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Abstract

Deterministic regular expressions (DREGs) are a core part of XML
Schema and used in other applications. But unlike regular expressions,
DREGs do not have a simple syntax, instead they are defined in a se-
mantic manner, which puts a burden on the user to develop XML Schema
Definitions and to use DREGs. In this paper, we propose a syntax for
DREGs, and prove that the class of DREGs is context-free. Next, one
of the burdens for using DREGs is the automatic generation of DREGs
which is indispensable in practice. Based on the context-free grammars
for DREGs, we further design a generator for DREGs, which can generate
sentences randomly. Experimental results demonstrate the efficiency and
usefulness of the generator.

1 Introduction

Deterministic regular expressions (DREGs) are a mystery to users. They are
a core part of XML Schema [1, 2] and used in other applications (e.g., [3, 4]).
However, unlike regular expressions, they do not have a simple syntax. Instead
they are defined in a semantic manner, which means that to check whether a
regular expression is deterministic, we need to verify that for every two words
w1 and w2 in the language represented by the regular expression, whether w1

and w2 satisfy some condition (see Definition 1). This puts a burden on the
user to develop XML Schema Definitions (XSDs) and use DREGs. DREGs
have been studied in the literature, also under the name of one-unambiguous
regular expressions, e.g., [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].



Grammars for DREGs and their properties. In this paper, we propose a
syntax for DREGs in terms of a set of parameters. Although regular expressions
are context-free and DREGs are a proper subset of regular expressions, DREGs
are not necessarily context-free. Since not all subsets of regular expressions
are context-free. A well-known example is the set {anbncn|n ∈ N}, where N
represents the set of all positive natural numbers. This set of strings forms a
context-sensitive language, and is not context-free.

We show that the class of DREGs is context-free, i .e., the class of DREGs
can be characterized by context-free grammars. As far as we know, this is
the first time to give a syntax for DREGs and prove the class of DREGs is
context-free.

Lack of a syntax for DREGs has long troubled researchers, yet it remains
unsolved today (although there has been a lot of work on constructing DREGs
for users from different perspectives, e.g., [6, 20, 12, 9, 10, 21, 22, 23, 24], see
related work for details.). The basis for it is how to give generating systems for
DREGs that can be used to construct grammars. This basically requires that the
characterization of DREGs should be given for the original expressions, rather
than the marked expressions (see Section 2 for the definition), while the marked
expressions are extensively studied in the literature [6, 25, 26]. In a series of
work [9, 10], Chen and Lu had proposed a new method for checking determinism
of DREGs, which is based on the original expressions. This becomes the basis
of the syntax for DREGs presented in this paper.

The construction of the syntax is achieved by building inference systems
for DREGs, which are then used for giving grammars for DREGs. In concrete,
based on properties given in [9, 10], we first obtain inference systems for DREGs.
Then, starting from the inference systems, we construct grammars for DREGs,
where each nonterminal symbol has a set of parameters, and each production
satisfy a set of equations of these parameters between the left and right non-
terminals. In this way, we have actually defined a class of grammars, and the
grammars with alphabets of the same size are isomorphic.

We prove that the grammars exactly defines DREGs, and are context-free.
Furthermore, by using the pumping lemma for regular languages [27], we prove
that the class of DREGs cannot be defined by regular grammars. Then we
conclude that the class of DREGs is context-free.

To effectively use the grammar, we further find some necessary and sufficient
conditions for valid productions (see next section for its definition) which can
reduce the number of productions in the grammars. For example, by using these
conditions the number of productions for the alphabet size of 3 drops from 43698
to 14904. This indicates that optimizations are quite useful for the context-free
grammars for DREGs.
The automatic generation of DREGs. Next, we consider how to facilitate
the use of DREGs with the help of the context-free grammars for DREGs.
Here we consider the automatic generation of DREGs. Automatic generation of
DREGs is indispensable in many applications such as the testing, experiments
of programs having input of DREG types, data experiments having a large
number of DREG sentences, etc. For example, suppose that the user has a
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program for checking inclusion of Document Type Definitions (DTDs) [1], which
basically reduces to a program A for checking inclusion of DREGs: Bool A(b :
DREG, c : DREG), where b and c denote the content models of two DTDs,
which are required to be deterministic [1]. The program A takes two DREGs
as input, and returns true if b ⊆ c and false otherwise. And the user needs
many different DREGs to test the program. Since DREGs do not have a simple
syntax before, one possible way to do this is first to use a sentence generator
for regular expressions, then for each generated regular expression, to decide
whether it is deterministic. Since the ratio of DREGs in regular expressions is
low, within a certain period of time the user may not be able to obtain enough
DREG sentences as needed (e.g., the ratio of DREGs is less than 1% for regular
expressions of length 50 with alphabet size 40 [9]). Furthermore, if the user also
has requirements on the structure of DREGs, such as lengths of DREGs, the
generation will be more difficult.

Based on the context-free grammars for DREGs, we design a generator for
DREGs. A naive idea is to construct the grammar first and then use the existing
methods [28, 29, 30, 31, 32] to randomly generate sentences from the constructed
grammar. However, because the grammar is too large to construct fully (see
Section 3.2 and Table 1) and existing methods require some pre-processings of
the whole grammar, the existing methods become inefficient and thus are not
suitable for the grammars of DREGs. In existing methods, the pre-processings
are to keep the information needed for randomness, thus contribute to make
the random generation efficient. Here the key problem is how to make the
random generation efficient without the construction and the pre-processings of
the whole grammar. Thanks to the information in symbols in the grammars
of DREGs, i.e., the parameters of the nonterminal symbols, we can take full
advantage of this information to make the random generation efficient without
the construction and the pre-processings of the whole grammar. Our solution
consists of the following ideas: (1) construct the valid productions only when
they are needed, to avoid the construction of the whole grammar; (2) impose
a conservative length condition to make the generation efficient; (3) employ a
length control mechanism to improve the efficiency of the generation.
Experiments of the generator. Finally, we performed several experiments
to evaluate our generator. The results demonstrate the efficiency and usefulness
of our random generator.
Contributions. The contributions of the paper are listed as follows.

(1) We propose the first syntax for DREGs (Section 3), and prove that the class
of DREGs is context-free. Meanwhile, by using the pumping lemma for regular
languages [27], we also prove that the class of DREGs cannot be defined by
regular grammars.

(2) We give necessary and sufficient conditions for valid productions (Section 4).
The experiments show that these conditions are quite useful for reducing the
size of the context-free grammars for DREGs.

(3) Based on the grammars, we further design and implement a random genera-
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tion algorithm for DREGs (Section 5), in which productions are only constructed
when they are needed. It further imposes a conservative length condition and
a length control mechanism to ensure efficiency.

(4) We experimentally evaluate the generator (Section 6). The results show
although the grammars can be exponentially large, by constructing the grammar
in an on-the-fly manner, our random generator can generate DREGs efficiently.
Moreover, we demonstrate that the generators for regular expressions are not
feasible for generating DREGs.
Related work. The related work is categorized as follows.
Deterministic regular expressions. To decide whether a standard expression is
deterministic, Brüggemann-Klein [5] gave an O(|ΣE ||E|) time algorithm, which
is based on the Glushkov automaton of the expression. For expressions with
counting, Kilpeläinen [25] presented an O(|ΣE ||E|) time algorithm by examin-
ing the marked expression. Based on [9] and [25], Chen and Lu also gave an
O(|ΣE ||E|) time algorithm for checking determinism of expressions with count-
ing [10]. The main difference between their work and the work in [25] is that the
algorithm in [10] is based on the original expressions, while the algorithm in [25]
is based on marked expressions. Groz and Maneth [13] gave the first O(|E|)
time algorithm for checking determinism of standard regular expressions and
expressions with counting. Peng et al. [19] gave an O(|ΣE ||E|) time algorithm
for checking determinism of expressions with interleaving.

There has been a lot of work on constructing DREGs for users, e.g., [6, 20,
12, 9, 10]. In [6], Brüggemann-Klein and Wood provided an exponential time
algorithm to decide whether a regular language, given by an arbitrary regular
expression, is deterministic. An algorithm was further given there to construct
equivalent DREGs for nondeterministic expressions when possible, while the
resulting expression could be double-exponentially large. Bex et al. [12] had
optimized this construction algorithm. For nondeterministic regular languages,
Ahonen [20] proposed an algorithm to construct approximate DREGs. Bex et
al. [12] had also developed algorithms to approximate regular expressions. But
here the languages is approximated, and solutions are needed to have the same
language. Chen and Lu [9] had preliminarily explored the diagnosing problem
of checking determinism of standard regular expressions. In [10] they improved
the method for regular expressions with counting.

Another way to help users is to infer DREGs from sample strings. Bex et
al. [21] gave algorithms to learn SOREs and CHAREs from example words. Here
SOREs stand for single occurrence regular expressions, and CHAREs stand for
chain regular expressions. Both of these expressions are subclasses of DREGs.
Later, they gave methods to infer XML Schema from XML documents [22]. In
a later paper [23], they provided algorithms to learn deterministic k-occurrence
regular expressions, which are based on the Hidden Markov Model. Recently,
Freydenberger and Kötzing [24] gave a linear time algorithm to infer SOREs
and CHAREs from samples. Moreover, their algorithm generates the optimal
SOREs and CHAREs [24].

The definability problem of DREGs is to decide, whether a given regular
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expression can be expressed by an equivalent DREG, which was proved to be
PSPACE-complete [12, 18, 16]. Latte and Niewerth [17] proved whether a s-
tandard regular expression is equivalent to any deterministic regular expression
with counting is decidable in 2EXPSPACE, whereas the exact complexity is
still open. Lu et al. [14] showed whether a given standard regular expression
on unary alphabet can be expressed by a DREG is coNP-complete. In [11] the
descriptional complexity of DREGs has been studied. Gelade et al. [33] exam-
ined the descriptional complexity of intersection for DREGs and proved that
the exponential bound on intersection is tight for DREGs.

Sentence Generation. Hanford [34] presented the first algorithm for generating
sentences randomly from context-free grammars. Arnold and Sleep [28] consid-
ered the uniformity of random sentences of length n, where uniformity means
that all strings of length n are generated by the grammar equally, and presented
a linear algorithm to generate balanced parenthesis strings uniformly. Hickey
and Cohen [35] presented two algorithms to generate sentences of length n uni-
formly at random from a general context-free grammar. Followed up, researchers
proposed several uniform random generation algorithms to improve either the
time and space bounds [29, 36] or the pre-processing [30]. According to the
frequencies of letters, Denise et al. [31] proposed two other uniform random
generation algorithms. Some researchers considered other types of grammars,
such as Bertoni et al. [37] took the ambiguity into account, while Ponty and
his collaborators [38, 39] considered the weighted context-free grammars. Be-
sides, Héam and Masson [40] presented a uniform random generation algorithm
using pushdown automata. Dong’s enumeration algorithm [32] can be used as
another random generation algorithm as well [41]. However, to make the gen-
eration efficient and/or to ensure the uniformity, all these algorithms require
some pre-processings on the whole grammar, which are inefficient and hard for
our grammars. By taking full advantage of the information that the symbols in
the DREG grammars take, our algorithm needs no pre-processings. Moreover,
our random generation focus the uniformity on productions of a same nonter-
minal symbol and to generate sentence of length no longer than n, so it may
lose the uniformity on sentences of length n. As a future work, we will consider
the distribution on sentences of length n by taking the symmetric similarity of
DREG grammars into account.

Besides random generation, some studies adopted other strategies, like cov-
erage criteria [42, 43], length control [44], and sentence enumeration [32, 45].

For random generation of XSD, Antonopoulos et al. [46] initiated the work
of uniform XSD generation by developing an algorithm for random generation
of k-occurrence automata (k-OAs) for contend models. However they did not
manage to do random sampling of DREGs. Since content models of XSDs are
DREGs, and languages accept by k-OAs do not equal to the ones for DREGs,
our grammars for DREGs and automatic generation of DREGs fills a gap in
and is a nice addition to [46].
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2 Definitions
Let Σ be an alphabet of symbols. The set of all finite words over Σ is denoted by
Σ∗. A regular expression over Σ is ε, a ∈ Σ, the union r1 | r2, the concatenation
r1 · r2, the plus r+

1 , or the question mark r1? for regular expressions r1 and
r2. Here ε represents the empty word. Note that r∗ (the Kleene star) is an
abbreviation of ε | r+, and we will not consider regular expressions like r∗ in the
following. For a regular expression r, the language specified by r is denoted by
L(r). Let λ(r) = true if ε ∈ L(r), or false otherwise. The inductive computation
of λ was given in [5]. The symbol occurrences in r is denoted as occur(r). The
size of r is the number of symbol occurrences in r or the alphabetic width of r,
denoted by |r|.

Next we define deterministic regular expressions (DREGs). To this end,
we need some notations. For a regular expression we can mark symbols with
subscripts so that in the marked expression each marked symbol occurs only
once. For example, (a1 | b2)+a3b4(a5 | b6) is a marking of the expression
(a | b)+ab(a | b). The marking of an expression r is denoted by r′. Accordingly
the result of dropping the subscripts from a marked expression r is denoted by
r\. And then we have (r′)\ = r. We extend the notation for words in an obvious
way. By using these notations, we can define DREGs as follows.

Definition 1 ([6]). An expression r is deterministic if it satisfies the following
condition: for any two words uxv, uyw ∈ L(r′) with |x| = |y| = 1, if x 6= y,
then x\ 6= y\ holds. A regular language is deterministic if it is denoted by some
deterministic expression.

For example, the expression (a | ε)((c | d)+ | ε)(a | ε) is not deterministic,
since a1, a4 ∈ L((a1 | ε)((c2 | d3)+ | ε)(a4 | ε)), a1 6= a4, but (a1)\ = (a4)\. For
this example, all words u, v, and w are ε. It is known that the class of DREGs
denotes a proper subclass of regular languages [6].

Then we introduce some necessary components that will be used in our
grammars. For an expression r over Σ, we define the following sets:

First(r) = {a | aw ∈ L(r), a ∈ Σ, w ∈ Σ∗}
followLast(r) = {b | vbw, v ∈ L(r), v 6= ε, b ∈ Σ, w ∈ Σ∗}

The computations for First and followLast can be founded in [5, 25, 10]. Intu-
itively, First(r) contains all the first symbols of words in L(r), while followLast(r)
contains all symbols b which can be appended to a word v in L(r) to form an-
other word vbw in L(r). For the completeness of the paper, all rules for the
computations of λ, First, and followLast are listed as follows. The computation
of λ [5]:

λ(ε) = true;
λ(a) = false, a ∈ Σ;
λ(r | s) = λ(r) ∨ λ(s);
λ(r · s) = λ(r) ∧ λ(s);
λ(r?) = λ(r∗) = true;
λ(r+) = λ(r).
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The computation of First [5]:

First(ε) = ∅,First(a) = {a}, a ∈ Σ;
First(r | s) = First(r) ∪ First(s);

First(r · s) =

{
First(r) ∪ First(s) if λ(r) = true,
First(r) otherwise;

First(r+) = First(r)
First(r?) = First(r).

The computation of followLast [25, 10]:

followLast(ε) = followLast(a) = ∅, a ∈ Σ;
followLast(r | s) = followLast(r) ∪ followLast(s);

followLast(r · s) =


followLast(r) ∪ First(s)
∪ followLast(s) ifλ(s) = true,

followLast(s) otherwise;
followLast(r+) = followLast(r) ∪ First(r);
followLast(r?) = followLast(r).

Note that only for marked regular expressions and DREGs, can the followLast
sets be computed in this way. For general regular expressions, it is not correct
to compute followLast sets in this manner [10].

A context-free grammar G is a quadruple (V, T, P, S) [27], where V is a finite
set of nonterminal symbols, T is a finite set of terminal symbols, P is a finite set
of productions of the form V → (V ∪ T )∗, and S ∈ V is the start symbol. The
language accepted by the grammar G is the set of words w from T ∗ satisfying
S
∗

=⇒
G
w, where S

∗
=⇒
G
w means that w is derivable from S (refer to [27] for more

details). We say a nonterminal X is useful if there exists a word w such that

X
∗

=⇒
G

w. When all of the nonterminals in a production are useful, we say the

production is valid.

3 Syntax for DREGs
In this section, we will first provide sound and complete inference systems for
DREGs in Section 3.1, then show that DREGs can be defined by context-free
grammars in Section 3.2.

3.1 Inference Systems for DREGs

The inference systems for DREGs is inspired by the following lemma.

Lemma 1 ([6, 25, 9]). Let r be a regular expression.

(1) r = ε, or a ∈ Σ : r is deterministic.

(2) r = r1|r2 : r is deterministic iff r1 and r2 are deterministic and First(r1)∩
First(r2) = ∅.
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(3) r = r1r2 : (A) If ε ∈ L(r1), then r is deterministic iff r1 and r2 are
deterministic, First(r1) ∩ First(r2) = ∅, and followLast(r1) ∩ First(r2) = ∅.
(B) If ε /∈ L(r1), then r is deterministic iff r1 and r2 are deterministic,
and followLast(r1) ∩ First(r2) = ∅.

(4) r = r+
1 : r is deterministic iff r1 is deterministic and the following condi-

tion holds: ∀x ∈ followLast(r′1),∀y ∈ First(r′1), if x\ = y\ then x = y.

(5) r = r1? : r is deterministic iff r1 is deterministic.

This lemma gives a characterization of DREGs as well as an algorithm to
decide whether a given regular expression is deterministic. Furthermore, we can
also use it as a method to construct DREGs as shown in the following.

Note that the condition in case (4) is characterized by marked expression-
s, while the inference systems will only handle original expressions. So we first
revise the above characterization such that the condition is on unmarked expres-
sions as well. For that, we define a Boolean function P on unmarked expressions
as follows.

Definition 2 ([9]). Let r be a regular expression. The Boolean function P(r)
is inductively defined as follows:

P(ε) = P(a) = true a ∈ Σ
P(r1 | r2) = P(r1) ∧ P(r2) ∧ (followLast(r2) ∩ First(r1) = ∅)

∧ (followLast(r1) ∩ First(r2) = ∅)
P(r1r2) = (¬λ(r1) ∧ ¬λ(r2) ∧ (followLast(r2) ∩ First(r1) = ∅)) ∨

(λ(r1) ∧ ¬λ(r2) ∧ P(r2) ∧ (followLast(r2) ∩ First(r1) = ∅)) ∨
(¬λ(r1) ∧ λ(r2) ∧ P(r1) ∧ (followLast(r2) ∩ First(r1) = ∅)

∧ (First(r1) ∩ First(r2) = ∅)) ∨
(λ(r1) ∧ λ(r2) ∧ P(r1) ∧ P(r2) ∧ (followLast(r2) ∩ First(r1) = ∅))

P(r+
1 ) = P(r1?) = P(r1)

Intuitively, the function P(r) checks the following condition: whether there
exists a symbol b and two distinct indexes i and j such that bi ∈ followLast(r′)
and bj ∈ First(r′), i.e., the condition in case (4) of Lemma 1: ∀x ∈ followLast(r′),
∀y ∈ First(r′), if x\ = y\ then x = y. That is the following property.

Proposition 1 ([9]). Given a DREG r, P(r) = true iff the following condition
holds: ∀x ∈ followLast(r′),∀y ∈ First(r′), if x\ = y\ then x = y.

Based on this property, we can restate case (4) of Lemma 1 as follows:

Proposition 2. r+ is deterministic iff r is deterministic and P(r) = true.

Using the properties above, we provide an inference system D for DREGs
over Σ, which consists of the following rules (here ` r means r is a DREG):

(Empty) ` ε (Const)
a ∈ Σ

` a

(Union)
` r ` s First(r) ∩ First(s) = ∅

` r | s
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(ConcatA)
` r ` s ¬λ(r) followLast(r) ∩ First(s) = ∅

` r · s

(ConcatB)

` r ` s λ(r) followLast(r) ∩ First(s) = ∅
First(r) ∩ First(s) = ∅

` r · s

(Plus)
` r P(r)

` r+
(Que)

` r
` r?

Each rule in D corresponds to one case in Lemma 1. Take the rule (ConcatA)
as an example. If r and s are deterministic, λ(r) = false and followLast(r) ∩
First(s) = ∅, then r · s is deterministic by the case (3.B) in Lemma 1. We say r
is derivable if there is a derivation tree in D whose root is r. If r is derivable in
D, r is clearly deterministic by Lemma 1. On the other hand, given a DREG
r, we can construct for r a derivation tree, which is isomorphic to the structure
of r. Thus r is derivable in D. That is to say, the inference system D is sound
and complete.

Theorem 1. A regular expression r is deterministic iff r is derivable from D.

The inference system D can help users understand how to construct DREGs
incrementally.

3.2 Context-free Grammars for DREGs

In this section, we will present grammars for DREGs, which are constructed by
simulating the computations in the inference system D.

Suppose that r is a DREG and r1 is a sub-expression of r. Clearly r1 is
also deterministic. According to the inference system D, if we replace r1 in r
by any DREG with the same values of First, followLast, λ and P as r1, then the
resulting expression is still a DREG. This is the key property that enables us
to construct the context-free grammars for DREGs.

Lemma 2. Given a DREG r, if r1 is a subexpression of r, and r2 is a DREG
which has the same values of First, followLast, λ and P as r1, then replacing r1

by r2 in r results in another DREG.

Proof. Actually, we can prove a stronger result: replacing r1 by r2 in r results
in a DREG having the same values of First, followLast, λ and P as r. We prove
it by induction on the structure of r.

r = a, a ∈ Σ: Then r1 is r. When we replace r1 by r2, the resulting expression is
r2. Since r2 is deterministic, and both r1 and r2 have the same First, followLast,
λ and P, the conclusion follows.

r = r3|r4: Here we only show the case r1 is a subexpression of r3; the case that
r1 is a subexpression of r4 can be proved similarly. Since r1 is a subexpression
of r3, and r1 and r2 have the same First, followLast, λ and P, by the inductive
hypothesis, we know that replacing r1 by r2 in r3 results in a DREG, denoted
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by r′3, which has the same First, followLast, λ and P as r3. According to Lem-
ma 1, and the computations of First, followLast, λ and P (see Section 2 and
Section 3.1), we know that r′3|r4 is also deterministic, and both r′3|r4 and r3|r4

have the same values of First, followLast, λ and P. Then the conclusion follows.

The other cases can be proved likely.

Assume the alphabet of DREGs is Σ = {a1, . . . , an}. To construct the gram-
mars for DREGs, we first define a finite set X of nonterminal symbols in which
each symbol is of the form XS,R,α,β , where S,R ⊆ Σ and α, β ∈ {true, false}.
Intuitively, the nonterminal symbol XS,R,α,β is intended to describe the set,
denoted as L(XS,R,α,β), of DREGs whose First, followLast, λ and P values are
S,R, α, and β, respectively.

Thanks to Lemma 2, we can replace any subexpression r1 in a DREG r
by any DREG with the same First, followLast, λ and P values. The set of al-
l these possible replacers are exactly the set L(XFirst(r1),followLast(r1),λ(r1),P(r1)).
Accordingly, if we replace subexpressions by nonterminals, then we can obtain
“productions” for DREGs. This suggests us to construct the productions from
the rules in the inference system D as follows: replacing DREGs by nonter-
minals. Moreover, from the definition of XS,R,α,β , we need to consider the
computations of First, followLast, λ and P when constructing grammars. We
also need to ensure that the conditions in the rules in D must hold. In detail,
we construct the grammar in the following manner: (1) there is a class of pro-
ductions corresponding to each kind of rule in D; (2) each class of productions
should conform to the computations of First, followLast, λ and P; (3) nonter-
minals are selected carefully such that the related conditions in the rules of D
hold. The grammar, denoted as Gd, is shown in Figure 1, where

⋃
denotes a set

of rules with the same left hand nonterminal, and the symbols (, ), |, ·, + and
?, the alphabet symbols ai (i = 1, . . . , n), and ε are the terminals of the gram-
mars. Any nonterminal symbol can be the start symbol. For a fixed alphabet,
the number of nonterminal symbols is finite, so is the number of productions in
Gd.

To illustrate the construction of Gd, let us consider the Union case. The
productions for this case can be constructed in two steps: (1) compute the
possible values of First, followLast, λ and P that the two operands of | can have;
and (2) check the conditions to ensure determinism in D.

Assume that the DREG r we want to construct is in the form of r1|r2 with

First(r) = S, followLast(r) = R, λ(r) = α and P(r) = β (i.e., XS,R,α,β ∗
==⇒
Gd

r).

First, let us compute the possible values Si, Ri, αi, βi for ri (i.e., XSi,Ri,αi,βi ∗
==⇒
Gd

ri), where i = 1, 2. According to the computations of First, followLast, λ, and
P, the following conditions must hold:
(1) S = First(r) = First(r1) ∪ First(r2) = S1 ∪ S2;
(2) R = followLast(r) = followLast(r1) ∪ followLast(r2) = R1 ∪R2;
(3) α = λ(r) = λ(r1) ∨ λ(r2) = α1 ∨ α2;
(4) β = P(r) = P(r1)∧P(r2)∧(followLast(r2)∩First(r1) = ∅)∧(followLast(r1)∩
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Base: X{ai},∅,false,true → ai X∅,∅,true,true → ε

Union: XS,R,α,β →
⋃

Φ(S,R,α,β,S1,R1,α1,β1,S2,R2,α2,β2)

(XS1,R1,α1,β1 | XS2,R2,α2,β2)

Concat: XS,R,α,β →
⋃

Θ(S,R,α,β,S1,R1,α1,β1,S2,R2,α2,β2)

(XS1,R1,α1,β1 ·XS2,R2,α2,β2)

Plus: XS,R,α,true →
⋃

R1∪S=R

XS,R1,α,true +

Que: XS,R,true,β →
⋃

α1∈{true,false}
XS,R,α1,β ?

where i = 1, . . . , n, Φ(S,R, α, β, S1, R1, α1, β1, S2, R2, α2, β2)
def
= (S1 ∪ S2 =

S) and (S1 ∩ S2 = ∅) and (R1 ∪ R2 = R) and (α1 ∨ α2 = α) and (β1 ∧ β2 ∧ (S1 ∩ R2 =

∅) ∧ (R1 ∩ S2 = ∅) = β), and Θ(S,R, α, β, S1, R1, α1, β1, S2, R2, α2, β2)
def
= (R1 ∩ S2 =

∅) and (α1 ∧ α2 = α) and (α1 ∧ (S1 ∪ S2 = S) ∧ (S1 ∩ S2 = ∅) ∨ ¬α1 ∧ (S1 =

S)) and (α2 ∧ (R1 ∪ S2 ∪ R2 = R) ∨ ¬α2 ∧ (R2 = R)) and (β = (¬α1 ∧ ¬α2 ∧ (S1 ∩ R2 =

∅)) ∨ (α1 ∧ ¬α2 ∧ β2 ∧ (S1 ∩ R2 = ∅)) ∨ (¬α1 ∧ α2 ∧ β1 ∧ (S1 ∩ R2 = ∅) ∧ (S1 ∩ S2 =

∅)) ∨ (α1 ∧ α2 ∧ β1 ∧ β2 ∧ (S1 ∩ R2 = ∅))).

Figure 1: Context-free grammars for DREGs

First(r2) = ∅) = β1 ∧ β2 ∧ (R2 ∩ S1 = ∅) ∧ (R1 ∩ S2 = ∅).
Moreover, to ensure determinism, the condition of the rule (Union) in D, i.e.,
(5) First(r1) ∩ First(r2) = S1 ∩ S2 = ∅, must hold as well. In conclusion, the
productions for DREGs of the form r1|r2 must satisfy Conditions (1)-(5), which
form the definition of Φ.

Clearly, the grammars are context-free. Next, we study the correctness of
these grammars: r is a DREG iff r is derivable from Gd. More precisely, we
prove that L(XS,R,α,β) is intended to describe the correct language, which is
shown by Lemma 3 and Lemma 4.

Lemma 3. If XS,R,α,β ∗
=⇒
Gd

r, then r is a DREG with First(r) = S, followLast(r)

= R, λ(r) = α and P(r) = β.

Proof. We prove it by induction on the length of the derivation XS,R,α,β ∗
==⇒
Gd

r.

For convenience, XS,R,α,β ∗
==⇒
Gd

r is written as XS,R,α,β ∗⇒ r.

Base case : If the derivation is one-step, then XS,R,α,β ∗⇒ r is in the form of
X{ai},∅,false,true → ai (i = 1, . . . , n) or X∅,∅,true,true → ε. It is easy to see that the
statement is true.

Inductive step: Suppose that the derivation takes k+1 steps (k ≥ 1), and for
any derivation of no more than k steps, the statement is true. To simplify the
presentation, we denote XS,R,α,β by X, XS1,R1,α1,β1 by X1 and XS2,R2,α2,β2 by
X2.

If the derivation is in the form X ⇒ X1 | X2
∗⇒ r, r = r1 | r2, X1

∗⇒ r1

and X2
∗⇒ r2. By the inductive hypothesis, we know that (1) X1

∗⇒ r1

and X2
∗⇒ r2 take no more than k steps; (2) r1 and r2 are DREGs; (3)

First(r1) = S1, followLast(r1) = R1, λ(r1) = α1, P(r1) = β1, First(r2) = S2,
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followLast(r2) = R2, λ(r2) = α2 and P(r2) = β2. And from the definition of the
union rules, we have S1 ∪ S2 = S, S1 ∩ S2 = ∅, R1 ∪R2 = R, α1 ∨ α2 = α and
(β1 ∧ β2 ∧ (S1 ∩R2 = ∅) ∧ (R1 ∩ S2 = ∅)) = β. Because r1, r2 are deterministic
and First(r1) ∩ First(r2) = S1 ∩ S2 = ∅, r is a DREG from Lemma 1. Hence
First(r) = S, followLast(r) = R, λ(r) = α and P(r) = β from the computations
of First, followLast, λ, and P.

If the first step of the derivation uses other rules, we can prove similarly.

Lemma 4. If r is a DREG with First(r) = S, followLast(r) = R, λ(r) = α and

P(r) = β, then XS,R,α,β ∗
=⇒
Gd

r.

Proof. We prove it by induction on the structure of r. The cases for r = ε or
a, a ∈ Σ are obvious.

For simplicity, we use X, X1 and X2 to denote XFirst(r),followLast(r),λ(r),P(r),
XFirst(r1),followLast(r1),λ(r1),P(r1) and XFirst(r2),followLast(r2),λ(r2),P(r2), respectively,
where r, r1 and r2 are expressions. XS,R,α,β ∗

==⇒
Gd

r is written as XS,R,α,β ∗⇒ r.

If r = r1 | r2, from r is deterministic, we have that both r1 and r2 are
also deterministic. By the inductive hypothesis, r1 and r2 are derivable from
Gd. Then from Lemma 3, we know that X1

∗⇒ r1 and X2
∗⇒ r2. From

the computations of λ and P, and the fact that r is a DREG, we know that
First(r) = First(r1) ∪ First(r2), followLast(r) = followLast(r1) ∪ followLast(r2),
First(r1) ∩ First(r2) = ∅, λ(r) = λ(r1) ∨ λ(r2), (P(r1) ∧ P(r2) ∧ (First(r1) ∩
followLast(r2) = ∅) ∧ (followLast(r1) ∩ First(r2) = ∅)) = P(r). Therefore, X ⇒
X1 | X2

∗⇒ r1|r2. That is, X
∗⇒ r. Hence r is derivable from Gd.

We can prove the other cases similarly.

Based on the lemmas above, we can conclude that

Theorem 2. DREGs can be defined by context-free grammars.

Proof. We only need to show that L(XS,R,α,β) is the intended language. That
is to show: (1) The strings generated by Gd are DREGs (Lemma 3); and (2)
All DREGs can be generated by Gd (Lemma 4).

Using the pumping lemma [27] for regular languages and the parenthesis
matching, we can prove that DREGs cannot be defined by regular grammars.

Proposition 3. DREGs cannot be defined by regular grammars.

Proof. The proof is based on the pumping lemma for regular languages [27].
Given an alphabet Σ = {a1, . . . , an}, let L denote the set of DREGs over
Σ. Suppose that L can be defined by a regular grammar G, namely, L =
L(G), and its corresponding integer in the pumping lemma is m. Let us take
((. . . ((︸ ︷︷ ︸

l

a1a1 )a1) . . .)a1)︸ ︷︷ ︸
2l−1

∈ L such that m ≤ l. According to the pumping lemma,

the substring y must consist entirely of (s. Assume that |y| = k ≥ 1. Clearly,
the string obtained for i = 0 is w0 = ((. . . (︸ ︷︷ ︸

l−k

a1a1 ) . . .)a1)︸ ︷︷ ︸
2l−1

, which is clearly not
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deterministic, since the parentheses are not matched. This contradicts to the
pumping lemma. Therefore, the set of DREGs is not regular. That is, DREGs
cannot be defined by a regular grammar.

4 Valid Productions

In this section, we will study the validity of productions, namely, to remove the
useless symbols in the grammar.

Let us consider a general nonterminal XS,R,α,β : XS,R,α,β is useful if there
exists a DREG r such that XS,R,α,β ∗

==⇒
Gd

r. Obviously, if S = ∅, then only

the empty string ε satisfies this condition, and thus we have R = ∅, λ = true,
and β = true. Moreover, when S ∩ R = ∅, by Proposition 1, we have that
β = true. These two conditions are clearly the necessity condition for XS,R,α,β

being useful. Rather surprise, although they specify conditions for two extreme
cases, we find that these two conditions are also the sufficiency condition. Since
we can show that if the two conditions hold, then there exists a DREG r such
that First(r) = S, followLast(r) = R, λ(r) = α, and P(r) = β.

Lemma 5. Given S, R, α, and β, the nonterminal symbol XS,R,α,β is useful
if and only if the following two conditions hold: (1) (S = ∅)→ ((R = ∅)∧ (α =
true) ∧ (β = true)); (2) (S ∩R = ∅)→ (β = true).

Proof. (⇐) We will show that when the conditions hold, we can construct a
DREG r such that First(r) = S, followLast(r) = R, λ(r) = α and P(r) = β.
Then from the proof of Lemma 4, we know that r ∈ L(XS,R,α,β). That is,
XS,R,α,β is useful.

When S ∩R 6= ∅ and S 6= ∅, the expression r is constructed as follows. Sup-
pose S∩R = {a1, . . . , an}, S = {a1, . . . , an, b1, . . . , bm1}, andR = {a1, . . . , an, c1, . . . , cm2}.
We need to consider the following cases:

• If α = 1 and β = 1, then r = ε|(a+
1 | . . . |a+

n |b1| . . . |bm1
) ·(ε|c1| . . . |cm2

). We
can verify that r is deterministic, First(r) = S, followLast(r) = R, α = 1,
and β = 1.

• If α = 1 and β = 0, then r = ε|(a1| . . . |an|b1| . . . |bm1) · (ε|a1| . . . |an|c1| . . .
|cm2

). We can verify that r is deterministic, First(r) = S, followLast(r) =
R, α = 1, and β = 0.

• If α = 0 and β = 1, then r = (a+
1 | . . . |a+

n |b1| . . . |bm1
) · (ε|c1| . . . |cm2

). We
can verify that r is deterministic, First(r) = S, followLast(r) = R, α = 0,
and β = 1.

• If α = 0 and β = 0, then r = (a1| . . . |an|b1| . . . |bm1
)·(ε|a1| . . . |an|c1| . . . |cm2

).
We can verify that r is deterministic, First(r) = S, followLast(r) = R,
α = 0, and β = 0.
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When S ∩ R = ∅ and S 6= ∅, by the hypothesis, we have β = 1. Then
the expression r is constructed as follows. Let S = {b1, . . . , bm1} and R =
{c1, . . . , cm2

}. Similarly, we consider the following cases:

• If α = 1, then r = ε|(b1| . . . |bm1
) · (ε|c1| . . . |cm2

). We can verify that
First(r) = S, followLast(r) = R, α = 1, and β = 1.

• If α = 0, then r = (b1| . . . |bm1) · (ε|c1| . . . |cm2). We can verify that
First(r) = S, followLast(r) = R, α = 0, and β = 1.

When S = ∅, by the hypothesis, we have that R = ∅, α = 1, and β = 1.
Then the expression r = ε satisfies that First(r) = ∅, followLast(r) = ∅, α = 1,
and β = 1.

Therefore if the conditions hold, then XS,R,α,β is useful.

(⇒) Suppose that S ∩ R = ∅. Then the following condition holds: ∀x ∈
followLast(r′),∀y ∈ First(r′), if x\ = y\ then x = y. By Proposition 1, we
have that β = 1.

When S = ∅, because XS,R,α,β is useful, by Lemma 3 there exists a DREG
r such that First(r) = ∅. Since we assume that regular expressions are not ∅,
from First(r) = ∅ we know that L(r) = {ε}. Hence followLast(r) = ∅, α = 1,
and β = 1.

This completes the proof.

Next, we study the effectiveness of the lemma. Given an alphabet Σ, there
are 2|Σ| different First and followLast sets, so there are 2|Σ| · 2|Σ| · 2 · 2 = 22|Σ|+2

different nonterminal symbols. Each production uses at most three nontermi-
nals, then the number of possible productions is in O(5× 26|Σ|+6). Table 1 lists
the numbers of productions in Gd over small alphabets, which increases rapidly.
Note that permutation of symbols in First and followLast sets does not matter.

Let us consider the number of valid productions (i.e., the ones without use-
less nonterminals). We use Go to denote such optimized grammars with only
valid productions. Table 1 also lists the numbers of productions in Go over
small alphabets. From the table, we can see that the numbers of productions
in Go are much fewer than the ones in Gd. According to Lemma 5, we know
that Go denotes the same language as Gd. This demonstrates the effectiveness
of Lemma 5.

Table 1: |Gd| and |Go| over small alphabets

|Σ| 1 2 3 4 5

|Gd| 208 3297 43698 542387 6553772

|Go| 46 815 14904 240481 3520010

At last, we show that for a given alphabet Σ, there are valid productions
in all the five classes of productions in Gd. The base case is trivial, since
these productions can generate words in one step. We show that there are
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valid productions in the other classes in the following. Actually the conditions
in the productions are corresponding to the conditions for an expression to be
deterministic and the processes of computing First, followLast, λ and P. Let us
consider the following DREGs r1 = ε|a, r2 = aa, r3 = a+ and r4 = a? for any
symbol a ∈ Σ. For each expression, we try to construct one valid production
for each class of productions. The productions we constructed are as follows:
(P1) X2 → X0|X1, (P2) X1 → X1 ·X1, (P3) X3 → X1+, and (P4) X2 → X1?,
where X0, X1, X2, and X3 stand for X∅,∅,true,true, X{a},∅,false,true, X{a},∅,true,true,
and X{a},{a},false,true, respectively. Since Xis are useful, all these productions
are valid.

5 Random Generation of DREGs

Due to the fact that there were no syntax definitions for DREGs before, by now
there are no tools for automatic generating DREGs. Nevertheless, in Section
3.2 we have shown that DREGs can be defined by context-free grammars. In
this section, we further show that these context-free grammars can be used to
automatically generate DREGs. Our aim is to generate DREGs randomly and
efficiently.

5.1 Random Generation Algorithm

With the grammars presented in Section 3.2, a naive idea is to construct the
whole grammar for a given alphabet first and then use the existing methods [28,
29, 30, 31, 32] to randomly generate sentences from this constructed grammar.
However, due to the facts that the grammars are too large to construct fully (see
Section 3.2 and Table 1), and that existing methods require some pre-processings
of the whole grammar, the existing methods become inefficient and thus are not
suitable for the grammars of DREGs. In existing methods, the pre-processings
are to keep the information needed for randomness, thus contribute to make
the random generation efficient. Hence the key problem is how to make the
random generation efficient without the construction and the pre-processings
of the whole grammar. Thanks to the information that the symbols in the
grammars of DREGs take (i.e., the parameters of the nonterminal symbols),
we can take full advantage of this information to make the random generation
efficient without constructing the whole grammar.

Our solution consists of the following ideas:

• Construct the valid productions only when they are needed to avoid the
construction of the whole grammar. Thanks to Lemma 5, we can construct
the valid productions directly. Otherwise, we need to construct the whole
grammar to check the validity of each production. This could lead to an
inefficient generation.

• Impose a conservative length condition to make the generation efficient:
if the length of the generating sentence exceeds a given length, the gener-
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ation terminates with a failure. This is similar to most existing work, but
different in that existing work requires the length of the generated sentence
is exactly the given one, while we require the length is no longer than the
given one. This is because that we would like to avoid the pre-processings
of the whole grammar that existing work require. Moreover, for other
structure requirements of the generated DREGs, such as concerning the
occurrences of regular expression operators, the generation may become
more difficult, such as the pre-processings cannot be avoided.

• Employ a length control mechanism to improve the efficiency of genera-
tion. In detail, we (over-)estimate the possible (minimum) length le for
the generating sentence, which can be solved by using the information of
the symbols. Then we compare le with the given length l. If le ≥ l, the
generation starts to select the productions with small First and followLast
randomly. As a result, the First and followLast become smaller and s-
maller until the Base case of the grammar. Therefore, the generation can
terminate soon.

Algorithm 1 Random Generation Algorithm

Input: the length l and the alphabet Σ
Output: a sentence s s.t. |s| ≤ l or failure
1: generate a useful non-terminal Xs randomly and put it into Stack stack
2: set current sentence sc ← ε, length lc ← 0
3: set length control off LC ← false
4: while stack is nonempty and lc ≤ l do
5: X ← pop stack
6: if X is terminal then
7: sc ← sc ·X, lc ← lc + 1 if X ∈ Σ
8: else
9: if LC is false then

10: lr ← estLen(stack), LC ← (lc + lr > l)
11: end if
12: if LC is false then
13: construct a production p for X randomly
14: else
15: construct p randomly s.t. ∀X ′ ∈ rhs(p). X ′.S ⊂ X.S and X ′.R ⊂ X.R
16: end if
17: if the construction fails then return failure
18: end if
19: push rhs(p) into stack reversely
20: end if
21: end while
22: if stack is empty then return sc
23: else return failure end if

The random generation algorithm is shown in Algorithm 1, which takes an
alphabet Σ and a length l as input, and returns a sentence with length no longer
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than l or a failure. The algorithm starts with a stack with a random useful
non-terminal (Line 1). In other words, the algorithm starts with two random
subsets S,R ⊆ Σ and two random Boolean values α, β such that XS,R,α,β is
useful, i.e. XS,R,α,β satisfies the conditions in Lemma 5. And the algorithm
initializes the current generating sentence sc as empty string ε and its length
lc as 0 respectively (Line 2), and set the length control mechanism off (Line
3). Then the algorithm proceeds each (top) symbol in the stack until either
the stack is empty or the length of the current generating sentence exceeds the
required one (lc ≥ l) (Lines 4-21). In detail, if the proceeding symbol X is
a terminal, then the algorithm concatenates it with the current sentence and
increases the length by 1 if it belongs to Σ (Lines 6-7). Otherwise, the algorithm
uses the length function estLen to estimate a possible length lr that the current
stack can generate, and compares it with the remaining length (i.e., the required
length l minus the current one lc) to trigger on the length control mechanism
(Line 10). Followed up, the algorithm tries to construct a production p for
the symbol X following the rules in Figure 1 (Lines 12-16) depending on the
length control. If the length control mechanism is off, p is selected uniformly at
random from all valid productions of X (Line 13); otherwise, p comes randomly
from those productions satisfying that each non-terminal symbol X ′ on the
right-hand side has a smaller First set S and a smaller followLast set R than
X (Line 15). If the construction fails, the algorithm terminates with a failure
(Lines 17− 18), otherwise, it pushes all the symbols on the right-hand side of p
into the stack reversely (Line 19), and continues with the next possible symbol.
Finally, if the stack is empty, the algorithm returns the generated sentence (Line
22); otherwise, it returns a failure (Line 23).

5.2 Length Estimation

In this section we present how to define the length estimating function estLen to
make the random generation efficient without any pre-processings of the whole
grammar.

First, similar to existing work [44, 41], let us consider the problem of esti-
mating the minimum length for the sentences generated from a symbol. Clearly,
the length of sentence generated from a terminal symbol is fixed (i.e., 1), while
it is variant from a non-terminal symbol. L. Zheng and D. Wu have presented
a solution to calculate the minimum length and to construct the corresponding
sentence that can be generated from a non-terminal symbol [44]. However, this
solution requires some pre-processings of the whole grammar as well, so it is not
applicable here.

The key difficulty lies in how to decide whether there exists a sentence s
generated from a given non-terminal symbol X for a given length l such that
|s| = l, based on which, the smallest l can be found. Thanks to the information
(i.e., the First set S and the followLast set R) that a non-terminal symbol takes,
we can conclude that any sentence s generated from XS,R,α,β satisfies that
|s| ≥ |S ∪R|, since S ∪R ⊆ occur(s).

17



Table 2: DREGs with length |S ∪R| and |S ∪R|+ 1
S R α β = true β = false

∅ ∅ true ε useless

∅ ∅ false useless useless

∅ P2 true useless useless

∅ P2 false useless useless

P1 ∅ true (a1| . . . |am)? useless

P1 ∅ false a1| . . . |am useless

P1 P2 true ((a1| . . . |an)(ε|c1| . . . |cp))
∗ useless

P1 P2 false ((a1| . . . |an)(ε|c1| . . . |cp))
+ useless

P3 P3 true (b1| . . . |bn)∗ ε|b1 · b
+
1 |b

+
2 | . . . |b

+
n

P3 P3 false (b1| . . . |bn)+ b1 · b
+
1 |b

+
2 | . . . |b

+
n

P3 P2 ∪ P3 true ((b1| . . . |bn)(ε|c1| . . . |cp))
∗ ε|(b1 · b

+
1 |b

+
2 | . . . |b

+
n )(ε|c1| . . . |cp)

P3 P2 ∪ P3 false ((b1| . . . |bn)(ε|c1| . . . |cp))
+ (b1 · b

+
1 |b

+
2 | . . . |b

+
n )(ε|c1| . . . |cp)

P1 ∪ P3 P3 true (ε|a1| . . . |am)(ε|b1| . . . |bn) (ε|a1| . . . |am)(ε|b1 · b
+
1 |b2| . . . |bn)

P1 ∪ P3 P3 false (ε|a1| . . . |am)(b1| . . . |bn)+ (ε|a1| . . . |am)(b1 · b
+
1 |b

+
2 | . . . |b

+
n )

P1 ∪ P3 P2 ∪ P3 true ε|(a1| . . . |am|b
+
1 | . . . |b

+
n )(ε|c1| . . . |cp) ε|(a1| . . . |am|b1 · b

+
1 |b2| . . . |b

+
n )(ε|c1| . . . |cp)

P1 ∪ P3 P2 ∪ P3 false (a1| . . . |am|b
+
1 | . . . |b

+
n )(ε|c1| . . . |cp) (a1| . . . |am|b1 · b

+
1 | . . . |b

+
n )(ε|c1| . . . |cp)

Lemma 6. Given S, R, α, and β, then for each s ∈ L(XS,R,α,β), |s| ≥ |S∪R|.

Proof. Due to S ⊆ occur(s) and R ⊆ occur(s), we can get |S ∪R| ≤ |s|.

Lemma 6 gives us a solution, but what we want is the minimum or the one
which is very close to the minimum. For that, we try to find whether there exists
a sentence whose length is very close to |S ∪ R|. Table 2 gives the constructed
DREGs, indicating that there exists a DREG either with length |S ∪ R| when
β is true or with length |S ∪ R| + 1 when β is false for a useful non-terminal
XS,R,α,β , where P1 = {a1, . . . , am}, P2 = {c1, . . . , cp} and P3 = {b1, . . . , bn}
such that Pis are pairwise disjoint. So we declare that the solution given by
Lemma 6 is reasonable.

Let us take the minimum length |R∪S| as a reference for our length estimat-
ing function, and assume that the possible length exceeds the required length.
So the length control mechanism is triggered on. From then on, we have to
lead the generation to terminating with a sentence whose length does not ex-
ceed the given one. Therefore, we have to select the productions that lead to
the minimum sentence due to the minimum reference. But it is a pity that the
whole grammar is “unknown”, so is the minimum sentence. Even worse, this
selection could lose randomness, even we use the sentences presented in Table
2 randomly.

As mentioned above, instead of the minimum sentence, we still select the pro-
ductions randomly, but from the ones with smaller First and followLast. This
smaller selection enables us to select the productions randomly again and to
lead the generation to terminating. To satisfy the length condition, the length
generated by the smaller selection should be smaller than the remaining length.
In other words, the remaining length should be as long as possible. Therefore,
the earlier to trigger on the length control mechanise, the higher the success rate.
On the other hand, we would like to generate the sentences whose lengths are
as close to the given one as possible. Conversely, this requirement requires the
generation to start the length control mechanise as late as possible. Again, the
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problem is how to define the length function to trigger the length control mech-
anism on properly, or to estimate the possible length of the sentences generated
by the smaller selection.

Similarly, let us take the possible minimum length by the smaller selection as
a reference. Consider the production cases of a non-terminate symbol XS,R,α,β .
For Plus and Que, there is only symbol XS1,R1,α,β and |S1 ∪R1| = |S ∪R|. So
the possible minimum length is almost the same. While for Union and Concat,
there are two symbols XS1,R1,α,β and XS2,R2,α,β . Under the smaller selection,
S = S1 ∪S2, S1 ∩S2 = ∅ and R1 ∪R2 = R. So |S ∪R| ≤ |S1 ∪R1|+ |S2 ∪R2| <
|S1 ∪R|+ |S2 ∪R| = |S1|+ |R|+ |S2|+ |R| = |S|+ 2 ∗ |R|. Hence, the possible
minimum length is on the increase if Union and Concat are applied. To make
matters worse, these two cases may be applied on continuously (|S| times at
most) until the Base case (i.e. |Si| = 1). So the possible minimum length can
be |S|+ |R|+ |S| ∗ |R| at worst. Conservatively, this worst minimum length can
be used as the length function estLen.

Lemma 7. Given an non-terminate XS,R,α,β, the possible minimum length for
the DREGs generated from XS,R,α,β under the smaller selection is |S ∪ R| +
|S| ∗ |R| at worse.

Proof. This can be proved by induction on the derivation trees of expressions.

• Base: Trivially.

• Union: According to the definition of Φ, we have S = S1 ∪ S2, S1 ∩
S2 = ∅ and R1 ∪ R2 = R. Let the minimum lengths of DREGs from
XS,R,α,β , XS1,R1,α1,β1 , XS2,R2,α2,β2 are m,m1,m2, respectively.

m = m1 +m2

≤ |S1 ∪R1|+ |S1| ∗ |R1|+ |S2 ∪R2|+ |S2| ∗ |R2|
(By induction)

≤ |S1 ∪R|+ |S1| ∗ |R|+ |S2 ∪R|+ |S2| ∗ |R|
(Ri ⊆ R)

= |S1 ∪ S2 ∪R|+ |S1 ∪ S2| ∗ |R| (S1 ∩ S2 = ∅)
= |S ∪R|+ |S| ∗ |R| (S = S1 ∪ S2)

• Concat: Due to the smaller selection, we have |Si| < |S| and |Ri| < |R|.
This makes us have to select the productions such that αi = true1, which
yields S = S1∪S2, S1∩S2 = ∅ and R1∪S2∪R2 = R. Then similar to the
case of Union, we can prove the minimum length is ≤ |S ∪R|+ |S| ∗ |R|
at most.

• Plus: Let the minimum lengths of DREGs fromXS,R,α,true andXS,R1,α,true

are m and m′, respectively. By induction m′ ≤ |S∪R1|+ |S| ∗ |R1|. Clear-
ly, we have m = m′. Thus m ≤ |S ∪R1|+ |S| ∗ |R1| ≤ |S ∪R|+ |S| ∗ |R|
since R1 ⊆ R.

1In our implementation, if such productions do not exist, we relax the conditions of smaller
selection as |Si| ≤ |S| and |Ri| ≤ |R| such that αi can be false, rather than returning a failure.
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• Que: Similar to the case of Plus.

While in practice, we also try some other choice, such as the average of the
minimum length and the worst minimum length (i.e., (|S ∪R|+ 0.5 ∗ |S| ∗ |R|)).
More details are presented in Section 6.

6 Experiments

We have implemented a prototype to construct the DREG grammars and to
generate DREGs from these grammar in Java. Using our prototype, we con-
ducted a series of experiments to evaluate our solution. Firstly, we conducted
experiments to see whether the DREG grammars can be constructed and fur-
ther be used easily in practice. Secondly, we conducted experiments to test the
performance of our random generation algorithm on different estimating func-
tions. Thirdly, to test the efficientness further, we also conducted experiments
to compare our algorithm with the RE Algorithm, i.e., the algorithm to gen-
erate regular expressions first and then select the deterministic ones. Finally,
to see the usefulness of our generator, we applied the generated DREGs in an
inclusion checker for DREGs.

All the experiments are conducted on a machine with Intel core I5 CPU and
4GB RAM, running Ubuntu 14.04.

6.1 DREG Grammar Construction

Given an alphabet Σ, constructing the grammar is easy, just by constructing
all the possible valid productions according to the rules presented in Figure 1.
Thanks to Lemma 5, those invalid productions can be thrown away directly,
without any additional check on the whole grammar. Table 3 shows the exper-
imental results for the optimized grammars with small alphabets, where |Go|
denotes the number of productions in optimized grammar Go, Time and Avg T
denote the constructing time for the grammar and the average time for each
production respectively, and Stored denotes the size of the file that stores the
grammar. Although the grammars can be constructed easily, the result shows
that the time and space needed by the grammars are exponential on |Σ|. This is
because, as explained in Section 4, the number of productions is O(5× 26|Σ|+6).

Due to the large scale, it seems that these grammars cannot be easily used
in practice. For example, we have tried to generate DREGs using Dong’s algo-
rithm [32], which is a linear algorithm to enumerate sentences from a CFG and
can be used as a sentence generator provided with a randomizer [41]. But we
only succeed for the grammar whose symbol size is smaller than 7, due to the
large memory required by the maintaining of the whole grammar and the useful
information for generation.

However, in some cases, only some productions for a specific non-terminal
symbol are required, rather than the whole grammars. For example, when
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Table 3: Grammar construction for given alphabet Σ

|Σ| |Go| Time Stored Avg T
1 46 0.033ms 1.69k 0.711us
2 815 0.817ms 35.2k 1.002us
3 14904 7.276ms 726k 0.488us
4 240481 119.113ms 12.6M 0.495us
5 3520010 2323.929ms 203M 0.660us
6 48369939 28506.531ms 2.98G 0.589us
7 638241628 396844.845ms 42.7G 0.622us

using these grammars for sentence generation (e.g., our random generation) only
one production is required for each non-terminal symbol at a time. Moreover,
the experimental result also shows that the average time for constructing a
production is very low (almost smaller than 1us). This enables us to only
construct the productions efficiently when they are needed.

6.2 DREG Generation

As we discuss in Section 5.2, the length estimating function estLen affects the
sentence generation. Hence we conduct some experiments to evaluate our ran-
dom generation algorithm: how the algorithm perform on different estimating
functions for grammars with different alphabet sizes. For that, we generate 100
sentences randomly with length no longer than 10, 20, 50 from the grammars,
whose alphabet size ranges from 1 to 20, taking the worst minimum length
(i.e., |S ∪R|+ |S| ∗ |R|), the minimum length (i.e., |S ∪R|), and their average
(i.e., |S∪R|+0.5∗ |S| ∗ |R|) as the length function estLen, respectively. During
generating, we collect the total time, the average length, and the failure number.

The experimental results are shown in Figure 2, where the horizontal axises
of all the figures represent the sizes of the grammar’s alphabets, the vertical
axises of Figures 2(a) - 2(c), Figures 2(d) - 2(f), and Figures 2(g) -2(i) represent
the total times in seconds, the average length radios with respect to the required
length and the failure numbers, respectively, and “l-n” means that the required
length is l and the length function estLen is |S∪R|+n∗|S|∗|R|. The results show
that the total times costed by most DREG generations, except the case of 50-0
for the grammars with the alphabet size larger than 15, are in several seconds,
indicating that our algorithm can generate DREGs efficiently. In particular,
taking |S ∪R|+ |S| ∗ |R| and |S ∪R|+ 0.5 ∗ |S| ∗ |R| as the length function, the
cost time could be in 1s, even in 0.1s when the required length is large. Moreover,
from Figures 2(a)-2(c), we can see that (i) the higher the length function, the less
(better) the cost time; and (ii) the cost time would not increase rapidly (almost
the same) as the alphabet size increases. The reason is that with a higher
estimated length, the length control mechanism can be triggered on earlier and
there are more “space” for the smaller random selection.
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(a) Total Time for l ≤ 10 (b) Total Time for l ≤ 20 (c) Total Time for l ≤ 50

(d) Aver. Len. for l ≤ 10 (e) Aver. Len. for l ≤ 20 (f) Aver. Len. for l ≤ 50

(g) Fail. Num. for l ≤ 10 (h) Fail. Num. for l ≤ 20 (i) Fail. Num. for l ≤ 50

Figure 2: Results for different length estimations

While considering the actual lengths of the generated sentences, from Fig-
ures 2(d)-2(f), we can see that the average lengths of most DREG generations
account for more than 60% of the required ones. In particular, taking the min-
imum length as the the length function performs best such that the average
length of the generated DREGs is quite close to the required one. Moreover,
different from the cost time, the higher the length function, the smaller (worse)
the average length.

Finally, due to the same reason as for the cost time, the higher the estimated
length, the less the failure number. Indeed, the failure number contributes to the
cost time. Figure 2(i) shows that with |S∪R|+|S|∗|R| and |S∪R|+0.5∗|S|∗|R|
for the length function, the failure number is no more than 100 to generate
sentences with length no longer than 50.

As a conclusion, we suggest the average minimum length (i.e., |S∪R|+0.5∗
|S| ∗ |R|) as the estimated length function in practice, taking both the cost time
and the average length into account.

Finally, we would like to see how our algorithm perform to generate long
sentences from large grammars as well. So we try to generate 100 sentences
with length no longer than 500 for grammars whose alphabet size ranges from
21 to 272. Table 4 shows the experimental results, where |Σ| denotes the size of
alphabet Σ, TTime denotes the total time in seconds for the random generation,
Failure denotes the failure number during the generation, and ALen denotes the
average length of the generated sentences, respectively. The results shows that
our algorithm is still effective to generate long sentences from large grammars:

2From 28, due to the Java heap space, the generation fails
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Table 4: Results for Len ≤ 500

|Σ| TTime Failure ALen |Σ| TTime Failure ALen
21 8.540 1 357.58 22 9.085 1 360.49
23 15.943 1 359.42 24 34.888 1 350.48
25 64.419 0 350.21 26 132.174 0 346.57
27 583.298 0 335.8

generating a DREG with length no longer than 500 from a grammar with alpha-
bet size 27 is about 5.833s on average. We also found that the cost time rises as
the alphabet size increases. However, thanks to the estimated function we take,
the failure number is very few (almost 0), which indicates that the cost time is
almost caused by the essential generation. Moreover, the average lengths still
account for more than 60% of the required lengths.

6.3 Comparison with the RE Algorithm

In this section, to evaluate the efficiency of our algorithm, we compare our
algorithm with the RE one, namely, to generate regular expressions (RE for
short) first using a random sentence generator for RE and then select those
deterministic ones [9]. To avoid the time caused by the pre-proceedings, we take
the simplest random generation algorithm, namely Hanford’s algorithm [34], as
the RE generator. We also adopt the length control mechanism [44] to ensure the
termination. In detail, the RE generator takes as input the grammar for REs:
R→ ai | R R | R o R | R + | R ? | ε, where ai represents any symbol in alphabet
and o denotes the alternation. The RE generator starts with the nonterminal R
and selects a rule for each nonterminal randomly during generation. Meanwhile,
the RE generator counts the current length of the generated sentential form. If
the current length exceeds the given one, then the RE generator starts to select
the terminal rules R→ ai randomly.

First, we try to generate sentences of the same length from grammars with
different sizes to compare our algorithm and the RE one. To do that, from the
grammars with alphabet size from 1 to 26, we first use our algorithm to generate
100 sentences with length no longer than 50, and then use the RE one to generate
100 sentences whose lengths are exactly the same as the corresponding average
length of the sentences generated by our algorithm. The results are shown in
Figure 3(a), where the horizontal axis represents the sizes of the grammar’s
alphabets and the vertical axis represents the total times in seconds costed by
our algorithm and the RE one. The results show that our algorithm is much
more efficient than the RE one, especially for the grammars with small alphabet.
There are two factors that make the RE algorithm inefficient3: one is the very

3If some other algorithms, such as Hickey and Cohen’s algorithm [35], were used, the
pre-proceedings could be another factor.
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(a) Total Time for different sizes (b) Total Time for different lengths

Figure 3: Comparison between ours and the RE algorithm

low ratio of DREGs in regular expressions (e.g, to generate 100 DREGs with
length 50 from grammar with alphabet size 26 needs about 8618 REs with a
radio 1.2%) and the other is the determinism checking, which has to be done
for every RE. While our algorithm generates DREGs directly such that these
two factors are absent, yielding an efficient generator. Moreover, if the required
length 50, rather than the average length from our algorithm, was used for the
RE algorithm, then it would cost much more time (see the following experiment),
even that the algorithm could not terminate in a day for the grammars with
small alphabet.

Next, we also compare our algorithm with the RE one by generating sen-
tences with different lengths from the same grammar, for example, the one with
alphabet size 26. First, we use our algorithm to generate 100 sentences with
length no longer than a given length, ranging from 50 to 150, and then proceeds
as the above experiment. Figure 3(b) shows the results, where the horizontal
axis represents the given length restricted on sentences and the vertical axis is
the same as Figure 3(a). The results show that as the given length increases,
the times costed by the RE one increase rapidly, such that it cannot generate a
DREG with length bigger than 100 in an hour. In particular, when the given
length is much longer than the alphabet size, it cannot generate a DREG in a
day. This is mainly due to the probability that the generated regular expres-
sions are deterministic is decreased very quickly, as the given length increases.
On the contrary, thanks to the estimated function, our algorithm still performs
well: (i) it generates the required DREGs with length no longer than 50 in 1
second; and (ii) the cost time seems linear on the required length.

The above results show that RE generators are not feasible for generating
DREGs, and our algorithm is quite efficient for generating DREGs. Due to
the simplicity (fewer pre-proceedings) and the randomness (the very low ratio
of DREGs in RE) of the RE algorithm we select, we can conclude that our
algorithm cannot be replaced by any RE generation algorithm.

6.4 Application of DREG Generator

As mentioned in Section 1, an automatic generator of DREGs is indispensable
in practice. In this section, we present the application of our DREG generator
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Table 5: Results for the inclusion checker

RLen ALen LMax LMin GTime CTime

50 39.504 50 19 0.820 0.231
100 72.245 100 25 10.294 0.360
150 122.278 150 34 35.106 0.493
200 159.594 200 54 43.301 0.546

in the inclusion checker for DREGs in [47].
The inclusion checker presented in [47] implemented two inclusion algorithm-

s, both of which take two DREGs r1, r2 as input and return true if r1 ⊆ r2 and
false otherwise. To evaluate the inclusion checker, many DREGs of different
lengths are required. However, due to the inefficient generation (i.e., the RE
generator), the inclusion checker are evaluated only on DREGs with length no
more than 30. Here we use our DREG generator to generate long DREGs from
the grammar with alphabet size 26 and use these DREGs to evaluate the in-
clusion checker further. In detail, similar to [47], we first generate 100 pairs
of DREGs with length no longer than 50, 100, 150 and 200 respectively, then
apply the inclusion checker on these 100 pairs of generated DREGs, wherein
we account the average length of the generated DREGs, the generated time,
and the checking time. Table 5 gives the experimental results, where RLen and
ALen denote the required length and the average length of the generated sen-
tences respectively, LMax and LMin denote the maximum and the minimum
of the sentence lengths respectively, GTime and CTime denote the times in
seconds costed by the generation and by the checking respectively. The results
shows that the inclusion checker still works effectively on DREGs with length
no longer than 200.

This experiment demonstrates that our DREGs generator can help to eval-
uate the inclusion checker. We believe our generator can be used in some other
applications which require automatic generation of DREGs, and thus is useful
in practice.

7 Conclusion

In this paper, we gave syntactic grammars for DREGs, and showed that the
class of DREGs is context-free. Each production of the grammars is of the form
X → ai|ε, ai ∈ Σ (base) or X → Y uo (unary operators) or X → Y bo Z (binary
operators), where uo denotes the unary operators and bo the binary operators.
Each nonterminal symbol is of the form XS,R,α,β which defines the language
L(XS,R,α,β) = {r ∈ DREGs | First(r) = S, followLast(r) = R, λ(r) = α,P(r) =
β}. We showed that L(XS,R,α,β) is the intended language.

We further designed a random generator for DREGs. The generator does not
construct the whole grammar, instead it constructs productions only when they
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are needed. Further, it imposes a conservative length condition and a length
control mechanism. These ensure the efficiency of the generator. Experiments
showed that the generator is efficient and useful in practice.

In the future, there are several work to be done. (1) Further studies of
grammar constructions as started in this paper. It is possible to find other
ways to construct the grammars, for example by using the continuing proper-
ty [10], in the hope to find some smaller grammars, which remains as a future
work. (2) Extending regular expressions by other operators. In this paper we
are considering standard regular expressions. To include other commonly used
operators, such as counting and interleaving, will be useful. (3) Optimizations,
which will be quite useful for the context-free grammars for DREGs. We will
examine other optimization rules to further reduce the number of productions
in the grammars. (4) Other applications of the grammars. For example we
will further develop a tool for helping the user to write DREG expressions, in
which the use of grammars is necessary. (5) Examining practical subclasses of
DREGs which may have simpler grammars than DREGs such that the use of
the grammars can be more efficient. (6) Investigating the pre-processings to
make guarantees about the distribution on sentences of length n by taking the
symmetric similarity of DREG grammars into account. (7) Algorithms for ran-
dom generation of XSDs in which the random generation algorithm for DREGs
must be used.
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