
run time efficiency is greatly improved. From our 
experiments the execution times are reduced by about 
two to twenty times, if compared with the previous 
implementation. How much the efficiency is gained 
mainly depends on how many expressions are 
sentential patterns of the declared types. 
 
5  CONCLUSION 
 

We present a practical type checking method for 
LFC. In this method both static and dynamic type 
checking are involved. Structures of expressions are 
also reconstructed to represent phrase structures. 
Experiments show that the run time efficiency can be 
greatly improved. 
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Table 1 Statistic data of sentential patterns in expressions 
 

 Functions Expressions SP (term) SP (not term) Others 
Number 135 2720 2207 399 114 

Ratio   0.81 0.15 0.04 
 


